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Effective equidistribution of lattice points
in positive characteristic

par Tal HORESH et Frédéric PAULIN

Résumé. Étant donné une place ω d’un corps de fonctions global K sur un
corps fini, d’anneau des fonctions affines associé Rω et de complétion Kω,
le but de ce texte est de donner un résultat d’équidistribution jointe effectif
pour les points entiers primitifs renormalisés (a, b) ∈ Rω

2 du plan Kω
2, et

pour les solutions renormalisées de l’équation du pgcd ax + by = 1. Les outils
principaux sont les techniques de Gorodnik et Nevo sur le comptage de points
entiers dans des familles de parties bien arrondies. Ceci donne un résultat plus
précis en caractéristique positive d’un résultat de Nevo et du premier auteur
sur l’équidistribution des points entiers primitifs de Z2.

Abstract. Given a place ω of a global function field K over a finite field, with
associated affine function ring Rω and completion Kω, the aim of this paper
is to give an effective joint equidistribution result for renormalized primitive
lattice points (a, b) ∈ Rω

2 in the plane Kω
2, and for renormalized solutions

to the gcd equation ax + by = 1. The main tools are techniques of Gorodnik
and Nevo for counting lattice points in well-rounded families of subsets. This
gives a sharper analog in positive characteristic of a result of Nevo and the
first author for the equidistribution of the primitive lattice points in Z2.

1. Introduction

This paper has two motivations. The first one is the following result of
Dinaburg–Sinai [7]. Given two coprime positive integers a, b with a < b,
let (x0, y0) be a shortest solution (with respect to the supremum norm
∥(x, y)∥∞ = max{|x|, |y|}) to the equation |ax + by| = 1 with unknown
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(x, y) ∈ Z2. Dinaburg–Sinai proved that the quotients of norms
∥(x0, y0)∥∞
∥(a, b)∥∞

equidistribute in the interval [0, 1] as ∥(a, b)∥∞ tends to +∞. A key idea
in the approach of this paper, as well as the one for [19, 18], is due to
Risager–Rudnick [24], who translate the above problem in terms of the
equidistribution of the real parts of points of an SL2(Z)-orbit in the Poincaré
upper-half plane, and give a solution different from the one of [15] (which
uses spectral theory of automorphic forms).

The second motivation is the well-studied Linnik problem of equidistri-
bution on the unit sphere Sn−1 of the directions of integral vectors in the
Euclidean space Rn for n ≥ 2. See for instance [8, 26, 9, 10, 12, 4, 13, 1, 2] as
well as the joint works of the first author [19, 18]. Let us denote by Zn

prim the
set of primitive integral vectors, by LebSn−1 the spherical measure on Sn−1

renormalized to be a probability measure, and by ∆x the unit Dirac mass
at any point x in any measurable space. A simple version of this equidis-
tribution phenomenon is the now well-known fact that, as N → +∞, we
have

1
Card{v ∈ Zn

prim : ∥v∥ ≤ N}
∑

v∈Zn
prim : ∥v∥≤N

∆ v
∥v∥

∗
⇀ LebSn−1 ,

where ∗
⇀ denotes the weak-star convergence of measures, here on the com-

pact space Sn−1. Actually, as considered in the above references and pointed
out by the referee, a much stronger result holds when considering the prim-
itive integral vectors on a sphere with appropriate large radius (instead of
in a ball with large radius). This will be the case also in this paper, though
the ultrametric properties makes this restriction to spheres much easier to
handle, and without restrictions on the radius. A connection between the
two motivations is that when n = 2, an integral vector (a, b) is primitive if
and only if there exists an integral vector (x, y) with |ax + by| = 1.

The goal of this paper is to address analogous questions in local fields
with positive characteristic. In this introduction, we describe our results in
the special following case.

Let Fq be a finite field of order a positive power q of some positive
prime, and let K = Fq(Y ) be the field of rational functions in one variable
Y over Fq. Let R = Fq[Y ] be the ring of polynomials in Y over Fq, let
pK = Fq((Y −1)) be the non-Archimedean local field of formal Laurent series
in Y −1 over Fq and let O = Fq[[Y −1]] be the local ring of pK (consisting
of formal power series in Y −1 over Fq). We denote by | · | the complete
non-Archimedean absolute value on pK such that |P | = qdeg P for every
P ∈ R.
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We endow pK with its Haar measure µ
pK

standardly normalized so that
µ

pK
(O) = 1, and the quotient pK/R with the induced measure µ

pK/R
and

the quotient distance. We also endow the plane pK 2 with the product mea-
sure and with the supremum norm. We denote by S1

∞ the (compact-open)
unit sphere of pK 2, that we equip with the restriction µS1

∞
of the product

measure.
Given v = (a, b) ∈ pK 2−{(0, 0)}, we denote by ∥v∥∞ = max{|a|, |b|} ∈ qZ

its supremum norm. We denote by zv = a if |a| ≥ |b|, and zv = b other-
wise, the component of v with maximum absolute value. We also denote by
qv =

(
a Y − logq ∥v∥∞ , b Y − logq ∥v∥∞

)
the vector v canonically renormalised to

be in the unit sphere S1
∞, of which we think as the direction of v.

We let R2
prim denote the set of elements v = (a, b) in the standard

R-lattice R 2 of the plane pK 2 that are primitive, that is, satisfy aR+bR = R.
Let wv = (−y′, x′) be such that (x′, y′) is a solution to the gcd equation
ax + by = 1 of v, with unknown (x, y) ∈ R 2. We could for instance take
the shortest one, that is, the one with the smallest supremum norm (see
Section 5 for the existence and uniqueness). We then think of wv as a nor-
malized “rotated” version of v (or generating the “orthogonal” R-lattice in
analogy with [1, 2]). What follows is actually independent of the choice of
wv.

The following result is a joint equidistribution theorem, with error term,
for the direction and renormalized gcd solution of the primitive lattice
points in the non-Archimedean plane pK 2.

Error terms in equidistribution results usually require smoothness prop-
erties on test functions. The appropriate smoothness regularity of functions
defined on totally disconnected spaces like pKN for N ∈ N is the locally con-
stant one. For every metric space E and ϵ > 0, a bounded map f : E → R
is ϵ-locally constant if it is constant on every closed ball of radius ϵ in E.
Its ϵ-locally constant norm is ∥f∥ϵ = 1

ϵ supx∈E |f(x)|.

Theorem 1.1. For the weak-star convergence of measures on the compact
space S1

∞ × ( pK/R), we have, as n → +∞,
1

q2(q − 1) q−2n
∑

v∈R2
prim : ∥v∥∞=qn

∆
qv ⊗ ∆ zwv

zv
+R

∗
⇀ µS1

∞
⊗ µ

pK/R
.

Furthermore, there exists τ ∈ ]0, 1
8 ] such that for all ϵ, δ > 0, there is

a mutiplicative error term of the form 1 + Oδ(q2n(−τ+δ) ∥f∥ϵ ∥g∥ϵ) when
evaluated on pairs (f, g) for all ϵ-locally constant maps f : S1

∞ → R and
g : pK/R → R.

The factor 1
q2(q−1) q−2n in front of the above sum is a renormalization

factor, needed in order to have a convergence to the natural finite measure
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on the right hand side (whose total mass q2−1
q3 will be computed in Sec-

tion 2.1). The constant τ is described in terms of representation-theoretic
data for the locally compact group SL2( pK), but it is not explicit, as it
relies in particular on a nonexplicit spectral constant (see the proof of The-
orem 4.1).

We will actually prove a more general version of this result, when K is
replaced by any (global) function field in one variable over a finite field and
when congruence properties are added, see Theorem 4.5. See also Corol-
lary 4.6 for a counting corollary of primitive lattice points.

