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Ramification groups
in Artin-Schreier-Witt extensions

par LARA THOMAS

RÉSUMÉ. Soit K un corps local de caractéristique p &#x3E; 0. L’ob jec-
tif de cet article est de décrire les groupes de ramification des pro-p
extensions abéliennes de K à travers la théorie d’Artin-Schreier-
Witt. Dans le cadre usuel de la théorie du corps de classes local,
cette étude est menée entièrement et conduit à un accouplement
non-dégénéré que nous définissons en détail, généralisant ainsi la
formule de Schmid pour les vecteurs de Witt de longueur n. Au
passage, on retrouve un résultat de Brylinski avec des arguments
plus explicites nécessitant moins d’outils techniques. La dernière
partie aborde le cas plus général où le corps résiduel de K est
parfait.

ABSTRACT. Let K be a local field of characteristic p &#x3E; 0. The
aim of this paper is to describe the ramification groups for the pro-
p abelian extensions over K with regards to the Artin-Schreier-
Witt theory. We shall carry out this investigation entirely in the
usual framework of local class field theory. This leads to a certain
non-degenerate pairing that we shall define in detail, generaliz-
ing in this way the Schmid formula to Witt vectors of length n.
Along the way, we recover a result of Brylinski but with a different
proof which is more explicit and requires less technical machinery.
A first attempt is finally made to extend these computations to
the case where the perfect field of K is merely perfect.

1. Introduction

By a local field we mean a discrete valuation field with perfect residue
field. Let p be a prime number. This paper is concerned with the ramifi-
cation groups for the Artin-Schreier-Witt extensions over a local field K of

characteristic p, i.e. for its pro-p abelian extensions.

We fix once and for all a separable closure Ksep of K. For each n &#x3E; 1,
let Gpn be the Galois group of the maximal abelian extension of expo-
nent pn over K and let Gpoo be the Galois group of the maximal pro-p

11anuscrit reçu le 29 juillet 2005.
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abelian extension over K. We also denote by W(K) the commutative
ring of Witt vectors over K and by Wn (K) the quotient ring of truncated
Witt vectors of length n. We shall consider the additive group morphism
W,, (K) --+ Wn(K) given by ...) (xp 01 xp 11 ...) X17 ...). Its

kernel is Wn (Fp) = 

The Artin-Schreier-Witt theory [17] yields isomorphisms of topological
groups:

: Gpn ~ Hpn = Wn(JFp))
Q r-+ ~a + a

for sorne a E such that p(a) = a and where the action of Gpn
on Wn(Ksep) is defined componentwise. Here, Hpn is provided with the
product topology induced by the discrete topology on Wn(Fp).

The goal of this paper is, given n &#x3E; 1, to describe explicitly how the
ramification groups of Gpn in the upper numbering behave under the
Artin-Schreier-Witt isomorphism asn.

When the residue field of K is finite, the interplay between local class
field theory and Artin-Schreier-Witt theory gives rise to a non-degenerate
pairing, that we shall call the Artin-Schreier-Witt symbol:

W (Fp)
(a + b.K*pn) H [a, b) := (b, L/K)(~) - a,

where p(a) = a, L = K(a) and (b, L/K) is the norm residue symbol of b in
L/K. We shall compute this symbol explicitly so as to get the ramification
groups of Gpn by Pontryagin duality under the existence theorem.

Our main result is then the following:

Theorem 1.1. Let K be a local field of characteristic p with finite residue
field. For every integer u &#x3E; 0, the Artin-Schreier- Witt isomorphism a.5n
induces isomorphisms of topological groups:

,,(0) (0) iHpn and if u &#x3E; 1.p 
20132013 

p aa p 
20132013 pn

Here, for each integer v &#x3E; -1, is the subgroup of Hpn given by:

:= Hpn ~ + = 0
where we set:

(v .- _ j j _ j V j .. -v

Wn .- (K , P K , PK
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For the Wn (K) form an increasing sequence of subgroups of
Wn(K), with W£(K) = Wn(OK) and W,~ 1(I~) _ (Pk,... , The groups

form an exhaustive and decreasing filtration of Hpn that theorem 1.1
puts in bijection with the ramification groups of Gpn.

By taking the inverse limit when n tends to infinity, we get an Artin-
Schreier-Witt isomorphim for the Galois group Gpoo of the maximal pro-p
abelian extension over K:

where W(Fp) ri Zp is provided with the p-adic topology. Then, we may
deduce from theorem 1.1 the ramification groups for Gpoo:

Corollary 1.1. The Artin-Schreier- Witt isomorphism gives rise to

isomorphisms of topological groups:

Another consequence of theorem 1.1 is concerned with the computation
of the Artin conductor for a cyclic extension of degree pn over K (see
corollary 5.1 of section 5) . In this manner, we refine Satz 3 of ~12~ by writing
explicitly every crucial step of the proof and in particular by describing
precisely the Schmid-Witt residue formula for Witt vectors of length rt in
characteristic p. At the same time, we obtain a more direct and more
explicit proof for Brylinski’s Theorem 1 of ~2~ . We may also mention [4]
and we thank Michel Matignon for pointing out this reference.

One question is then to tackle the problem when the residue field of K
is assumed to be merely perfect and we partially solve it in two directions:
we show that in this context theorem 1.1 is still valid for all ramification

groups of Gp as well as for the inertia group of each 1. Indeed,
completing [7] we first claim:
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Theorem 1.2. Let K be a local field of characteristic p with perfect residue
field. The Artin-Schreier isomorphism asi induces isomorphisms of topo-
logical groups:

G(o) __i_y H(o) G(u)  Hp’-1 if u &#x3E; 1.
p p p

As for the inertia group of every maximal abelian extension of exponent
pn over K, we shall finally state:

Theorem 1.3. Let K be a local field of characteristic p with perfect residue
field. For each n &#x3E; 1, the Artin-Schreier- Witt isomoqphism induces on
the inertia group of Gpn the isomorphism of topological groups:

E I O}.
p inverse limit, deoo yields an isomorphism of topologicalPassing to the inverse limit, as,,,, yields an isomorphism of topological

groups:

G~~~ ~ lw E = 01-
where OK denotes the valuation ring of K.

One may notice that this last theorem corroborates theorem 1.1 for u = 0

and for all n &#x3E; 1 since (p E Hpn : = 0 1
because p(Wn(OK)) = Wn(OK) n p(Wn(K)). Moreover, its proof will also
show that it corroborates corollary 1.1 for u = 0.

