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The natural extension of the Gauss map and the
Hermite best approximations

par Nicolas CHEVALLIER

Résumé. À la suite de Humbert et Lagarias, étant donnée un réel θ, nous
appelons vecteur meilleure approximation de Hermite de θ, tout vecteur non
nul à coordonnées entières qui minimise une forme quadratique f∆(x, y) =
(x − yθ)2 + y2

∆ pour au moins un réel ∆ > 0. Hermite a observé que si (p, q)
est un tel minimum avec q > 0, alors la fraction p/q doit être une réduite du
développement en fraction continue de θ. En utilisant les vecteurs minimaux
dans les réseaux, nous donnons de nouvelles preuves de certains résultats de
Humbert et Meignen et complétons leurs travaux. En particulier, nous mon-
trons que la proportion des vecteurs meilleures approximations de Hermite
parmi les réduites est presque sûrement de ln 3/ ln 4. L’outil principal des
preuves est l’extension naturelle de l’application de Gauss x ∈ ]0, 1[→ {1/x}.

Abstract. Following Humbert and Lagarias, given a real number θ, we call
a nonzero vector (p, q) ∈ Z × N a Hermite best approximation vector of θ if
it minimizes a quadratic form f∆(x, y) = (x− yθ)2 + y2

∆ for at least one real
number ∆ > 0. Hermite observed that if (p, q) is such a minimum with q > 0,
then the fraction p/q must be a convergent of the continued fraction expansion
of θ. Using minimal vectors in lattices, we give new proofs of some results of
Humbert and Meignen and complete their works. In particular, we show that
the proportion of Hermite best approximation vectors among convergents is
almost surely ln 3/ ln 4. The main tool of the proofs is the natural extension
of the Gauss map x ∈ ]0, 1[→ {1/x}.

1. Introduction
In 1850, Hermite observed that the fractions p∆

q∆
associated with the

minima (p∆, q∆) ∈ Z× N \ {0} of the quadratic forms

f∆(p, q) = (p− qθ)2 + q2

∆ , ∆ > 0,

are all convergents of the continued fraction expansion of the real number
θ (see [5, p. 295]). We shall say that a pair (p, q) ∈ Z × N is a Hermite
best approximations vector of θ if it minimizes the quadratic forms f∆
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on Z2 \ {(0, 0)} for at least one ∆ > 0. In [6], Humbert spoke rather of
“Hermite fraction” whereas “Hermite best approximation vector” was used
instead by Lagarias in [8]. Humbert observed that if (p, q) is a Hermite best
approximation vector of θ with q > 0, then

|qθ − p| ≤ 1√
3q

(this follows easily from the Gauss reduction of binary positive quadratic
forms). Therefore, some convergents of the continued fraction expansion of
θ can be skipped. In [6], Humbert addressed three issues:

• Given two consecutive Hermite fractions, find the next one,
• Recognize if a given fraction, is a Hermite fraction,
• Study the connection between the ordinary convergents of θ and
the Hermite fractions.

In [3], Grabiner and Lagarias continued and extended the work of Hum-
bert on the third issue. They studied the deep relationships between the
one-dimensional Minkowski geodesic continued fraction algorithm, the ad-
ditive and multiplicative continued fraction algorithms, and the cutting
sequences of the geodesic flow in the hyperbolic plane.

In [10], Meignen also continued and extended the work of Humbert. As
Humbert, his main tools are the action of the isometry group of the hy-
perbolic plane and the geodesic flow. It can be noticed that Meignen used
the whole isometry group, PGL(2,R), rather than the sub-group PSL(2,R)
preserving the orientation.

In this note, we shall explain how to recover two striking results of Hum-
bert and Meignen with a different starting point. We shall use minimal
vectors in two-dimensional lattices rather than the action of the isometry
group on the hyperbolic plane. We shall talk of best approximation vectors
(pn, qn) rather than convergents pn

qn
. We shall prove the following results.