We begin in Subsection 2.1 by recalling basic facts about functions fields
over finite fields. In Subsection 2.2, we define the various closed subgroups
of the totally disconnected locally compact group SL2( pK) which will be
useful in order to transfer arithmetic information on lattice points in the
plane to group-theoretic information. We will also discuss the properties
of their Haar measures. In Section 3, we give a precise correspondence be-
tween primitive lattice points and elements in the Nagao–Weyl modular
group SL2(Fq[Y ]). We adapt in Section 4 the results of Gorodnik–Nevo [16]
(building on works of [11, 14]) on counting lattice points in well-rounded
subsets of semi-simple Lie groups, and check that a family of nice compact-
open subsets coming from a mixture of the LU and Iwasawa decompositions
of SL2( pK) is indeed well-rounded. Finally, in Section 5, we give an applica-
tion to the distribution properties of the continued fraction expansions of
elements in Fq(Y ), thus giving an analogue to the result of Dinaburg–Sinai
in [7] described in the beginning of this introduction.

2. Background on function fields and their modular groups

2.1. Global function fields. We refer for instance to [17, 25] and [5,
Chap. 14] for the content of this Section.

Let Fq be a finite field of order q, where q is a positive power of a positive
prime. Let K be a (global) function field over Fq, that is, the function
field of a geometrically connected smooth projective curve C over Fq, or
equivalently an extension of Fq of transcendance degree 1, in which Fq is
algebraically closed. We denote by g the genus of the curve C.

There is a bijection between the set of closed points of C and the set
of (normalised discrete) valuations ω of its function field K, where the
valuation of a given element f ∈ K is the order of the zero or the opposite
of the order of the pole of f at the given closed point. We fix such a valuation
ω from now on.

We denote by Kω the completion of K for the valuation ω, and by

Oω = {x ∈ Kω : ω(x) ≥ 0}
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the valuation ring of (the unique extension to Kω) of ω. Let us fix a uni-
formiser πω ∈ Kω of ω, that is, an element in Kω with ω(πω) = 1. We
denote by qω the order of the residual field Oω/πωOω of ω, which is a (pos-
sibly proper) power of q. We normalize the absolute value associated with
ω as usual: for every x ∈ Kω, we have the equality

|x |ω = (qω)−ω(x) .

Finally, let Rω denote the affine algebra of the affine curve C − {ω},
consisting of the elements of K whose only poles (if any) are at the closed
point ω of C. Its field of fractions is equal to K.

The case in the introduction corresponds to C = P1 (so that g = 0) and
ω = ω∞ the valuation associated with the point at infinity [1 : 0]. Then

• K = Fq(Y ) is the field of rational functions in one variable Y
over Fq,

• ω∞ is the valuation defined, for all P, Q ∈ Fq[Y ], by

ω∞(P/Q) = deg Q − deg P .

• Rω∞ = Fq[Y ] is the (principal) ring of polynomials in one variable
Y over Fq,

• Kω∞ = Fq((Y −1)) is the field of formal Laurent series in one variable
Y −1 over Fq,

• Oω∞ = Fq[[Y −1]] is the ring of formal power series in one variable
Y −1 over Fq, πω∞ = Y −1 is the usual choice of a uniformizer, and
qω∞ = q.

Recall (see for instance [28, II.2, Notations]) that Rω is a Dedekind ring,
not principal in general. We have (see for instance [5, Eq. (14.2)]) that

(2.1) Rω ∩ Oω = Fq .

Lemma 2.1. For all elements a, b, c, d ∈ Rω − Fq such that ad − bc = 1
and |a |ω ≥ |b |ω, we have |c |ω ≥ |d |ω.

Proof. The equality ad − bc = 1 implies that ω(ad − bc) = 0. We have
ω(ad) < 0 and ω(bc) < 0 since the only elements of Rω which have nonneg-
ative valuations are the elements in the ground field Fq by Equation (2.1).
Therefore ω(ad) = ω(bc) and

ω(c) − ω(d) = ω(a) − ω(b) .

The left hand side is nonpositive, since the right hand side is. This proves
the result. □
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The (absolute) norm of a nonzero ideal I of the ring Rω is defined by
N(I) = [Rω : I] = |Rω/I|. Dedekind’s zeta function of K is (see for in-
stance [17, §7.8] or [25, §5])

ζK(s) =
∑

I

1
N(I)s

where the summation runs over the nonzero ideals I of Rω. By (for instance)
[25, §5], it is a rational function of q−s with simple poles at s = 0, s = 1.
In particular, when K = Fq(Y ), then (see [25, Thm. 5.9] with g = 0)

(2.2) ζFq(Y )(−1) = 1
(q − 1)(q2 − 1) .

We denote by
R2

ω,prim = {(a, b) ∈ Rω
2 : aRω + bRω = Rω}

the set of primitive elements in the lattice Rω
2 in the plane Kω

2. Note that
since Rω is not always principal, not every point of Rω

2 is an Rω-multiple
of an element of R2

ω,prim.
For every v ∈ Kω

2 − {(0, 0)}, we write v = (xv, yv), and define

(2.3) zv =
{

xv if |xv|ω ≥ |yv|ω
yv if |xv|ω < |yv|ω

and z′
v =

{
yv if |xv|ω ≥ |yv|ω
xv if |xv|ω < |yv|ω ,

as well as

(2.4) ∥v∥ω = max{|xv|ω, |yv|ω}, v⊥ = (yv, −xv) and qv = π
logqω

(∥v∥ω)
ω v.

We denote the unit sphere in the plane Kω
2 endowed with the supremum

norm ∥ · ∥ω by
S1

ω = {v ∈ Kω
2 : ∥v∥ω = 1} .

Note that v⊥ has the same norm as v and belongs to R2
ω,prim if v does,

and that S1
ω = { qv : v ∈ Kω

2 − {(0, 0)} }. We think of qv as the direction
(or renormalisation) of v, it is a preferred element in the intersection of the
unit sphere S1

ω with the vector line defined by v.
We denote by ∥µ∥ the total mass of any finite measure µ. We denote by

µKω the Haar measure of the (abelian) locally compact topological group
(Kω, +), normalised so that µKω (Oω) = 1. This measure scales as follows
under multiplication: for all λ, x ∈ Kω, we have
(2.5) dµKω (λx) = |λ|ω dµKω (x) .

We denote by µKω/Rω
the induced Haar measure on the compact additive

topological group Kω/Rω. Using the above scaling for the first equation
and [5, Lem. 14.4] for the second one, for every m ∈ N, we have the equality

(2.6) µKω (πm
ω Oω) = q−m

ω and ∥µKω/Rω
∥ = qg−1 .
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We endow Kω
2 with the product µKω ⊗ µKω of the Haar measures on

each factor. Note that the unit ball of Kω
2 is Oω

2, so that for every k ∈ Z,
the measure of any ball in Kω

2 of radius qk
ω, which is of the form v+π−k

ω Oω
2

for some v ∈ Kω
2, is equal to q2k

ω .
We denote by µS1

ω
the restriction to the compact-open subset S1

ω of Kω
2

of the product measure. Since

(2.7) µKω (O×
ω ) = µKω (Oω − πωOω) = 1 − q−1

ω

by Equation (2.6), and since S1
ω = (O×

ω × Oω) ∪ (Oω × O×
ω ), the total mass

of µS1
ω

is

(2.8) ∥µS1
ω
∥ = (1 − q−1

ω ) + (1 − q−1
ω ) − (1 − q−1

ω )2 = q2
ω − 1
q2

ω

.

2.2. The modular group. The aim of this section is to introduce the
various closed subgroups of the special linear group of the plane Kω

2 that
will be useful in order to transfer arithmetic information concerning lattice
points in Rω

2 into group-theoretic information. We will also discuss the
properties of their Haar measures.

Let G = SL2(Kω), which is a totally disconnected locally compact topo-
logical group. The modular group Γ = SL2(Rω) is a non-uniform lattice in
G. When C = P1 and ω = ω∞ as in the introduction, then up to finite
index, it is called Nagao’s lattice (see [22, 30]). For every nonzero ideal I of
Rω, we denote by Γ0[I] the Hecke congruence subgroup of Γ modulo I:

Γ0[I] =
{

( a c
b d ) ∈ Γ : b ∈ I

}
.