When K has finite residue field, the key point is that the Artin-Schreier-
Witt symbol is non-degenerate and that it can be expressed as the trace of
an explicit symbol, the Schmid-Witt symbol which is actually a "residue
Witt vector" . This reciprocity formula was first discovered by Schmid [10]
in 1936 for the local norm symbol of cyclic extensions of degree p in charac-
teristic p, following up the work initiated by Schmidt (with a "t" ) and then
Hasse to establish class field theory for function fields. Then, Witt ~17~ gen-
eralized Schmid’s formula to cyclic extensions of degree p’~. The formula is
now classical, but unfortunately not as well known as it deserves to be and
Witt actually proved it in characteristic 0 only. For these reasons, in this
paper, an attempt is made to develop this norm residue formula for Witt
vectors of any length over K very carefully, sparing none of the details.

When the residue field of K is perfect, the crucial step is proposition 6.2
which describes ramification groups for a compositum. Note that we broach
the topic from two different approaches: when the residue field of K is finite,
local class field theory allows us to directly get the ramification for maximal
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Artin-Schreier-Witt extensions, but when it is merely perfect we first need
to compute the ramification groups for finite abelian extensions of exponent
dividing p’~ before taking the compositum.

This note is organized as follows. We start with a preliminary section
of brief reminders in ramification theory and local class field theory for
the convenience of the reader but also to define the setup for the sequel.
This section also provides some terminology for Witt vectors. Then section
3 is the technical heart of the paper since it deals with the Schmid-Witt
residue formula for Witt vectors of length n when K has finite residue field.
Next section 4 develops the notion of reduced Witt vectors; this is used to
compute the Artin-Schreier-Witt symbol in section 5 and thus to describe
the ramification groups for all maximal abelian extensions of exponent p’~
over K, proving theorem 1.1 this way. Finally, section 6 is a first approach
to the analogous problem when the residue field of K is perfect with a
direct proof for theorems 1.2 and 1.3.

Acknowledgments. I would like to thank Hendrik W. Lenstra for many
motivating and fruitful discussions and I am indebted to Farshid Hajir for
his suggestions in the writing of this paper. I am also grateful to the GTEM
network and in particular to the node of Bordeaux for having supported
me during my several stays at the University of Leiden.
The present paper is mainly issued from my Ph.D. thesis [16] that I

did at the University of Toulouse II under the direction of Christian Maire
(Toulouse) and Bart de Smit (Leiden).

2. Preliminaries

This section collects some definitions and standard properties of higher
ramification groups as well as some terminology from local class field theory.
For more details, we shall refer the reader to [13], from which we borrow
most of the notation in this paper. In addition, we shall also describe the
basic problems we are concerned with in this paper.

Throughout, we will use the following notations: OK is the valuation ring
of K, pK its maximal ideal, UK is the unit group of K and r, its residue
field. Once we choose a uniformizing element T for K, we may identify K
with the of formal power series over /’1;. When r, is supposed to
be finite, we will write K = Fq for some power q of p.
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Recall that if is a finite abelian extension of Galois group G, the
ith ramification groups in the lower numbering are defined as:

VX E OL, U(X) - X E 
for all integers i &#x3E; -1. They form a decreasing filtration of G: G~_1~ 

... D G~",~ = 0, for some m &#x3E; 0. is a real number,
we set G(,) = where iv is the only integer such that iv - 1  v  iv.
The problem is that these ramification groups are not adapted to quotients
and thus they cannot be extended to infinite extensions. Now, there exists
a homeomorphism 1/J : [- 1; ~-oo~~ ~-1; usually called the Herbrand
function, such that if one sets:

Vu 2: -1, U E 1f8, G (u) := 

the groups not only form a decreasing filtration in G again:

G~-1~ = G D G(l) D ... D G(l) = 0,

0, but also they are adapted to quotients in the sense that for all
normal subgroups H of G one gets:

-1, (GIH)(u) = C(u)H/H.
This relation is often called the Herbrand theorem. We can thus define
ramification groups in the upper numbering for an infinite abelian extension
by taking the inverse limit over all finite subextensions.

In the case of a finite Artin-Schreier-Witt extension, one has = G(°)
because L/K is wildly ramified. Taking the inverse limit, this remains true
if L/K is infinite. Moreover, it is only in the wildly ramified case that non-
trivial occur for u &#x3E; 1, hence our motivation to investigate higher
ramification groups in the Artin-Schreier-Witt extensions.

For a cyclic extension of degree p over K, following [5] it is well known
that:

Proposition 2.1. Let K be a local field of characteristic p &#x3E; 0 with perfect
residue field. Let L/K be the extension given by the equation XP - X = a
for some a E K and denote by G its Galois group. Then we have:

(1) If vK(a) &#x3E; 0 or if vK(a) = 0 and a E p(K), the extension L/K is
trivial.

(2) If vK(a) = 0 and if p(K), the extension L/K is cyclic of degree
p and unramified.

(3) If vK(a) _ -m  0 with m E Z&#x3E;o and if m is prime to p, the exten-
sion LIK is cyclic of degree p again and totally ramified. Moreover,
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its rami, fication groups are given by:

G = G~-1~ _ ... = G~m~ and =1.

This list is exhaustive. Indeed, if vK(a)  0 and if p divides vK(a),
then modulo is congruent to some b E Wn(K) such that
vK(b) &#x3E; vK(a) since the residue field of K is perfect. The extension L is
also defined by = b and by iteration we are reduced to one of the
previous cases. When K is finite, this argument can be generalised easily to
every extension of exponent pn over K for which no jump in the filtration
of its ramification groups is divisible by p’~ (see section 5).

To a cyclic extension L/K of degree p’~, Artin-Schreier-Witt theory
attaches a Witt vector a E Wn(K) modulo such that L =

where a = (~0, ..., ~~_1) E Wn(Ksep) and p(a) = a.

Thereby, as a corollary of proposition 2.1, we already have:

Corollary 2.1. Let L/K be a cyclic extension of degree pn given by some
Witt vector a = (ao, ..., an- 1) in Wn (K) . If all components of a lie in OK,
then L/K is unramified.

Proof. Let a = (~o, ..., (xn-1) E Wn(Ksep) be such that p(a) = a. For all
i E f 0, ..., write Ki = K(aa, ..., ai) and K- I = K. Then by iteration
each extension is cyclic of degree p and it is given by an equation

X = Pi where P2 is a polynomial in ao, ..., ai-I, ao, ..., ai that all

belong to the valuation ring of Ki-l. Thus, according to proposition 2.1,
is unramified and so is L = over K. D

We wish to complete these statements by considering all higher ramifica-
tion groups for all Artin-Schreier-Witt extensions. Under the assumption
that is finite we shall achieve this goal.

