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An a priori bound for rational functions on the
Berkovich projective line

par Yûsuke OKUYAMA

Résumé. On établit une majoration locale a priori pour la dynamique d’une
fraction rationnelle f de degré > 1 sur la droite projective de Berkovich sur
un corps algébriquement clos de caractéristique quelconque et complet pour
une norme non archimédienne non triviale. On en déduit un résultat d’équi-
distribution pour des cibles mobiles vers la mesure d’équilibre (ou la mesure
canonique) µf de f , sous condition que f n’a pas de bonnes réductions poten-
tielles. Cela répond en partie à une question posée par Favre et Rivera-Letelier.
On obtient aussi un résultat d’équidistribution pour la distribution moyenne
de valeurs des dérivées des polynômes itérés.

Abstract. We establish a local a priori bound on the dynamics of a rational
function f of degree > 1 on the Berkovich projective line over an algebraically
closed field of arbitrary characteristic that is complete with respect to a non-
trivial and non-archimedean absolute value, and deduce an equidistribution
result for moving targets towards the equilibrium (or canonical) measure µf

of f , under the no potentially good reduction condition. This partly answers
a question posed by Favre and Rivera-Letelier. We also obtain an equidistri-
bution on the averaged value distribution of the derivatives of the iterated
polynomials.

1. Introduction
Let K be an algebraically closed field of arbitrary characteristic that is

complete with respect to a non-trivial and non-archimedean absolute value
| · |. The Berkovich projective line P1 = P1(K) is some compactification of
the classical projective line P1 = P1(K) (see [5]) and is canonically regarded
as a tree in the sense of Jonsson [13, Definition 2.2], the topology of which
coincides with the Gelfand topology of P1.

The action on P1 of a rational function h ∈ K(z) canonically extends
to a continuous action on P1. If in addition deg h > 0, then this extended
continuous action of h is also open and surjective, preserves both P1 and
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P1 \ P1, and satisfies #(h−1(S)) ≤ deg h for every S ∈ P1. More pre-
cisely, the local degree function z 7→ degz h : P1 → {1, . . . ,deg h} of h also
canonically extends to an upper semicontinuous function S 7→ degS(h) :
P1 → {1, . . . ,deg h} so that

∑
S′∈h−1(S) degS′(h) = deg h for every S ∈ P1,

and induces the pullback action h∗ of h on the space of all Radon mea-
sures on P1; letting δS be the Dirac measure on P1 at each point S ∈ P1,
h∗δS =

∑
S′∈h−1(S)(degS′(h))δS′ on P1. For the details, see e.g. [1, 4, 9].

By the seminal Baker–Rumely [1], Chambert-Loir [7], and Favre–Rivera-
Letelier [9], for every f ∈ K(z) of degree d > 1, there is a unique f -
equilibrium (or canonical) measure µf on P1. This µf is a probability Radon
measure on P1, has no masses on polar subsets in P1, and satisfies the f -
balanced property

f∗µf = d · µf on P1

and in particular the f -invariance f∗µf = µf on P1, and is f -ergodic.
Moreover, the equidistribution for iterated pullbacks of points

lim
n→∞

(fn)∗δS
dn

= µf weakly on P1(1.1)

holds for every S ∈ P1 outside the (classical) exceptional set of f

E(f) :=

a ∈ P1 : #
⋃

n∈N∪{0}
f−n(a) < ∞

 ;

if charK = 0, then #(E(f)) ≤ 2. In general, E(f) is at most countable
and P1 \ E(f) is dense in P1.

Our aim is to contribute to the study of a local a priori bound for the
proximity of the dynamics of f on P1 to a given non-constant g ∈ K(z),
which is closely related to the equidistribution towards µf of the roots in P1

of the algebraic equation fn = g as n → ∞, for any non-constant g ∈ K(z).

1.1. A local a priori bound of the dynamics of f . Recall that the ab-
solute value | · | is said to be non-trivial if |K| ̸⊂ {0, 1} and that the absolute
value | · | is said to be non-archimedean if the strong triangle inequality

|z + w| ≤ max{|z|, |w|} for any z, w ∈ K

holds. The (normalized) chordal metric [z, w]P1 on P1 = K ∪ {∞} (the
notation is adopted from Nevanlinna’s and Tsuji’s books [15, 21]) is in
particular written as

[z, w]P1 = |z − w|
max{1, |z|} max{1, |w|}

(≤ 1)

for any z, w ∈ K = P1 \ {∞}. The projective transformation group on P1

and the isometry group on (P1, [z, w]P1) are identified with PGL(2,K) and
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PGL(2,OK), respectively, where

OK := {z ∈ K : |z| ≤ 1}

is the ring of K-integers.
For a polynomial p(z) =

∑N
j=0 ajz

j ∈ OK [z], the polynomial p̃(ζ) :=∑N
j=0 ãjζ

j ∈ k[ζ] is called the coefficient reduction of p modulo mK , where
mK := {z ∈ K : |z| < 1} is the unique maximal ideal of OK and k :=
OK/mK is the residue field of K, and for each a ∈ OK , ã ∈ k is the
residue class of a modulo mK . Similarly, the coefficient reduction P̃ (ζ0, ζ1) ∈
k[ζ0, ζ1] modulo mK of a polynomial P ∈ OK [z0, z1] is defined by reducing
the coefficients of P modulo mK .

Let f ∈ K(z) be a rational function on P1 of degree d > 1. Writ-
ing as f(z) = F1(1, z)/F0(1, z), where F = (F0, F1) ∈ (OK [z0, z1]d)2 \
(mK [z0, z1]d)2 is called a minimal non-degenerate homogeneous lift of f ,
the reduction f̃ ∈ k(ζ) of f modulo mK is defined by

(F̃1(1, ζ)/H(1, ζ))/(F̃0(1, ζ)/H(1, ζ)),

where H(ζ0, ζ1) := gcd(F̃0, F̃1)(̸= 0) in k[ζ0, ζ1]; so deg f̃ ≤ deg f in general
(see e.g. Kawaguchi–Silverman [14, Definition 2]). We say f has a good
reduction if deg f̃ = deg f , and say f has no potentially good reductions
unless the conjugation γ ◦ f ◦ γ−1 of f under some γ ∈ PGL(2,K) has a
good reduction. It is known that f has no potentially good reductions if and
only if µf ({S}) = 0 for any S ∈ P1 \ P1 (see, e.g., [1, Corollary 10.33]).

