
Romain VALIDIRE

Capitulation for even K-groups in the cyclotomic Zp-extension.
Tome 21, no 2 (2009), p. 439-454.

<http://jtnb.cedram.org/item?id=JTNB_2009__21_2_439_0>

© Université Bordeaux 1, 2009, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2009__21_2_439_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
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Capitulation for even K-groups in the cyclotomic
Zp-extension.

par Romain VALIDIRE

Résumé. Soit p un nombre premier et F un corps de nombres.
Depuis les travaux d’Iwasawa, le comportement de la p-partie du
groupe des classes d’idéaux dans une Zp-extension de F est assez
bien compris. M. Grandet et J.-F. Jaulent ont en outre donné un
résultat précis concernant sa structure de groupe abélien.

Par ailleurs, le groupe des classes d’idéaux s’interprête comme
la partie de torsion du K0 de l’anneau des entiers de F . Les K-
groupes pairs de l’anneau des entiers peuvent être vus comme
des versions supérieures du groupe des classes et le comportement
de ces K-groupes dans les Zp-extensions a déjà été étudié par de
nombreux auteurs. Dans cet article, nous montrons que le résultat
de Grandet et Jaulent sur les groupes de classes est encore vrai
pour les K-groupes pairs dans la Zp-extension cyclotomique.

Abstract. Let p be a prime number and F be a number field.
Since Iwasawa’s works, the behaviour of the p-part of the ideal
class group in the Zp-extensions of F has been well understood.
Moreover, M. Grandet and J.-F. Jaulent gave a precise result
about its abelian p-group structure.

On the other hand, the ideal class group of a number field may
be identified with the torsion part of the K0 of its ring of integers.
The even K-groups of rings of integers appear as higher versions of
the class group. Many authors have already studied the behaviour
of the higher even K-groups in a Zp-extension. Here, we prove
that Grandet and Jaulent’s result on class group still holds for
higher even K-groups in the cyclotomic Zp-extension.

Introduction

Let p be a prime number and F be a number field. We denote by OF

the ring of integers of F and by Cl(OF ) the ideal class group of OF .
Let F∞/F be a Zp-extension, with finite layers Fn for all integers n and

with the usual notations for the Galois groups Γ := Gal(F∞/F ) and Γn :=
Gal(F∞/Fn). Iwasawa’s theory of Zp-extensions is a way to investigate the
behaviour of the p-primary part of the class groups Cl(OFn). A well-known
result is the famous Iwasawa’s formula giving the order of the p-primary
part of Cl(OFn) for all n large enough. It is possible to obtain more precise
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results about this group by studying the vanishing of ideal classes in the
Zp-extension. Let us consider the natural map :

Cl(OFn){p} → (Cl(OF∞){p})Γn

between the p-primary part of Cl(OFn) and the Γn-fixed points of the
inductive limit:

Cl(OF∞){p} := lim
→

Cl(OFn){p}.

We denote by Cap(Fn) the kernel of this map. These capitulation kernels
have been intensively studied (cp.[Iw], [Ku],...) and their asymptotical be-
haviour is well-known: for m ≥ n � 0 the norm map between the class
groups induces an isomorphism from Cap(Fm) to Cap(Fn) (cp. [Ku]); we
say that the capitulation kernels stabilize for the norm map.

Consider the Iwasawa module XF∞ := lim←−Cl(OFm){p}, where the limit
is taken with respect to the norm maps. This group is a module over the
complete group ring Zp[[Γ]]. Let µ and λ be respectively the p-valuation
and the degree of the characteristic polynomial of XF∞ . For n sufficiently
large, the natural map from XF∞ to Cl(OFn){p} induces an isomorphism
from (XF∞)0 to Cap(Fn), where (XF∞)0 is the maximal finite submodule
of XF∞ .

However, we have a more precise result; M. Grandet and J.-F. Jaulent
prove in [GJ] that the capitulation kernel becomes a direct summand of the
class group:

Theorem 0.1. Assume that the invariant µ of X∞ is trivial. Then there
exists (α1, . . . , αλ) ∈ Zλ such that for all n large enough:

Cl(OFn){p} ' Cap(Fn)⊕
(

λ⊕
i=1

Z/pαi+n

)
, as abelian groups.