Indeed, in the usual framework of local class field theory, i.e. when K
has finite residue field, the existence theorem (e.g. [14], Chap.V, §4) is es-
sentially the statement that the norm completion of K* and the completion
with respect to its open subgroups of finite index are the same. General-
izing the reciprocity law for finite abelian extensions, it gives rise to an
isomorphism of topological groups between this latter completion and the
maximal abelian Galois group GK over K, that we shall denote by ~~.
Moreover, for all integers u &#x3E; 0, it induces isomorphisms of topological
groups ---=-. where the subgroups uj;) are defined to be 1 + p£g p K K g p K K



696

and form a basis of neighbourhoods of 1 in UK. Therefore, in our setup,
the existence theorem yields isomorphisms of topological groups:

and for 0:

o(u)

The idea is then to apply Pontryagin duality to the Artin-Schreier-Witt

symbol so as to describe the filtration by orthogonal-K

ity, and thus the ramification groups of Gpn. Note that Wn(K)//(Wn(K))
is a discrete abelian group and is an abelian profinite group that
are both annihilated by pn. Thus Pontryagin duality coincides with the
Hom(-, Wn (Fp) ) duality on both of these groups since is canoni-

cally isomorphic to Moreover, it establishes isomorphisms of topo-
logical groups between each group and its bidual. For further information
about Pontryagin duality, we shall refer the reader to ([8], Chap.2, ~9) .

The crucial step is then to give an explicit formulation to compute
the Artin-Schreier-Witt symbol. When n = 1, this was already done by
Schmid [10] :

Proposition 2.2 (Schmid Formula). I f a E K and b E K*, then:

db
a, b) = Tr r;./’Fp (Res( a-,; )).

Here, the residue is defined as follows. If f is in K, then f dT is a

differential form of K. The coefficient before T-’ is called the residue of
f dT and denoted by Res( f dT). One may prove that it does not depend
on the choice of the uniformizer.

We should stress the fact that the Schmid formula is essentially based
on the more general identity ~a, b) = [c,t) where c = for n = 1.

This remark will be of great use in the following (see lemma 3.1).

In the beautiful treatement of Serre ([13], Chap. XIV, §6), the Schmid
formula is originally used to prove the existence theorem in characteristic
p. Indeed, when the universal norm group DK of K is trivial the existence
theorem yields a continuous injection from K* into GK. In characteristic
p, this is proposition 16 of ([13], Chap. XIV, §5) arising from the Schmid
formula:
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Proposition 2.3. Let K be a local field of characteristic p with finite
residues field. If an element b E K* is a norm f rom every cyclic exten-
sion of K of degree p, then b E K*P.

Therefore, DK is divisible and thus DK = nnK *n = 1. This proposition
also proves that the kernel on the right in the Artin-Schreier-Witt symbol
is trivial, whereas its kernel on the left was already clearly trivial under the
Artin-Schreier-Witt theory.

Now, as an explicit computation for the Artin-Schreier-Witt symbol on
K/p(K) x K* I K*P, the Schmid formula allows us to express the ramifi-
cation groups for the maximal abelian extension of exponent p over K in
terms of subgroups of Hp = Hom(K/p(K), However, we delay
the proof until later, since it will be included in the more general proof of
theorem 1.1 in section 5.

The consideration of the maximal abelian extensions of exponent p’~ over
K makes appeal to Witt vectors according to the classical Artin-Schreier-
Witt theory. As a set, W(K) consists of infinite sequences (xo, ~l, ...) with
components in K. This set is then functorially provided with two laws of
operation by use of ghost components. If (Xo, Xl, ...) is a sequence of inde-
terminates, we define the sequence of its ghost components (X(O), X(’),...)
by:

l

X l = + ... lxl.X(l) =6PXi =Xo + ... + p
i=0

If R is an arbitrary ring, this gives rise to a map from to R~ that we
shall call the ghost map and denote by F R. Now, the main difficulty stems
from the following observation. When R has characteristic 0, the ghost
map is injective and it is moreover bijective if p is invertible in R. But
in characteristic p, the ghost map is no longer injective. We thus provide
W(R) with two laws of operation that come from the usual laws of RN
under hR when R has characteristic 0. According to [17], these operations
are given by a polynomial formula that we then use to define sum and
product on W (K) .

We then define on W(K) a shifting operator V by :
v := (xo, ...) H (0, xo, xl, ...).

In particular, for every n &#x3E; 1, the ring Wn (K) of truncated Witt vectors is
the quotient ring and one can pass from W (K) to Wn(K)
via the truncation map tn defined as (~o, ...) H (xo, ..., zn-i ) . Then W(K)
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is the inverse limit of all Wn (K) with respect to the truncation maps and
as such one can provide it with the p-adic topology. At last, let us mention
the relation V o F = F o V = p where F is the additive morphism (~o, ... ) H
(xo, ...) and where p is the multiplication by p; this implies in particular
that p and V commute.

Since Wl (K) is the additive group of K, we are led to define for Witt
vectors of any length an explicit formulation of the Artin-Schreier-Witt
symbol that extends the Schmid formula.

3. The Schmid-Witt symbol

For arbitrary n &#x3E; 1, we shall develop a general formula to compute the
Artin-Schreier-Witt symbol on x Witt [17]
did it precisely for a p-adic field in the language of invariants of algebras.
Drawing our inspiration from his formula, we shall prove it carefully in
characteristic p.

The Artin-Schreier-Witt pairing is given by the theory of the same name:

(a + b.K*pn ) ~ [a, b) := (b, L/K) (o) - a,
for some a = (ao, ..., an_1) E Wn(Ksep) such that p(a) = a and where
L = K(ao, ..., an-i ) . Besides, (b, L/K) is the reciprocity law of b in L/K;
it is also wK(b) restricted to L.

The notation [.,.)n would be more convenient but for simplicity we shall
rather use the notation ~., . ) even if it does not specify the index n. Anyway,
we shall always fix an arbitrary integer n &#x3E; 1 in what follows. Only section 2
dealt with the Artin-Schreier-Witt symbol for n = 1, that is also called the
Artin-Schreier symbol simply. Besides, note that the square bracket [ stands
for the additivity of the group whereas the bracket ) is
related to the multiplicativity of K* /K*pn .

This Artin-Schreier-Witt pairing satisfies the following:

Proposition 3.1. (i) The Artin-Schreier- Witt symbol is bilinear.
(ii) For every a E K, [a, b) = 0 if and only if b is a norm in the extension

where a = such that p(a) = a.
(iii) For all a E K and b E K*, [Va, b) = where V is the shirting
operator.

Moreover, according to the existence theorem we claim:
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Proposition 3.2. The Artin-Schreier- Witt symbol is non-degenerate.