By [5, Lem. 16.5], the index of Γ0[I] in Γ is

(2.9)
[

Γ : Γ0[I]
]

= N(I)
∏
p|I

(
1 + 1

N(p)
)

.

where the product ranges over the prime factors p of the ideal I.
For every commutative ring S, we denote by M2(S) the S-module of

2 × 2 matrices with coefficients in S. For every closed subgroup H of G, we
denote by H(Oω) the compact-open subgroup H ∩ M2(Oω) of H, and by
µH the (left) Haar measure of H normalized so that

µH(H(Oω)) = 1 .

Note that G is unimodular. For every lattice Γ′ of G, we denote by µΓ′\G

the measure on Γ′\G induced by µG. By Exercice 2e) in [28, II.2.3] (which
normalizes the Haar measure of G so that the mass of G(Oω) is qω − 1),
the total mass of µΓ\G is

(2.10) ∥µΓ\G∥ = ζK(−1) .
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Let Z be the diagonal subgroup of G, let U− and U+ be its lower and
upper unipotent triangular subgroups, and let P − = U−Z be its lower
triangular Borel subgroup. We also consider the Cartan subgroup A ={(

πn
ω 0
0 π−n

ω

)
: n ∈ Z

}
of G, whose centralizer in G is Z.

Since A(Oω) = {id} has measure one for the measure µA with the above
normalisation, the Haar measure µA on A is exactly the counting measure:

(2.11) µA =
∑
g∈A

∆g .

The maps from Kω to U− and U+, defined by α 7→ u−(α) = ( 1 0
α 1 ) and

α 7→ u+(α) = ( 1 α
0 1 ) respectively, are homeomorphisms (and even abelian

group isomorphisms). They send Oω to U±(Oω), and the Haar measure
of (Kω, +) to the Haar measure of U±: namely, for (almost) all α ∈ Kω,
we have

(2.12) dµU±(u±(α)) = dµKω (α) .

Similarly, the map from the multiplicative group K×
ω to the diagonal group

Z, defined by α 7→
(

α 0
0 α−1

)
, is a homeomorphism (and even an abelian

group isomorphism). It sends O×
ω to Z(Oω), and the restriction to K×

ω of
the Haar measure µKω to a multiple of the Haar measure of Z: namely, for
(almost) all α ∈ K×

ω , by Equation (2.7), we have

(2.13) qω − 1
qω

dµZ

((
α 0
0 α−1

))
= dµKω (α) .

Let
S1,♯

ω =
{
v ∈ S1

ω : |xv|ω ≥ |yv|ω
}

= O×
ω × Oω ,

which is a compact-open subset of the plane Kω
2. The map from S1,♯

ω to
P −(Oω) defined by (α, β) 7→ p−(α, β) =

(
α 0
β α−1

)
is a homeomorphism.

Let us prove that it sends the restriction to S1,♯
ω of the measure µS1

ω
to

a multiple of the Haar measure of P −(Oω). First note that for (almost)
every α ∈ O×

ω and β ∈ Oω, since |α|ω = 1, the action by conjugation of(
α 0
0 α−1

)
on U−(Oω), which satisfies

(
α 0
0 α−1

)
u−(β)

(
α 0
0 α−1

)−1
= u−(α2β),

preserves the Haar measure µU−(Oω) by Equations (2.12) and (2.5). Hence
the measure dν(p−(α, β)) = dµU−(Oω)(u−(β)) dµZ(Oω)

((
α 0
0 α−1

))
is a Haar

measure on P −(Oω). Since µP −(Oω), µU−(Oω) and µZ(Oω) are probability
measures, we have (this will be extended in Lemma 2.2)

dµP −(Oω)(p−(α, β)) = dµU−(Oω)(u−(β)) dµZ(Oω)
((

α 0
0 α−1

))
.
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By Equations (2.12) and (2.13), we thus have, for (almost) every α ∈ O×
ω

and β ∈ Oω

(2.14)
dµP −(Oω)(p−(α, β)) = qω

qω − 1 dµKω (α) dµKω (β)

= qω

qω − 1 dµS1
ω
(α, β) .

We will need the following refined LU decomposition of elements of the
special linear group G. Let g =

(
α γ
β δ

)
∈ G with α ̸= 0. Then there are

unique elements u±
g ∈ U±, mg ∈ Z(Oω) and ag ∈ A such that

g = u−
g mg ag u+

g .

Indeed, the existence of such a decomposition follows by taking

(2.15)
u−

g =
(

1 0
β
α 1

)
, u+

g =
(

1 γ
α

0 1

)
,

mg =
(

απ
−ω(α)
ω 0
0 α−1π

ω(α)
ω

)
, ag =

(
π

ω(α)
ω 0
0 π

−ω(α)
ω

)
.

In order to prove the uniqueness of this decomposition, if g = u− m a u+

where u± ∈ U±, m ∈ Z(Oω) and a ∈ A is another such writing, then the
equality

(u−)−1 u−
g = m a u+(mg ag u+

g )−1

between a unipotent lower triangular matrix and an upper triangular matrix
implies that u− = u−

g and that (m a)−1 mg ag = u+( u+
g )−1. This last

equality between a diagonal matrix and a unipotent upper triangular matrix
gives u+ = u+

g and m a = mg ag, which in turn give m = mg and a = ag

since A ∩ Z(Oω) = {id}. We also consider

(2.16) pg = u−
g mg =

(
απ

−ω(α)
ω 0

βπ
−ω(α)
ω α−1π

ω(α)
ω

)
∈ P − .

Note that if ω(α) ≤ ω(β), or equivalently if |α |ω ≥ |β |ω, then we have
pg ∈ P −(Oω) = U−(Oω)Z(Oω), so that pg belongs to the maximal compact
subgroup G(Oω) of G. In particular, the writing g = pg ag u+

g is an Iwasawa
decomposition of g.

We conclude this section by providing the expression for the Haar mea-
sure of G in the refined LU decomposition. The composition map from the
product U− × Z(Oω) × A × U+ to G is an homeomorphism onto an open-
dense subset with full Haar measure in G, and the following result says
that the Haar measure of G is absolutely continuous with respect to the
product of the Haar measures of the factors. The main point of its proof is
to compute the Radon–Nikodym derivative. We denote by χ : Z → K×

ω the
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standard character
(

α−1 0
0 α

)
7→ α. It is well known (by the standard action

of a split torus on its root groups) that for all z ∈ Z and α ∈ Kω, we have

(2.17) z u−(α) z−1 = u−( χ(z)2 α) and z−1 u+(α) z = u+( χ(z)2 α) .

Lemma 2.2. For µG-almost every g ∈ G, we have

dµG(g) = qω

qω + 1 |χ(ag)| −2
ω dµU−(u−

g ) dµZ(Oω)(mg) dµA(ag) dµU+(u+
g ) .

Proof. By [20, §III.1], since G and U+ are unimodular, there exists a con-
stant c1 > 0 such that dµG(p−u+) = c1 dµP −(p−) dµU+(u+) for (almost)
every p− ∈ P − and u+ ∈ U+, using the product map P − × U+ → G. Note
that U− is unimodular and that Z normalizes U− as made precise in Equa-
tion (2.17). Hence there exists a constant c2 > 0 such that, for (almost)
every u− ∈ U− and z ∈ Z, we have

|χ(z)| −2
ω dµU−(u−) dµZ(z) = c2 dµP −(u−z) .

This indeed follows by uniqueness from the fact that the left hand side
defines a left Haar measure on P − using the product map (u−, z) 7→ u−z
from U− × Z to P − (which is an homeomorphism), by Equations (2.5)
and (2.12). Since Z = Z(Oω)A with A and Z(Oω) abelian and commuting,
this proves that there exists a constant c3 > 0 such that

(2.18) dµG(g) = c3 |χ(ag)| −2
ω dµU−(u−

g ) dµZ(Oω)(mg) dµA(ag) dµU+(u+
g ) .

In order to compute the constant c3, we evaluate the measures on both
sides on the compact-open subgroup

H =
{(

α γ
β δ

)
∈ G(Oω) : α, δ ∈ 1 + πωOω, β, γ ∈ πωOω

}
.