Theorem 1 (Humbert 1916). Let θ be in R and let (pn, qn)n≥0 be the
sequence of best approximation vectors of θ. Then, for all n ≥ 0, one at
least of the best approximation vectors (pn, qn) and (pn+1, qn+1) is a Hermite
best approximation vector.

Theorem 2. Let θ be in R and let (pn, qn)n≥0 be the sequence of best
approximation vectors of θ. Then, for almost all θ ∈ R,

lim
n→∞

1
n

card{0≤k<n : (pk, qk) is a Hermite best approximation vector}

= ln 3
ln 4 .
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Corollary 1. Let θ be in R and let (gn, hn) be the n-th Hermite best ap-
proximation vector of θ. Then, for almost all θ ∈ R,

lim
n→∞

1
n

ln hn = π2

6 ln 3 .

Corollary 2 in Meignen’s paper [10] is very close to the above corollary.
Actually, Meignen proved that the same almost everywhere limit holds for a
set of geodesics of the hyperbolic plane in which the set of vertical geodesics
associated with the real numbers θ ∈ R, is negligible. If one add, as we did,
the standard argument using the expanding direction of the geodesic flow,
the above corollary becomes a corollary of Meignen’s result. Theorem 2 was
not stated by Meignen but can be easily deduced from the corollary and
from Levy’s theorem about the growth rate of the denominators (qn)n≥0.

Our main ingredient in the proof of Theorem 2 is the natural extension
of the Gauss map x ∈ ]0, 1[ → { 1

x} and its ergodicity. Instead, Meignen
uses the ergodicity of the geodesic flow in the modular surface together
with a cross section of the flow. In fact, another objective of this note is to
introduce the natural extension of the Gauss map starting from minimal
vectors in lattices. There are many ways to introduce the natural extension
of the Gauss map, see for instance [1, 11, 13] and, although the idea of
minimal vectors goes back to Voronoï ([15]), it seems that their use for the
natural extension of the Gauss map is not so well known, a use the author
learned from Yitwah Cheung. Recently, Yi Han, a student of Cheung, did
a senior thesis where the same approach is explained with emphasis on the
role of the diagonal flow, see [4].

The note is organized as follows. We first define minimal vectors in lat-
tices of R2 and pairs of consecutive minimal vectors in these lattices. Then,
we describe the algorithm that computes the minimal vector that immedi-
ately follows a pair of consecutive minimal vectors, this leads to the defi-
nition of the natural extension of the Gauss map. Afterward, we state and
prove all the results about the natural extension that are needed to prove
Theorem 2, even those that are well known, including Theorem 1. Among
these intermediate results, Proposition 15(b). characterizes Hermite vectors
with the natural extension. Then, we prove Theorem 2 and its corollary.
In our work, we do not emphasis on the cross section associated with the
minimal vectors, however in the last section we compare this latter cross
section to cross sections obtained with the hyperbolic plane.

The author would like to thank Yann Bugeaud for bringing the work of
Meignen to his attention.

2. Minimal vectors in lattices of R2

Notation. For a and b ≥ 0, the box B(a, b) is the set of vectors (x, y) ∈ R2

such that |x| ≤ a and |y| ≤ b. When u = (u1, u2) and v = (v1, v2) are in
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R2, the box B(u) is defined by B(u) = B(|u1|, |u2|) and the box B(u, v) is
defined by B(u, v) = B(max(|u1|, |v1|),max(|u2|, |v2|)).

Recall that a lattice Λ ⊂ R2 is a discrete additive subgroup of R2 that
generates the vector space R2. Equivalently, it is the set of vectors with
integral coordinates in a basis of the vector space R2.

Definition 2. Let Λ be a lattice in R2.
• A nonzero vector u = (u1, u2) ∈ Λ is a minimal vector in Λ if for
every nonzero v ∈ Λ, v ∈ B(u)⇒ |v1| = |u1| and |v2| = |u2|.
• Two minimal vectors u = (u1, u2) and v = (v1, v2) are consecutive
if |u2| < |v2| and there are no minimal vector w = (w1, w2) such
that |u2| < |w2| < |v2|.
• A sequence Xn = (xn, yn), n ∈ I, is a complete sequence of minimal
vectors in Λ if
– I ⊂ Z is an interval,
– for all n ∈ I, Xn is a minimal vector in Λ,
– for all n ∈ I such that n+ 1 ∈ I, |yn+1| > |yn|,
– for all minimal vectors u = (x, y), there exists n ∈ I such that
|yn| = |y|.