On the other hand it is well-known that Cl(OF ) may be identified with
the torsion part of K0(OF ). As for class group we can consider the following
higher capitulation kernels for all integers i ≥ 1 and n ≥ 1 :

Capi(Fn) := ker
(
K2i(OFn)⊗ Zp → (K2i(OF∞)⊗ Zp)

Γn
)

,

where K2i(OFn) denotes the Quillen K-groups associated with the ring OFn

and
K2i(OF∞) := lim

→
K2i(OFm).

Using a general result due to T. Nguyen Quang Do, B. Kahn proved (cp.
[Ka]) that the groups Cap1(Fn) also stabilize for the norm map.

Now we assume that p is odd or p = 2 and F contains
√
−1. For a finite

set S of primes containing the set of primes above p and the infinite primes
of F , let OS

F denote the ring of S-integers of F . Generalizing the result of T.
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Nguyen Quang do and B. Kahn, M. Kolster and A. Movahhedi introduced
(cp. [KM]) similar capitulation kernels Capét

i (Fn) for all i ≥ 1 using étale
K-groups K ét

2i(OS
Fn

) and proved for these groups the same stabilization
property.

Our purpose in the present article is to prove that the theorem (0.1)
also holds for higher étale capitulation kernels when F∞ is the cyclotomic
Zp-extension of F .

To prove the result, we first consider a particular subgroup of K ét
2i(OS

F ):
the étale wild kernel denoted by WK ét

2i(F ). The definition of the wild ker-
nels is given in section 2.

In section 3, we use a description of WK ét
2i(F ) due to Schneider to prove

that the capitulation kernels for the wild kernels also become direct sum-
mands.

In section 4, we prove that the p-quotients of the wild kernels and of the
p-class group are asymptotically isomorphic (Proposition 4.1). Then we use
this result to show that, when µ = 0, the group Capét

i (Fn) becomes a direct
summand of the abelian p-group K ét

2i(OS
Fn

). Finally, we show that we have
a non canonical Galois descent for the even K-groups in the cyclotomic
Zp-extension (Corollary 4.2).

Acknowledgements. The author would like to thank J.-F. Jaulent and A.
Movahhedi for many helpful comments. The author also expresses his ac-
knowledgements to M. Kolster and to T. Nguyen Quang Do whose remarks
improved an earlier version of the paper.

1. Preliminaries

In this section we introduce the objects studied in the rest of the paper.
First, we fix some notations.

Let p be a fixed prime number and F be an algebraic number field. If
p = 2 we also assume that

√
−1 ∈ F . Let S be a finite set of primes in F ,

containing the set Sp of primes above p and the set S∞ of infinite primes;
let OS

F denote the ring of S-integers of F and GS
F denote the Galois group

over F of the maximal algebraic extension of F which is unramified outside
S. For any Zp-module M , we put M∗ = Hom(M, Qp/Zp), the Pontrjagin
dual of M .

For integers n ≥ 0 and i ≥ 1 we denote by µ⊗i
n the ith twist of the group

µn of roots of unity of order n and Zp(i) := lim←−(µ⊗i
pn), the ith twist of Zp.

For any arbitrary Zp

[
GS

F

]
-module M , we define the i-fold Tate twist of M

by:
M(i) := M ⊗Zp Zp(i).

For an abelian group A and a positive integer n we denote by:
• A/n, the quotient of A by the subgroup nA.
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• nA, the group of elements a ∈ A such that na = 0.
• A{p} =

⋃
k≥1(pkA), the p-primary part of A.

For i ≥ 1 and k = 1 or 2, the higher étale K-theory groups K ét
2i+2−k(OS

F ),
introduced by Dwyer and Friedlander ([DF]), coincide with the (continuous)
Galois cohomology groups:

K ét
2i+2−k(OS

F ) ' Hk(GS
F , Zp(i + 1))

' lim←−Hk(GS
F , Z/pn(i + 1)).

Using Borel’s results on algebraic K-groups, it can be shown that the
even K-groups K ét

2i(OS
F ) are finite and that the odd K-groups K ét

2i+1(OS
F )

are finitely generated over Zp; their Zp-rank is r1 + r2 if i is even and r2

if i is odd. As usual r1 (resp. r2) denotes the number of real (resp. pairs
of conjugate complex) embeddings of F . Furthermore the odd étale K-
groups do not depend on the choice of the set S. We have K ét

2i+1(OS
F ) '

H1(F, Zp(i + 1)), and we denote these groups by K ét
2i+1(F ).

For any group G and any G-module M , we denote as usual by MG the
fixed points of M under the action of G and by MG the quotient of M/IGM ,
where IG is the augmentation-ideal of Z[G].