Our principal result is the following local a priori bound of the dynamics
of f for moving targets, under the condition that f has no potentially good
reductions.

Theorem 1. Let K be an algebraically closed field of arbitrary charac-
teristic that is complete with respect to a non-trivial and non-archimedean
absolute value. Then for every rational function f ∈ K(z) on P1 of de-
gree d > 1 having no potentially good reductions, every rational function
g ∈ K(z) on P1 of degree > 0, and every non-empty open subset D in P1,
we have

lim
n→∞

supw∈D log[fn(w), g(w)]P1

dn + deg g = 0.(1.2)

A global a priori lower bound (4.2) below, or equivalently the equal-
ity (1.2) for D = P1, holds no matter whether f has no potentially good
reductions, and Theorem 1 localizes this global one. The argument in the
proof of Theorem 1 is similar to those in Buff–Gauthier [6] and Gau-
thier [11], using a domination principle (Bedford–Taylor [3]; see also
Bedford–Smillie [2, p. 77]) from pluripotential theory. We note that if g ≡ a
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on P1 for some a ∈ P1, then the equality (1.2) in Theorem 1 still holds unless
a ∈ E(f).

1.2. Equidistribution towards µf for moving targets. The equal-
ity (1.2) is more simply written as limn→∞(supw∈D log[fn(w), g(w)]P1)/dn =
0, but the dn + deg g in (1.2) is also natural in that for every g ∈ K(z) of
degree > 0, whenever fn ̸≡ g, the degree of the effective divisor [fn = g]
on P1 defined by all the roots in P1 of the algebraic equation fn = g taking
into account their multiplicities equals dn + deg g (for more details on the
root divisor [fn = g] on P1, see Subsection 2.3 below). For n ≫ 1, this
effective divisor [fn = g] on P1 is canonically regarded as a (purely atomic)
positive Radon measure on P1 and is written as

[fn = g] =
∑

a∈P1

(orda[fn = g])δa on P1,

so that the averaged [fn = g]/(dn + deg g) is (regarded as) a probability
Radon measure on P1.

The following equidistribution towards µf for moving targets is an ap-
plication of Theorem 1, and partly answers the question posed by Favre–
Rivera-Letelier [9, after Théorème B].

Theorem 2. Let K be an algebraically closed field of arbitrary charac-
teristic that is complete with respect to a non-trivial and non-archimedean
absolute value. Then for every f ∈ K(z) of degree d > 1 having no poten-
tially good reductions and every g ∈ K(z) of degree > 0, we have

lim
n→∞

[fn = g]
dn + deg g = µf weakly on P1.(1.3)

In [9, Théorème B], the authors established the weak convergence (1.3)
in the case of charK = 0 (even no matter whether f has no potentially
good reductions) and asked about the situation in the charK > 0 case.
In Theorem 2, in the charK > 0 case, the no potentially good reduction
assumption can be relaxed but cannot be omitted (e.g., f(z) = z + zp and
g(z) = z where p = charK > 0, as pointed out in [9, après Théorème B]).
More specifically, the difference between the proofs of Theorem 2 and Favre–
Rivera-Letelier’s [9, Théorème B] is caused by the fact that when charK >
0, no geometric structure theorems are known on quasiperiodicity domains,
which are subsets of Berkovich domaines singuliers (appearing as V in the
proof of Theorem 1).

1.3. Value distribution of the sequence of the first order deriva-
tives of iterated polynomials. By an argument similar to that in the
proof of Theorem 2, we also show the following, based on the computation
in [18] (for the C case, see [18, 12]).
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Theorem 3. Let K be an algebraically closed field of characteristic 0 that is
complete with respect to a non-trivial and non-archimedean absolute value,
and let f ∈ K[z] be a polynomial of degree d > 1 having no potentially good
reductions. Then for every a ∈ K,

lim
n→∞

((fn)′)∗δa

dn − 1 = µf weakly on P1.(1.4)

In Theorem 3, the value a = ∞ ∈ P1 is excluded since it is clear that for
every n ∈ N, ((fn)′)∗δ∞/(dn −1) = δ∞( ̸= µf ) on P1. It does not seem to be
known whether we could remove the assumption that f has no potentially
good reductions in Theorem 3 (assuming a ̸= 0). In [19], the higher order
generalization of Theorem 3 is established, by a more involved argument.

1.4. Organization of the article. In Section 2, we recall background on
the topology, potential theory, and dynamics on the Berkovich projective
line. In Section 3, we show a lemma, which plays a key role in the proof of
Theorems 1 and 3. In Sections 4, 5, and 6, we show Theorems 1, 2, and 3,
respectively.

2. Background
2.1. Berkovich projective line P1. For the full generality of Berkovich
analytic spaces, see [5], and for the details on P1, see [1, 9]. As a set, the
Berkovich affine line A1 = A1(K) is the set of all multiplicative seminorms
on K[z] which restrict to | · | on K(⊂ K[z] naturally). We write an element
of A1 like S, and denote it by [ · ]S as a multiplicative seminorm on K[z]. Un-
der this convention, A1 is equipped with the weakest topology (the Gelfand
topology) such that for any ϕ ∈ K[z], the function A1 ∋ S 7→ [ϕ]S ∈ R≥0 is
continuous, and then A1 is a locally compact, uniquely arcwise connected,
and Hausdorff topological space.

A subset B in K is called a K-closed disk if
B = {z ∈ K : |z − a| ≤ r} for some a ∈ K and some r ≥ 0.

For any K-closed disks B,B′, if B ∩B′ ̸= ∅, then either B ⊂ B′ or B′ ⊂ B
by the strong triangle inequality. The Berkovich representation [5] asserts
that any element S ∈ A1 is induced by a non-increasing and nesting se-
quence (Bn) of K-closed disks Bn in that

[ϕ]S = inf
n∈N

sup
z∈Bn

|ϕ(z)| for any ϕ ∈ K[z].

