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Journal de Théorie des Nombres
de Bordeaux 22 (2010), 359-368

Weber’s class number problem in the cyclotomic
Z2-extension of Q, II

par Takashi FUKUDA et Keiichi KOMATSU

Résumé. Soit hn le nombres de classes du n-ième étage de la Z2-
extension cyclotomique de Q. Weber a prouvé que hn (n ≥ 1) est
impair et Horie a prouvé que hn (n ≥ 1) n’est divisible par aucun
nombre premier ` satisfaisant ` ≡ 3, 5 (mod 8). Dans un article
précédent, les auteurs ont montré hn (n ≥ 1) n’est divisible par
aucun nombre premier ` inférieur à 107. Dans le présent article, en
étudiant plus précisément les propriétés d’une unité particulière,
nous montrons que hn (n ≥ 1) n’est divisible par aucun nombre
premier ` inférieur à 1.2 · 108. Notre argument conduit aussi à
la conclusion que hn (n ≥ 1) n’est divisible par aucun nombre
premier ` satisfaisant ` 6≡ ± 1 (mod 16).

Abstract. Let hn denote the class number of n-th layer of the
cyclotomic Z2-extension of Q. Weber proved that hn (n ≥ 1)
is odd and Horie proved that hn (n ≥ 1) is not divisible by a
prime number ` satisfying ` ≡ 3, 5 (mod 8). In a previous paper,
the authors showed that hn (n ≥ 1) is not divisible by a prime
number ` less than 107. In this paper, by investigating properties
of a special unit more precisely, we show that hn (n ≥ 1) is not
divisible by a prime number ` less than 1.2 · 108. Our argument
also leads to the conclusion that hn (n ≥ 1) is not divisible by a
prime number ` satisfying ` 6≡ ± 1 (mod 16).

1. Introduction
Let ζn = exp(2π

√
−1/2n) and Qn = Q(ζn+2 + ζ−1

n+2). Then Qn, which is
n-th layer of the cyclotomic Z2-extension of Q, is a cyclic extension of Q
with degree 2n. Weber [14] studied the class number hn of Qn and proved
that hn is odd for all n ≥ 1. Weber also showed h1 = h2 = h3 = 1. We note
that hn−1 divides hn because hn−1 is odd and [Qn : Qn−1] = 2.

Weber conjectured h4 > 1. But Cohn [2], Bauer [1] and Masley [10]
showed h4 = 1. Furthermore Linden [11] showed h5 = 1. It is also shown
h6 = 1 if GRH (Generalized Riemann Hypothesis) is valid. This phenom-
enon indicates a possibility that hn = 1 for all n ≥ 1. But the technique
using root discriminant, which enables Masley and Linden to show h4 = 1
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and h5 = 1 respectively, is no longer applicable for hn (n ≥ 7). We need a
entirety new technique to calculate hn or to show hn = 1 for n ≥ 7.

The calculation of the whole class number hn is very difficult even if we
use a modern computer. So we are led to study the odd part of hn. In this
aspect, there are preceding works of Washington [12] and [13]. He proved
that the `-part of hn is bounded as n tends to ∞ for a fixed prime number
`. Precisely speaking, using the theory of Zp-extensions, he developed a
method which enables us to obtain an explicit bound on n for which the
growth of en stops, where hn = `enq with q not divisible by `.

There is also an approach of Horie [5], [6], [7], [8] which tries to attack hn
from another point of view. He proved that if ` satisfies a certain congruence
relation and exceeds a certain bound, which is explicitly described, then `
does not divide hn for all n ≥ 1, namely the `-part of hn is trivial for all
n ≥ 1. The following is a part of Horie’s results.

Proposition 1.1 (Horie, cf. Proposition 3 in [8]). Let ` be a prime number
such that ` ≡ 3, 5 (mod 8). Then ` does not divide hn for all n ≥ 1.

Horie also obtained the following results which treat higher congruence.

Proposition 1.2 (Horie, cf. Theorem 1 in [5] and Theorem 1 in [7]). Let
` be a prime number.

(1) If ` ≡ 9 (mod 16) and ` > 34797970939, then ` does not divide hn
for all n ≥ 1.

(2) If ` ≡ −9 (mod 16) and ` > 210036365154018, then ` does not
divide hn for all n ≥ 1.

Although Horie’s results were very striking and very effective, there were
many small prime numbers ` for which we did not know whether ` di-
vides hn. For example, it was not known whether ` | hn (n ≥ 6) for
` = 7, 17, 23, 31, 41, ....

