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Sublattices of certain Coxeter lattices

par ANNE-MARIE BERGÉ et JACQUES MARTINET

À Georges Gras, pour ses soixante ans

RÉSUMÉ. Dans cet article, nous décrivons les sous-réseaux de cer-
tains réseaux de Coxeter, prolongeant les résultats de [Ber]. Notre
description utilise des graphes.

ABSTRACT. In this paper, we describe the sublattices of some lat-

tices, extending previous results of [Ber]. Our description makes
intensive use of graphs.

1. Introduction

In his 1951 paper Extreme forms ([Cox]), the late Coxeter studied lat-
tices A which satisfy inclusions Ao C A C Aô for some root lattice Ao. (As
usual, L* stands for the dual of a lattice L, and a root lattice is an integral
lattice generated by norm 2 vectors.) We shall more specially consider the
root lattice Ao = An, the section of Zn+’ endowed with its canonical basis
Bo = by the hyperplane = 0. Then Aô/Ao
is cyclic of order n + l, so that there exists for every divisor r of n + 1 a
well defined lattice A~ such that An C A~ C An and [A~ : An] = r. We
denote by Coxn (n odd) the lattice Ahn+I)/2 scaled to the minimum which
makes it integral and primitive. The lattices Coxn are perfect lattices which
have various curious properties. In particular, they are hollow in the sense
of [Ber], and their minimum is odd whenever rc - 3 mod 4. This paper
is a continuation of [Ber], which was devoted to the classification of cross-
sections of Coxn, but this time we consider sublattices of finite index (or
more generally, of finite index in a cross-section). As [Ber], our paper makes
intensive use of graphs to describe the possible sublattices of Coxn.

As in [Ber], Euclidean properties play only a modest rôle: the minimal
vectors of An are vectors :f:vI, ... , ±vn where the vi satisfy the unique
(up to proportionality) dependence relation vo + vi + ... = 0. We set
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The lattice Coxn is generated by S, which is actually the set of its minimal
vectors (up to sign). We then essentially deal with submodules of the
Z-module generated by the vi: the Euclidean structure is only used in the
last section where we consider some spherical 2-designs related to Coxn
(this is the property called strong eutaxy in [Ven]).
Notation. We denote by E the span of the vz, assuming that
n = dim E &#x3E; 5, and of course that n is odd (for the notation Coxn to
make sense) . We denote by L (resp. M) the Z-module generated in E by
vo, ... , vn (resp. by S). Note that [L : M] = 2.

In Section 1, we characterize in terms of graphs the submodules N of L
generated by subsets of S. We then determine in Section 2 the structure of
the quotient modules L / N and Finally, Section 3 is "the Euclidean
section" . We construct here a new infinite sequence of strongly eutactic
sublattices of Coxn having the same minimum.

2. Graph of subsets of S

Definition 2.1. With a subset 13 of S we associate the following graph ra.
Its vertex set is V = ~0,1, ~ ~ ~ , nl, and i j is an edge of ra if arcd only if
v2 + vj lies in B.

In order to study such a graph, some more notation is needed.

Notation. For every graph G with vertex set vG C V, put

and

where for a subset X of E, the notation (X) stands for the Z-module
generated by X.

If G is a tree with bipartition (VO, Yl ), we define the excess of G to be

In the case of an isolated vertex G = dG = 1.
[Recall that a tree is a connected graph without cycle; two vertices i and j of the tree
are in the same vertex set (k = 0,1), if the length of the path from i to j is even; see

[Bo].] ]
Eventually, we say that two graphs G and G’ with the same vertex set are
equivalent if the corresponding modules NIG and MG, coincide.
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Theorem 2.2. Let r be a graph with vertex set V = {O, l, ... , nl and
p  n edges, and let

be its partition into connected components. Then the p vectors

eij = vi + vj, ij edge of f, are linearly independent if and onlg if the fol-
lowing conditions hold:

(1) every C E C contains at most one odd cycle, and no even cycle;
(2) there exists exactly n + 1- p trees in C;

° 

(3) at least one of the trees has a strictly positive excess.