In particular, each point in K = P1 \ {∞} or, more generally, each K-
closed disk is regarded as an element of A1; the Gauss (or canonical) point
Scan ∈ A1 \K is represented by the K-closed disk OK .

We will need some details on the topology of the Berkovich projective
line P1 = P1(K), so let us introduce P1 as an “R-”tree in the sense of
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Jonsson [13, Definition 2.2] as follows. Any [ · ]S ∈ A1 extends to the function
K(z) → R≥0 ∪ {+∞} such that for any ϕ = ϕ1/ϕ2 ∈ K(z) where ϕ1, ϕ2 ∈
K[z] are coprime, we have [ϕ]S = [ϕ1]S/[ϕ2]S ∈ R≥0 ∪ {+∞}, and we also
regard ∞ ∈ P1 as the function [ · ]∞ : K(z) → R≥0 ∪ {+∞} such that
for every ϕ ∈ K(z), [ϕ]∞ = |ϕ(∞)| ∈ R≥0 ∪ {+∞}. As a set, we define
P1 := A1 ∪ {∞}, which is also equipped with a (partial) order ≤∞ so that
for any S,S ′ ∈ P1, S ≤∞ S ′ if and only if [ · ]S ≤∞ [ · ]S′ on K[z]. For
any S,S ′ ∈ P1, if S ≤∞ S ′, then we first set [S,S ′] = [S ′,S] := {S ′′ ∈ P1 :
S ≤∞ S ′′ ≤∞ S ′}, and in general, there is a unique point, say, S ∧∞ S ′ ∈ P1

such that [S,∞] ∩ [S ′,∞] = [S ∧∞ S ′,∞], and we set

[S,S ′] := [S,S ∧∞ S ′] ∪ [S ∧∞ S ′,S ′]

and call it the interval between S,S ′. For any S ∈ P1, let us introduce the
coset TSP1 := (P1 \ {S})/ ∼, where for every S ′,S ′′ ∈ P1 \ {S}, we say
S ′ ∼ S ′′ if [S,S ′]∩ [S,S ′′] ̸= {S} or equivalently if [S,S ′]∩ [S,S ′′] = [S,S ′′′]
for some (unique) S ′′′ ∈ P1 \ {S}. An element of TSP1 represented by an
element S ′ ∈ P1 \ {S} is denoted by

−−→
SS ′. We call an element of TSP1 a

direction of P1 at S and write it like v, and also denote it by U(v) as a
subset in P1 \ {S}; for every a ∈ P1, #(TaP1) = 1.

We equip P1 with the weak (or observer) topology having the quasi-
open basis {U(v) : S ∈ P1,v ∈ TSP1} or equivalently having the open
basis consisting of all simple domains in P1 defined below. This topological
space P1 coincides with the one-point compactification of A1, both P1 and
P1 \ P1 are dense in P1, the set {U(v) : v ∈ TSP1} ∼= TSP1 coincides with
the set of all components of P1 \ {S}, and for any S,S ′ ∈ P1, [S,S ′] is the
unique arc in P1 between S and S ′. Here, a domain in P1 is a topological
domain in P1, that is, a non-empty, connected, and open subset in P1.
The following two kinds of domains in P1 are important; a non-empty
subset in P1 written as the intersection of at most finitely many elements of
{U(v) : S ∈ P1 satisfying #TSP1 > 1,v ∈ TSP1} is a domain in P1, and is
called a simple domain in P1 following Baker–Rumely [1]. For a non-empty
open subset U in P1, a connected component of U is a domain in P1, and
is called a component of U for simplicity. We show the following.

Lemma 2.1. For any domains U, V in P1, if U∩V = ∅ and (∂U)∩∂V ̸= ∅,
then (∂U) ∩ ∂V is a singleton, say, {S0} in P1 \ P1, and moreover, there
are distinct u,v ∈ TS0P1 such that U ⊂ U(u) and V ⊂ U(v).

Proof. Let U, V be domains in P1 satisfying U ∩ V = ∅ and (∂U) ∩ ∂V ̸=
∅, and fix S0 ∈ (∂U) ∩ ∂V . Then U ⊂ U(u) and V ⊂ U(v) for some
u,v ∈ TS0P1 since both U and V are connected. We claim that u ̸= v
or equivalently that U(u) ∩ U(v) = ∅; for, otherwise, u = v, and then
since u = −−→

S0S and v =
−−→
S0S ′ for some S ∈ U and some S ′ ∈ V , recalling
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the connectedness of U, V and the definition of directions, we must have
∅ ̸= ([S0,S] ∩ [S0,S ′]) \ {S0} ⊂ U ∩ V . This contradicts U ∩ V = ∅. Once
the claim is at our disposal, the proof is complete since (∂U)\{S0} ⊂ U(u)
and (∂V ) \ {S0} ⊂ U(v). □

2.2. Potential theory on P1. For a potential theory on P1 including the
fully general study of harmonic analysis on P1, i.e., harmonic/subharmonic
functions and the Laplacians on open subsets in P1, see Baker–Rumely [1, §7
and §8, and §5] (and also Thuillier [20] on more general Berkovich curves).

Let ∥(z0, z1)∥ = max{|z0|, |z1|} be the maximal norm on K2, (z0, z1) ∧
(w0, w1) = z0w1 − z1w0 be the exterior product of K2 (which would not
be confused with S ∧ S ′ ∈ P1 for S,S ′ ∈ P1), and π : K2 \ {(0, 0)} → P1

be the canonical projection so that π(1, z) = z for every z ∈ K and that
π(0, 1) = ∞, following the convention in the book [10]. The (normalized)
chordal metric [z, w]P1 on P1 is defined as

[z, w]P1 := |Z ∧W |
∥Z∥ · ∥W∥

≤ 1, z, w ∈ P1,(2.1)

where Z ∈ π−1(z),W ∈ π−1(w); the topology on (P1, [z, w]P1) coincides
with the relative topology of P1 as a subset of P1.