The main purpose of this paper is to prove the following two theorems.
The first,which is proved by investigating the properties of a special unit
introduced by Horie, is considered an explicit version of Theorem 3 in [12]
and is a refinement of Theorems 1.2 and 5.1 in [3], which were proved
by relating the plus part of the class number with the non-divisibility of
Bernoulli numbers. For a real number x, we denote by [x] the largest integer
not exceeding x.

Theorem 1.1. Let ` be an odd prime number and 2c the exact power of 2
dividing `− 1 or `2 − 1 according as ` ≡ 1 (mod 4) or not. Put

m` = 2c− 3 + [ log2 ` ]

and recall hn denotes the class number of Qn. Then ` does not divide hn/hm`
for any integer n ≥ m`.
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Typical values of m` are as follows:

` 7 17 31 257 8191 65537 524287 7340033 39845887
m` 7 9 14 21 38 45 56 59 66

Theorem 1.1 has a computational application. An algorithm verifying
that ` does not divide hn for given ` and n was established in [3] and the
value of m` is small enough for this algorithm. So we are able to derive
the following corollary which will supersede Corollary 1.3 in [3]. We imple-
mented the algorithms in [3] on a computer with Xeon 2.0 GHz processor
and 32 GB memory using TC. The calculating time was three months.

Corollary 1.1. Let ` be a prime number less than 1.2 · 108. Then ` does
not divide hn for all n ≥ 1.

The second is considered a precise version of Proposition 1.2, which is a
direct consequence of Corollary 1.1 and Lemma 2.3 in §2.

Theorem 1.2. Notations being as in Theorem 1.1, if ` ≡ ± 9 (mod 16),
then ` does not divide hn for all n ≥ 1.

Remark. After we wrote this manuscript, we were aware of the preprint of
K. Horie and M. Horie [9], in which they showed that a prime number ` does
not divide hn for all n ≥ 1 if ` satisfies ` ≡ 9 (mod 16) and ` > 7150001069
or if ` ≡ −9 (mod 16) and ` > 17324899980.

Acknowledgment. The authors would like to express their gratitude to
the referee who read the manuscript carefully and suggested computations
with simpler formulae.

2. Proofs
We prove our theorems by using Horie’s method in [8]. Notations being

as in Theorem 1.1, let ζn = exp(2π
√
−1/2n) and put

ηn = ζn+2 − 1√
−1(ζn+2 + 1)

Then ηn is a unit and contained in Qn because Qn is the maximal real sub-
field of Q(ζn+2). This special unit, which played important role in Horie’s
work, takes an active part also in our proofs. First we note

NQn/Qn−1(ηn) = ζn+2 − 1√
−1(ζn+2 + 1)

−ζn+2 − 1√
−1(−ζn+2 + 1)

= −1.(2.1)
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An element α in Z[ζn] is uniquely expressed in the form

α =
2n−1−1∑
j=0
ajζ
j
n (aj ∈ Z).

For each such α and each σ ∈ G(Q(ζn+2)/Q(ζ2)), we define the element ασ
in the group ring Z[G(Q(ζn+2)/Q(ζ2))] by

ασ =
2n−1−1∑
j=0
ajσ
j .

The following Horie’s results are essential in this paper. Following the ref-
eree’s advice that self-contained paper is convenient for readers, we give
proofs here. The idea is due to the referee.

Proposition 2.1 (Horie, cf. Lemma 2 in [5]). Let ` be an odd prime number,
σ a generator of the Galois group G(Q(ζn+2)/Q(ζ2)) and F an extension
in Q(ζn) of the decomposition field of ` with respect to for Q(ζn)/Q. Then
` divide hn/hn−1 if and only if there exists a prime ideal L of F dividing `
such that ηασn is an `-th power in Qn for any element α of the ideal `L−1

of F .

Proof. We prove "only if part" which is sufficient for our purpose. We take
an integer s with ζσn+2 = ζsn+2 and put

ρ = σ2n−1
, ξ =

ζn+3 − ζ−1
n+3

ζsn+3 − ζ
−s
n+3
.