This group, being the kernel of the reduction modulo πωOω, has index
|SL2(Fqω )| = qω(q2

ω − 1) in G(Oω). Since µG(G(Oω)) = 1, the group H
has Haar measure µG(H) = 1

qω(q2
ω−1) . By Equation (2.15), the refined LU

decomposition identifies H with the product space HU− × HZ × HU+ in
U− × Z × U+, where

HU− =
{(

1 0
β 1

)
: β ∈ πωOω

}
, HZ =

{(
α 0
0 α−1

)
: α ∈ 1 + πωOω

}
,

HU+ =
{(

1 γ
0 1

)
: γ ∈ πωOω

}
.

These groups have index respectively qω,
∣∣O×

ω /(1+πωOω)
∣∣ = |F×

qω
| = qω −1

and qω in U−(Oω), Z(Oω) and U+(Oω). Hence the measure of H for the
measure on the right hand side of Equation (2.18) is equal to c3

q2
ω(qω−1) . This

implies that c3 = qω

qω+1 , as wanted. □
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3. Primitive lattice points seen in the modular group

Recalling the relevant notation from Subsection 2.1, let K be a function
field over Fq, let ω be a (normalized discrete) valuation of K, let Kω be
the associated completion of K, and let Rω be the affine function ring
associated with ω. The aim of this section is to naturally associate elements
in the modular group Γ = SL2(Rω) to primitive lattice points in Rω

2.
We start by introducing subsets of the plane Kω

2 and of the group G =
SL2(Kω) which will be technically useful. Let

G♯ =
{(

α γ
β δ

)
∈ G : |α |ω ≥ |β |ω

}
and Γ♯ = Γ ∩ G♯ ,

K2,♯
ω =

{
(a, b) ∈ Kω

2 : |a |ω ≥ |b |ω
}

and R2,♯
ω,prim = R2

ω,prim ∩ K2,♯
ω .

We identify any element v = (x, y) ∈ Kω
2 with the column matrix v = ( x

y )
of its components, and thus write 2 × 2 matrices of elements of Kω as 1 × 2
matrices of elements of Kω

2. For all measurable subsets Θ of S1
ω and D ′ of

Kω, and for every n ∈ Z, let

P −
Θ =

{ (
v′ w′) ∈ P −(Oω) : v′ ∈ Θ

}
,

An =
{(

π−n
ω 0
0 πn

ω

)}
⊂ A,

U+
D ′ =

{(
1 γ
0 1

)
∈ U+ : γ ∈ D ′

}
.

By Lemma 2.2 and the various explicitations of Haar measures in Equa-
tions (2.14), (2.11) and (2.12), we have

µG(P −
Θ AnU+

D ′) = qω

qω + 1
qω

qω − 1 µS1
ω
(Θ)

(
|πn

ω|ω−2)µKω (D ′)

= q2n+2
ω

q2
ω − 1 µS1

ω
(Θ) µKω (D ′) .(3.1)

The following result gives a precise 1-to-1 correspondence between prim-
itive lattice points in R2,♯

ω,prim and appropriate matrices in the modular
group Γ.

Proposition 3.1. Let D be a fixed (strict) fundamental domain for the
lattice Rω acting by translations on Kω. There exists a unique bijection
from R2,♯

ω,prim to Γ♯ ∩ (P − U+
D ) of the form v 7→ γv =

(
v wv

)
(where wv

will be defined in the following proof) such that for every n in Z, for all
measurable subsets Θ of S1

ω and D ′ of D , and for every nonzero ideal I of
Rω, the following two assertions are equivalent:

(1) the lattice point v satisfies ∥v∥ω = qn
ω, yv ∈ I, qv ∈ Θ and xwv

xv
∈ D ′,

(2) the modular matrix γv belongs to the Hecke congruence subgroup
Γ0[I] and satisfies γv ∈ P −

Θ An U+
D ′.
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Proof. Let v = (a, b) ∈ R2,♯
ω,prim. In particular a ̸= 0 and ∥v∥ω = |a |ω. Let

us define
Sola,b = {(x, y) ∈ Rω

2 : ax + by = 1} ,

which is the set of solutions in Rω
2 to the equation ax + by = 1.

Given w0 = (x0, y0) ∈ Sola,b, we claim that

Sola,b = {w0 + λ v⊥ : λ ∈ Rω} ,

where w 7→ w⊥ is defined in Section 2.1. Indeed, we clearly have
{w0 + λ v⊥ : λ ∈ Rω} ⊂ Sola,b .

Conversely, let (x, y) ∈ Sola,b be a solution different from (x0, y0). We have
a(x − x0) = b(y0 − y). We may assume that b ̸= 0, since otherwise a ∈ R×

ω

and v⊥ = (0, −a) so that the result is clear. Then x ̸= x0 and y ̸= y0,
so that the nonzero principal ideal (a), being coprime with the principal
ideal (b) in the Dedekind ring Rω, divides the principal ideal generated by
y0 − y, and y − y0 is a multiple of −a, which implies that x − x0 is the same
multiple of b.

Let wv be the unique element of Rω
2 such that (wv)⊥ is the unique

element of Sola,b with xwv
a ∈ D . As xwv = − y(wv)⊥ , this is possible since,

by the above, the subset of Kω consisting of the elements −y
a , where y

varies over the second components of elements of Sola,b, is exactly one orbit
by translation under Rω (without repetition).

Let us define γv =
(
v wv

)
=
(

a xwv
b ywv

)
. We have γv ∈ Γ since (wv)⊥

belongs to Sola,b so that det γv = 1. Furthermore, we have γv ∈ Γ♯ since
v ∈ R2,♯

ω,prim. Let g = γv. By Equation (2.16), the first column of pg is
(aπ

−ω(a)
ω , bπ

−ω(a)
ω ) = π

logqω
|a|ω

ω v = qv, so that pg ∈ P −
Θ if and only if qv ∈ Θ.

Since ∥v∥ω = |a |ω = q
−ω(a)
ω and by Equation (2.15), we have ag ∈ An if

and only if ∥v∥ω = qn
ω. Again by Equation (2.15), we have u+

g ∈ U+
D ′ if and

only if xwv
xv

= xwv
a ∈ D ′.

The map v 7→ γv from R2,♯
ω,prim to Γ♯ is clearly injective. Its image is

Γ♯ ∩ (P − U+
D ), since if

(
v w

)
∈ Γ♯ ∩ (P − U+

D ) and v = (a, b), then v belongs
to R2,♯

ω,prim and w⊥ is an element of Sola,b such that by Equation (2.15)
we have −y

w⊥
a = xw

a ∈ D , hence w = wv by uniqueness. We clearly have
yv = b ∈ I if and only if γv ∈ Γ0[I]. This proves the result. □

4. Joint equidistribution of primitive lattice points

The aim of this section is to prove the main result of this paper, The-
orem 4.5, establishing the effective joint equidistribution of directions and
renormalized solutions to the associated gcd equations for primitive lattice
points, generalizing Theorem 1.1 in the introduction to any function field.
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The main tool for this result is an adaptation of two theorems of Gorod-
nik and Nevo [16], that we now state, after the necessary definitions.

Let G′ be an absolutely connected and simply connected semi-simple
algebraic group over Kω, which is almost Kω-simple. Let G′ = G′(Kω) be
the locally compact group of Kω-points of G′. Let Γ′ be a non-uniform1

lattice in G′, and let µG′ be any (left) Haar measure of G′. Note that G′ = G
and Γ′ = Γ0[I] satisfy these assumptions for every nonzero ideal I of Rω.

Let ρ > 0. Let (V ′
ϵ )ϵ>0 be a fundamental system of neighborhoods of the

identity in G′, which
• is symmetric (that is, x ∈ V ′

ϵ if and only if x−1 ∈ V ′
ϵ ),

• is nondecreasing with ϵ (that is, V ′
ϵ ⊂ V ′

ϵ′ if ϵ ≤ ϵ′), and
• has upper local dimension ρ, that is, there exist m1, ϵ1 > 0 such

that µG′(V ′
ϵ ) ≥ m1 ϵρ for every ϵ ∈ ]0, ϵ1[ .