Let L be a finite Galois extension of F with Galois group G, which is
unramified outside S. We are interested in Galois descent and co-descent for
étale odd K-groups in the extension L/F ; we have two canonical morphisms
between K ét

2i(OS
F ) and K ét

2i(OS
L):

• the extension map K ét
2i(OS

F )→ K ét
2i(OS

L)G, which may be identified
with the restriction map in Galois cohomology.
• the norm map K ét

2i(OS
L)G → K ét

2i(OS
F ), which may be identified with

the co-restriction map in Galois cohomology.
We have the following (see [Ka] and [KM]):

Theorem 1.1. Let L/F be a Galois p-extension with Galois group G. Let
S be a finite set of primes, containing the primes above p and the primes
which ramify in L. Then for i ≥ 1 there is an exact sequence induced by
the extension map:

0→ H1(G, K ét
2i+1(L))→ K ét

2i(OS
F )

→ K ét
2i(OS

L)G → H2(G, K ét
2i+1(L))→ 0

and an isomorphism induced by the norm map:

K ét
2i(OS

L)G ' K ét
2i(OS

F ).

We deduce the following corollary:
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Corollary 1.1. The kernel of the extension map

Capi(L/F ) := ker
(
K ét

2i(OS
F )→ K ét

2i(OS
L)
)

does not depend on the set S containing Sp ∪ S∞ and the ramified primes
in L/F .

Let F∞/F be an arbitrary Zp-extension with finite layers Fn. For integers
m ≥ n ≥ 0, we put Gm,n = Gal(Fm/Fn) and Γn = Gal(F∞/Fn). The main
objects studied here are the kernels of the extension maps:

Capi(Fm/Fn) := ker
(
K ét

2i(OS
Fn

)→ K ét
2i(OS

Fm
)Gm,n

)
.

Remark. Since a Zp-extension of number field is p-ramified, it is enough
to consider the case S = Sp ∪ S∞; we put O′F := OSp∪S∞

F .

We consider the kernel: Capi(Fn) := ker
(
K ét

2i(OS
Fn

)→ K ét
2i(OS

F∞)Γn

)
,

with :
K ét

2i(OS
F∞) := lim

→
K ét

2i(OS
Fm

).

We may deduce from theorem 1.1 the short exact sequence (see [Ka] and
[KM]):

0→ Capi(Fn)→ K ét
2i(OS

Fn
)→ K ét

2i(OS
F∞)Γn → 0.(1.1)

Now, we focus on the asymptotical behaviour of the higher capitulation
kernels. We have the following proposition:

Proposition 1.1. For all m ≥ n� 0, the Galois group Gm,n acts trivially
on Capi(Fm) and the norm map induces an isomorphism:

Capi(Fm) = Capi(Fm)Gm,n ' Capi(Fn).

Our purpose is to prove that the exact sequence (1.1) is a split exact
sequence of abelian groups when F∞ is the cyclotomic Zp-extension.

We need the following lemma on abelian groups:

Lemma 1.1. Let M be a finite abelian p-group and N be a subgroup. Let e
be an integer such that pe annihilates N . If for all integers n, 0 ≤ n ≤ e,
the inclusion map from N to M induces an injection N/pn ↪→ M/pn then
N is a direct summand in M .

2. Localisation kernels and étale wild kernels

In the following, we will consider the localisation kernels for i ∈ Z and
n ≥ 1 :

X2
S(F, Z/pn(i)) := ker

(
H2(GS

F , Z/pn(i)) loc.→ ⊕v∈SH2(Fv, Z/pn(i))
)

,

X2
S(F, Zp(i)) := ker

(
H2(GS

F , Zp(i))
loc.→ ⊕v∈SH2(Fv, Zp(i))

)
.
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P. Schneider studied these localisation kernels in [S]. He conjectured that
for all i ∈ Z, the groups X2

S(F, Zp(i)) are finite (indeed, it is true for i ≥ 1).
For i = 0, the finiteness of X2

S(F, Zp) is equivalent to the famous Leopoldt
Conjecture.

Let us give some interpretations for these kernels.

Proposition 2.1. (see [NSW, Lemma (8.6.3)]) The groups X2
S(F, Z/pn(i))

are finite and for i = 1 we have the isomorphism:

Cl(OS
F )/pn 'X2

S(F, µpn).