This chordal metric [z, w]P1 on P1 extends to an upper semicontinuous
and separately continuous function (S,S ′) 7→ [S,S ′]can on P1 × P1, which
still satisfies 0 ≤ [S,S ′]can ≤ 1 on P1 × P1 and is invariant under the
(extended) PGL(2,OK)-action to P1. This function [S,S ′]can on P1 × P1

is called the generalized Hsia kernel on P1 with respect to Scan (see [1,
§4] and [9, §4] for more details. The notations [z, w]P1 and [S,S ′]can would
not be confused with that of an interval [S,S ′] ⊂ P1). In particular, the
absolute value | · | = [ · , 0]P1/[ · ,∞]P1 on K extends to the function

| · | = [ · , 0]can/[ · ,∞]can : P1 → R≥0 ∪ {+∞}.

We say a function g : P1 → R ∪ {−∞} is δScan-subharmonic if there is a
probability Radon measure µg on P1 such that

g =
∫

P1
log[·,S ′]canµg(S ′) + const. on P1,

which belongs to BDV(P1) and is not only upper semicontinuous on P1 but
also continuous on any closed interval in P1; then

∆g = µg − δScan on P1

(see Favre–Rivera-Letelier [9, §2.4], and also [1, §5.8 and §6.3] for more
details including that on the class BDV(P1)). Here and below

∆ = ∆P1
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is the Laplacian on P1 (in [1] the opposite sign convention on ∆ is adopted).
For every S ′ ∈ P1, log[·,S ′]can on P1 is δScan-subharmonic; indeed,

log[S,S ′]can =
∫

P1
log[S, ·]canδS′ on P1.

In particular, the function log[·,∞]can = − log max{1, | · |} on P1 is δScan-
subharmonic and satisfies

∆(log max{1, | · |}) = δScan − δ∞ on P1.(2.2)

Instead of giving the definition of a harmonic/subharmonic function on
an open subset in P1, we recall the facts that

• every harmonic function h on a simple domain W in P1 extends
to a continuous function on W , and coincides with the Poisson
integral S 7→

∫
∂W (h|(∂W ))( · )µS,W ( · ) on W , where the family

(µS,W )S∈W of probability Radon measures on P1 supported on ∂W
is the Poisson–Jensen (or harmonic) measure associated to W (for
the details, see [1, §7.3], [20, §3]),

• an R ∪ {−∞}-valued function ϕ on an open subset U in P1 is sub-
harmonic if and only if it is domination subharmonic in that ϕ is
upper semicontinuous on U and ̸≡ −∞ on each component of U ,
and ϕ ≤ h on W for every simple domain W ⋐ U and every har-
monic function h on W satisfying ϕ ≤ h on ∂W (for the details,
see [1, §8.2]); then indeed ϕ( · ) ≤

∫
∂W (ϕ|(∂W ))µ ·,W on W ,

and that a δScan-subharmonic function g on P1 is subharmonic on P1\{Scan},
and then the function g + log max{1, | · |} on P1 is subharmonic on A1.

We also recall the following (non-archimedean) version of (Hörmander’s
version of) Hartogs’s lemma for a (uniformly upper bounded) sequence of
δScan-subharmonic functions on P1.

Theorem 2.2 ([9, Proposition 2.18], [1, Proposition 8.57]). Let (gn) be
a sequence of δScan-subharmonic functions on P1 and suppose that (gn)
is uniformly bounded from above on P1. Then unless limn→∞ gn = −∞
uniformly on P1, there are a sequence (nj) in N tending to +∞ as j → ∞
and a δScan-subharmonic function ϕ∞ on P1 such that

(1) limj→∞ gnj = ϕ∞ (pointwisely) on P1 \ P1 and that
(2) lim supj→∞ supK(gnj −g) ≤ supK(ϕ∞ −g) for every compact subset

K in P1 and every continuous function g on K.

2.3. Dynamics of rational functions on P1. Let h ∈ K(z) be of
degree > 0. A non-degenerate homogeneous lift of h is an ordered pair
H = (H0, H1) ∈ (K[z0, z1]deg h)2, which is unique up to multiplication in
K∗, such that π◦H = h◦π on K2 \{(0, 0)} (and that H−1(0, 0) = {(0, 0)}).
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From now on, such an H is called a lift of h, for simplicity. Then the function

TH := log ∥H∥ − (deg h) · log ∥ · ∥

on K2 \ {0} descends to P1 and in turn extends continuously to P1 so that

∆TH = h∗δScan − (deg h) · δScan on P1

(see, e.g., [16, Definition 2.8]), and TH/(deg h) on P1 is δScan-subharmonic.
Let f ∈ K(z) be of degree d > 1, and fix a lift F of f . Then for every

n ∈ N, Fn is a lift of fn and deg(fn) = dn. There is the uniform limit

gF := lim
n→∞

TF n

dn
on P1,(2.3)

which is continuous on P1, is δScan-subharmonic on P1, and satisfies

∆gF = µf − δScan on P1(2.4)

(see [1, §10], [9, §6.1]). We call gF the dynamical Green function of F on
P1, and note that for every n ∈ N, gF n = gF and µfn = µf on P1.

Fix also g ∈ K(z) of degree > 0, and fix a lift G of g. For every n ∈ N, if
fn ̸≡ g, then there is a sequence (qj)dn+deg g

j=1 in K2 \ {(0, 0)} such that the
homogeneous polynomial Fn ∧G ∈ K[z0, z1]dn+deg g factors as

Fn(Z) ∧G(Z) =
dn+deg g∏

j=1
(Z ∧ qj), Z ∈ K2,

and the root divisor [fn = g] is well defined as the effective divisor on P1

of degree dn + deg g such that for every w ∈ P1,

ordw[fn = g] = #
{
j ∈ {1, . . . , dn + deg g} : π(qj) = w

}
.