Let C ≥ 0. Let (Bn)n∈N be a family of measurable subsets of G′. We define

(Bn)+ϵ = V ′
ϵ BnV ′

ϵ =
⋃

g,h∈V ′
ϵ

gBnh and (Bn)−ϵ =
⋂

g,h∈V ′
ϵ

gBnh .

The family (Bn)n∈N is C-Lipschitz well-rounded with respect to (V ′
ϵ )ϵ>0 if

there exists ϵ0 > 0 and n0 ∈ N such that for all ϵ ∈ ]0, ϵ0[ and n ≥ n0, we
have

µG′((Bn)+ϵ) ≤ (1 + C ϵ) µG′((Bn)−ϵ) .

Theorem 4.1. For every ρ > 0, there exists τ(Γ′) ∈ ]0, 1
2(1+ρ) ] such that

for every C ≥ 0, for every symmetric nondecreasing fundamental system
(V ′

ϵ )ϵ>0 of neighborhoods of the identity in G′ with upper local dimension
ρ, for every family (Bn)n∈N of measurable subsets of G′ that is C-Lipschitz
well-rounded with respect to (V ′

ϵ )ϵ>0, and for every δ > 0, we have that, as
n → +∞,∣∣∣∣∣Card(Bn ∩ Γ′) − 1

∥µΓ′\G′∥
µG′(Bn)

∣∣∣∣∣ = O
(
µG′(Bn)1−τ(Γ′)+δ) ,

where the function O( · ) depends only on G′, Γ′, δ, C, (V ′
ϵ )ϵ>0, ρ.

Proof. The proof is a simple adaptation of a particular case of results of
Gorodnik–Nevo [16], which are phrased for algebraic number fields and not
for function fields.

By the assumptions on G′ and Γ′, and by [3, Thm. 2.8], the regular
representation π0 of G′ on L2

0(G′/Γ′) has a spectral gap. By [6] (see [3,
Thm. 2.7]), since π0 has a spectral gap, there exists p ≥ 2 such that π0

is strongly Lp (called Lp+ in [16, Def. 3.1]). We do not know what is the
smallest such p. As in [16, Eq. (3.1)], let ne(p) = 1 if p = 2 and otherwise
let ne(p) = ⌈p

2⌉ ∈ N− {0, 1}. Since π0 is strongly Lp, by [16, Thm. 4.5], for

1This implies that G′ is isotropic over Kω , as part of the assumptions of [16].
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every measurable subset B of G′ with finite and positive Haar measure, if
β = 1

µG′ (B) (µG′)|B and π0(β) is the operator on L2
0(G′/Γ′) defined by

π0(β)f(x) = 1
µG′(B)

∫
B

f(g−1x) dµG′(g)

for all f ∈ L2
0(G′/Γ′) and almost all x ∈ G′/Γ′, then we have that, for every

η > 0,
∥π0(β)∥ = OG′,Γ′,η

(
(µG′(B))− 1

2 ne(p) +η)
.

Actually, Theorem 4.5 of [16] is stated in characteristic zero. But its
proof has two ingredients, a spectral transfer principle, which is valid for
any locally compact second countable group by [6, Thm. 1], and a Kunze–
Stein phenomenon, which is valid even in positive characteristic by [29,
Thm. 1].

Now, by [16, Thm. 1.9] where a = 1, which is valid for any locally
compact second countable group, and whose assumptions we just verified,
we have∣∣∣∣∣Card(Bn ∩ Γ′)

µG′(Bn) − 1
∥µΓ′\G′∥

∣∣∣∣∣ = OG′,Γ′,C,ρ,(V ′
ϵ )ϵ>0

(
µG′(Bn)(− 1

2 ne(p) +η)( 1
ρ+1 )

)
.

Theorem 4.1 follows with τ(Γ′) = 1
2 ne(p)(ρ+1) . □

The main result that will allow us to use Theorem 4.1 is the following
proposition. We will use, as a fundamental system of neighborhoods of the
identity element in G, a family of compact-open subgroups of G(Oω) given
by the kernels of the morphisms of reduction modulo πn

ωOω for n ∈ N. For
every ϵ > 0, let Nϵ =

⌊
− logqω

ϵ
⌋

so that Nϵ ≥ 1 if and only if ϵ ≤ 1
qω

. Let
Vϵ = G(Oω) if ϵ > 1

qω
and otherwise let

Vϵ = ker(G(Oω) → G(Oω/πNϵ
ω Oω))

=
{(

1+πNϵ
ω α πNϵ

ω γ

πNϵ
ω β 1+πNϵ

ω δ

)
∈ G(Oω) : α, β, γ, δ ∈ Oω

}
.

The family (Vϵ)ϵ>0 is indeed nondecreasing and we have
⋂

ϵ>0 Vϵ = {id}.
Note that for all ϵ1, . . . , ϵk > 0, we have

min{Nϵ1 , . . . , Nϵk
} ≥ min{− logqω

ϵ1, . . . , − logqω
ϵk} − 1

≥ − logqω
(ϵ1 + · · · + ϵk) − 1 ≥ Nqω(ϵ1+···+ϵk) ,

hence
(4.1) Vϵ1Vϵ2 . . . Vϵk

⊂ Vqω(ϵ1+···+ϵk) .

Proposition 4.2. For all metric balls Θ in S1
ω and D ′ in Kω with radius

less than 1, the family
(
P −

Θ An U+
D ′
)

n∈N is 0-Lipschitz well-rounded with
respect to (Vϵ)ϵ>0.
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Proof. We will actually prove (as allowed by the ultrametric situation) the
stronger statement that given Θ and D ′ as above, if ϵ is small enough, then
for every n ∈ N, we have(

P −
Θ An U+

D ′
)−ϵ = P −

Θ An U+
D ′ =

(
P −

Θ An U+
D ′
)+ϵ

.

We start the proof by some elementary linear algebra considerations.
For every subgroup H of G, let V H

ϵ = Vϵ ∩ H. We endow M2(Kω) with its
supremum norm ∥ · ∥ω defined, for every element X ∈ M2(Kω) − {0}, by
∥X∥ω = max{|Xi,j |ω : 1 ≤ i, j ≤ 2} ∈ qZω . The unit ball of ∥ · ∥ω is M2(Oω).
We denote the operator norm of a linear operator ℓ of M2(Kω) by

∥ℓ∥ω = max
{∥ℓ(X)∥ω

∥X∥ω
: X ∈ M2(Kω) − {0}

}
∈ qZω ∪ {0} ,

so that ℓ(M2(Oω)) ⊂ M2(π− logqω
∥ℓ∥ω

ω Oω). For every g ∈ G, recall that Ad g
is the linear automorphism x 7→ gxg−1 of M2(Kω).

Lemma 4.3. For all ϵ > 0 and g ∈ G, we have

g Vϵ g−1 ⊂ Vϵ ∥Ad g ∥ω
, Vϵ = V P −

ϵ V U+
ϵ and V P −

ϵ = V U−
ϵ V Z

ϵ .

Furthermore, we have µG(Vϵ) ≥ q 2
ω

q 2
ω −1 ϵ3 for every ϵ > 0 small enough, so

that ρ = 3 is an upper local dimension of the family (Vϵ)ϵ>0.

Proof. Let I2 be the identity element in G. The first claim follows from the
fact that

g Vϵ g−1 = I2 + πNϵ
ω gM2(Oω)g−1

⊂ I2 + π
Nϵ−logqω

∥Ad g∥ω
ω M2(Oω) = Vϵ ∥Ad g ∥ω

.

The second and third claims follow from the fact that by Equations (2.15)
and (2.16), if g ∈ Vϵ then ag = I2, u±

g ∈ V U±
ϵ and mg ∈ V Z

ϵ .
Let us now apply Lemma 2.2 and the decomposition Vϵ = V U−

ϵ V Z
ϵ V U+

ϵ :

µG(Vϵ) = qω

qω + 1 µU−(V U−
ϵ ) µZ(Oω)(V Z

ϵ ) µU+(V U+
ϵ ) .