Let En be the unit group of Qn and Cn the cyclotomic unit group of Qn,
which is generated by { ξσi | i = 1, 2, . . . , 2n }. Then Z[ζn] acts on E1−ρ

n by
(ε1−ρ)α = (ε1−ρ)ασ for ε ∈ En and α ∈ Z[ζn] and we have

Z` ⊗ (E1−ρ
n /C

1−ρ
n ) ∼=

∏
j

Z[ζn]/L
kj
j ,

where Lj runs through the prime ideals of Q(ζn) lying above ` and kj is
a non-negative integer. Moreover the order of E1−ρ

n /C
1−ρ
n is hn/hn−1 by

analytic class number formula.
Now we assume that ` divides hn/hn−1. Then there exists a prime ideal

Lj of Q(ζn) lying above ` with kj > 0. Hence we have (ξ1−ρ)ασ is an `-th
power in Qn for α ∈ (`)L−1

j . Since (η1+ρ
n )2 = 1 by (2.1), we have

η4n = η2−2ρ
n = η2(1−σ)(1+σ+···+σ2n−1−1)

n .

This shows

η4n = (ξ1−ρ)2(1+σ+···+σ2n−1−1)

by η1−σn = ξ1−ρ, which means ηασn is an `-th power in Qn. �
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Proposition 2.2 (Horie, cf. Lemma 5 in [4]). Let ` be an odd prime number
and ϕ the Frobenius automorphism of ` in Q(ζn+2)/Q. If an element β in
Z[ζn+2] is an `-th power in Z[ζn+2], then βϕ − β` ∈ `2Z[ζn+2].

Proof. Put β = x` and xϕ = x` + `u with x, u ∈ Z[ζn+2]. Then

βϕ = (xϕ)` = (x` + `u)` = (β + `u)` ≡ β` (mod `2) .

�

Let ` and ϕ be as in Proposition 2.2, ζ = ζn+2, σ a generator of
G(Q(ζ)/Q(ζ2)) and put η = ηn = (ζ − 1)/(

√
−1(ζ + 1)). We choose Q(ζc)

as F . We assume n ≥ c and ` divides hn/hn−1. Then, by Proposition 2.1,
there exists a prime ideal L in Q(ζc) dividing ` such that ηασ is an `-th
power of a unit in Qn for any element α of the ideal `L−1 of Q(ζc). let

α =
2c−1−1∑
i=0
ai
(
ζ2
n−c
n

)i
be an element in `L−1 with ai ∈ Z. we put τ = σ2n−c . Then ασ =∑2c−1−1
i=0 aiτ

i and (ζτ i−1)2c = 1. Now, we start computations similar to
Lemma 13 in [8]. Noting that

(β + γ)a` =
(
β` + γ` +

`−1∑
k=1

(
`

k

)
β`−kγk

)a

≡ (β` + γ`)a + a(β` + γ`)a−1
`−1∑
k=1

(
`

k

)
β`−kγk (mod `2)

for β, γ ∈ Z[ζ] with β + γ prime to ` and for a ∈ Z, it follows that

(ζτ i − 1)ai` ≡ (ζ`τ i − 1)ai

+ ai(ζ`τ
i − 1)ai−1

`−1∑
k=1

(
`

k

)
ζτ
i(`−k)(−1)k (mod `2),

(ζτ i + 1)−ai` ≡ (ζ`τ i + 1)−ai

− ai(ζ`τ
i + 1)−ai−1

`−1∑
k=1

(
`

k

)
ζτ
i(`−k) (mod `2).

From these congruence relations and a consequence(
ηασ

)` − (ηασ)ϕ
√
−1 −`α

σ =
2c−1−1∏
i=0

(ζτ i − 1)ai`

(ζτ i + 1)ai`
−

2c−1−1∏
i=0

(ζ`τ i − 1
ζ`τ i + 1

)ai
≡ 0 (mod `2)
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of Propositions 2.1 and 2.2, we have
2c−1−1∑
i=0

(
ai

ζ`τ i − 1

`−1∑
k=1

(
`

k

)
(−1)kζτ i(`−k)

− ai

ζ`τ i + 1

`−1∑
k=1

(
`

k

)
ζτ
i(`−k)

)
≡ 0 (mod `2)

because ζ`(τ i−1) ± ζ−` are prime to `. Since(
`

k

)
≡ `(−1)k−1

k
(mod `2) (1 ≤ k ≤ `− 1)

and since
2c−1−1∏
i=0

(ζ`τ i − 1)(ζ`τ i + 1) =
2c−1−1∏
i=0

(ζ2`τ i − 1) = 1− ζ2c`,

we have

(1− ζ2c`)
2c−1−1∑
i=0

(
ai

ζ`τ i − 1

`−1∑
k=1

(
`

k

)
(−1)kζτ i(`−k)

− ai

ζ`τ i + 1

`−1∑
k=1

(
`

k

)
ζτ
i(`−k)

)

≡ `
2c−1−1∑
i=0
ai

( 2c−1∑
j=0
−ζ`τ i(2c−1−j)

`−1∑
k=1

(−1)2k−1

k
ζτ
i(`−k)

−
2c−1∑
j=0

(−1)2c−1−jζ`τ
i(2c−1−j)

`−1∑
k=1

(−1)k−1

k
ζτ
i(`−k)

)
≡ 0 (mod `2).