Moreover, for every n ∈ N, if fn ̸≡ g, then the function z 7→ [fn(z), g(z)]P1

on P1 extends continuously to a function

S 7→ [fn, g]can(S)

on P1 so that the function (log[fn, g]can( · ) +TF n +TG)/(dn + deg g) on P1

is δScan-subharmonic and satisfies both

∆log[fn, g]can( · ) + TF n + TG

dn + deg g = [fn = g]
dn + deg g − δScan on P1(2.5)

and 0 ≤ [fn, g]can( · ) ≤ 1 on P1 ([16, Proposition 2.9 and Remark 2.10]); the
function [fn, g]can( · ) on P1 does not always coincide with the evaluation
function S 7→ [S ′,S ′′]can at (S ′,S ′′) = (fn(S), g(S)) ∈ (P1)2.
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2.4. Fatou–Julia decomposition of P1. Let f ∈K(z) be of degree d>1.
The Berkovich Julia set J(f) of f is defined by suppµf , so is non-empty and
compact in P1, and satisfies f−1(J(f)) = J(f), and the Berkovich Fatou set
F(f) of f is defined by P1 \ J(f), and also satisfies f−1(F(f)) = F(f).

Lemma 2.3. Let D be an open subset in P1 such that, for some sequence
(nj) in N tending to ∞ as j → ∞ and some g ∈ K(z), limj→∞ fnj = g
uniformly, as mappings D ∩ P1 → (P1, [z, w]). Then D ⊂ F(f).

Proof. Suppose to the contrary that there is S0 ∈ D ∩ J(f). Then for any
open neighborhood D′ ⊂ D of S0, by (1.1) applied to each S ∈ P1 \ E(f),
lim infj→∞ fnj (D′ ∩ P1)(=

⋂
N∈N

⋃
j≥N fnj (D′ ∩ P1)) contains the dense

subset P1 \E(f) in P1, and in turn the closure of g(D′ ∩P1) in P1 contains
P1 \ E(f) under the uniform convergence assumption. This is impossible
since P1 \ g(D′ ∩ P1) contains a non-empty open subset in P1 if D′ is small
enough. □

We call a component of F(f) a Berkovich Fatou component of f . We note
that f maps a Berkovich Fatou component V of f properly to a Berkovich
Fatou component U of f (so in particular f(∂V ) = ∂U), and that the
preimage under f of a Berkovich Fatou component of f is the union of (at
most d) Berkovich Fatou components of f . A Berkovich Fatou component
W of f is said to be cyclic (under f) if fp(W ) = W for some p ∈ N, and
then the minimal such p is called the exact period of W (under f). A cyclic
Berkovich Fatou component W of f having the exact period, say, p ∈ N
is called a Berkovich domaine singulier of f if fp : W → W is injective
(following Fatou [8, §28]); then in particular f−1(W ) ̸= W since d > 1.

3. A key lemma
Lemma 3.1. Let f ∈ K(z) be of degree d > 1 and have no potentially good
reductions. Then

(i) for any Berkovich Fatou component U of f , we have ∂U ̸= J(f) if
f−1(U) ̸= U , and moreover,

(ii) for every cyclic Berkovich Fatou component W of f satisfying
f−1(W ) ̸= W , we have µf (∂U) = 0 for every component U of⋃

n∈N∪{0} f
−n(W ).

Proof. (i). Let U be a Berkovich Fatou component of f , and suppose to
the contrary both f−1(U) ̸= U and ∂U = J(f). Pick a component V of
f−1(U)\U , which is also a Berkovich Fatou component of f . Then U∩V = ∅
and ∂V ⊂ J(f), the latter in which yields (∂U)∩∂V = J(f)∩∂V = ∂V ̸= ∅.
Hence by Lemma 2.1, there is S0 ∈ P1 \ P1 such that

∂V = (∂U) ∩ ∂V = {S0} ⊂ ∂U = f(∂V ) = {f(S0)},



An a priori bound for rational functions 729

and then suppµf = J(f) = ∂U = {f(S0)} = {S0}. In particular, we must
have µf ({S0}) = 1 > 0, which contradicts the assumption that f has no
potentially good reductions.

(ii). Pick a cyclic Berkovich Fatou component W of f having the exact
period p ∈ N. Then for any n ∈ N and any distinct components U, V of
f−pn(W ), by Lemma 2.1, (∂U) ∩ ∂V is either ∅ or a singleton in P1 \ P1,
the latter of which is still a µf -null set under the assumption that f has no
potentially good reductions. Hence for every n ∈ N, also by the f -invariance
of µf and fp(W ) = W , we compute

µf (∂W ) = µf (f−pn(∂W )) =
∑

U : a component of f−pn(W )
µf (∂U)

= µf (∂W ) +
∑

U : a component of f−pn(W ) other than W

µf (∂U),

which first concludes µf (∂U) = 0 for every component U of f−pn(W ) other
than W . In particular, µf (

⋃
n∈N∪{0} f

−pn(∂W )) = µf (∂W ), which with
fp(W ) = W and the fp-ergodicity of µfp = µf yields µf (∂W ) ∈ {0, 1}. If
f−1(W ) ̸= W , then there is a component U of f−1(W ). By an argument
similar to the above (involving Lemma 2.1), we also have µf ((∂U)∩∂W ) = 0
(under the assumption that f has no potentially good reductions). Sup-
pose to the contrary that µf (∂W ) = 1. Then µf (∂U) = µf ((∂U) \ ∂W ) +
µf ((∂U) ∩ ∂W ) = 0 + 0 = 0, and in turn by the f -balanced property of
µf and f(∂U) = ∂W , we indeed have µf (∂W ) ≤ d · µf (∂U) = 0. This is a
contradiction. □

4. Proof of Theorem 1
Let f ∈ K(z) be of degree d > 1. Suppose that there are g ∈ K(z)

of degree > 0 and a non-empty open subset D in P1 such that (1.2) in
Theorem 1 does not hold, or equivalently, replacing D with some domain
in P1, suppose that there are g ∈ K(z) of degree > 0, a domain D in P1,
and a sequence (nj) in N tending to ∞ as j → ∞ such that a uniform
negativity

lim
j→∞

supS∈D log[fnj , g]can(S)
dnj + deg g < 0(4.1)

on D holds. Then D ⊂ F(f) by Lemma 2.3.
Let U be the Berkovich Fatou component of f containing D. Since

deg g > 0, g(D) is open in P1 and, taking a subsequence of (nj) if nec-
essary, we have both limj→∞(nj+1 − nj) = +∞ and

lim
j→∞

fnj+1−nj = Idg(D)∩P1
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uniformly, as mappings g(D) ∩ P1 → (P1, [z, w]P1) (see e.g. [17, Proof of
Lemma 10.1(i)] or [16, Proof of Lemma 4.7]). Then we also have g(D) ⊂
F(f) by Lemma 2.3, and in turn, the Berkovich Fatou component V of
f containing g(D) is cyclic under f and has the exact period, say, p ∈
N, and there exists N ∈ N ∪ {0} such that fnN (U) = V . Moreover, by
Rivera-Letelier’s counterpart of Fatou’s classification of cyclic Berkovich
Fatou components ([9, Proposition 2.16 and its esquisse de démonstration],
see also [4, §9.3 and §9,4]), V is a Berkovich domaine singulier of f (so
f−1(V ) ̸= V ).