Example 1. When
Λθ = {(p− qθ, q) : (p, q) ∈ Z2}

where θ ∈ R, the vectors (1, 0) and (−θ′, 1) with θ′ ∈ [−1
2 ,

1
2 ] ∩ (θ + Z), are

always consecutive minimal vectors in the lattice Λθ.

Remark 1. If Xn and Xn+1 are two elements of a complete sequence of
minimal vectors in a lattice, they are consecutive minimal vectors.

Remark 2. Since lattices are discrete subsets, complete sequences of mini-
mal vectors always exist. These sequences are not unique, and depending
on whether a lattice contains non-zero vectors on the axes, they can be
finite, infinite one sided, or infinite two sided.

Lemma 3. Two minimal vectors u = (u1, u2) and v = (v1, v2) in a lattice
Λ ⊂ R2 are consecutive iff |u2| < |v2| and the only lattice point in the
interior of B(u, v) is zero.

Consider the lexicographic preorder on R2 defined by (x1, x2) ≺ (y1, y2)
iff |x2| < |y2| or |x2| = |y2| and |x1| ≤ |y1|.

Proof. Let u = (u1, u2) and v = (v1, v2) be two minimal vectors with |u2| <
|v2|. If the set

◦
B(u, v)∩Λ \ {0} is nonempty, then it is finite and there is a

w minimal for the lexicographic preorder ≺ in this set. On the one hand,
w is a minimal vector in Λ. On the other hand, |w1| < |u1| and |w2| < |v2|
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and since u is a minimal vector we have |w2| > |u2|. Hence u and v are not
consecutive.

Conversely, if u and v are not consecutive there is a minimal vector w with
|u2| < |w2| < |v2|. Since w is minimal |u1| > |w1|, hence w ∈

◦
B(u, v)∩Λ. �

Proposition 4. Let u = (u1, u2) and v = (v1, v2) be two consecutive min-
imal vectors in a lattice Λ ⊂ R2. Then the pair (u, v) is primitive, i.e.
Λ = Zu+ Zv.

Proof. We can suppose v2 > u2 ≥ 0. Since v is minimal, |u1| > |v1|. Let
w = (w1, w2) = xu + yv be in Λ with 0 ≤ x, y < 1, we want to show that
x = y = 0.

Suppose x + y ≤ 1. If x and y > 0, then w = (x + y)xu+yv
x+y is (x + y)

times a vector in the open line segment ]u, v[, thus w in the interior of the
box B(u, v) which contradicts Lemma 3. If x = 0, then w = yv and since v
is minimal, y = 0. If y = 0, then x = 0 as well.

Suppose that x+y > 1. The vector w′ = u+v−w = x′u+y′v is in Λ. Since
x′ = 1−x and y′ = 1−y are both in ]0, 1[ and since x′+y′ = 2−x−y < 1,
w′ is in the interior of the box B(u, v) which contradicts Lemma 3. �

Remark 3. This proposition is still true when one considers minimal vec-
tors in Rd = Rd−1 × R defined with the boxes B((u1, u2)) = {(x1, x2) ∈
Rd−1 × R : |x1|Rd−1 ≤ |u1|Rd−1 and |x2| ≤ |u2|} where | · |Rd−1 is any norm
on Rd−1 (see [2]). However, the proposition no longer holds when one con-
sider triples of consecutive minimal vectors rather than pairs in a lattice
in R3. One can find examples with 3 consecutive minimal vectors that are
not primitive. This was observed by Lagarias in terms of best approxima-
tion vectors (see [7]). This observation explains why a multidimensional
continued fraction algorithm cannot share all the properties of the one di-
mensional continued fraction algorithm.