Remark. By finiteness of class group X2
S(F, Zp(1)) ' Cl(OS

F ){p}.

Let n be a positive integer. Since p is an odd prime (or
√
−1 ⊂ F if p = 2)

we have cdp(GS
F ) ≤ 2 (cohomological p-dimension); the exact cohomology

sequence of the short exact sequence

0→ Zp(i + 1)→ Zp(i + 1)→ Z/pn(i + 1)→ 0

yields the isomorphism:

H2(GS
F , Zp(i + 1))/pn ' H2(GS

F , Z/pn(i + 1)),

whence follows (see [Ta, Theorem (6.2)]):

Proposition 2.2. Assume that F contains µpn. Then for i ≥ 1, we have
a canonical isomorphism:

K ét
2i(OS

F )/pn ' H2(GS
F , µpn)(i),(2.1)

and an exact sequence:

0→ Cl(OS
F )/pn(i)→ K ét

2i(OS
F )/pn (⊕lv)→

⊕
v∈S

µpn(i− 1) Σ→ µpn(i− 1)→ 0,

where lv comes from the localisation map at the prime v ∈ S and Σ is the
product map.

Tate’s results ([Ta]) on K2 and Galois cohomology give a canonical iso-
morphism:

WK2(F ){p} 'X2
S(F, Zp(2)),

where WK2(F ) is the classical wild kernel (i.e. the kernel of all Hilbert
symbols on K2(F )) which appears in Moore’s exact sequence:

0→WK2(F )→ K2(F )→ ⊕vµ(Fv)→ µ(F )→ 0,

where v runs through all finite and real infinite primes of F , and µ(F ) (resp.
µ(Fv)) denotes the group of roots of unity of the number field F (resp. the
local field Fv).

The groups X2
S(F, Zp(i + 1)) do not depend on the choice of the set S

containing Sp ∪ S∞. For all i ≥ 1, they can be identified with subgroups
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of K ét
2i(OS

F ). Thus, these remarks and the description of the classical wild
kernel leads to the definition of the higher étale wild kernels (cp. [Ba], [N2]).

Definition. Let p be a prime number. For a number field F and i ≥ 1, we
define the 2ith étale wild kernel:

WK ét
2i(F ) := X2

S(F, Zp(i + 1)).

The Poitou-Tate duality sequence yields the short exact sequence:

0→WK ét
2i(F )→ K ét

2i(OS
F )→ ⊕v∈SH2(Fv, Zp(i + 1))

→ H0(F, Qp/Zp(−i))∗ → 0.

There exist some relations between the étale wild kernels when i varies
over the positive integers. For example we have (cp. [N3])

Proposition 2.3. Assume that F contains µpn. For all positive integers i
and j there is a canonical isomorphism:

WK ét
2i(F )/pn 'WK ét

2j(F )/pn(i− j).

Let us point out another map which will be useful in the following. For a
number field F containing µpn and for i ≥ 1, the isomorphism (2.1) yields
the commutative diagram:

WK ét
2i(F )/pn

��

' X2
S(F, Zp(i + 1))/pn

��
Cl(OS

F )/pn(i) ' X2
S(F, µpn)(i)

The vertical maps are in general not bĳective; in the last section we will
give conditions for bĳectivity. For the moment, let us give a condition for
surjectivity (see [KM, Lemma 2.8] and [V, Proposition 1.3.8]).

Proposition 2.4. Assume that F contains µpn and that at least one p-adic
prime in F totally ramifies in F∞/F . For all i ≥ 1, the maps

WK ét
2i(F )/pn → Cl(OS

F )/pn(i)

are onto.

Remark. It is also possible to construct these maps passing through the
logarithmic valuations and the logarithmic class group C̃`(F ) introduced
by Jaulent (cp. [J1] and [J2]).
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3. Iwasawa theory for wild kernels and capitulation

In this section we study the capitulation kernel for étale wild kernels
when F∞/F is the cyclotomic Zp-extension of F . As usual we put:

WK ét
2i(F∞) := lim

→
WK ét

2i(Fn).

For all m ≥ n ≥ 0 we have the following equalities:

Capi(Fm/Fn) = ker(WK ét
2i(Fn)→WK ét

2i(Fm)),

Capi(Fn) = ker(WK ét
2i(Fn)→WK ét

2i(F∞))

Then the capitulation kernels for wild kernels stabilize for the norm map
in the same manner as for odd K-groups.