Hence we have
2c−1−1∑
i=0
ai

2c−1∑
j=0

`−1∑
k=1

(1
k

+ (−1)j+k+1

k

)
ζ−τ

i(`j+k) ≡ 0 (mod `)

by ζ2c(τ i−1) = 1. Considering the complex conjugate of the left hand side
of the above congruence relation, we have the following:

Lemma 2.1. Let α be in Proposition 2.1 and

α =
2c−1−1∑
i=0
ai
(
ζ2
n−c
n

)i
(2.2)
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with ai ∈ Z. If ` divides hn/hn−1, then
2c−1−1∑
i=0
ai

2c−1∑
j=0

`−1∑
k=1

1 + (−1)j+k+1

k
ζτ
i(`j+k) ≡ 0 (mod `).

We put
S = { b02n−c+2 + b12n−c+3 + · · ·+ bc−12n+1 | bj = 0, 1 for 0 ≤ j ≤ c− 1 }

and define the subset S′ of S by

S′ =
2c−1−1⋃
i=0
{ r ∈ S | ζτ i−1 = ζr }.

Lemma 2.2. Let j and k be rational integers with 0 ≤ j ≤ 2c − 1, 1 ≤
k ≤ ` − 1 and r ∈ S′. Let ` be an odd prime number with ` < 2n−2c+3. If
(r+1)(`j+k) ≡ 2c−1`−1 (mod 2n+1), then we have j = 2c−1−1, k = `−1
and r = 0.

Proof. We have −2n−c+2 < (2c−1 − j)` − k − 1 < 2n−c+2 because of 0 ≤
j ≤ 2c − 1, 1 ≤ k ≤ ` − 1 and ` < 2n−2c+3. Since (2c−1 − j)` − k − 1 ≡ 0
(mod 2n−c+2), we have (2c−1−j)`−k−1 = 0. Since 2 ≤ k+1 = (2c−1−j)` ≤
`, we have k = ` − 1 and j = 2c−1 − 1, which implies r ≡ 0 (mod 2n+1).
Hence r = 0 or r = 2n+1. Since r ∈ S′, we have r = 0. �

Proof of Theorem 1.1. The assertion of the theorem is trivial when
n = m`. So we assume that ` divides hn/hn−1 for some n greater than m`.
Then ` satisfies ` < 2n−2c+3 and Lemma 2.1 yields

2c−1−1∑
i=0
ai

2c−1∑
j=0

`−1∑
k=1

1 + (−1)j+k+1

k
ζτ
i(`j+k) ≡ 0 (mod `),

where ai is the rational integer defined by (2.2). We choose an element α
in `L−1 so that α 6∈ `Z[ζc]. Since we may assume a0 6≡ 0 (mod `), we see

that ai
−1 + (−1)j+k

k
6≡ 0 (mod `) for i = 0, j = 2c−1 − 1 and k = ` − 1.

This contradicts Lemma 2.2 because { ζi | 0 ≤ i ≤ 2n+1 − 1 } is an integral
basis of Q(ζ). �

We follow the arguments in [5] to prove Theorem 1.2. For an algebraic
number α, let

||α || = max
ρ
|αρ |,

where ρ runs through all isomorphism of Q(α) in C. Then
||ββ′ || ≤ ||β || · ||β′ ||, ||βm || = ||β ||m

for any algebraic numbers β, β′ and any positive rational integer m. The
following is the key lemma in our proof.
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Lemma 2.3. Assume that an odd prime number ` divides hn/hn−1.
(1) If ` ≡ 9 (mod 16), then we have 2n−3 < ` < 32(n+ 1)4.
(2) If ` ≡ −9 (mod 16), then we have 2n−5 < ` < 98(n+ 1)4.

Proof. It is known that h5 = 1 by [11]. So we may assume n ≥ 6. Recall
that σ is a generator of G(Q(ζn+2)/Q(ζ2)). (1) The decomposition field of `
with respect to Q(ζn)/Q is Q(ζ3). Proposition 2.1 guarantees the existence
of a prime ideal L of Q(ζ3) dividing ` such that ηασ is an `-th power in Qn
for each element α of Q(ζ3) with `L−1 = (α). We write α = a0 + a1ζ3 +
a2ζ

2
3 +a3ζ33 with ai ∈ Z and denote by α the complex conjugate of α. Then

we have
αα = a20 + a21 + a22 + a23 +

√
2(a0a1 + a1a2 + a2a3 − a3a0).