2.1. Minimal vectors and Diophantine approximations.

Definition 5. Let θ be a real number. A pair (p, q) ∈ Z × N∗ is a best
approximation vector of θ if for all (a, b) ∈ Z2,{

0 < |b| < |q| ⇒ |p− qθ| < |a− bθ|
0 < |b| ≤ |q| ⇒ |p− qθ| ≤ |a− bθ|.

Proposition 6. Let θ be a real number and consider the lattice Λθ de-
fined by

Λθ = {(p− qθ, q) : (p, q) ∈ Z2}.
Then X = (p− qθ, q) ∈ Λθ is a minimal vector with q 6= 0 iff (p, q) is a best
approximation vector of θ.
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Proof. Suppose that X = (p−qθ, q) is a minimal vector with q 6= 0. If a and
b are integers with 0 < |b| < |q|, then Y = (a− bθ, b) /∈ B(X) which implies
|a − bθ| > |p − qθ|. If |b| = |q| and if |a − bθ| ≤ |p − qθ| then Y ∈ B(X)
which implies |a− bθ| = |p− qθ|.

Conversely, suppose that (p, q) is a best approximation vector of θ. For
any (a, b) ∈ Z2, Y = (a− bθ, b) ∈ B(X) implies{

|a− bθ| ≤ |p− qθ|
|b| ≤ |q|.

If b 6= 0, this in turn, implies |a− bθ| = |p−qθ| and |b| = |q| by definition of
best approximation vectors. If b = 0 and a 6= 0 then |a| ≥ 1 > 1

2 ≥ |p− qθ|,
hence Y /∈ B(X). �

3. Minimal vectors and the natural extension of the Gauss map
3.1. Definition of the natural extension. Let denote bxc the lower
integer part of the real number x and {x} = x−bxc its fractional part. Set

U = ]0, 1[2 ∪ ({0} × [0, 1
2 ]) ∪ ([0, 1

2 ]× {0}).

Proposition 7. Let Λ be a lattice in R2 and let u = (u1, u2) and v =
(v1, v2) be a pair of consecutive minimal vectors in Λ with v2 > u2 ≥ 0.

(a) If u2 > 0, then u1v1 ≤ 0. So that we can suppose that u1v1 ≤ 0 by
changing u to −u when u2 = 0 and u1v1 > 0.

(b) The first coordinate u1 cannot be zero and there exist (x, y) ∈ U
and ε ∈ {−1, 1} unique such that

u = (u1, u2) = (ε|u1|, v2y)
v = (v1, v2) = (−ε|u1|x, v2).

(c) If v1 6= 0, then, with a = b 1
xc,

w = u+ av

is the minimal vector that follows immediately v. Furthermore,

v = (ε′|v1|, w2y
′)

w = (−ε′|v1|x′, w2)

where

ε′ = −ε, w2 = v2(a+ y),

x′ = { 1
x} and y

′ = 1
a+ y

.

Remark 4. When u2 = 0, u is the first minimal vector.
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Proof. (a). Since v is minimal and v2 > u2 ≥ 0, we have |u1| > |v1|.
Therefore, if u2 > 0 and u1v1 > 0, then u − v is in the interior of the box
B(u, v) which contradicts Lemma 3.

(b). Since |u1| > |v1|, v2 > u2 ≥ 0 and u1v1 ≤ 0, there exist ε = ±1 and
x, y ∈ [0, 1[ unique such that u1 = ε|u1|, v1 = −ε|u1|x and u2 = v2y.

If x = 0, then u − v = (u1, v2(y − 1)). Therefore, |y − 1| ≥ y because u
is minimal. It implies y ≤ 1/2.

If y = 0, then u+ v = (u1(1− x), v2). Therefore, 1− x ≥ x because v is
minimal. It implies x ≤ 1/2.

It follows that (x, y) ∈ U .