By Equation (2.12) applied twice, by the left part of Equation (2.6), and
since Nϵ = ⌊− logqω

ϵ ⌋, we have that for ϵ ≤ 1
qω

,

µG(Vϵ) = qω

qω + 1 µKω (πNϵ
ω Oω)

∣∣O×
ω /(1 + πNϵ

ω Oω)
∣∣−1

µKω (πNϵ
ω Oω)

= qω

qω + 1
1

(qω − 1) qNϵ−1
ω

q−2 Nϵ
ω ≥ q 2

ω

q 2
ω − 1 ϵ3 .

This proves the final claim of Lemma 4.3. □

The main ingredient in the proof of Proposition 4.2 is the following ef-
fective refined LU decomposition.
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Lemma 4.4. With c : G → ]0, +∞[ the continuous function defined by
h 7→ ∥Ad h ∥ω, for every g ∈ G with |χ(ag)|ω ≤ 1, we have

Vϵ g Vϵ ⊂ p−
g V P −

qω(c(p−
g )+c(u+

g ))ϵ ag V U+

qω(c(p−
g )+2c(u+

g ))ϵ u
+
g .

Proof. In order to simplify notation, let a = ag, p = p−
g and u = u+

g , so that
g = p a u. For every h ∈ G, let ch = ∥Ad h ∥ω. In the following sequence of
equalities and inclusions, we use

• the first claim of Lemma 4.3, for the first inclusion,
• the second claim of Lemma 4.3, for the second equality,
• the fact that

aV P −
cuϵ = aV U−

cuϵ V Z
cuϵ ⊂ V U−

cuϵ aV Z
cuϵ = V P −

cuϵ a ⊂ Vcuϵ a

by the third claim of Lemma 4.3, by the left hand side of Equa-
tion (2.17) with χ(a) ∈ Oω and since a and Z commute, for the
second inclusion,

• the facts that Vcuϵ is a normal subgroup of G(Oω) and that the
inclusion V U+

cpϵ ⊂ G(Oω) holds, for the third equality,
• again the second claim of Lemma 4.3, and the right hand side of

Equation (2.17) with χ(a) ∈ Oω, for the last inclusion.
We thus have

Vϵ g Vϵ = p p−1Vϵ p a uVϵ u
−1u ⊂ pVcpϵ aVcuϵ u

= pV P −
cpϵ V U+

cpϵ aV P −
cuϵ V U+

cuϵ u ⊂ pV P −
cpϵ V U+

cpϵ Vcuϵ aV U+
cuϵ u

= pV P −
cpϵ Vcuϵ V U+

cpϵ aV U+
cuϵ u ⊂ pV P −

cpϵ V P −
cuϵ aV U+

cuϵ V U+
cpϵ V U+

cuϵ u .

Lemma 4.4 now follows from Equation (4.1). □

Now, in order to prove Proposition 4.2, we write Θ = v0 + πm
ω Oω

2 and
D ′ = x0 + πm′

ω Oω, for some m, m′ ∈ N − {0}, x0 ∈ Kω and v0 ∈ S1
ω. Let

c = max
{
qω(c(p) + 2c(u)) : p ∈ P −

Θ , u ∈ U+
D ′
}

,

which is finite since P −
Θ and U+

D ′ are compact. Let ϵ0 = 1
c q−m′−m

ω > 0, so
that we have Ncϵ > max{m, m′} ≥ 1 if ϵ < ϵ0.

Let us fix ϵ ∈ ]0, ϵ0[. We claim that

(4.2) P −
Θ V P −

cϵ = P −
Θ and V U+

cϵ U+
D ′ = U+

D ′ .

Indeed, the inclusion of the right hand sides into the left hand sides of these
equalities are immediate. If p ∈ P −

Θ and p′ ∈ V P −
cϵ , we may write

p =
(

xv0 + πm
ω α 0

yv0 + πm
ω β (xv0 + πm

ω α)−1

)

and p′ =
(

1 + πNcϵ
ω α′ 0

πNcϵ
ω β′ (1 + πNcϵ

ω α′)−1

)
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for some α, β, α′, β′ ∈ Oω, so that

p p′ =
(

xv0 + πm
ω α + πNcϵ

ω α′′ 0
yv0 + πm

ω β + πNcϵ
ω β′′ (xv0 + πm

ω α + πNcϵ
ω α′′)−1

)
for some α′′, β′′ ∈ Oω (since xv0 , yv0 ∈ Oω). The first claim of Equation (4.2)
then follows from the fact that Ncϵ > m. The inclusion V U+

cϵ U+
D ′ ⊂ U+

D ′

follows from a similar and even easier computation.
Now for every n ∈ N, we have by Lemma 4.4 and Equation (4.2) that(
P −

Θ An U+
D ′
)+ϵ = Vϵ P −

Θ An U+
D ′Vϵ ⊂ P −

Θ V P −
cϵ An V U+

cϵ U+
D ′ = P −

Θ An U+
D ′ .

Since the converse inclusion is immediate, we have(
P −

Θ An U+
D ′
)+ϵ = P −

Θ An U+
D ′ .

Since Vϵ is symmetric, this implies that g P −
Θ An U+

D ′ h ⊃ P −
Θ An U+

D ′ for all
g, h ∈ Vϵ so that

(
P −

Θ An U+
D ′
)−ϵ ⊃ P −

Θ An U+
D ′ . Since the converse inclusion

is immediate, this concludes the proof of Proposition 4.2. □

The main result of this paper is the following one. Recall that zv, z′
v and

qv for v in Kω
2 − {(0, 0)} have been defined in Equations (2.3) and (2.4).

If v = (a, b) ∈ R2
ω,prim, we denote by wv any element of R2

ω,prim such that
(wv)⊥ = (x, y) is a solution to the equation ax + by = 1. As seen in the
proof of Proposition 3.1 if |a |ω ≥ |b |ω, and by symmetry otherwise, the
class zwv

zv
+Rω of zwv

zv
in the quotient Kω/Rω does not depend on the choice

of wv. For every nonzero ideal I of Rω, let

(4.3) cI =
(q 2

ω − 1) ζK(−1) N(I)
∏

p|I
(
1 + 1

N(p)
)

q2
ω

Theorem 4.5. For every nonzero ideal I of Rω, for the weak-star conver-
gence on the compact space S1

ω × (Kω/Rω), we have, as n → +∞,

cI q−2n
ω

∑
v∈R2

ω,prim : ∥v∥ω=qn
ω , z′

v∈I

∆
qv ⊗ ∆ zwv

zv
+Rω

∗
⇀ µS1

ω
⊗ µKω/Rω

.

Furthermore, there exists τ ∈ ]0, 1
8 ] such that for all ϵ, δ > 0, there is

a multiplicative error term in the above equidistribution claim of the form
1+Oω,δ,I

(
q

2n(−τ+δ)
ω ∥f∥ϵ ∥g∥ϵ

)
when evaluated on (f, g) for all ϵ-locally con-

stant maps f : S1
ω → R and g : Kω/Rω → R:

cI q−2n
ω

∑
v∈R2

ω,prim : ∥v∥ω=qn
ω , z′

v∈I

f( qv ) g
(zwv

zv
+ Rω

)

=
(∫

S1
ω

f dµS1
ω

)(∫
Kω/Rω

g dµKω/Rω

)(
1 + Oω,δ,I

(
q2n(−τ+δ)

ω ∥f∥ϵ ∥g∥ϵ
))

.
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When C = P1, ω = ω∞ and I = Rω∞ , we recover Theorem 1.1 in the
introduction by using Equations (4.3), (2.9) and (2.2), as well as the fact
that qω = q. Note that up to changing the constant cI , the same result
holds when v ranges over the elements in R2

ω,prim with ∥v∥ω ≤ qn
ω rather

than ∥v∥ω = qn
ω and z′

v ∈ I. But as said in the introduction, ranging on
spheres rather than balls gives much stronger result, in fit adequation with
the number theoretic results on Linnik’s problem. Also note that in the
statement of Theorem 4.5, the measures µS1

ω
and µKω/Rω

are not normalized
to be probability measures, see Equations (2.8) and (2.6) if a normalization
is useful, as for instance in Corollary 4.6.

Given a nonzero (possibly nonprincipal) ideal J of Rω, an effective joint
equidistribution result similar to the one of Theorem 4.5 is possible when
the elements v = (a, b) ∈ Rω

2 are not assumed to be primitive, but instead
to satisfy the property that a and b generate the ideal J .