Proof. Let a E and suppose that a = 0 for all b’s in
K* . By the existence theorem, is dense in GK, thus GK fixes the
extension K(a) defined by a, so a E Wn (K) and a E p(Wn(K)).
Now let b E K* . If = 0 for all a E Wn (K) then 1JK (b) fixes

all cyclic extensions of degree dividing pn, thus it fixes all finite abelian
extensions of exponent pn by taking the union and so it fixes the maximal
abelian extension of exponent pn over K. Therefore, the image of 1JK(b)
is the identity in Gpn which means that b E K *pn under the existence
theorem. The converse is trivial. D

The main idea of this section is to consider the Schmid formula in relation
with the so-called ghost components of some Witt vector. For a E Wn (K)
and b E K*, the idea is then to switch temporarily to characteristic 0 by
lifting a and b to some elements A and B in Wn(R((T))) and R((T))*
respectively where R is any complete discrete valuation ring of character-
istic 0 with residue field r, = IFq. The main observation is that the ring
R = W (Fq) satisfies this property (see [13], Chap. II, §, Thm.7) . We then
define an explicit pairing on Wn(R((T))) x R((T))* with value in Wn(R):
given A and B it returns a Witt vector (A, B) in given by its ghost
components that are expressed as the residues of some elements in R( (T ) )
generalizing in this way the Schmid formula. This is the "Residuenvektor"
of [17]. This pairing is such that after reducing to Wn (K) x K* we get a
pairing that we shall call the Schmid-Witt symbol and that corresponds to
the Artin-Schreier-Witt symbol. This is proposition 3.4. In proposition 3.5
we then give another formulation for the Schmid-Witt symbol that does
not use the reduction to Wn(K) x K*. The present section is thus intended
to provide a thorough exposition of the details of this process.

Note that Xo = X(O). Therefore, the ghost map is bijective from 
onto A whatever the characteristic of the ring A is. This is the reason why
the Schmid formula for n =1 does not use any lift at all, following up our
reasoning.

Let a E write a = (ai)i with ai = E Fq((T))
and 0. Let b E I~q ( (T ) ) *, we write b = bmT m + h.o.t. with bm E F§
(the abbreviation h. o.t, stands for higher order terms). We shall lift a and
b to A E and B E W (Fq ) ( (T ) ) * respectively as follows:

A = E 
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with, for all z E {O, ..., 7~ 2013 1}:

with (Bl)o = bi, for all l  m.

In particular, if we provide W(Fq)((T)) with the usual valuation, then
each A2 has valuation and B has valuation vK (b) .

Under the identification K = I~q((T)), we then define a pairing Wn(K) x
K* - Wn(IFp) given by the left vertical line in the following commutative
diagram:

where the vertical and horizontal arrows are defined as follows:
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Here, the trace on is defined as follows:

with respect to the Witt addition, where d is such that q = pd.

Note that the Witt vector (A, B) defined by its ghost components should
lie in a priori. However, according to Satz 4 of [17], each
component of (A, B) is a polynomial with integer coefficients in the inde-
terminates Bl, and Ai,v for m, i &#x3E; 0 and v &#x3E; vi. Moreover,
Bm’ lies in W(Fq) since its first component bm is a unit in Fq. Therefore,
the vector (A, B) does belong to and the diagram is well de-
fined. Furthermore, each component of (a, b) is a polynomial with integer
coefficients evaluated in bml, bl and since the first component of the
sum (resp. the product) of two Witt vectors is the sum (resp. the product)
of their first components.

Therefore, the Witt vector (a, b) E Wn(Fq) is well defined and it does
not depend on the choice of the lifts A and B. We call it the Schmid-Witt
symbol of a and b.

Clearly, the Schmid-Witt symbol satisfies the following:

Proposition 3.3. (i) The Schmid-Wztt pairing is bilinear.
(ii) (Va, b) 

In order to show that the Artin-Schreier-Witt symbol and the Schmid-
Witt symbol are actually the same on x K*IK *pn, we
first prove one crucial lemma:

Lemma 3.1. Let a E Wn (K) and b E K*. I f c = (a, b) E Wn (Fq), then:

[a, b) = [c, T),
where (., .) : Wn(K) x ~ 2013~ Wn(Fp) is the Artin-Schreier- Witt pairing.
Proof. The proof is mainly due to [17], we shall rewrite it to show how the
computation of the Schmid-Witt symbol works. It is based on the following
relation:

for all Witt vectors .c = (zo, ..., zn-i) in Wn(K) where each is the
Witt vector (xi, 0, ..., 0).



702

We first assume that b = T and we write ao = EVEZ ao,vT v so that:

a = + {2: + 
~&#x3E;0 v&#x3E;O

for some Witt vector S~a in Note that since the first component of
a sum is the sum of the first components, (Qa)o = 0 and there exists some
Witt vector W = (wo, ..., c~n-1 ) E Wn(K) such that Qa = 

Besides, by bilinearity of the Artin-Schreier-Witt symbol, one gets:

[a, T) = + ~f T) T) + Qa.
~&#x3E;0 ~&#x3E;0

First, since lao,ol lie in then fao,ol for if A is a
lift for in the way we defined the Schmid-Witt symbol, then A is
in Wn(W(JFq)) so that all its ghost components A(’) are constant, thus

Res( B A~2~ ) = A~2~ for each i, hence (A, T) = A and so T) = ~ao,o }.
Thereby, T), T) = T).

Next, the Witt vector a&#x3E;o = clearly belongs to

(pK, ..., and then it is in (we shall come back to this property
in section 6 with proposition 6.1 since it is actually a more general state-
ment when the residue field of K is simply perfect). Thus [a&#x3E;o, T) = 0.
On the other hand, if A is a lift for a&#x3E;o with regards to the Schmid-
Witt symbol, then all ghost components of A have strictly positive val-
uation, hence = 0 for each i and so (a&#x3E;o, T) = 0. Therefore

~(a&#x3E;o, T ), T ) _ (a&#x3E;o, T ) again.
Then, according to lemma 3.2 that follows, each for v &#x3E; 0

is such that = 0. We write ao for Besides,
when computing the Schmid-Witt symbol (ao, T) one can lift ao to some
Witt vector A of the type with Ao,-v E W(Fq) so that all A~2~
are linear combinations of strictly negative powers of T and as such satisfy

= 0 thus (ao, T) = 0 and [(ao, T), T) = [(ao, T).
Therefore, by bilinearity of both the Artin-Schreier-Witt symbol and the

Schmid-Witt symbol we get:

~(a~T)~T) - ~(~a~~’)~T) - 

Since Qa = Ycv for some w E Wn (K), one may iterate the process and
construct successively Witt vectors f!ia = with 1Ji E Wn (K) such
that:

0, [(a, T), T) - [a, T) = L(~2a~ T ) ~ T ) - T).
In particular, for i = n we get = = 0 and thus [(a, T), T) -
[a, T) = 0, as was to be shown.
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Finally, if b = ETm where e is a unit in K and m &#x3E; 0, then T’ := 
is a uniformizing element in K, whence:

[a, b) = _ ( m _ 1 ) (a, T ) + ~a, T’ )
= Cm -1)L(a?T)~T) + 

and we conclude by bilinearity of the Schmid-Witt symbol from what pre-
cedes, indeed :

~(a~ b) ~ T ) _ (m -1 ) L(a~ T ) ~ T ) + ~(a~ T’) ~ T )
_ (m -1 ) L(a~ T ) ~ T ) + f(a~ T’) ~ T’) - [(a, T’), 

where bT-m is a unit in K. Now (a, T’) lies in Wn (Fq) thus in Wn(OK) and
according to corollary 2.1 this means that the corresponding Artin-Schreier-
Witt extension is unramified. Hence [(a, T’), bT -m) = 0 since is a

unit and so [(a, b), T) = [a, b) as was to be shown. D

In the above proof, we made use of the following statement due to
Teichmfller in [15]:

Lemma 3.2. Let ao E K* and let a = (ao) be a Witt vector of length n
such that ao = aO,vT-v, i. e, ao is the linear combination of strictly
negative powers of T. Then [a, T) = 0.

Generalizing the Schmid formula, we finally get:

Proposition 3.4 (Schmid-Witt Formula). If a E Wn(K) and if b E K*,
then:

[a, b) 

Proo f . According to lemma 3.1, one may take b = T and suppose that a is
a constant, i.e. an element in Wn (Fq) where I~q = ~. Then, proposition 3.4
amounts to the same as saying:

[a, T) = TrF, IF, (a),

since (a, T) = a when a is constant.
So let a E be a root of the equation p(a) = a, and let be

the corresponding cyclic extension of degree p~  pn under Artin-Schreier-
Witt theory. We set K’ := K’((T)): it is an unramified extension of K.

Thus, according to ([13], Chap. XIII, §4, prop. 13) one gets: 
Fq where Fq denotes the canonical generator of Gal(K’/K) -- Gal(~’/~)
defined by z - ~q with q = jrl. Therefore, writing q = pi and since Fq
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commutes with p, it comes:

for Fq is cyclic of order 1 over Fp. D

Note that Teichmuller’s lemma 3.2 is true when the residue field of K
is perfect whereas the Schmid-Witt formula is valid only when the residue
field is finite. It implies in particular that the Schmid-Witt symbol is non-
degenerate in the usual framework of local class field theory.

We conclude this section with an equivalent construction for the Schmid-
Witt symbol corresponding to the idea that the (n - I )th ghost component
of a Witt vector contains all the needed information. This will make its

computation easier:

Proposition 3.5. For every a E Wn(K) and every b E K*, if A and B are
li f ts of a and b respectively with regards to the Schmid- Witt symbol, then:

(a b) = in Res( dB A (n-1)B

where tn : Wn(Fp) is the truncation map.

Proo f . The proof is based on the following observation. If Y = (Yo, ..., 
is a Witt vector in then, for every integer k &#x3E; 1 we have:

lypk 0 I + pk+l Z,
for some Witt vector Z E Wn(Fq). This is particularly due to the relation
V o F = F o V = p.

So, let X = (Xi)i with Xi E W(Fq) denoting the Witt vector (A, B) and
stand for (a, b). Recall that these are related by (Xi)o = xi

for all i. We are thus going to prove that = 

According to the previous remark, there exist Witt vectors Zi in Wn(Fq)
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such that:

Now, since F is the identity map on Wn(JFp), pi = V 2 on and by
linearity of the trace we get:

Then, once we observe that Trjp /p (~wp~~) = Try /y ( (w) ) for each w E JF q
and for all integers k &#x3E; 1 and that the trace commutes with V, we finally
get:

n-1

= V 2f (x2)o} mod 
2=0

which means that = TrFq lfpx as was to be shown. D

Likewise, we get a formula in characteristic p similar to that of Satz 18
in [17] for Witt vectors of length n over a p-adic field. Note that Schmid
[12] does not use this formula even though it makes the computation of the
Artin-Schreier-Witt symbol simpler.

4. The reduced form of a Witt vector

One way to make the computation of the Artin-Schreier-Witt symbol
even easier is to prove that on the local field K every Witt vector of length n
is congruent modulo p(Wn(K)) to a Witt vector with suitable components.
This reduction was already mentioned by Schmid in [12]:

Proposition 4.1. Let a = (ao, Witt vector in Wn(K). Then
a is congruent modulo p(Wn(K)) to a Witt vector a’ = (ao, ..., a~_1) such
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that for each index i, either the component ai lies in OK or its valuation

vK(ai) is negative and not divisible by p.
The Witt vector a’ is said to be reduced and it is called the reduced form

of a.
We then introduce the following:

Definition. If a = (ao, ..., an_1) E Wn(K), one defines Mn(a) to be:
:= 

Since the value of Mn(a) is either an integer or +00. Now,
it is always an integer once we choose a non-zero Witt vector a. On Wn(K)
the Mn function enjoys the following properties:

Proposition 4.2. For any Witt and y in Wn(K), we have:

(1) Let u 2: 0. E then Mn(x) = u.
(2) reduced and if Mn(x) 2: 1~ then for

a unique j in {0,..., ~ 2013 1}.
(3) Let x and y be two Witt vectors in Wn(K), then Mn(x + y) _

(4) E Wn(K) and if c E Wn(1FP), then Mn(x)
(5) If c E Wn(IF’p) is a unit, then Mn(cx) = Mn(x). In particular:

= 

(6) Mn(y), the equality = 

holds.

(7) 0 or p divides 

(8) If x is reduced and if h E Wn(K), then either 0 or 

We refer the reader to Chapter 4, Paragraph 4.3 of [16] for a detailed
proof of these assertions.

Note that all these statements related to reduced Witt vectors are valid
even when the residue field of K is perfect. As a consequence of all these
properties, one should mention:

Corollary 4.1. Let u 2: 1. is a reduced Witt vector such that its image
modulo lies in:

(WÁu) + + 

then x is in 

Proof. For simplicity, write := (Wn~‘~ + and

denote by ~ the image of x modulo Since x f/- then

Thus, by proposition 4.2, Mn(~) &#x3E; u.
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Now, x- E ~B hence there exist z E and h E Wn (K) such that
x = z + p(h), i.e. z = ~ + ~(-h). Thus, on the one hand, Jvln(z) ::; u.
On the other hand, according to proposition 4.2 again, we have: 

(-h) ) = Mn (z) . Thereby, Mn (x) = u and so z E wJu) (K), as
was to be shown. D

The computation of the Schmid-Witt symbol for reduced Witt vectors
gives:

Proposition 4.3. Let 0  m  u be two positive integers.
Let a E reduced Witt vector of length n. We

write a = (ao, ..., an-1) with ai = ai,vT v and ai,vi E n*, for each
i&#x3E;0. 