Before proving the theorem, let us discuss the modules associated with
the type of subgraphs occurring in its statement. It may be convenient to
use some canonical graphs. The shapes we have in mind (see Figure 1) are
those of a kite (triangle linked to a path), of a double star (two stars with
adjacent centres) or of a shooting star (a star linked to an even path). (A
star may reduce to a single vertex.)

Figure 1
Our basic tool is the following, where we keep the notation e2~ = vi + vj.

Lemma 2.3. Let io il i2 ... in-1 im be a walk of length m in r (a cycle if
im = io, a path otherwise). Then

Proof. Clear. D

Proposition 2.4. Let C be a connected graph with vertex set Vc strictly
included in V, containing one odd cycle and no even cycle. Then the fol-
lowing holds for the set Bc = ij edge of CI, its Z-span Mc, and the
vector eC = 

(1) For all vertices i, j of C, the vectors vi :E vj belong to 
(2) C is equivalent to any kite with vertex set Vc.
(3) AIC admits Be as a Z-basis, and rank (Mc) = 
(4) For all i E Vc, the vector 2vi is an indivisible elerraent of Mc.
(5) The vector ec belongs to Mc if and only if ICI is even.
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Proof. Since C contains an odd cycle, two vertices i and j are joined by a
path of odd length and by a path of even length (one of them including
the cycle). Assertion 1 follows by applying Lemma 2.3 to these paths. This
implies that Mc = (eij, (i, j) E Vc x Vc) only depends on its vertex set;
assertion 2 follows immediately. In particular, Mc contains the vectors
2vi, i E Vc, and from 2Le c Mc C Le it follows that rank(Me) =

(because ICI  r~ + 1). Since C contains a unique cycle,
~3C has ~C~ elements, and therefore is a Z-basis for its span. Let ic be
a vertex of the cycle -y contained in C. By Lemma 2.3, we obtain =

-i=.ejk, where the ejk belong to the basis Be for MC; thus 2vic is
a primitive element of Mc, and by assertion 1, this extends to all vertices
of C. Eventually, from assertion 1 again it follows that the vector ee is
congruent to IClvie modulo Mc, and the fifth assertion results from the
fourth one. D

Proposition 2.5. Let C be a non-trivial tree with vertex set Vc C V,
bipartition ( Vo, Vi) (IVII ] &#x3E; and excess de Vi Vo 1. For i E Vc,
define a(1) E f 0, 11 by i E Va(i).

(1) For all i, j in Vc we have (-1)’(’)vi mod Mc.
(2) C is equivalent to a double star with the same bipartition.
(3) Bc is a basis for Mc if and only if (~C~, âC) ~ (n + 1, 0).
(4) If (n + 1, o), for all i E Vc there exists an indivisible

elemerct wi E Mc such that dc vi = wi - 
[In the case of an isolated vertex C = {i}, the relation of assertion 4 is still valid
with wi = 0 (and de = 1).]

Proof. Let i, j E Lemma 2.3 applied to the path i H j, whose length
is congruent to a(j) modulo 2, proves assertion 1. Choose a pair
(io, il) E Vo x Vi of neighbours in C, and let pl (resp. 1L0) be the maximal
length of the paths io H j, j E VI (resp. il ~ i, i E Vo). We reduce first

and then lio, to be equal to l, by successive applications of the following
lemma:

Lemma 2.6. Let path of length 3. Then replacing the edge
the edge i .~ we obtain a tree equivalent to C.

Proof of Lemma 2.6. By substituting vi + vÊ = eij - ejk + ek£ to eké in 13C
we obtain a new generator system for Mc = (Sc~. D

For the remaining assertions, only depending on the bipartition and on
the module Mc, we may suppose that C is a double star with edges i~ j
and ili, The discussion of the linear independence of the
101-1 vectors of Se is then straightforward. For assertion 4 we may restrict
ourselves to the case i = io (see assertion 1). We then have wi()
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with

Note that at least one coefficient of wio on ~3C is equal to 1. Thus, if 13C
is a basis for Mc, Wio is primitive as required. This completes the proof of
Proposition 2.5. D

Proof of Theorem 2.2. In the case when F is a tree, this results from

Proposition 2.5. From now on we discard this case. The partition of F
gives rise to a partition Br = U 13C and to a sum Mr = E Mc (for every
C E C, ~3C is the set of vectors vi ~ v~, ij edge of C, and Mc is its span).