We may deduce from proposition(1.1) (see also [LMN, Lemma 1.1]) that
for i ≥ 1 there is a short exact sequence:

(3.1) 0→ Capi(Fn)→WK ét
2i(Fn)→WK ét

2i(F∞)Γn → 0.

Following the ideas of Grandet and Jaulent we prove that, under certain
assumptions, (3.1) is a split exact sequence of abelian groups.

We still assume that p is odd and
√
−1 ∈ F , if p = 2. Let E = F (µ2p)

and E∞ be the cyclotomic Zp-extension of E. We still denote by Γ (resp.
Γn) the Galois group of E∞/E (resp. En/E). Let ∆ = Gal(E/F ) and let d
be the order of ∆.

Now let us give the description of étale wild kernels using Iwasawa theory
(cp.[N3]).

We put X ′
∞ := lim←−Cl(O′En

){p}, where the limit is taken for the norm
map. The Zp-module X ′

∞ is naturally a module over the complete group
ring Λ := Zp[[Γ]] ' Zp[[1− γ]], for any chosen topological generator γ of Γ.

Let L′∞ be the maximal abelian unramified pro-p-extension of E∞, in
which all primes above p are completely decomposed. By class field theory
X ′
∞ is isomorphic to the Galois group Gal(L′∞/E∞).
One shows that X ′

∞ is a finitely generated Λ-torsion module. Let f(1−
γ) be its characteristic polynomial. We denote by µ (resp. λ) the p-adic
valuation (resp. the degree) of f(1 − γ). They are respectivelly called µ-
invariant and λ-invariant.
Finally we denote by (X ′

∞)0 the maximal finite submodule of X ′
∞.

P. Schneider prove (see [S, §6 lemma 1]) that the localisation kernels can
be described as co-descent modules.

Theorem 3.1. For i ∈ Z and i 6= 0, we have a canonical isomorphism:

X2
S(F, Zp(i + 1)) '

(
X ′
∞(i)

)
Γ×∆ .
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Remark. For i = 0, the co-invariant (X ′
∞)Γ is not isomorphic to the p-part

of the p-class group Cl(O′E){p}; it has been described by J.-F. Jaulent in
logarithmic terms and it is isomorphic to the logarithmic class group C̃`(E)
(cp. [J2]). The Gross conjecture asserts that C̃`(E) is finite.

Using Schneider’s theorem, we can describe the extension maps in F∞/F
(see [N3] or [LMN]). For all m ≥ n ≥ 0, we denote γpn−1 by ωn and ωm/ωn

by νm,n. Consider the natural morphisms im,n:

X ′
∞(i)Γn → X ′

∞(i)Γm

xmodωn 7→ νm,nx modωm.

We have a commutative diagram (with natural map for étale wild kernels):

WK ét
2i(En) //

'
��

WK ét
2i(Em)

'
��

X ′
∞(i)Γn

im,n // X ′
∞(i)Γm

Proposition 3.1. For i ≥ 1, and for n sufficiently large, we have a canon-
ical isomorphism:

Capi(En) ' (X ′
∞)0(i).

As an easy consequence we find:

Corollary 3.1. For i ≥ 1, and for all m ≥ n� 0:

im(Capi(En)→ Capi(Em)) ' pm−n(X ′
∞)0(i).

Proof. It follows from the description of the extension map and the fact
that Γn acts trivially on (X ′

∞)0(i) for n� 0. �

We can also describe the cokernel of the extension map. However we
have to suppose that the µ-invariant of X ′

∞ is trivial. This is true when
the extension E/Q is abelian (cf. [FW]); it is conjectured to be true for all
number fields. In that case X ′

∞ is finitely generated over Zp.

Proposition 3.2. Assume that µ is trivial. For all m ≥ n � 0, we have
the equality:

im(WK ét
2i(En)→WK ét

2i(Em)) = pm−n(WK ét
2i(Em)).

Proof. Let T = 1−γ thus Λ ' Zp[[T ]]. Since µ = 0, we can assume that the
characteristic polynomial f(T ) is a distinguished polynomial. There exists
an integer r ≥ 0, such that the distinguished polynomial g(T ) = ωr(T )f(T )
annihilates X ′

∞. Now we use a classical computation in Iwasawa theory. For
n sufficiently large we have

(1 + T )pn−1 ≡ 1 mod(g(T ), p).
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Raising to the p-th power gives

(1 + T )pn ≡ 1 mod(g(T ), p2).