We have the uniform upper bound supn∈N supS∈P1 log[fn, g]can(S) ≤ 0
(from [fn, g]can( · ) ≤ 1). We also claim the global lower bound

lim sup
j→∞

supS∈P1 log[fnj , g]can(S)
dnj + deg g ≥ 0 > −∞;(4.2)

for, by J(f) = suppµf ̸= ∅, there is a domain D′ in P1 such that D′∩J(f) ̸=
∅ and that g(D′) ̸= P1. Then by the density of P1 \ E(f) in P1, there is a
point z0 ∈ (P1 \ g(D′)) ∩ (P1 \ E(f)), so that by (1.1), we have f−nj (z0) ∩
(D′ ∩ P1) ̸= ∅ for j ≫ 1. In particular, lim infj→∞ supS∈D′ [fnj , g]can(S) ≥
inf

g(D′)∩P1 [z0, · ]P1 > 0, and the claim holds.
Hence recalling that for every n ∈ N, (log[fn, g]can( · )+TF n +TG)/(dn +

deg g) is a δScan-subharmonic function on P1, by the (uniform) conver-
gence (2.3) and a version of Hartogs’s lemma for a sequence of δScan-
subharmonic functions on P1 (see (1) in Theorem 2.2), taking a subsequence
of (nj) if necessary, there is a function ϕ : P1 → R≤0 ∪ {−∞} such that

lim
j→∞

log[fnj , g]can( · )
dnj + deg g = ϕ (pointwisely) on P1 \ P1

and that ϕ + gF is a δScan-subharmonic function on P1 (see [9, §3.4] for
a similar computation). Then the function ϕ = (ϕ + gF ) − gF is upper
semicontinuous on P1, so {ϕ < 0} is open in P1.

Under the uniform negativity assumption (4.1), we have

U ∩ {ϕ < 0} ⊃ D \ P1 ̸= ∅.

We claim that {ϕ < 0} ⊂ F(f); for, if there exists S0 ∈ J(f) ∩ {ϕ < 0},
then for any open neighborhood D′ ⋐ {ϕ < 0} of S0, by the uniform



An a priori bound for rational functions 731

convergence (2.3), a version of Hartogs’s lemma for a sequence of δScan-
subharmonic functions on P1 (see (2) in Theorem 2.2), and the upper semi-
continuity of ϕ, we must have

lim sup
j→∞

sup
D′

log[fnj , g]can( · )
dnj + deg g

= lim sup
j→∞

sup
D′

( log[fn, g]can( · ) + TF n + TG

dn + deg g − TF n + TG

dn + deg g

)
≤ sup

D′

(
(ϕ+ gF ) − gF

)
= sup

D′
ϕ < 0.

Then D′ ⊂ F(f) by Lemma 2.3, which contradicts S0 ∈ J(f) ∩ D′. Hence
the claim holds, and in particular

ϕ ≡ 0 on J(f), so on ∂U.

From now on, we assume in addition that ∞ ∈ f−1(U) \ U(⊂ F(f), so in
particular that U ⋐ P1 \ {∞}) by some PGL(2,OK)-conjugation of f, g
simultaneously if necessary, without loss of generality. Set

ψ :=
{
ϕ on U

0 on P1 \ U
: P1 → R≤0 ∪ {−∞},

so in particular ϕ ≤ ψ on P1. We claim that the function

ψ̃ := ψ + gF + log max{1, | · |} : P1 → R ∪ {±∞}

is domination subharmonic on A1 = P1 \ {∞} (for the domination subhar-
monicity, which is equivalent to the subharmonicity, of an R∪{−∞}-valued
function on an open subset in P1, see Subsection 2.2); for, ψ̃ ̸≡ −∞ on A1,
and moreover, ψ̃ is upper semicontinuous on A1 since the function

(ϕ+ gF ) + log max{1, | · |}

is subharmonic so upper semicontinuous on A1, gF + log max{1, | · |} is
continuous on A1, and ψ = 0 = ϕ on ∂U . The function ψ̃ is subhar-
monic on A1 \ ∂U since so are the functions (ϕ+ gF ) + log max{1, | · |} and
gF +log max{1, | · |} on U ⊂ A1 and on A1 \U , respectively. Pick any simple
domain W ⋐ A1 and any harmonic function h on W , which continuously
extends to W , such that ψ̃ ≤ h on ∂W . It remains to show that

M := max
W

(
ψ̃ − h

)
≤ 0,

where the existence of M is by the upper semicontinuity of ψ̃ − h on A1.
First, if (ψ̃−h)(S0) = M at some S0 ∈ W \∂U , then for any simple domain
W ′ ⋐ W \ ∂U containing S0, we have M = (ψ̃ − h)(S0) ≤

∫
∂(W ′)(ψ̃ −

h)µS0,W ′ ≤ M by the domination subharmonicity of ψ̃ on A1 \ ∂U and the
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harmonicity of h onW (see Subsection 2.2). In particular, (ψ̃−h)|(∂(W ′)) ≡
M , and in turn, increasing W ′ if necessary, ψ̃− h attains M at some point
in (∂W ) ∪ ∂U by the upper semicontinuity of ψ̃ − h on A1. Next, if ψ̃ − h
attains M at some S0 ∈ W ∩ ∂U , then we have

M = (ψ̃ − h)(S0) = (ϕ+ gF + log max{1, | · |} − h)(S0)

≤
∫

∂W

(
ϕ+ gF + log max{1, | · |} − h

)
µS0,W ≤

∫
∂W

(ψ̃ − h)µS0,W ≤ M

by ψ = 0 = ϕ on ∂U , the domination subharmonicity of the function
(ϕ+ gF ) + log max{1, | · |} on A1 and the harmonicity of h on W (see Sub-
section 2.2), and ϕ ≤ ψ on P1. In particular, (ψ̃ − h)|(∂W ) ≡ M . Conse-
quently, in any case, ψ̃− h attains its maximum M on W at some point in
∂W , where ψ̃ − h ≤ 0. Hence the claim holds.