First note that if the vectors of Br are linearly independent, r contains
no even cycle (otherwise, Lemma 2.3 applied to this cycle would provide a
dependence relation between them). In the following we suppose that this
condition holds. We now discuss the number kc of cycles contained in a
given component C E C. Such a component has 113c + kc - 1 edges;
on the other hand, the inclusion Mc C LC implies We then
have the equivalences

(the last equivalence makes use of Propositions 2.4 and 2.5). From now

on, we assume kc = 0 or 1 for each C E C, i.e. that condition (1) of
Theorem 2.2 holds. Then E c ( 1- kc) = - 1 Br, + 1 V is the number of trees
in C, as asserted in (2).

Now, ~3r will be a basis for its span llilr = E MC if and only if this sum
is direct. Since any dependence relation between the vi is proportional to
vo + vi + ... + vn = 0, we have, for E fIe Mc, the equivalence

So, the sum àlr = ~ Mc is direct if and only if there exists C E C such
that ec does not belong to the space RMC. Using the propositions above,
one sees that this condition is equivalent to condition (3) of Theorem 2.2.
This completes the proof of Theorem 2.2. D

Remark 2.7. It can be convenient to use, as a reference tree, a shooting star instead
of a double star. The degree of the centre of the star is then equal to d + 1, where d is
the excess of the tree. In particular, the shooting star is a path if and only if d = 0 or 1.

3. Quotient structures.

In this section we assume that ~3 C S is a basis for E and we will describe
the additive structures of the quotient groups and M/ÑI8, using the
partition FB = UCEC C into components. By Theorem 2.2, there is a unique
tree T E C, whose excess d &#x3E; 1 is called excess of B. The indices [L : 
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and [M : only depend on the number of the components and on the
excess of B, but the actual structures also depends on the type of the

graph:

Definition 3.1. The basis B is of odd type if its graph r,~ contains a
componerct C with ICI odd, and of even type if there is no such component.
Remark 3.2. Note that the type, as well as the number of components and the excess
of the basis, may depend of the choice of the basis for a given submodule N of M. In

particular, certain odd types can be reduced to even types: a graph h.~ = T U Co U G
where G is a union of kites of even order and T a tree of excess 1 is equivalent to the

graph obtained by replacing T U Co by a tree of excess 2 (see Figure 2).

Figure 2

Theorem 3.3. Let B be a contained in S, let d &#x3E; 1 be its excess
and let c = ICI be the number of components of its graph. Put A = Z/2dZ
(resp. 7G/d7G x 7L~27G~ if B is of odd (resp. even) type. Then

(1) the group isomorphic to A x (Z/2Z)~"~;
(2) the group MIM8 has order d2c-2 and is isomorphic to 7G/(d/2)7G if

c = 1, and to A x (7G/27G)~-3 if C 2 2.

Proof. To lighten the notation, we assume 13 of odd type, leaving to the
reader the few changes needed for the even case. Let C = {T} U 0 u S be
the set of components of the graph of B, where T denotes the tree, and £
(resp. 0) denotes the set of components C # T of even (resp. odd) order
ICI. Let us fix a component Co E 0, and vertices iT E Vi (the biggest
vertex class of the tree) and ic E Vc for each C # T.

be a vector of L, with E well defined

up to translation. Put AT (with a as in Proposi-
tion 2.5), and Ac = for C ~ T. We consider the following
integers 

[Note that, under the translation ai f--~ ai + 1, bc is invariant modulo 2d
(resp. 2) for C = T (resp. C ~ T).] By Propositions 2.4 and 2.5, and using
in particular the relation d viT = eC for some WT E MT, we
obtain:

. -
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with y = d (2w~ - 2 ~C T eC) + Since thé vectors