Hence

νn+1,n =
p−1∑
i=0

(1 + T )ipn

≡ p + p2h(T ) mod g(T )

≡ p(1 + ph(T ))mod g(T )

where h(T ) ∈ Λ.
By induction we easily see that for m ≥ n there exists an invertible ele-

ment um(T ) ∈ Λ such that νm,n ≡ pm−num,n(T ) mod g(T ). Hence we have
im(im,n) = pm−n(X ′

∞)(i)Γn . Finally the proposition follows from Schnei-
der’s isomorphism. �

We can now conclude:

Proposition 3.3. Assume that the µ-invariant of X ′
∞ is trivial. For all

i ≥ 1 and for all n sufficiently large the exact sequence (3.1):

0→ Capi(Fn)→WK ét
2i(Fn)→WK ét

2i(F∞)Γn → 0,

is a split exact sequence of abelian groups.

Proof. First we reduce to the case of a number field containing the roots
of unity of order p. Indeed the action of the semi-simple algebra Zp[∆] on
a finite abelian p-group keeps the direct summands. Then it is sufficient to
prove that

0→ Capi(En)→WK2i(En)→WK ét
2i(E∞)Γn → 0,

is a split exact sequence of abelian groups to get the result.
Now choose an integer r sufficiently large. Then for all h ≥ 0 there is a

commutative diagram (with natural maps):

0 // Capi(Er+h) // WK ét
2i(Er+h) // WK ét

2i(E∞)Γr+h // 0

0 // Capi(Er) //

OO

WK ét
2i(Er) //

OO

WK ét
2i(E∞)Γr //

OO

0

The vertical right arrow is injective. Hence by the snake lemma:

coker (Capi(Er)→ Capi(Er+h)) ↪→ coker
(
WK ét

2i(Er)→WK ét
2i(Er+h)

)
.

Corollary 3.1 gives a description for the left cokernel and proposition 3.2
(we assume that µ = 0) gives a description for the right cokernel. Let e be
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an integer such that pe annihilates (X ′
∞)0 and n = r + e. For all h, with

0 ≤ h ≤ e we have:

Capi(En)/ph ↪→WK ét
2i(En)/ph.

Thus by lemma 1.1 the abelian group Capi(En) is a direct summand in
WK ét

2i(En). �

It is well-known (cp.[KM] or [N3]) that co-descent holds for the wild ker-
nels in the cyclotomic Zp-extension. In other words the norm map induces
a canonical isomorphism for all m ≥ n ≥ 0:

WK ét
2i(Fm)Gm,n 'WK ét

2i(Fn).

Although the extension map does not induce an isomorphism we have a
non canonical Galois descent in the cyclotomic Zp-extension:

Proposition 3.4. Assume that µ = 0. Then for all m ≥ n� 0, the groups
WK ét

2i(Fm)Gm,n and WK ét
2i(Fn) are isomorphic as abelian groups.

Proof. Choose n large and m ≥ n. We have Capi(Fm)Gm,n = Capi(Fm).
Consider the short exact sequence of Zp[Gm,n]-modules:

0→ Capi(Fm)→WK ét
2i(Fm)→WK ét

2i(F∞)Γm → 0.

The snake lemma yields the long exact sequence:

0→ Capi(Fm)→WK ét
2i(Fm)Gm,n →WK ét

2i(F∞)Γn

→ Capi(Fm)Gm,n →WK ét
2i(Fm)Gm,n → . . .

Furthermore we have the commutative diagram:

Capi(Fm)Gm,n

'
��

// WK ét
2i(Fm)Gm,n

'
��

Capi(Fn) � � // WK ét
2i(Fn)

where the vertical maps are induced by the norm.
Hence the map Capi(Fm)Gm,n → WK ét

2i(Fm)Gm,n is injective. Thus we
have a short exact sequence:

(3.2) 0→ Capi(Fm)→WK ét
2i(Fm)Gm,n →WK ét

2i(F∞)Γn → 0.

On the other hand Capi(Fm) is a direct summand in WK ét
2i(Fm). Hence

it is a direct summand in the subgroup WK ét
2i(Fm)Gm,n so (3.2) is a split
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exact sequence of abelian groups. Thus we have the isomorphisms of abelian
groups:

WK ét
2i(Fm)Gm,n ' Capi(Fm)⊕WK ét

2i(F∞)Γn

' Capi(Fn)⊕WK ét
2i(F∞)Γn

'WK ét
2i(Fn).

