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The joint distribution of Q-additive functions on

polynomials over finite fields

par MICHAEL DRMOTA et GEORG GUTENBRUNNER

RÉSUMÉ. Soient K un corps fini et Q ~ K[T] un polynôme de
degré au moins égal à 1. Une fonction f sur K[T] est dite (com-
plètement) Q-additive si f(A + BQ) = f (A) + f (B) pour tous
A, B ~ K[T] tels que deg(A)  deg(Q). Nous montrons que les
vecteurs (f1(A), ... , fd(A)) sont asymptotiquement équirépartis
dans l’ensemble image {(f1(A),...,fd(A)) : A ~ K[T]} si les Qj
sont premiers entre eux deux à deux et si les fj : K[T] ~ K [T] 
sont Qj-additives. En outre, nous établissons que les vecteurs

(g1(A), g2 (A) ) sont asymptotiquement indépendants et gaussiens
si g1, g2 : K[T] ~ R sont Q1- resp. Q2-additives.

ABSTRACT. Let K be a finite field and Q ~ K[T] a polynomial
of positive degree. A function f on K[T] is called (completely)
Q-additive if f(A + BQ) = f (A) + f (B), where A, B ~ K[T] and
deg(A)  deg(Q). We prove that the values (f1(A), ... , fd(A))
are asymptotically equidistributed on the (finite) image set

{(f1(A),..., fd(A)) : A ~ -k[T]} if Qj are pairwise coprime and
fj : K[T] - K[T] are Qj-additive. Furthermore, it is shown
that (g1 (A), 92 (A)) are asymptotically independent and Gaussian
if g1,g2 : K[T] ~ R are Q1- resp. Q2-additive.

1. Introduction

Let g &#x3E; 1 be a given integer. A function f : N - I18 is called (completely)
g-additive if

for a, b E N and 0  a  g. In particular, if n E N is given in its g-ary
expansion
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then

oJ - -

g-additive functions have been extensively discussed in the literature, in
particular their asymptotic distribution, see [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14,
15]. We cite three of these results (in a slightly modified form). We want to
emphasise that Theorems A and C also say that different g-ary expansions
are (asymtotically) independent if the bases are coprime.
Theorem A. (Kim [13]) Suppose that gl, ... , gd &#x3E; 2 are pairwise coprime
integers, ml, ... , md positive integers, and let fj, 1  j  d, be completely
gj -additive functions. Set

Then H is a subgroup of X ~ ~ ~ X and for every (al’...’ ad) E H
we have

where 6 = l~(120d2g3m2) with

and the O-constant depends only on d and 91, ... , ,9d.
Remark. In [13] the set H is explicitly determined. Set Fj = and

if and only if the system of congruences aj mod dj , 1  j  d, has a
solution.

Theorem B. (Bassily-Katai [1]) Let f be a completely g-additive func-
tion and let P(x) be a polynomial of degree r with non-negative integer
coefficients. Then, as N ~ 00,

and
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where

and

Remark. The result of [1] is more general. It also provides asymptotic
normality if f is not strictly g-additive but the variance grows sufficiently
fast.

Theorem C. (Drmota [6]) Suppose that 2 and g2 &#x3E; 2 are coprime
integers and that fl and f2 are completely gl- resp. 92-additive functions.
Then, as N - 00,

Remark. Here it is also possible to provide general versions (see Steiner
[17]) but - up to now - it was not possible to prove a similar property for
three or more bases g~ .

The purpose of this paper is to generalize these kinds of result to poly-
nomials over finite fields.

Let Fq be a finite field of characteristic p (that is, q I is a power
of p) and let denotes the ring of polynomials over Fq. The set of

polynomials in Fq of degree  k will be denoted by Pk = {~4 E Fq [T] :
degA  Fix some polynomial Q E Fq[T] of positive degree. A

function f : ~ G (where G is any abelian group) is called (com-
pletely) Q-additive if f (A + BQ) = f (A) + f (B), where A, B E Fq [T] and
deg(A) deg(Q). More precisely, if a polynomial A E Fq[T] is represented
in its Q-ary digital expansion

where DQ,j (A) E P~ are the digits, that is, polynomials of degree smaller
than = deg Q, then
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For example, the sum-of-digits function sQ : Fq[T] - Fq[T] is defined by

Note that the image set of a Q-additive function is always finite and that (in
contrast to the integer case) the sum-of-digits function satisfies sQ (A+ B) =
sQ(A) + sQ(B).

2. Results

The first theorem is a direct generalization of Theorem A.