Proof. Let I be a nonzero ideal of Rω. Let τ = τ(Γ0[I]) ∈ ]0, 1
8 ] be as in

Theorem 4.1 applied with G′ = G and Γ′ = Γ0[I], and with (V ′
ϵ )ϵ>0 =

(Vϵ)ϵ>0 which has upper local dimension ρ = 3 according to the final claim
of Lemma 4.3.

Let δ ∈ ]0, τ ]. Fix a compact-open strict fundamental domain D for
the action by translations of Rω on Kω, such that for all x0 ∈ D and
m′ ∈ N−{0}, we have B(x0, q−m′

ω ) = x0+πm′
ω Oω ⊂ D . This is possible since

Rω ∩ πωOω = {0} by Equation (2.1). Note that for all v0 ∈ S1
ω (respectively

v0 ∈ S1,♯
ω ) and m ∈ N− {0}, the ball B(v0, q−m

ω ) = v0 + πm
ω Oω

2 is contained
in S1

ω (respectively S1,♯
ω ).

Let us prove that for all m, m′ ∈ N − {0}, x0 ∈ D and v0 ∈ S1
ω, if

Θ = v0 + πm
ω Oω

2 and D ′ = x0 + πm′
ω Oω, then, as n → +∞

(4.4) Card
{

v ∈ R2
ω,prim : ∥v∥ω = qn

ω, z′
v ∈ I, qv ∈ Θ,

zwv

zv
∈ D ′

}
= 1

cI
q2n

ω µS1
ω
(Θ) µKω (D ′)

(
1 + Oω,δ,I

(
q2n(−τ+δ)

ω qm+m′
ω

))
.

Since the characteristic functions 1Θ and 1D ′ of Θ and D ′ are respectively
q−m

ω - and q−m′
ω -locally constant, and by a finite additivity argument, this

proves Theorem 4.5.
We first claim that in order to prove the counting result of elements

in R2
ω,prim stated in Equation (4.4), we only have to prove an analogous

counting result of elements in R2,♯
ω,prim, namely that for all m, m′ ∈ N− {0},

for all x0 ∈ D and v0 ∈ S1,♯
ω , if Θ = v0 + πm

ω Oω
2 and D ′ = x0 + πm′

ω Oω,
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then, as n → +∞

(4.5) Card
{

v ∈ R2,♯
ω,prim : ∥v∥ω = qn

ω, yv ∈ I, qv ∈ Θ,
xwv

xv
∈ D ′

}
= 1

cI
q2n

ω µS1
ω
(Θ) µKω (D ′)

(
1 + Oω,δ,I

(
q2n(−τ+δ)

ω qm+m′
ω

))
.

Indeed, by Lemma 2.1 and Equation (2.3), since det
(
v wv

)
= 1, we have

zwv
zv

= xwv
xv

when v belongs to R2,♯
ω,prim except finitely many of them. The

involutive linear map ι = ( 0 1
1 0 ) of exchange of coordinates

• preserves the subsets R2
ω,prim and S1

ω of the plane Kω
2,

• sends the compact-open set S1
ω − S1,♯

ω into S1,♯
ω ,

• sends an element v in R2
ω,prim−R2,♯

ω,prim to the element ι(v) in R2,♯
ω,prim

such that z′
v = zι(v) = yι(v) and zwv

zv
=

xwι(v)
xι(v)

again by Lemma 2.1
and Equation (2.3), and

• sends v0 + πm
ω Oω

2 to ι(v0) + πm
ω Oω

2.
Hence Equation (4.4) follows from Equation (4.5).

Now according to Proposition 4.2, the family
(
P −

Θ An U+
D ′
)

n∈N is 0-Lip-
schitz well-rounded in G with respect to (Vϵ)ϵ>0. Note that

Γ ∩ (P −
Θ An U+

D ′) = Γ♯ ∩ (P −
Θ An U+

D ′)

since Θ is contained in S1,♯
ω and by Equation (2.16). In the following se-

quence of equalities, we use respectively
• Proposition 3.1,
• Theorem 4.1 applied with G′ = G, Γ′ = Γ0[I] and (Bn)n∈N =

(P −
Θ An U+

D ′)n∈N,
• Equation (3.1),
• the fact that Θ is a metric ball of radius q−m

ω in the plane Kω
2 and

D ′ a metric ball of radius q−m′
ω in the line Kω.

We thus have

Card
{

v ∈ R2,♯
ω,prim : ∥v∥ω = qn

ω, yv ∈ I, qv ∈ Θ,
xwv

xv
∈ D ′

}
= Card

(
Γ0[I] ∩ (P −

Θ An U+
D ′)
)

=
µG(P −

Θ An U+
D ′)

∥µΓ0[I]\G∥
+ Oω,δ,I

((
µG(P −

Θ An U+
D ′)
)1−τ+δ)

= q2n+2
ω

(q 2
ω −1)∥µΓ0[I]\G∥

µS1
ω
(Θ) µKω (D ′)+Oω,δ,I

((
q2n

ω µS1
ω
(Θ) µKω (D ′)

)1−τ+δ)
= q2n+2

ω

(q 2
ω −1)∥µΓ0[I]\G∥

µS1
ω
(Θ)µKω(D ′)

(
1+Oω,δ,I

(
q2n(−τ+δ)

ω q2m(τ−δ)
ω qm′(τ−δ)

ω

))
.
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Since by Equations (2.10) and (2.9) we have

∥µΓ0[I]\G∥ = ∥µΓ\G∥ [ Γ : Γ0[I] ] = ζK(−1) N(I)
∏
p|I

(
1 + 1

N(p)

)

and since τ ≤ 1
8 (so that 2m(τ − δ) ≤ m and m′(τ − δ) ≤ m′ ), this proves

Equation (4.5) and completes the proof of Theorem 4.5. □

We conclude this section by stating a counting result, which follows from
the equidistribution claim of Theorem 4.5 by integrating on the pairs of
constant functions with value 1 on S1

ω and on Kω/Rω, and by using Equa-
tions (2.8) and (2.6).

Corollary 4.6. There exists τ ∈ ]0, 1
8 ] such that for every δ > 0, we have

Card
{

v ∈ R2
ω,prim : ∥v∥ω = qn

ω, z′
v ∈ I

}
= qg−1

ζK(−1) N(I)
∏

p|I
(
1 + 1

N(p)
) q2n

ω + Oδ,I

(
q2n(1−τ+δ)

ω

)
.

5. Application to the distribution of continued fraction
expansions

In this section, we assume that C = P1 and ω = ω∞, so that the notation
in Section 2.1 coincides with the notation of the introduction: K = Fq(Y ),
Rω∞ = R = Fq[Y ], Kω∞ = pK = Fq((Y −1)), Oω∞ = O = Fq[[Y −1]] and
| · |ω∞ = | · |.

Let us recall elementary facts on the continued fraction expansions in pK,
similar to the ones in R, see for instance the surveys [21, 27], and [23] for
a geometric interpretation. Any element f ∈ pK may be uniquely written
f = [f ] + {f} with [f ] ∈ R (called the integral part of f) and {f} ∈ Y −1O
(called the fractional part of f). The Artin map Ψ : Y −1O −{0} → Y −1O is
defined by f 7→

{ 1
f

}
. Any f ∈ K − R has a unique finite continued fraction

expansion

f = a0 +
1

a1 +
1

a2 +
1

· · · +
1
an

,

with a0 = [f ] ∈ R and ai =
[ 1

Ψi−1(f−a0)
]

a nonconstant polynomial for
1 ≤ i ≤ n (called the coefficients of the continued fraction expansion of f),
where n ∈ N − {0} is such that Ψn(f − a0) = 0.
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Two finite sequences of polynomials (Pi)−1≤i≤n and (Qi)−1≤i≤n in R are
defined inductively as follows

P−1 = 1 P0 = a0, Pi = Pi−1ai + Pi−2

Q−1 = 0 Q0 = 1, Qi = Qi−1ai + Qi−2

for 1 ≤ i ≤ n. The elements Pi/Qi for 0 ≤ i ≤ n − 1 are called the
convergents of f , and Pn/Qn = f . The convergents have the following
characterisation (see for instance [27, p. 140]): for all P, Q ∈ R such that
deg Q < deg Qn

(5.1) if |f − P/Q| <
1

|Q|2
then P/Q is a convergent.