We put a = (a20 +a21 +a22 +a23)/`3/2 and b = (a0a1 +a1a2 +a2a3−a3a0)/`3/2.
Since NQ(ζ3)/Q(α) = `3, we have a2 − 2b2 = 1. Hence there exists a real
number x with a + b

√
2 = (

√
2 + 1)x and a − b

√
2 = (

√
2 − 1)x. Since

(α) = (α(1 +
√

2)m) for m ∈ Z, we may assume −1 ≤ x < 1. Hence we
have 0 ≤ a ≤

√
2, which implies a20 + a21 + a22 + a23 ≤

√
2`3/2. This shows

|a0| + |a1| + |a2| + |a3| ≤ 25/4`3/4. Noting that ηασ 6= ± 1 (cf. [5, p. 384]),
we have

2` < || ηασ || = || ηa0+a1σ2n−3 +a2σ2·2n−3 +a3σ3·2n−3
||(2.3)

≤ || η |||a0|+|a1|+|a2|+|a3|

≤ || η ||25/4`3/4
< 225/4(n+1)`3/4

by the formula (2.1) and [5, Lemmas 3 and 4]. On the other hand, we have
n ≤ m` = 3 + [ log2 ` ] < 3 + log2 `(2.4)

by Theorem 1.1. Combining (2.3) and (2.4), we derive the desired inequality.
(2) In this case, the decomposition field F of ` with respect to Q(ζn)/Q

is Q(
√
−1
√

2−
√

2 ), which is contained in Q(ζ4). Proposition 2.1 again
guarantees the existence of a prime ideal L of F dividing ` such that ηασ
is an `-th power in Qn for each element α of F with `L−1 = (α). We write
α = a0 +a1ζ4 + · · ·+a7ζ74 with ai ∈ Z. For the Frobenius automorphism ϕ`
of ` with respect to Q(ζ4)/Q, we have αϕ` = α, which implies a4 = 0, a5 =
a3, a6 = −a2 and a7 = a1. Hence we have

α = a0 + a1(ζ4 + ζ74 ) + a2(ζ24 − ζ64 ) + a3(ζ34 + ζ54 ).
This shows

αα = a20 + 2a21 + 2a22 + 2a23 +
√

2(2a0a2 − a21 + 2a1a3 + a23).

We put a = (a20+2a21+2a22+2a23)/`3/2 and b = (2a0a2−a21+2a1a3+a23)/`3/2.
Since NF/Q(α) = `3, we have a2−2b2 = 1. Hence there exists a real number
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x with a+ b
√

2 = (
√

2 + 1)x and a− b
√

2 = (
√

2− 1)x. In a way similar to
that in the case ` ≡ 9 (mod 16), we have a20 + 2(a21 + a22 + a23) ≤

√
2`3/2,

which shows |a0|+ 2( |a1|+ |a2|+ |a3| ) ≤ 21/4√7`3/4. Hence we have

2` < || ηασ ||(2.5)

= || ηa0+a1(σ2n−4 +σ7·2n−4 )+a2(σ2·2n−4−σ6·2n−4 )+a3(σ3·2n−4 +σ5·2n−4 ) ||

≤ || η |||a0|+2( |a1|+|a2|+|a3| )

≤ || η ||21/4√7`3/4
<
(2n+2

π

)21/4√7`3/4

< 221/4√7(n+1)`3/4
.

In this case, Theorem 1.1 implies

n ≤ m` = 5 + [ log2 ` ] < 5 + log2 `(2.6)

and we combine (2.5) and (2.6) to derive the conclusion. �

Proof of Theorem 1.2. Assume that ` divides hn/hn−1 for some n ≥ 1.
Then Lemma 2.3 implies ` < 32 · 284 = 19668992 if ` ≡ 9 (mod 16) or
` < 98 · 324 = 102760448 if ` ≡ −9 (mod 16). However this contradicts
Corollary 1.1. Hence the proof is completed.

�

Remark. We are also able to prove Theorem 1.2 by combining Proposition
1.2 and Theorem 1.1. Namely, it suffices to verify that ` does not divide
hm` for all ` not exceeding a certain explicit bound. This bound on ` is
34797970939 in the case ` ≡ 9 (mod 16) and 210036365154018 in the case
` ≡ −9 (mod 16). The calculating time is estimated about one month or
one thousand years.
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