Then H is a subgroup of Pm! x ... X Pmd and for every (.R1, ... Rd) E H
we have

Since the image sets of fi are finite we can choose the degrees mi of Mi
sufficiently large and obtain

where

In particular this theorem says that if there is A E IF9(TJ with fi(A) = R,
(1  i  d) then there are infinitely many A E Fq[T] with that property.
The next theorem is a generalization of Theorem B.

Theorem 2.2. Let Q E Fq [T], k = deg Q &#x3E; 1 be a given polynomial,
g : Fq[T] - lI8 be a Q-additive function, and set
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and

where In denotes the set of monic irreducible polynomials of degree  n.

Finally we present a generalization of Theorem C.

Theorem 2.3. Suppose that Ql E Fq[T] and Q2 E Fq[T] are coprime
polynomials of degrees kl &#x3E; 1 resp. k2 &#x3E; 1 such that at least one of the
derivatives Q’, Q’ is non-zero. Further suppose that 91 : Fq[T] - R and
g2 : - R are completely Ql- resp. Q2-additive functions.

Then, as n -~ 00,

Furthermore, Theorems 2.1 and 2.3 say that Q-ary digital expansions are
(asymptotically) independent if the base polynomials are pairwise coprime.

3. Proof of Theorem 2.1

Throughout the paper we will use the additive character E defined by

that is defined for all formal Laurent series

with k E Z and aj E Fq. The residue Res(A) is given by Res(A) = al and
tr is the usual trace tr : IFP.

Let Qi , Q2, ... , Qa and Ml, M2, ... , Md be non-zero polynomials in FF [T]
with deg Qi = ki, deg Mi = mi and (Qi, Qj) = 1 for i =I=- j. Furthermore let
fi be completely Qi-additive functions. For every tuple R = (Rl, ... , Rd) E
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Proposition 3.1. and .R = (R1, ... ,
Rd) be as above. Then we either have

We will first prove Proposition 3.1 (following the lines of Kim [13]).
Theorem 2.1 is then an easy corollary.

3.1. Preliminaries.

Lemma 3.1. Let H fl 0, H, G E and let E be the character defined
in (3.1), then:

The next lemma is a version of the Weyl-van der Corput inequality.

Lemma 3.2. For each A E let UA be a complex number, with 
1, then

Proof. Since (Pl, +) is a group we have
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Hence, using the Cauchy-Schwarz-inequality

The desired result follows from I UA == l. D

Lemma 3.3. Let f be a completely Q-additive function, K, R E
Fq [T] with deg R, deg K  deg Qt. Then for all N E satisfying
N - R mod Qt we have

Proof. Due to the above conditions, N = A - Qt + R for some A E JFq[T].
Since f is completely Q-additive, and deg(R + K)  deg(Qt), we have

3.2. Correlation Estimates. In this section we will first prove a corre-
lation estimate (Lemma 3.4) which will be applied to prove a pre-version
(Lemma 3.5) of Proposition 3.1.

Let Q E Fq[T] of deg o = k, MEFQ[T] ofdegm= m, and f be a
(completely) Q-additive function. Furthermore for R E Pm set g(A) :==

E (-3fA» .
Unless otherwise specified, n and 1 are arbitrary integers, and D C Fq[T]
arbitrary as well. We introduce the correlation functions
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and

Lemma 3.4. Suppose that  1. Then

Proof. We begin by establishing some recurrence relations for and 

namely

for polynomials K, R with R E Pk. By using the relation g(AQ + B) =
g(A)g(B) and splitting the sum defining + R) according to the
residue class of A modulo Q we obtain

This proves (3.8).
Next observe that
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and consequently

Since I
Hence, if n and 1 are given then we can represent them as n = ik + r, 1 =

ik + s with i = min( [n /k] , and min(r, s)  k. By definition we have

and consequently

Remark. We want to remark that I = 1 is a rare event. In particu-
lar, we have

Thus, there exists R with I  1 if and only if there exist A, B E Pk
with g(A-I- B).

Next we prove a pre-version of Proposition 3.1.
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Proof. Set Bj = Q jJ and suppose that bj = tj deg Qj satisfies that r  bj 

remainder theorem we have for

Furthermore set S := Pbl x ... X Pbd . By Lemma 3.3 we obtain for
T T ~ ~ !1 1

According to Lemma 3.2 we obtain for 
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Holder’s inequality gives

For some j we have I (Dkj (Rj) I  1, so that Lemma 3.4 is applicable and
thus

as r = l/(3d) -&#x3E; oo. For all other j we trivially estimate by  1 and obtain

3.3. Proof of Proposition 3.1. As above we set ~

We split up the proof into several cases.