For 0 ≤ i ≤ n − 1, we have

(5.2)
∣∣∣∣f − Pi

Qi

∣∣∣∣ = 1
|Qi| |Qi+1|

by for instance [27, Eq. (1.12)]), and

(5.3) Qi+1Pi − Pi+1Qi = (−1)i+1 .

Since deg ai ≥ 1 if i ≥ 1, we have deg Qi > deg Qi−1 for 1 ≤ i ≤ n. If
f ∈ Y −1O, then a0 = 0 and Pi/Qi ∈ Y −1O, or equivalently |Pi| < |Qi|, for
1 ≤ i ≤ n.

The following result relates the shortest solutions to an equation of the
form ax + by = 1 with the continued fraction expansion of a/b.

Lemma 5.1. Let a, b ∈ R − {0} be two coprime polynomials such that
a/b ∈ Y −1O. Let (Pi/Qi)0≤i≤n be the sequence of convergents of a/b.
Then there exists a unique λ ∈ F×

q such that (a, b) = (λ Pn, λ Qn), and
(−(−1)nλ−1 Qn−1, (−1)nλ−1 Pn−1) is the unique shortest solution to the
equation ax + by = 1.

Note that this result implies that for all a, b ∈ R − {0}, the equation
ax+ by = 1 has one and only one shortest solution, up to exchanging a and
b if |a| > |b| and to replacing (a, b) by (a − λ′b, b) for the unique λ′ ∈ F×

q

such that deg(a − λ′b) < deg b if |a| = |b|.

Proof. We may assume that a /∈ F×
q , otherwise the result is immediate with

λ = a since a0 = 0, a1 = a−1b, n = 1, P0 = 0, Q0 = 1, P1 = 1 and
Q1 = a−1b.

Since Pn and Qn are coprime polynomials by Equation (5.3) and since
Pn/Qn = a/b, there exists λ ∈ F×

q such that a = λPn and b = λQn. Let
ã = a

(−1)nλ and b̃ = b
(−1)nλ . Let Sol̃

a,̃b
= {(x, y) ∈ R2 : ã x + b̃ y = 1}.

We have ã = (−1)nPn and b̃ = (−1)nQn. Again by Equation (5.3), this
implies that (−Qn−1, Pn−1) ∈ Sol̃

a,̃b
.
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Let (x̃0, ỹ0) be another element of Sol̃
a,̃b

. Since we have | ã | < | b̃ |, it
follows from Lemma 2.1 that |x̃0| ≥ |ỹ0|, so that ∥(x̃0, ỹ0)∥∞ = |x̃0|. We
have ∥(−Qn−1, Pn−1)∥∞ = |Qn−1| since Pn−1/Qn−1 ∈ Y −1O. In order to
prove that (−Qn−1, Pn−1) is the unique shortest element of Sol̃

a,̃b
, let us

assume that |x̃0| ≤ |Qn−1|, and prove that (x̃0, ỹ0) = (−Qn−1, Pn−1).
Since |x̃0| ≤ |Qn−1| < |Qn|, we have∣∣∣∣ ỹ0

−x̃0
− Pn

Qn

∣∣∣∣ = 1
|x̃0| |Qn|

<
1

| − x̃0|2
.

Hence by Equation (5.1), ỹ0
−x̃0

is a convergent of Pn
Qn

, that is, there exists

i ∈ {0, . . . , n − 1} such that ỹ0
−x̃0

= Pi
Qi

. This implies in particular that there
exists λ′ ∈ F×

q such that (ỹ0, −x̃0) = (λ′Pi, λ′Qi). Using Equation (5.2) for
the last equality, we have

1
|Qi| |Qn|

= 1
|x̃0| |Qn|

=
∣∣∣∣ ỹ0
−x̃0

− Pn

Qn

∣∣∣∣ =
∣∣∣∣Pi

Qi
− Pn

Qn

∣∣∣∣ = 1
|Qi| |Qi+1|

.

Since |Qi+1| < |Qn| if i < n − 1, this implies that i = n − 1. Since (x̃0, ỹ0)
belongs to Sol̃

a,̃b
and by Equation (5.3), we have λ′ = 1. Hence (ỹ0, −x̃0) =

(Pn−1, Qn−1) as wanted.
Since the pair (x0, y0) is a solution to the equation ax+by = 1 if and only

if the pair ((−1)nλ x0, (−1)nλ y0) is a solution to the equation ã x+ b̃ y = 1,
the result follows. □

The following result is an analogue in the field of formal Laurent series
to the main result of [7] in the real field. It gives an application of Theo-
rem 1.1 to the distribution properties of the continued fraction expansions
of elements of K. For every v = (a, b) ∈ R2

prim, we denote by
( Pi(v)

Qi(v)
)

−1≤i≤nv

the sequence of convergents of a
b and by λv ∈ F×

q the unique element such
that v = (λvPnv (v), λvQnv (v)). We denote by µY −1O the Haar measure of
the compact additive group Y −1O, normalized to be a probability measure.

Corollary 5.2. Let P∗ =
∏k

i=1 πi be a nonzero polynomial in the Euclidean

ring R, with prime factors π1, . . . , πk. Let cP∗ =
q1+deg P∗

∏k

i=1

(
1− 1

qdeg πi

)
(q−1)2 .

For the weak-star convergence of measures on Y −1O, we have, as n → +∞,

cP∗ q−2n
∑

v=(P, Q)∈R2
prim : deg P < deg Q = n, P∗ |P

∆ (−1)nv Qnv−1(v)
λ2

vQnv (v)

∗
⇀ µY −1O .

Furthermore, there exists τ ∈ ]0, 1
8 ] such that for all ϵ, δ > 0, there is a

mutiplicative error term in the above equidistribution claim of the form
1 + Oδ, P∗(q2n(−τ+δ) ∥g∥ϵ) when evaluated on g for every ϵ-locally constant
map g : Y −1O → R.
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Proof. The result follows by applying the joint equidistribution Theorem 4.5

with C = P1, ω = ω∞ and I = P∗R (so that cI =
qdeg P∗

∏k

i=1

(
1− 1

qdeg πi

)
q2(q−1) by

Equations (4.3) and (2.2)) to the characteristic function of the set

S1
∞ − S1,♯

∞ = {(x, y) ∈ pK 2 : |x| < |y| = 1}
on the left factor, using the following remarks.

• Let v = (a, b) ∈ R2
prim be such that |a| < |b| (or equivalently such

that qv ∈ S1
∞ −S1,♯

∞ ), and let (Pi/Qi)−1≤i≤nv be the sequence of con-
vergents of a/b. Lemma 5.1 (actually Equation (5.3) is sufficient)
says that we may take wv =(−(−1)nv λ−1

v Pnv−1, −(−1)nv λ−1
v Qnv−1).

Since |Pi| < |Qi| for 0 ≤ i ≤ nv, we have
zwv

zv
= ywv

yv
= −(−1)nv λ−1

v Qnv−1
λvQnv

= −(−1)nv Qnv−1
λ2

vQnv

.

• The map from Y −1O to pK/R defined by f 7→ f + R is a homeo-
morphism and an isomorphism of additive groups, which maps the
probability measure µY −1O to q µ

pK/R
, since µ

pK/R
has total mass 1

q

by Equation (2.6).
• The map from Y −1O to itself defined by f 7→ −f is an homeomor-

phism preserving µY −1O .
• We have µS1

∞
(S1

∞−S1,♯
∞ ) = µ

pK
⊗µ

pK
(Y −1O×O×) = 1

q (1− 1
q ) = q−1

q2 ,
so that

µS1
∞

(S1
∞ − S1,♯

∞ ) dµ
pK/R

(−f + R) = q − 1
q3 dµY −1O(f)

for (almost) every f ∈ Y −1O. □
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