2wT - 2eCo E MT E9 Mco and 2Vic E Mc (C # T, Co) are indivisible,
y belongs to the module MB = (MT E9 Mco) Mc if and only if

and, for C =1 are integers. Let us denote by à (resp. a) the
residue class modulo 2d (resp. 2) of an integer a. Then, the map

from L to Z/2dZ x (~G/27~)~-z induces an additive isomorphism
LIM,3 -- Z/2dZ x (7G/27G)~-2 as required for assertion 1.
To prove assertion 2 we only need to describe the image O(M) in

Z/2dZ x (7G/27G)~-2 of the submodule

With the notation of the beginning of this proof, we have

because, since Ec ICI = (2IVII - d) + ICI = n + 1 is even, so is

101 + d. The canonical homomorphism f : Z/2dZ - Z/2Z gives rise to a
homomorphism T : of Z /2dZ x (7G~27~)~-2
onto Z/2Z. We can now state that the isomorphism LIME - Z/2dZ x
(~G~27~)~-2 gives rise to an exact sequence

from which assertion 2 is a straightforward consequence. This completes
the proof of Theorem 3.3. D

By the actual construction of graphs ra one can determine the possible
quotient structures For instance, the possible orders of cyclic quo-
tients are the integers a  4) and moreover the even integers
b  2 (n - 7). Apart from the usual exceptions in low dimensions, the cyclic
structure does not provide the maximal index [M : which is equal to

n-9 n-10 n-11

5 x 2 n 3 9 , 6 x 2 n 3 or 7 x 2 according as n is congruent to 0, 1 or 2

modulo 3 (and equal to 2 for n = 5).
A finer invariant for the module is the set of vectors vi + vj, i # j it

contains.

Proposition 3.4. Let B C S be a basis for E with graph F = T UC~T C
reduced in the sense of Remark 2, and excess d. Then the Z-module 
with bas2s B contains the vectors vi + vj where i and j are distinct vertices
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in a same component and moreover at odd distance if this component is the
tree. There are no other vectors vi + vj in Ma except if d =1 or d = 2 and
F is of even type, and then MB also contains the vi + vj for all vertices i, j
in the tree.

Proof. This follows directly from Propositions 2.4 and 2.5; we leave the
details to the reader. D

In particular, one can determine the maximal values of s,~ = sl
for a given dimension n. Apart from the case M,~ = M, i.e. when the

reduced graph F is a tree of excess 2 (and then SB = n(n2+1)), the maximum2

value sn of s, in a given dimension n is attained when [M : = 2: for

n = 5, 7, 9, sn = n2+2n-15 (r is a tree of excess 4); for n &#x3E; 7, sn = n 2 -7n+24- &#x3E; &#x3E; &#x3E; n - 4 , - &#x3E; n- 2

(F = T U C, where T is a tree of excess 2 and of order 4 or n - 3).

4. Application to Coxeter lattices.

In this section, E is an n-dimensional Euclidean space of odd dimension
n &#x3E; 5. Recall that Coxn is a scaled copy C E. As in the previous
sections, An is generated by n + 1 vectors VO, VI, ... , vn which add to zero.
For a non-zero x E E, let px E Ends(E) be the orthogonal projection to
the line Recall that a lattice A with set of minimal vectors S(A) is
weakly eutactic if there exists in a linear relation

eutactic if there exists such a relation with strictly positive eutaxy
coefficients px, and strongly eutactic if there exists such a relation with

equal Px (which are then equal &#x3E; 0). This last condition amounts to
saying that the set S(11) is a spherical 2-design (or 3-design); see [Mar],
Sections 3.1 and 16.1, and [Ven], Section 6.
An easy averaging argument shows that if A is weakly eutactic, there

exist systems of eutaxy coefficients which are constant on the orbits of the

automorphism group of A. In particular, if the automorphism group of A
acts transitively on S(11), weak eutaxy implies strong eutaxy.
The lattice Coxn is strongly eutactic. Various strongly eutactic lat-

tices related to Coxn have been constructed in [B-M~, using the equivari-
ant Voronoi algorithm for the symmetric group C~~ or for its subgroup
(6m x 6m) x C2, m = n21. Using such a deformation of the Euclidean
structure, we obtained lattices denoted there by Cn (n &#x3E; 5) and Bn (n &#x3E; 5
odd). In the scale which make them integral and primitive, Cn has mini-
mum n - 2 (n odd) or 2(n - 2) (n even), and Bn, a section of Cn+2, has
minimum n.
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The two theorems below will allow us to recover the lattices above as
cross-sections of Coxeter lattices having a much larger dimension.