Case 1: There exist j and A, B E Pk, with 9Rj (A)9Rj (B) fl 9R, (A + B).
This case is covered by Lemma 3.5 (compare with the remark following

Lemma 3.4).

Case 2: For all j and for all A, B E Pk, we have gR) (A)gR) (B) ==
9Rj (A + B).

In this case we also have (due to the additivity property) (A)gR) (B) =
9Rj(A+B) for all A, B E Fq [T] and consequently g(A)g(B) = g(A+B) for

Case 2.1: In addition we have g(A) = 1 for all A E Fq[T].
This case is the first alternative in Proposition 3.1.
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Case 2.2: In addition there exists A E Fq[T] with 1.

For simplicity we assume that q is a prime number. Thus, if A =

Consequently there exists

Hence, if 1 &#x3E; i we surely have

If q is a prime power the can argue in a similar way. This completes the
proof of Proposition 3.1.

3.4. Completion of the Proof of Theorem 2.1. We define two (addi-
tive) groups

and

Furthermore, set
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Now, by applying Proposition 3.1 we directly get

More precisely the coefficient F(S) characterizes Ho.
Lemma 3.6. We have

Proof. It is clear that F(S) = 1 if S E Ho.
Now suppose that S ~ Ho. Then there exists

it follows that F(S) = 0.
Finally, by summing up over all ,S’ E Pml X ~ ~ ~ X it follows that

In fact we have now shown that (as 1 ~ oo)
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if S = (Sl, ... , ,3d) f/.: Ho. The final step of the proof of Theorem 2.1 is to
show that

In fact, if S E Ho then we trivially have S E H.
Conversely, if S E H then there exists A E with fl(A) == S,

mod Ml, ... , fd(A) - Sd mod Md. In particular, it follows that

Moreover, for all R E G we have

Consequently, S E Ho. This proves H = Ho and also completes the proof
of Theorem 2.1.

4. Proof of Theorem 2.2

4.1. Preliminaries. The first lemma shows how we can extract a digit
with help of exponential sums.

Lemma 4.1. Suppose that Q E Fq [T] with deg Q = k &#x3E; 1. Set

Then

Proof. Consider the Q-ary expansion

Then it follows that for H E Pk
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Consequently, for every D we obtain

The next two lemmas are slight variations of estimates of [2].
Lemma 4.2. Suppose that Q E Fq [T] has degree deg Q = l~ &#x3E; 1 and that

P E a polynomials of degree deg P = r &#x3E; 1. Then

Corollary 4.1. Let nl/3  j + 1  ~ - n1~3. Then there exists a constant
c &#x3E; 0 such that uniformly in that range

A similar estimate holds for monic irreducible polynomials In of degree

Lemma 4.3. , and H be a polynomial
coprime to Q. Then

With help of theses estimates we can prove the following frequency esti-
mates.

Lemma 4.4. Let m be a fixed integer  jl  j2  ... 
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and

uniformly for all Dl, ... , Dm E Pk and for all jl, ... , jm in the mentioned
range.

Proof. By Lemma 4.1 we have

where 1: * denotes that we sum just over all (His, ... , (o, ... , 0) . In
order to complete the proof we just have to show that S = O(e-" 1/3 ) -

Let l be the largest i with 0 then

where By our assumption we have
Hence by Lemma 4.2 the first result follows.

, . , . , 

’1’he proot tor A E ln is completely the same. U
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4.2. Weak Convergence. The idea of the proof of Theorem 2.2 is to com-
pare the distribution of g(P(A)) with the distribution of sums of indepen-
dent identically distributed random variables. Let Yo, Yl, ... be indepen-
dent identically distributed random variables on Pk with = D] = q-k
for all D E Pk. Then Lemma 4.4 can be rewritten as

Note further that this relation is also true if jl, ... , jm vary in the range
and are not ordered. It is even true

if some of them are equal.
In fact, we will use a moment method, that is, we will show that the

moments of g(P(A)) can be compared with moments of the normal distri-
bution. Finally this will show that the corresponding (normalized) distri-
bution function of g(P(A)) converges to the normal distribution function
4’(Z).

It turns out that we will have to cut off the first and last few digits, that
is, we will work with

instead of g(P(A)).

Lemma 4.5. Set

Then the rra-th (central) moment of g(P(A)) is given by



142

Proof. For notational convenience we just consider the second moment:

The very same procedure works in general and completes the proof of the
lemma. 0

Since the sum of independent identically distributed random variables
converges (after normalization) to the normal distribution it follows from
Lemma 4.5

Because of

I y ’" I

This completes the proof of Theorem 2.2.