~ ~

Let b E K* such that its image modulo K*pn is in but9 K

not in K*pn  K*pn . One may write b =1 with bu E r* .K

Then:

where j is the only index such that Mn(a) = _pn-I-jVj = m and v~ _
vK(aj).

Proof. Recall that the field K is identified with Fq((T)).
Let A E Wn(W(1Fq)((T))) and B E W(Fq)((T))* be two lifts of a and b

respectively with regards to the computation of the Schmid-Witt symbol
as in section 3.2. According to proposition 3.5, we have:

(a, b) - - tn (Res( dB A (n_ 1) )).B

Let v denote the usual valuation on W (1Fq ) ( (T ) ) . Since is

of characteristic 0, then A(n-1) - - pi Ar-1-i and since a is reduced
we get: v(Atn 1)) mini fpn-1-1 vil = -m for vi = VK (ai)
v(Ai).

Clearly, one gets:
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with vj prime to p. Thereby, when taking the trace of Fq over Fp it comes:

- .-

as was to be shown. 

’ 

D

5. Proof of theorem 1.1

We first check that the Artin-Schreier-Witt symbol induces an isomor-
phism between Gpn and Hpn that coincides with the Artin-Schreier-Witt
isomorphism asn under Pontryagin duality:

Proposition 5.1. The Artin-Schreier- Witt symbol gives rise to an isomor-
phism of topological groups:

~ 

given by H ~ ~a + [a, 
In particular, under the existence theorem, it induces an isomorphism of

topological groups:

~pn 0 WK Gpn Wn (Fp))
that is identically equal to the Artin-Schreier- Witt isomorphism asn .

Proof. Since the Artin-Schreier-Witt symbol is non-degenerate, it induces
injective group homomorphisms given by:
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Now, is discrete, thus the injection g is continuous
and its transposed map yields a continuous surjection denoted by g :

n

orn(Horn(K* /K*P , Wn(IFp)), -

Wn(IFp))
that is given by a + p(Wn (K)) - X o g(a + p(Wn(K))).

Then, by Pontryagin duality, we get a continuous surjective homomor-
phism :

b.K *pn 
and this latter is identically the map f defined above. Hence f is a contin-
uous isomorphism. Since and Hom (Wn (K) (K)), Wn (Fp))
are compact, f is an isomorphism of topological groups. We shall denote
it by 7ppn.

Thereby, the composed map wi(l 0 ’l/Jpn yields an isomorphism of topo-
logical groups:

Gpn Wn(IFp))
given by: a - {a ~ p(Wn(K)) - [a, b)~ where b = wi(l(a) E K*. This

isomorphism is the Artin-Schreier-Witt isomorphism asn since (a, b) =
= a(a) - a where p(a) = a. D

We then shall consider the ramification groups of Gpn . Under the ex-

istence theorem, an integer t &#x3E; -1 is called a jump in the filtration

mod K *pn . NowK u K K 
. ,

is perfect. Thus the filtration of UKK *pn IK *pn contains no jump greater
or equal to 0 that is divisible by p’~ because K C thus, the same holds
for the filtration of ramification groups in Gpn .

We shall say that an integer t &#x3E; -1 is a jump in the filtration 

if . Note the existence of a shift by 1 with the definition of
jumps for Gpn. According to corollary 4.1, one may prove that no jump
greater than 1 is divisible by pn in the filtration of Hpn .

For each integer u &#x3E; 0, we then define:

:= {b.K*pn E K*/K*pn : 
i.e. is the orthogonal group modulo in K* / K*P
with respect to the Artin-Schreier-Witt symbol. In particular, for u = 0,
it is the orthogonal of (Wn(OK)/p(Wn(OK))). Clearly, the groups Sp(un)’s
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form a decreasing filtration in Then as a consequence of propo-
sition 4.3, we state:

Proposition 5.2. For each integer u 2: 1, we get:

pn 
- 

K .

Proof. From proposition 4.3 and corollary 4.1, c 

if u is not divisible by pn.
Conversely, let b E K* such that b does not lie in 

and let us prove that it does not lie in S~n 1~ either. be

the smallest integer such that b E In particular j is

not divisible by pn according to a previous remark, thus j - p~v with
0  l~  n - 1 and v 2: 1 is prime to p. Besides, we may write: b =

1 + + h.o.t. with bj E Then, by the non-zero functoriality of the

trace, there exists y E 1F* such that # 0. Now, q = 
for some a E Thus, if we consider the Witt vector a = (ai)i defined
byaj = aT-v + h.o.t and ai = 0 for all i j, then a is reduced and lies

in thus in Furthermore, according to
theorem 3.4 and proposition 4.3, [a, b) ~ 0. Thereby, b does not belong to

which proves that = for every integer u 2:: 1
that is not divisible by pn .

If u 2: 1 is divisible by pn, then u is a jump neither for Hpn nor for
which completes the proof. D

Whence the proof of theorem 1.1: for u 2: 1, it is just a direct consequence
of proposition 5.2 and proposition 5.1. For u = 0, it is exactly the statement
that G~°~ = G- since the extension is wildly ramified.
A first consequence of theorem 1.1 is corollary 1.1 that we stated in the

introduction. The proof essentially consists in writing out the inverse limit
on all for n 2:: 1 and u 2:: -1. In particular, for u = 0, is

isomorphic to (p E Hpoo : = O}.

Another consequence of theorem 1.1 is the following:

Corollary 5.1. Let u &#x3E; 1. Let a be a Witt vector o f length n and suppose
that a lies in Let KalK denote the cyclic extension
o f degree p~  pn defined by:

Ka = 
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where a = (ao, ..., an_1) E Wn(Ksep) is such that p(a) = a. Then, the

Artin conductor of Ka/K is pK l.
In other words, according to proposition 5 of ([13], Chap.VI,§2), the

highest non-trivial ramification group of is indexed by u. If u = 0,
then according to corollary 2.1, the extension is unramified, i.e. the Artin
conductor is trivial.

Proo f . According to proposition 4.1, one may suppose that a is reduced.
Thus, its image modulo p(Wn(K)) is in Wy- mod p(Wn(K)) but not in

mod Thereby, according to theorem 1.1, Ka is fixed by
but not by Thus, since the Galois group of Ka/ K is a quotient

of Gpn, we conclude that its highest non-trivial ramification subgroup is
indexed by u, according to the Herbrand’s theorem. D

For instance, if a E Wn (K) is the Witt vector (T -1, 0, ...,0) then 
pn-l and Ka/K is cyclic of degree pn since p(K). Thus, if G denotes
the Galois group of Ka/K then 1 whereas = 1.