�

Finally let us recall a descprition for the groups WK ét
2i(E∞) (cp.[N3]).

Proposition 3.5. Assume that µ is trivial. For all i ≥ 1 we have:

WK ét
2i(E∞) ' (Qp/Zp)λ,

as abelian group.

Proof. Since the groups WK ét
2i(En) are finite (i ≥ 1) the sequence {ωn}n≥1

is an admissible sequence for the Λ-torsion module X ′
∞(i). Hence we have

β
(
X ′
∞(i)

)
' lim

→

(
X ′
∞(i)

)
Γn

= WK ét
2i(E∞),

where β (X ′
∞(i)) denotes the co-adjoint of X ′

∞(i).
Since we suppose µ = 0 the sequence {pn}n≥1 is also an admissible sequence
for X ′

∞(i), whence

β
(
X ′
∞(i)

)
' lim

→

(
X ′
∞(i)

)
/pn = (Qp/Zp)λ.

�

Remark. The results of this section are true for any finitely generated
torsion Λ-module X: assume that X has a trivial µ-invariant and that XΓn

is finite for all n� 0, then the sequence

0→ X0 → XΓn →
(
lim−→XΓn

)Γn

→ 0,

is a split exact sequence of abelian groups for all n� 0 (cp. [V, Théorème
3.1.8]).

4. Capitulation for odd K-groups

In the previous section we have shown that for n sufficiently large the
capitulation kernel is a direct summand in a subgroup of K ét

2i(OS
Fn

). In this
final section we prove that the capitulation kernel is still a direct summand
in the entire group K ét

2i(OS
Fn

).

Since Tate’s works on K2, many relations between the wild kernels and
the class group have been highlighted. The following proposition shows that
the deviation between the p-quotients of the wild kernels and the p-class
group is asymptotically trivial in the cyclotomic Zp-extension.
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Assume that E contains the roots of unity of order pn. At the end of
section 2 we contructed the canonical map:

f(i,E,S) := WK ét
2i(E)/pn → Cl(OS

E)/pn(i), for all i ≥ 1.

This morphism could be surjective and not bĳective for any set of primes
containing Sp ∪ S∞: for example let E be the Hilbert class field of Q(µ37).
For the irregular prime number p = 37 and for all i ≥ 1, the wild kernels
WK ét

2i(E) are cyclic while the class group Cl(O′E) is trivial.
However the map f(i,E,S) is asymptotically bĳective.

Proposition 4.1. Let E be a number field containing µp and assume that
the µ invariant of X ′

∞ is trivial. Let S be a set of primes containing the
primes above p and the infinite primes.

For all h ≥ 1 there exists an integer N such that for all n ≥ N and for
all i ≥ 1 the map f(i,En,S) yields the isomorphism:

WK ét
2i(En)/ph ' Cl(OS

En
)/ph(i).

Proof. We fix a positive integer h and a set of primes S as above. By
Proposition 2.4 for all n larger than a fixed integer N the map

WK ét
2i(En)/ph → Cl(OS

En
)/ph(i) is onto.

Let us compute the order of both groups for n� 0. Since WK ét
2i(E∞)Γn

is finite we have

WK ét
2i(E∞)Γn/ph ' ph WK ét

2i(E∞)Γn , as abelian groups.

By Proposition 3.5 we have for n� 0:

ph WK ét
2i(E∞)Γn '

λ⊕
k=1

Z/ph, as abelian groups.

Hence by Proposition 3.3 we see that

WK ét
2i(En)/ph ' (X ′

∞)0/ph ⊕
λ⊕

k=1

Z/ph, as abelian groups.

On the other hand, since S contains the primes above p, it is well known
that XS

∞ := lim←−Cl(OS
Em

){p} = X ′
∞, independent of S.

Theorem 0.1 is still true for S-class groups (cp. [GJ]), so for n � 0 we
have

Cl(OS
En

)/ph ' (X ′
∞)0/ph ⊕

λ⊕
k=1

Z/ph, as abelian groups.

Hence WK ét
2i(En)/ph and Cl(OS

En
)/ph have the same order for n suffi-

ciently large and the canonical surjection

WK ét
2i(En)/ph → Cl(OS

En
)/ph(i)
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is a bĳection. �

We may deduce an asymptotic rank formula for the wild kernels:

Corollary 4.1. Under the assumptions of Proposition 4.1 we have :

dimFp(WK ét
2i(En)/p) = dimFp(Cl(OS

En
)/p), for n large.