(c). If v1 6= 0, then x > 0 and the vector u + av is in the strip {(x1, x2) :
|x1| < |v1|} for its first coordinate is ε|u1|x( 1

x − a) = −v1{ 1
x}. If w =

(w1, w2) ∈ Λ \ {0} with w2 ≥ 0 is minimal for the lexicographic preorder ≺
in this strip, then w is the minimal vector that immediately follows v. By
Proposition 4, Λ = Zu + Zv = Zv + Zw, hence det(u,v)(v, w) = ±1 where
det(u,v)(v, w) is the determinant of the matrix of the coordinates of the
vectors v and w in the basis (u, v). Therefore, w = ±u + nv where n ∈ Z.
Since w2 ≥ 0 and v2 > u2 ≥ 0, the integer n is > 0. Now,

|v1| > |w1| = |nv1 ± u1| = |v1|
∣∣± 1

x − n
∣∣,

hence
∣∣± 1

x − n
∣∣ < 1. Since n ≥ 1, the sign ± must be + and n must be

equal to a = b 1
xc or to a + 1. Since w2 = u2 + nv2 and since w is minimal

for the lexicographic preorder ≺, n = a. Therefore, the minimal vector that
immediately follows v is

w = u+ av.

Finally, we obtain

v = (−ε|u1|x, v2) = (ε′|v1|, w2y
′),

w = (ε|u1|x( 1
x − a), v2(y + a)) = (−ε′|v1|x′, w2)

where

ε′ = −ε, x′ = { 1
x} and y

′ = 1
a+ y

. �

Definition 8. Let Λ be a lattice in R2.
(1) Let u = (u1, u2) and v = (v1, v2) be two consecutive minimal vectors

in Λ in standard form, i.e., such that v2 > u2 ≥ 0 and u1v1 ≤ 0. The
triple (ε, x, y) ∈ {−1, 1}×U associated with (u, v) by Proposition 7
is called the intrinsic coordinates of the pair (u, v).
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(2) The map T : ]0, 1[2 ∪ (]0, 1
2 ]× {0})→ [0, 1[2 defined by

T (x, y) =
(
{ 1
x},

1
b 1
xc+ y

)
is “the natural extension” of the Gauss map.

Remark 5. Natural extensions of measure preserving maps were introduced
by Rokhlin in 1961 (see [12]). Here we shall not prove that the map T is
the natural extension of the Gauss map, i.e., the map T is a factor of
any invertible extension of the Gauss map. We shall only prove that it is
invertible and measure preserving.

3.2. Properties of the natural extension.

Lemma 9. T is one to one and
T (]0, 1[2 ∪ (]0, 1

2 ]× {0})) = ]0, 1[2 ∪ ({0} × ]0, 1
2 ]).

Furthermore, for (x′, y′) ∈ U \ ([0, 1
2 ]× {0}),

T−1(x′, y′) =
(

1
b 1
y′ c+x

′
, { 1

y′ }
)
.

Proof. If T (x, y) = (x′, y′) then 0 < y′ = 1
b 1
x c+y

< 1. With b = b 1
y′ c, we

have, b ≤ b 1
xc + y < b + 1, which implies b 1

xc = b. In turn this implies
x′ = 1

x − b and y = 1
y′ − b, and then (x, y) = ( 1

b+x′ , {
1
y′ }). Therefore, T

is one to one. Moreover, if x′ = 0, then x = 1
b and b cannot be 1 so that

y′ ≤ 1
2 . It follows that T (]0, 1[2 ∪ (]0, 1

2 ] × {0})) ⊂ ]0, 1[2 ∪ ({0} × ]0, 1
2 ]).

Conversely, it is easy to check that if (x′, y′) ∈ ]0, 1[2 ∪ ({0} × ]0, 1
2 ]) then

T ( 1
b 1
y′ c+x

′
, { 1

y′ }) = (x′, y′). �

Lemma 10 (Contraction Lemma). Let x ∈ ]0, 1[ be such that x′ = { 1
x} > 0.

Then for any y, z ∈ ]0, 1[, the four pairs (x′, y′) = T (x, y), (x′′, y′′) =
T 2(x, y), (x′, z′) = T (x, z) and (x′′, z′′) = T 2(x, z) are defined and

|z′ − y′| ≤ |z − y| and |z′′ − y′′| ≤ 1
2 |z − y|.

