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Character sums and products of factorials
modulo p

par MOUBARIZ Z. GARAEV et FLORIAN LUCA

RÉSUMÉ. Dans cet article, on utilise des estimations de sommes
de charactères pour étudier les produits de factorielles modulo p.

ABSTRACT. In this paper, we apply character sum estimates to
study products of factorials modulo p.

1. Introduction

In [8], A. Sarkozy proved the following Theorem:

Theorem 1.1. Let p be a prime number, u, v, S, T be integers with

1  u, v C p - l, 1  T  p. Furthermore, let Cl, C2, ... , Cu and

Di, D2, ... , Dv be integers with

For any integers n, let f(n) denote the numbers of solutions of

Our first result in this paper is a modification of the above Theorem

1.1. In what follows, we use r &#x3E; 1 for a positive integer. We also use the

Vinogradov symbols « and » and the Landau symbols 0 and o with their
usual meanings.

Theorem 1.2. Let p be a prime nurrtber, u, v, S, T be integers with
1  u, v  p - l, 1  T  p. Furthermore, let Cl, C2, ... , Cu and
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Dl, D2, ... , Dv be integers satisfying (1.1) and (1.2) above. If f (n) is

the function defined at (1.3) above, we then have

For example, when p is large and T is close to pl/4, then letting first
E &#x3E; 0 be any fixed small positive real number, and then choosing r such
that p1/4r2 logp  ~~, we see that the right hand side of (1.5) is of order of
magnitude which is better than the right hand side
of expression (1.4).
We also provide one application to our Theorem 1.2. In [7], Luca and

Stanica put, for every non-negative integers s &#x3E; t and prime number p,

and asked for optimal choices for the parameters t and s versus p, such that

Ps,t (p) covers all the non-zero residue classes modulo p. Theorem 1 in [7]
asserts the following:

Theorem 1.3. Let E &#x3E; 0 be arbitrar y. There exists a computable positive
constant such that whenever p &#x3E; po(e), then Ps,t (p) 2 71p for all t
and s such that t &#x3E; p~ and s - t &#x3E; 

We use our Theorem 1.2 to improve the above Theorem 1.3 as follows:

Theorem 1.4. Let E &#x3E; 0 be arbitrary. There exists a computable positive
constant such that whenever p &#x3E; po(e), then Ps,t (p) 2 ZP for all t
and s such that t &#x3E; p~ and s - t &#x3E; 

More information on products of factorials modulo p can be found in the
recent papers [1, 3, 4, 5].
Acknowledgements We thank the anonymous refereee for useful com-
ments. Work by both authors was partially supported by Grant SEP-

CONACyT 37259-E.

2. The Proofs

The Proof of Theorem 1.2. The proof is based on Karatsuba’s method from

[6]. In what follows, x stands for an arbitrary character modulo p, and xo
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stands for the principal character. Clearly,

where

and

Clearly,

while

By the Cauchy-Schwartz inequality, we have
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Note that

where in the above estimate (2.7) we used E’ for the sum only over those
summation terms which are not zero, as well as the fact that

and is zero otherwise, together with the fact that Cz fi Cx, (mod p) if

x’ are in {1, ... , u}. Inserting (2.7) and its analogue for the set of
numbers 1  ~  u} replaced by the set of numbers 1  y  v}
into (2.6), we get

Thus, from (2.5) and (2.8), we have

and the fact that
,

is just Burgess’s character sum estimate from [2]. Inequality (1.5) now
follows from (2.1), (2.4), (2.9) and (2.10). 0

The Proof of Theorem l.l~. We follow the method of proof of Theorem
1 in [7]. The idea there was to find a suitable list of positive integers
xl, x2, ... , xt consisting of many small numbers, and each one of them

repeated a suitable number of times, such that we can modify the element



155

in enough ways so that to ensure that we can obtain all the congruence
classes in 7l.;. The basic operation by which we can modify the element F
shown at (2.11) is given by

(M) Assume that il  i2  ...  ij and 11  12  ~ ~ ~  lj are two disjoints
subsets of indices in {I, 2, ..., t}. Then,

Using (2.12) with xll = ... = xh = 1, eliminating the initial number F,
and taking inverses in (2.12) above, it sufhces to prove the following claim

Claim 2.1. For any non-negative integers s &#x3E; t satisfying the hypothesis
of Theorem 1.4, there exist positive integers Xl, X2, .. - , xt summing up
to s, such that every nonzero residue class modulo p can be represented by
a number of the form

where the subset of indices f il, i2, ... , of f 1, 2, ... , t~ in (2.13) can be
any subset such that there exists another subset of j indices f 11, l2, ... , lj )
disjoint from f il, i2, ... , ij I for which Xlr = 1 for all r = 1, 2, ... , j .