Likewise, we recover Theorem 1 of [2] in a natural way with more explicit
arguments that avoid the Kato machinery. At the same time we render
more precise Satz in part 3 of [12] by writing explicitly every crucial step of
the proof and in particular by describing precisely the Schmid-Witt formula.
Furthermore, we give a more general result that corresponds somehow to
the projective limit of Schmid and Brylinski’s results in the sense that we
directly get the ramification groups for all maximal abelian extensions of
exponent pn over K.

6. Further remarks when the residue field is perfect

This last section investigates the validity of the preceding computations
when the residue field of K is perfect. We shall give here partial answers:
for the maximal abelian extension of exponent p and for the inertia group
of each maximal abelian extension of exponent p~ over K.

The two main statements of this section are related to the following:

Proposition 6.1. Witt vector over K whose

components. are all in PK then x belongs to 

Proof. Let y = this sum converges in Wn (K) with respect to the
p-adic topology since it converges componentwise. We thus get the relation
x = p(-y) in Wn(K). 11
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Clearly, it implies:

The first generalisation of theorem 1.1 to the case of a perfect residue field
is concerned with the ramification groups of the maximal abelian extension
of exponent p. It is theorem 1.2 of the introduction:

Theorem. Let K be a local field of characteristic p with perfect residue
field. The Artin-Schreier isomorphism asi induces isomorphisms of topo-
logical groups:

G(u) _ Hp 1) if u &#x3E; 1.
p p p p - .

This theorem is based on the following crucial statement:

Proposition 6.2. Let K be a local field and let L and L’ be two finite
abelian extensions over K with L n L’ = K, so that the compositum L.L’ is
Galois over K of Galois group denoted by G. Let H and H’ be the subgroups
of G that fix L and L’ respectively. If H is contained in the highest non
trivial ramification subgroup of G in the upper numbering, then for every
integer u &#x3E; -1 we have:

(GIH)(u) x (GIH’)(u).
Proof. Let us denote by G(s) the highest non-trivial ramification group of
G, i.e. G(s) ~ ~ 1 ~ and G(s+1) _ ~ 1 } . By assumption: H C C(s).

Fix an According to the Herbrand’s theorem, we have:
= C(u)H/H and = GuH’/H.

Therefore we can define a homomorphism:

Fu :- G(u) --t (GIH)(u) X (GIH’)(u),
which maps a E G(u) to (0, 0’) where 0 (resp. 0’) denotes the coset of
H in the group (resp. the coset ~H’ of H’ in 

This map is injective because H n since L n L’ = K.
It is also surjective under the further condition that H is contained in

G(s) . Indeed, if u &#x3E; s, then and Fu is obvioulsy surjective.
Now if u  s then H is also a subgroup of G(u), and the ramification
group (GIH) (u) is isomorphic to G(u) /H. Therefore, considering an element
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in (GIH)(u) x (GIH’)(u), there exist o~ in G(u) such that a 
mod H and o~’ in G(u)H’ such that a’ = 0’ mod H’. But, by the natural
isomorphism G = H x H’, there also exist h E H and h’ E H’ such that
o-h = a’ h’. This means that oh in G~u~ is mapped to (0, 0’) by Fu, thereby
proving the surjectivity of Fu and our assertion.

D

Then, the proof of theorem 1.2 consists in a gradual process. Following
proposition 2.1 of section 2, we first compute the ramification groups for
a finite abelian extension of exponent p over K. According to the Artin-
Schreier- Witt theory, if L is such an extension, it corresponds to the sub-
group B = p(L) n K of K that contains with finite index. Precisely,
if GB is its Galois group, the isomorphism asi induces an isomorphism

where HB = 

Next, for each we define the quotient group:

:= B + 

with = OK. In other words, is the image of B n modulo

p(K) in the notation of section l. By proposition 6.1 the first quotient
73~~ is trivial since ~K C p(K) . Moreover the quotient groups B(u) define
an increasing filtration in and since B /p(K) is finite there exists
m &#x3E; 0 such that: B~-1~ _ {1} c c B(l) G "’ C B(m) = 

Next, the groups:

define a decreasing filtration in HB:

We shall say that an integer t &#x3E; 0 is a jump in the increasing filtration
if B(t-l) =1= B(t) and that an integer t &#x3E; -1 is a jump in the filtration
if H(t) i.e. if t+ 1 is a jump for the Since r, is perfect,B B B I J p p

it is easy to see that no jump t &#x3E; 1 in the filtration B(v) is divisible by p.
We then claim:

Proposition 6.3. The Artin-Schreier isomorphism induces isomor-

phisms :

In particular, the Galois group GB has no jump which is divisible by p.
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Proof. For simplicity, let G = GB . If x is in OL let x be the image of x
modulo L.

First, by ramification theory there is a natural isomorphism:

where is the residue extension of L/K.
Then, the Artin-Schreier-Witt theory yields the isomorphism:

for some ~ in 1 such = x in l. Note that by the Hensel’s lemma,
Q(~) - ~ = a(g) - g mod PL, with Q in G such that mod G(O)) = 0-.

Finally, since B = p(L) n K, OKnp(K) = p(OK) and ~K C 
there is a natural isomorphism B(o) - n that is induced by the
projection map O K - r,. By duality, this gives rise to a third isomorphism:

Therefore, by composition we get the isomorphism:

for some ~ E L such that p(~) = x. Moreover, since IP2 is induced by 
we get a commutative diagram with exact rows:

Thus asl induces an isomorphism G(°) HB 7 thereby proving the first
assertion.

We then prove the isomorphisms G (u) H 1 1 by inductionB

on the order of the Galois group G, and more precisely on the exponent
n &#x3E; 1 where ~G~ = pn. If n = 1, this is proposition 2.1 of section 2.
Now given an integer n &#x3E; l, we suppose that theorem 6.3 is true for any

abelian extension over K of degree less than or equal to pn and let be
an abelian extension of degree Therefore it has at most n + 1 jumps
in the filtration induced by its upper ramification groups. Let denote
its highest non-trivial ramification group:
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Then G(s) is a p-group of order in particular it contains a
cyclic subgroup Ji of order p. Moreover there is another subgroup J2 such
that G = Ji x J2, and J2 is of order at most p’~ .

Let MI and A12 denote the fixed subfields of L/K under J2 and Ji
respectively so that 1Vh /K (resp. M2/K) has Galois group G/Jl (resp.
G/J2). Then we simultaneously get:

MI n M2 = K and L = Mi .M2 .

Therefore, according to proposition 6.2 we get for every integer u &#x3E; 1:

x 

We then denote by Al (resp. A2) the subgroup (resp. 
of B. Since the extensions Mi and M2 are of degree at most pn over K, we
get the following isomorphism of topological groups for each integer u &#x3E; 1:

G (u) - ~ A1 
x 

A2

given by a - 
On the other hand, by Galois theory, the group G is isomorphic to the

product G/Jl x G/J2 in a natural way. Applying the Artin-Schreier-Witt
isomorphism asi it then results the isomorphism:

For all u &#x3E; 1, we claim that under E the subgroup is sent onto:B

E(H1u-l)) = B Al A2 
°

Indeed, the first inclusion is trivial since = n for

i =1, 2.
Conversely, let be in x By the isomorphism E,Al A2

there exists f in HB such that for i = l, 2. In particular,
n o.