143

5. Proof of Theorem 2.3

5.1. Preliminaries. As usual, let v (A) = deg(B) - deg(A) be the valu-
ation on IFq (T ) .
Lemma 5.1. For a, b E lE’q(T) we have

Moreover, if v(a) ~ v(b), then

Furthermore, we will use the following easy property (see [10]) that is
closely related to Lemma 3.1.

Lemma 5.2. Suppose that &#x3E; 0 and that n &#x3E; v ~ C ~ , then

Another important tool is Mason’s theorem (see [16]).
Lemma 5.3. Let K be an arbitrary field and A, B, C E K[T] relatively
prime polynomials with A + B = C. If the derivatives A’, B’, C’ are not all
zero then the degree deg C is smaller than the number of different zeros of
ABC (in a proper algebraic closure of K).
We will use Mason’s theorem in order to prove the following property.

Lemma 5.4. Let Ql, Q2 E Fq[T] be coprime polynomials with degrees
deg(Qi) = ki &#x3E; 1 such that at least one of the derivatives Q’, Q2 is non-

zero. Then there exists a constant c such that for all polynomials Hi E Pk,
and H2 E Pk2 with (HI, (0, 0) and for all integers ml, m2 &#x3E; 1 we

have

Proof. Set A = = H2Qml, and C = A + B. If A and B
are coprime by Mason’s theorem we have deg(A)  no(ABC) - 1 and
deg(B)  where no(F) is defined to be the number of distinct
zeroes of F. Hence

and consequently

This shows that (in the present case) c = 2ki + 2k2 is surely a proper choice.
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If A and B are not coprime then by assumption the common factor D is
surely a divisor of H1H2. Furthermore, there exists 0 such that D2
is a divisor of Consequently we have

and by a reasoning as above we get

or

Since there are only finitely possibilities for Hl, H2, and D the lemma
follows. L7

5.2. Convergence of Moments. The idea of the proof of Theorem 2.3 is
completely the same as that of Theorem 2.2. We prove weak convergence
by considering moments. The first step is to provide a generalization of
Lemma 4.4.

Lemma 5.5. Let ml, m2 be fcxed integers. Then there exists a constant

Instead of giving a complete proof of this lemma we will concentrate on
the cases ml = m2 = 1 and ml = m2 = 2. The general case runs along the
same lines (but the notation will be terrible).
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First let ml = m2 = 1. Here we have

Now we can apply Lemma 5.4 and obtain

Thus, there exists a constant c’ &#x3E; 0 such that

This completes the proof for the case ml = m2 = 1.
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Next suppose that ml = m2 = 2. Here we have

Of course, if Hll = H12 - H21 = H22 = 0 then we obtain the main term
() ’A - "I--

For the remaining cases we will distinguish between four cases. Note

that we only consider the case where all polynomials Hll, H12, H21, H22 are
non-zero. If some (but not all) of them are zero the considerations are still
easier.

Case 1. i2 - il  Cl, j2 - C2 for properly chosen constants cl, c2 &#x3E; 0.

In this case we proceed as in the case ml = m2 = 1 and obtain
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for some suitable constants c(ci, c2) and C(Cl, c2).
Case 2. i2 - il &#x3E; cl, j2 - jl &#x3E; C2 for properly chosen constants cl, c2 &#x3E; 0

First we recall that

Furthermore

Thus, if ci and c2 are chosen that (cl - 1)kl &#x3E; c and (c2 - &#x3E; c then

and consequently by Lemma 5.1

Case 3. i2 - il ::; c1, .72 - c2 for properly chosen constants cl, c2 &#x3E; 0

First we have
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Furthermore,

Hence, if c2 is sufficiently large then

Case 4. i2 - il &#x3E; cl, j2 - c2 for properly chosen constants cl, c2 &#x3E; 0

This case is completely symmetric to case 3.

Putting these four cases together they show that (with suitably chosen
constants Cl, C2) there exists a constant c such that for all polynomials

Thus, there exists a constant c’ &#x3E; 0 such that

This completes the proof for the case ml = m2 = 2.

As in the proof of Theorem 2.2 we can rewrite Lemma 5.5 as

where Y and Zj are independent random variables that are uniformly dis-
tributed on P~1 resp. on 
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If we define

then Lemma 5.5 immediately translates to

Lemma 5.6. For all positive integers ml, m2 we have for sufficiently
large n

Of course this implies that the joint distribution of 91 and §2 is asymptot-
ically Gaussian (after normalization). Since the differences gl (A) - 91 (A)
and g2(A) - g2(A) are bounded the same is true for the joint distribution
of gl and g2. This completes the proof of Theorem 2.3.
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