As in the proof of Theorem 1 in 7, we fix E &#x3E; 0, and a positive integer
k 2 . From now on, all positive constants c c ..., which

k  k 
P m 2

will appear will be computable and will depend only on 1. Since p is

assumed to be large, we suppose that p &#x3E; 13. We show that if p is large
enough with respect to k, we can then construct a good sublist of numbers

xl, x2, ... , xt in the following manner:

(1) We first take and repeat exactly two times each of the prime numbers

(2) We then adjoin some even numbers zj , each one of them smaller than
pl/4+l/k but such that the totality of those (counted with multiplici-
ties) does not exceed cl log log p.
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(3) The numbers of the form (2.13), where the zj’s are from the lists 1
and 2 and the maximum length j of a product in (2.13) is not more
than 21~ + 2ci log log p cover the entire 

It is clear that if we can prove the existence of a list satisfying 1-3 above,
then we are done. Indeed, we may first adjoin at the sublist consisting of
the numbers appearing at 1 and 2 above a number of about 2~+2ci log log p
values of x2 all of them equal to 1. The totality of all these numbers (the
ones from 1, 2 and these new values of x2 all equal to 1) counted with their
multiplicities, so far, is certainly not more than

while their sum is at most

for large p. At this step, we may finally complete the above list with

several other values of the xi equal to 1 until we get a list with precisely
t -1 numbers, which is possible by inequality (2.14) above, and set the last
number of the list to be equal to

which is still positive by inequality (2.15) above.

To prove the existence of a sublist with properties 1-3 above, we proceed
as in the proof of Theorem 1 in [7]. We start with the set

(2.16) A:= n  and n is prime}.

The numbers from A will form the sublist mentioned at 1 above but, so

far, we take each one of them exactly once. Let

,a., ...’ .,

We first notice that each value of n E A appears at most k times in an

arbitrary product in Bl. We now show that bl :_ #Bl is large. Indeed,
the set Bl will certainly contain all the numbers of the form
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where pi is an arbitrary prime subject to the condition

I I

Notice that the residue classes modulo p of the elements of the form (2.18),
where the primes Pi satisfy conditions (2.19), are all distinct. Indeed, the
point is that if two of the numbers of the form (2.18) coincide modulo
p, then, after cancelling the factor of 2-k, we get two residue classes of
integers which coincide modulo p. Now each one of these two integers is
smaller than p, therefore if they coincide modulo p, then they must be, in

fact, equal. Now the fact that they are all distinct follows from the fact
that their prime divisors pi satisfy condition (2.19). Applying the Prime
Number Theorem to estimate from below the number of primes in each one
of the intervals appearing in formula (2.19), we get

whenever p &#x3E; c5. We now construct recursively a (finite) increasing se-
quence of subsets for m &#x3E; 1 in the following way:

Assume that has been constructed and set bm := #Bm. Assume
that bm  p - 1 (that is, Bm is not the entire 7l.; already). We then have
the following trichotomy:

(i) If bm &#x3E; p/2, we then set :- Bm . Bm, and notice that =

71p and we can no longer continue.
(ii) If bm  p/2 and there exists an even number a  pl/4+1/k such that

a/2 0 Bm - we then set am := a, add a to the list of the x2’s (as
one of the numbers from sublist 2 above), and we let

Notice that

(iii) If  p/2 and all even numbers a up to have the property
that a/2 is already in Bml, we choose the even number a smaller
than pl/4+1/k for which the number of representations of a/2 of the
form x . y-1 with x, y E Bm is minimal. We then set cm := a, add
a to the list of the xi’s (as one of the numbers from sublist 2 above),
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set

and notice that

In (i)-(iii) above we have used the set-theoretic notation, namely that if
U and V are two subsets of we have denoted by U ~ V the set of all
elements of 7l.; of the form u ~ v with u E U and v E V, and by U-1 the set
of all elements of the form u-1 for u E U.

We have to justify that (i)-(iii) above do indeed hold. Notice that (i)
and (ii) are obvious. The only detail we have to justify is that inequality
indeed holds in situation (iii). But for this, we apply our Theorem 1.2
above with u = v = be, Cl, C2, ... , Cu all the residue classes in and

Di, D2, ... , 7 Du all the residue classes in We also set S = 0 and T

to be the largest integer smaller than p1~4+1~~/2. Clearly, T &#x3E; pl/4+l/k /3.
Since we are discussing situation (iii) above, we certainly have f (n) &#x3E; 1 for
all positive integers n up to T. Let M := 1 ~ ~ ~ T}, and then
am := 2c, where f (c) = M. Denote bm by b. We apply inequality (1.5)
with r := k to get

Let c6 := c6(k) be the constant implied in Ok in (2.25) above. We show
that the inequality

holds for p large enough. Indeed, since

inequality (2.20)), it follows that in order for (2.26) to hold, it suffices that

which is certainly satisfied when p &#x3E; C7. Thus, inequalities (2.25) and
(2.26) show that inequality
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holds, where the last inequalities in (2.28) follow because b  p/2 and
p &#x3E; 13. In particular,

which proves inequality (2.24).
The combination of (2.22), (2.23) and (2.24) shows that

holds as long as b",  p/2. Now notice that the inequality

will happen provided that m &#x3E; cg log log p, where one can take Cs :=

k + 1

log(4/3)’ 
for example, and for such large m inequality (2.30) shows that

log(4/3)
&#x3E; p/2. In particular, situations (ii) or (iii) above will not occur for

more than c8loglogp steps after which we arrive at a point where we ap-
ply situation (i) to construct and we are done. Clearly, (i)-(iii) and
the above arguments prove the existence of a sublist of the xi’s satisfying
conditions (1)-(3), which finishes the proof of Theorem 1.4.
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