Now, by duality, induces the isomorphism:

Allp(K) x 
and so f is zero on which means that f lies in therebyf B

proving the other isomorphism of topological groups:

V 1, H( 1) v _ , B 
----+ 

Al 
X 

A2 .

Consequently, by composition, the Artin-Schreier map induces the isomor-
phism of topological groups:

G) _ H(u-I)vU B ’

which completes the proof of proposition 6.3.
D
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Therefore, by taking the inverse limit on all finite abelian extensions of
exponent p, we finally prove theorem 1.2:

Proof. Let ~3 denote the set of all subgroups of K that contain p(K) with
finite index. If B is such a group, we denote by GB the Galois group of
the corresponding finite abelian extension of exponent p over K that is

the compositum of all extensions with a E Ksep and p(a) E B.
According to proposition 6.3, there is an isomorphism G(°) H (0) forB B

every B in B. Let B denote this isomorphism.
On the other hand, we have by definition:

CeO) = lim G(o)
p l- 

B ,

when B runs over , and with respect to the restriction homomorphisms as
transition maps. Besides, we also get:

H(°) ^ lim H(°)B
since (K n is the union of all B(°) for B E B.

Then, for all B C B’ in ,~ the following diagram is commutative:

G(°) B B

~s
H(o) B B

where the horizontal maps are the restriction maps.
Therefore, by the universal property of the inverse limit and since all

groups G(°) and H(°) are compact, there exists a unique isomorphism ofB B

topological groups:
C(O) --=--. H(O)
p p

and it is induced by 
For u &#x3E; 1, the proof is roughly the same once we replace the index 0 by

u for Gp and by u -1 for Hp . D

As a corollary, we shall mention:

Corollary 6.2. No jump in the filtration of the ramification subgroups of
Gp is divisible by p.

When K has perfect residue field, another attempt is made to gener-
alise theorem 1.1 with a description of the inertia group of each maximal
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abelian extension of exponent pn over K. This is theorem 1.3 stated in the
introduction:

Theorem. Let K be a local field of characteristic p with perfect residue
field. For each n &#x3E; 1, the Artin-Schreier-Witt isomorphism asn induces on
the inertia group of Gpn the isomorphism of topological groups:

E Hpn ; ] o.
Passing to the inverse limit, asoo yields an isomorphism of topological
groups:

-0- (OO)c p E °1 °p p

One proof for the first assertion of this theorem is the following:

Proof. Let Kn be the maximal abelian extension of exponent p’~ over K.
Its residue extension is the maximal abelian extension ~n of exponent p~
over ~, hence the isomorphism Gal(Kn/K) --~ hpn, where h~n denotes the
group From corollary 6.1 one may define
a homomorphism On : Hpn 2013~ by:

:= ..., Xn-1) + (~(Wn(~)) ~’ ..., Xn-1) + 
where Xi is the image of xi E OK modulo pK.

Let fin be the kernel of On. The interplay between ramification theory
and Artin-Schreier-Witt theory gives the following commutative diagram:

o 20132013G - Gpn 0
p

1 Mn 
Pn 

pn

o y 
On 

0 An 20132013 Hpn p
where the two right hand vertical maps are isomorphisms.

/QB This yields an isomorphism fin.
Since p(Wn(K)) f1 Wn(OK) it follows that:

G~°~ _~ lw E Hpn : = oi
Now, these two former groups are compact. Besides, this isomorphism is
continuous since it is induced by the Artin-Schreier-Witt isomorphism asn,
thus it is also a homeomorphism as was to be shown. D

Passing to the inverse limit, we then get the second assertion of theo-
rem 1.3 whose proof is based on the following identification:
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Lemma 6.1. For n &#x3E; 1, there is a natural isorraorphism of topological
groups:groups: 

I

given ~x+~(W (K)) ~’ where tn : W (K) -~
Wn(K) is the truncation map.

Proof. Let denote the quotient group We first claim
the existence of an isomorphism:

On : wn(K)/P(wn(K)) -~ V(K)IpnV(K),
given by (xo, ..., + (x + ~(W (K))) mod pnv, for some
Witt vector x E W (K) such that tn (X) (x~, ..., xn-1).

Indeed, following the relation V o F = F o V = p, this is a consequence
of:

p nW(K) + 8J(W(K)) = Vn(W(K)) + 8J(W(K)),
since Wn (K) ^~ (see section 2).

Therefore, by duality, we get an additive isomorphism:

Hpn 
given by 
Now since Wn (IFp) is annihilated by p’, it gives rise to the isomorphism:

lfn := Hpn -=-+ Hom(V(K), Wn (Fp) ) .
Moreover, all the maps cpa o lfn for a E V(K) are continuous, where pa
is the natural projection that sends h to

h(a). Therefore, 4bn is continuous and it is a homeomorphism since both
Hpn and Hom(V(K), Wn(Fp)) are compact groups, as was to be shown. D

Whence the end of the proof for theorem 1.3:

Proof. For all integers let 7rn,,, denote the natural surjection map:

7Tnm : Hpn - Hpm
cp - p mod 

under the identification of lemma 6.1. The system is projective
and its inverse limit is equal to 

Besides, the identification of lemma 6.1 leads to other isomorphisms:

H° °l’pn 
: = 01,

that commute with the isomorphisms of theorem 1.3.
We denote by Hpco the compact group :

-_ f P E Hp°° : (K)I6(W (K))) _ }.P e Hp- : 0}.
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The projection maps Hpn, given by :

7rn : cp mod VnW(IFp),
are all compatible with the projective system ~Hpn, Thus, according
to ( 8], cor. 1.1.8, a.) : lim 

But, for each n &#x3E; 1, C H(°), hence the inclusion C

lim 

Conversely, let p be a homomorphism in We get:

~ E Inn H(°) ~ E 

~ = 0 in W (IFp)

p
thereby proving = lim H(~) .

Now, for all integers n 2: m, the following diagram is commutative:

rnm 
G(°) - H(°)

where the horizontal maps are induced by the Artin-Schreier-Witt isomor-

phisms a5n and a5m respectively and where rnm : is the re-
striction map.

Therefore, since all groups and H(°) are compact, we obtain an
isomorphism of topological groups lim G(°) ~ lim H(°) and thus ~

Besides, by construction, this isomorphism is induced by the Artin-
Schreier-Witt isomorphism which completes the proof of theorem 1.3.

D
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