In [N1, Corollaire 5.7] (see also [KC, Corollary 3.3]), the author (assuming
Leopoldt’s conjecture) gives the rank formula:

dimFp(WK ét
2 (E)/p) = dimFp(Cl(O′E)/p) + dimFp(WE ∩ pTE/pWE),

where

• TE denotes the Zp-torsion of
(
G

Sp

E

)ab
, and

• WE ' Πp|pµ(Ep)/µ(E).
By Corollary 4.1 the p-rank of the wild kernel and the p-rank of the p-class
group are the same for n� 0. Thus the group WEn ∩ pTEn/pWEn is trivial
(i.e. there is an injection WEn/p ↪→ TEn/p).

We can now prove the analogue of Theorem 0.1 for even étale K-groups.

Theorem 4.1. Let S be a finite set of primes containing the primes above
p and the infinite primes. Assume that the µ-invariant of the Λ-module X ′

∞
is trivial.

Then for all i ≥ 1 and for all n sufficiently large the exact sequence (1.1):

0→ Capi(Fn)→ K ét
2i(OS

Fn
)→ K ét

2i(OS
F∞)Γn → 0,

is a split exact sequence of abelian groups.

Proof. As in the previous section it is sufficient to prove the result for the
number field E = F (µp).

Let pe be the order of (X ′
∞)0. Let h be a positive integer, with 0 ≤ h ≤ e.

Then for n large:
(1) the field En contains the roots of unity of order ph.
(2) the group Capi(En) is a direct summand in WK ét

2i(En).
(3) the canonical map WK ét

2i(En)/ph ' Cl(OS
En

)/ph(i) is an isomor-
phism.

Points (2) and (3) follow from the assumption µ = 0.
Using points (1) and (3) and Proposition 2.2 we can write the commu-

tative diagram

WK ét
2i(En)/ph //

'
��

K ét
2i(OS

En
)/ph

=

��
Cl(OS

En
)/ph(i) � � // K ét

2i(OS
En

)/ph
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The left vertical map is bĳective : it follows from Proposition 4.1. Thus the
top horizontal arrow, induced by the inclusion, is injective.

On the other hand point (2) implies that Capi(En)/ph ↪→WK ét
2i(En)/ph.

Hence we have:
Capi(En)/ph ↪→ K ét

2i(OS
En

)/ph.

We finally use Lemma 1.1 to conclude that Capi(En) is a direct summand
in the abelian group K ét

2i(OS
En

). �

The Galois co-descent holds for the étale K-groups in a p-ramified ex-
tension. Hence, as for the wild kernels, we have

Corollary 4.2. Under the assumptions of the previous theorem, for n suf-
ficiently large, and for all m ≥ n , the groups K ét

2i(OS
Em

)Gm,n and K ét
2i(OS

En
)

are isomorphic as abelian groups.

Finally, to get the result for the algebraic K-groups, we may use the
Quillen-Lichtenbaum conjecture to identify algebraic and étale K-theory.
This conjecture predicts that the Chern character yields the canonical iso-
morphism (see [Ko] and [W, Theorem 70]):

K2i(OT
F )⊗ Zp ' K ét

2i(OT
F [1/p]),

for all i ≥ 1 and all finite sets of primes T .
Unpublished Voevodsky ’s results on the Bloch-Kato conjecture for number
fields seem prove this conjecture.

Theorem 4.2. Let p be an prime number and T be a finite set of primes
of a number field F containing

√
−1 if p = 2. Let F∞ be the cyclotomic

Zp-extension of F with finite layers Fn and assume that the µ-invariant of
the Λ-module lim←−Cl(O′F (µpn )){p} is trivial. Let i be a non-negative integer.
Then, assuming the Quillen-Lichtenbaum conjecture, for n large the capit-
ulation kernel Capi(Fn) in F∞ is a direct summand in the abelian group
K2i(OT

Fn
){p}.

Remark. We can wonder if the result still holds for the even K-groups of
the fields Fn (instead of its ring of integers). For i = 0 the answer is trivial.
For i ≥ 1 it is well known that the étale wild kernels are isomorphic to
the divisible part of K2i(Fn){p} (we recall that p is odd and

√
−1 ∈ F , if

p = 2). Thus the capitulation kernel is contained in the divisible part of
K2i(Fn){p} and it can not be a direct summand (except if it is trivial).
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