Once the claim is at our disposal, by the subharmonicity of ψ̃ on A1 and
the identity ψ̃ ≡ gF + log max{1, | · |} near ∞ ∈ F(f), ∆ψ exists on P1 and

∆ψ + µf = ∆ψ̃ + δ∞

is a probability Radon measure on P1. By the definition of ψ, we have
∆ψ = 0 on P1 \ U , or equivalently

∆ψ + µf = µf on P1 \ U.

We also recall that U ⊂ P1 \ J(f) = P1 \ (suppµf ).
Now suppose to the contrary that f has no potentially good reductions.

Then µf (∂U) = 0 by f−1(V ) ̸= V and Lemma 3.1(ii), so we have

(∆ψ + µf )(U) = 1 − (∆ψ + µf )(P1 \ U) = 1 − µf (P1 \ U)
= µf (U) = µf (U) + µf (∂U) = 0.

Consequently, ∆ψ + µf = µf on P1, or equivalently, ∆ψ = 0 on P1.
Hence ψ must be constant on P1 \ P1, which with ψ = 0 on P1 \ U and

P1 \U ⊃ f−1(U) \U ̸= ∅ yields ψ ≡ 0 on P1 \ P1, so ϕ ≡ 0 on U \ P1. This
contradicts U ∩ {ϕ < 0} ≠ ∅ since both U and {ϕ < 0} are open. □

5. Proof of Theorem 2
Let f ∈ K(z) be of degree d > 1 and g ∈ K(z) be of degree > 0, and fix

a lift F of f . By (2.3), (2.4), (2.5), and the continuity of the Laplacian ∆,
the equidistribution (1.3) in Theorem 2 would follow from

lim
n→∞

log[fn, g]can( · )
dn + deg g = 0 (pointwisely) on P1 \ P1.(1.3′)

Unless (1.3′) holds, by an argument similar to that in Section 4 involving
a version of Hartogs’s lemma for a sequence of δScan-subharmonic functions
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on P1 (see (1) in Theorem 2.2), there exist a sequence (nj) in N tending to
∞ as j → ∞ and a function ϕ : P1 → R≤0 ∪ {−∞} such that

lim
j→∞

log[fnj , g]can( · )
dnj + deg g = ϕ (pointwisely) on P1 \ P1

and that ϕ + gF is a δScan-subharmonic function on P1. Then ϕ is upper
semicontinuous on P1, and {ϕ < 0} is non-empty and open in P1.

For any domain D′ ⋐ {ϕ < 0}, by the uniform convergence (2.3) and
an argument similar to that in Section 4 involving a version of Hartogs’s
lemma for a sequence of δScan-subharmonic functions on P1 (see (2) in
Theorem 2.2), we must have

lim sup
j→∞

sup
S∈D′

log[fnj , g]can(S)
dnj + deg g ≤ sup

D′
ϕ < 0.

This is impossible if f has no potentially good reductions, by Theorem 1.
□

6. Proof of Theorem 3
For a while, K is still of arbitrary characteristic. For every polynomial

h ∈ K[z] of degree > 0, we have |h| = h∗| · | on P1, and the function
(log |h|)/(deg h) − log max{1, | · |} on P1 is δScan-subharmonic and satisfies

∆(log |h|) = h∗∆ log | · | = h∗δ0 − (deg h) · δ∞

on P1 (for the functoriality of ∆, see [1, §5]).
Let f ∈ K[z] be a polynomial of degree d > 1.

Fact 6.1. The Berkovich filled-in Julia set

K(f) :=
{

S ∈ P1 : lim sup
n→∞

|fn(S)| < ∞
}

⊂ A1

of f is the complement in P1 of the Berkovich (immediate) basin of attrac-
tion

I∞(f) :=
{

S ∈ P1 : lim
n→∞

fn(S) = ∞
}

of f associated to the superattracting fixed point ∞ of f . Both K(f) and
I∞(f) are totally invariant under f . Moreover,

lim
n→∞

fn = ∞ locally uniformly on I∞(f),

F(f) = I∞(f) ∪ (int K(f)), and J(f) = suppµf = ∂K(f) = ∂I∞(f).
Fix a canonical lift

F (z0, z1) :=
(
zd

0 , z
d
0f(z1/z0)

)
∈ (K[z0, z1]d)2
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of the polynomial f ∈ K[z], and let us define the escaping rate function gf

of f on P1 by

gf := gF + log max{1, | · |} = lim
n→∞

log max{1, |fn|}
dn

: P1 → R≥0 ∪ {+∞},

and then K(f) = {gf = 0}, I∞(f) = {gf > 0}, and

∆gf = µf − δ∞ on P1.

Let C(f) be the set of all (classical) critical points of f in P1. We note
that ∞ ∈ E(f) ⊂ C(f) ⊂ P1.

From now on, we assume that charK = 0. Then we also note that f ′ is
a polynomial in K[z] of degree d− 1 > 0, that

supp
(
∆ log |f ′|

)
= supp

(
(f ′)∗δ0 − (f ′)∗δ∞

)
= C(f),

and that

#(C(f) \ {∞}) ≤
(
(f ′)∗δ0

)
(P1) = d− 1 < ∞.

Fact 6.2. For every a ∈ K and every n ∈ N, the functions

log |(fn)′ − a|
dn − 1 − gf and log max{1, |(fn)′|}

dn − 1 − gf

on P1 are harmonic and bounded on some punctured open neighborhood
of ∞, and extend harmonically near ∞ in P1 (see e.g. [1, §7]).

Let us show Theorem 3. As in [18], we begin with the following.