Theorem 4.1. Let n, p be integers with n 2: 7 odd and 3 ::; p  n - 2.
Let Fn,p be the span in E o f vi, ... , vp and set Coxn,p = Coxn The

following conditions are equivalent:
( 1 ) Coxn,p is weakly eutactic.
(2) Coxn,p is strongly eutactic.
(3)p=~.

[It results from [Ber] that for p &#x3E; 6, the p-dimensional sections of Coxn generated by
minimal vectors whose kissing number is maximal (indeed, equal to ~-~2013) are the images
of Coxn,p under an automorphism of Coxn .]

Theorem 4.2. Let n, p be integers with n &#x3E; 7 odd and 3 ::; p  n - 2 odd.
Let F(  be the span in E o f the vectors vi + v~, 1 ~ ~ ~ ~ p, i odd, j even,
and set = Coxn The following conditions are equivalent:

( 1 ) Coxn,p is weakly eutactic.
(2) Coxn,p is strongly eutactic.
(3)p=~.
Figure 3 below displays the graphs corresponding to the lattices Coxuj

and 

Figure 3

Proo f . We shall only prove Theorem 4.1, leaving to the reader the proof of
Theorem 4.2, which follows the same pattern.

For the proof, we work with A~n+I)/2 (recall that Coxn is a scaled copy of
A~n+I)/2). Its minimal vectors are the i  j, and it has minimum
m = ~+1. Due to the transitive action of 6p on S(Coxn,p), the assertions
(1) and (2) are equivalent. To prove that (1) and (3) are equivalent, we
evaluate ~l~i~~~p Taking into account the action of 6p, it suffices
to evaluate this sum on li .

Using a Gram matrix for A~, it is not difficult to check that
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Writing this sum as a2vi and replacing m by its value, we obtain

This formula clearly shows that is proportional to the

identity if and only if n - 2p + 3 = 0. D

Proposition 4.3. The lattice defined. in Theorem (resp. Theorem 4.2)
is isometric to Cp (resp. Bp).
Proof. We make use of the notion of a minimal class and its equivariant
version as defined in [Mar], Sections 9.1 and 11.9.
The 6p-equivariant minimal class of the lattice C’ = Cox 2p - 3, p

defined in Theorem 4.1 has dimension 1, which shows that it is an equivari-
ant Voronoi path, whose minimal vectors can be extracted from those of
Coxn. In Theorem 4.3 of [B-M] it is proved that Cp lies on an equivariant
Voronoi path connecting Coxp and the root lattice Dp. This allows us to
identify the 6p-equivariant minimal classes of Cp and C’. Since a minimal
class contains at most one weakly eutactic lattice (up to similarity), the
(strongly) eutactic lattices Cp and C’ are similar, hence isometric since
they have the same minimum. (They are even 6p-isometrie, i.e. isometric
under an isometry which commutes with the action of 6p.)
The case of Bp is dealt with by a similar argument. D

Remark 4.4. In Theorem 4.1, when n = 5, we have p = 4 and the lattice is only semi-
eutactic (its eutaxy coefficients are non-negative, but some of them are zero). However,
the 4-dimensional section having the largest possible kissing number is again a strongly
eutactic lattice (similar to A2 ~ A2, with s = 9).

Remark 4.5. The lattice Bp can be also defined for any even p &#x3E; 6. Then it is

only semi-eutactic, but it nevertheless has only one non-zero eutaxy coefficient. In such
a situation, the subset of its minimal vectors whose corresponding eutaxy coefficient is
non-zero constitutes a spherical 2-design.

We could show that for n &#x3E; 7 odd, the lattices B(n-l)/2 and C(n+3)~2 are
the only weakly eutactic cross-sections of Coxn having the same minimum
as Coxn .
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