Lemma 6.3. On I∞(f) \
⋃

n∈N∪{0} f
−n(C(f) \ {∞}),

log |(fn)′|
dn − 1 − gf = O

( n

dn − 1
)

as n → ∞(6.1)

locally uniformly. Moreover, there is C = Cf > 0 such that for every n ∈ N,

log max{1, |(fn)′|}
dn − 1 − gf ≤ C · n

dn − 1 on P1.(6.2)

Proof. Set ad = ad(f) := limK∋z→∞ f(z)/zd ∈ K \ {0}. For every n ∈ N,
from a direct computation (involving the chain rule for (fn)′, (2.1), and
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gf ◦ f = d · gf on P1) as in the proof of [18, Lemma 3.2], we have

(6.3) log |(fn)′|
dn − 1 − gf

= 1
dn − 1

∫
A1

(
n−1∑
j=0

log[f j( · ),S]can

)
(∆ log |f ′|)(S)

− d− 1
dn − 1

n−1∑
j=0

(f j)∗(gf + log[·,∞]can
)

+
(

−
∫

A1
log[S,∞]can(∆ log |f ′|)(S) + log |d| + log |ad|

)
n

dn − 1
on P1, and then noting that supp((∆ log |f ′|)|A1) = C(f)\{∞} ⋐ P1 \{∞}
and the continuity of the function

gF = gf − log max{1, | · |} = gf + log[·,∞]can on P1,

we have the locally uniform estimate (6.1) on I∞(f) \
⋃

n∈N∪{0} f
−n(C(f) \

{∞}). Noting also that [S,S ′]can ≤ 1 and that −gf ≤ 0 on P1 and setting

C = Cf := (d− 1) · sup
P1

|gF |

+ (d− 1) · sup
w∈C(f)\{∞}

∣∣log[w,∞]P1
∣∣+ ∣∣log |d| + log |ad|

∣∣ ∈ R>0,

we also have (6.2) from (6.3). □

Lemma 6.4. If f has no potentially good reductions, then for every a ∈ K,

lim
n→∞

( log |(fn)′ − a|
dn − 1 − gf

)
= 0 (pointwisely) on P1 \ P1.

Proof. Fix a ∈ K. By the upper estimate (6.2) (and (2.1) and [S,S ′]can ≤
1), for every n ∈ N, we have

(6.4) log |(fn)′ − a|
dn − 1 − gf(

= log[(fn)′, a]can
dn − 1 +

( log max{1, |(fn)′|}
dn − 1 − gf

)
+ log max{1, |a|}

dn − 1

)
≤ 0 + Cf · n

dn − 1 + log max{1, |a|}
dn − 1

on P1, and by |(fn)′ − a| = |(fn)′| · |1 − a/(
∏n

j=1(f ′ ◦ fn−j))| on P1,
limS→∞ |f ′(S)| = +∞, limn→∞ fn = ∞ on I∞(f), and the estimate (6.1)
(pointwisely) on I∞(f) \ P1, we have

lim
n→∞

( log |(fn)′ − a|
dn − 1 − gf

)
= lim

n→∞

( log |(fn)′|
dn − 1 − gf

)
= 0(6.5)
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(pointwisely) on I∞(f) \ P1.
Hence noting that for every n ∈ N, the function( log |(fn)′ − a|

dn − 1 − gf

)
+ gF = log |(fn)′ − a|

dn − 1 − log max{1, | · |}

on P1 is δScan-subharmonic, by a version of Hartogs’s lemma for a sequence
of δScan-subharmonic functions on P1 (see (1) in Theorem 2.2), there are
a sequence (nj) in N tending to ∞ as j → ∞ and a function ϕ : P1 →
R ∪ {−∞} such that

lim
j→∞

( log |(fnj )′ − a|
dnj − 1 − gf

)
= ϕ (pointwisely) on P1 \ P1

and that ϕ + gF is a δScan-subharmonic function on P1. Then ϕ is upper
semicontinuous on P1, and {ϕ < 0} is open in P1.

By (6.4), we indeed have ϕ ≤ 0 on P1 \ P1, and in turn on P1 by the
continuity of ϕ = (ϕ + gF ) − gF on any closed interval in P1. Moreover,
by (6.5), we have ϕ ≡ 0 on I∞(f) \ P1 and in turn on I∞(f) also by the
upper semicontinuity of ϕ on P1. In particular, {ϕ < 0} ⊂ P1 \ I∞(f).

Let us see {ϕ < 0} = ∅, which will complete the proof; for, suppose to
the contrary that {ϕ < 0} ≠ ∅. Then there is a Berkovich Fatou component
U of f , which is other than I∞(f), such that U ∩ {ϕ < 0} ≠ ∅.

Then ϕ ≡ 0 on ∂U (since ∂U ⊂ ∂I∞(f) and ϕ ≡ 0 on I∞(f)), and there
is S0 ∈ P1 \ P1 such that

∂U = {S0}

by Lemma 2.1 and ∂I∞(f) = J(f) ⊃ ∂U ̸= ∅.
The argument in the rest of the proof of Lemma 6.4 is similar to that in

the latter half of the proof of Theorem 1. Setting

ψ :=
{
ϕ on U

0 on P1 \ U
: P1 → R≤0 ∪ {−∞},

the function ψ+gf is domination subharmonic so subharmonic on A1, which
with ψ + gf ≡ gf near ∞ implies that ∆ψ exists on P1 and that

∆ψ + µf = ∆(ψ + gf ) + δ∞

is a probability Radon measure on P1 and restricts to µf on P1 \ U . If in
addition f have no potentially good reductions, then µf (∂U) = µf ({S0}) =
0, and in turn ∆ψ + µf = µf so ∆ψ = 0 on P1, and finally we must have
ψ ≡ 0 on P1 \P1, so ϕ ≡ 0 on U \P1. This contradicts U ∩{ϕ < 0} ≠ ∅. □
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If f has no potentially good reductions, then the weak convergence (1.4)
in Theorem 3 follows from Lemma 6.4, the equality

∆
( log |(fn)′ − a|

dn − 1 − gf

)
= ((fn)′)∗δa

dn − 1 − µf on P1,

and the continuity of the Laplacian ∆. □
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