Proof. With a = b 1
xc and a

′ = b 1
x′ c, we have

y′ = 1
a+ y

, z′ = 1
a+ z

,

|z′ − y′| = |y − z|
|a+ z||a+ y|

≤ |z − y|,

y′′ = 1
a′ + 1

a+y
= a+ y

1 + aa′ + a′y
, z′′ = a+ z

1 + aa′ + a′z
,
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z′′ − y′′ = (1 + aa′ + a′y)(a+ z)− (1 + aa′ + a′z)(a+ y)
(1 + aa′ + a′z)(1 + aa′ + a′y) ,

|z′′ − y′′| ≤ |z − y|
(1 + aa′)2 ≤

1
2 |z − y|. �

Lemma 11. The probability µ = 1
ln 2(1+xy)2 dxdy on U is T -invariant and

ergodic.

Proof. Since T is a diffeomorphism from (]0, 1[ \ { 1
n : n ∈ N2})× ]0, 1[ onto

]0, 1[ × (]0, 1[ \ { 1
n : n ∈ N2}), it suffices to show that, ϕ ◦ T × |JacT | = ϕ

where ϕ is the density of µ, which is easy to check.
Let us show that T is ergodic. By the contraction Lemma, for all x ∈

]0, 1[ \Q and all y, z ∈ ]0, 1[,

lim
n→∞

d(Tn(x, y), Tn(x, z)) = 0.

So that, if f : [0, 1]2 → R is continuous and if for some (x, y) ∈ ]0, 1[2,
limn→+∞

1
n

∑n−1
k=0 f ◦ T k(x, y) = l(x, y), then for all z ∈ ]0, 1[,

lim
n→+∞

1
n

n−1∑
k=0

f ◦ T k(x, z) = l(x, y).

Therefore, by Birkhoff Theorem, for almost all (x, y) ∈ U , the sequence
1
n

∑n−1
k=0 f ◦ T k(x, y) converges to a limit l(x) which does not depend on y.

Since T−1 = s ◦ T ◦ s where s(u, v) = (v, u), we also have that for almost
all (x, y), the sequence

1
n

n−1∑
k=0

f ◦ T−k(x, y) = 1
n

n−1∑
k=0

f ◦ s ◦ T k(y, x)

almost everywhere converges to a limit l′(y) which does not depend on x.
Since the forward limit and the backward limit are almost surely equal,
it follows that l(x) = l′(y) for almost all (x, y). Therefore, the sequence
1
n

∑n−1
k=0 f ◦T k(x, y) converges almost everywhere to a constant which must

be the mean M(f) =
∫
U f dµ. By Lebesgue Theorem, the convergence

also holds in L1(µ). It follows that the sequence of linear maps Anf =
1
n

∑n−1
k=0 f ◦T k converges in L1(µ) on the everywhere dense set of continuous

functions to M(f). Since the sequence of linear maps (An)n is bounded for
the operator norm in L1(µ), it follows that for all f ∈ L1, Anf →M(f) in
L1(µ) which implies that T is ergodic. �

4. Hermite best approximations vectors
Recall that a shortest vector in a lattice with respect to a norm ‖ · ‖ is a

nonzero vector of the lattice whose norm is minimal.
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Definition 12. A Hermite vector in a lattice Λ ⊂ R2 is a nonzero vector w
in Λ that is a shortest vector in Λ for at least a Euclidean norm |(x1, x2)|2t =
|tx1|2 + |1tx2|2 where t is a positive real number.

A Hermite best approximation vector of θ ∈ R is a pair (p, q) ∈ Z × N
such that (p − qθ, q) is a Hermite vector in the lattice Λθ = {(p − qθ, q) :
(p, q) ∈ Z2}.

Remark 6. Observe that a vector (p, q) ∈ Z × N is a Hermite best ap-
proximation vector of θ if and only if it minimizes the quadratic form
f∆(x, y) = (x− yθ)2 + y2

∆ for some ∆ > 0.

Lemma 13. If u = (u1, u2) is a Hermite vector in a lattice Λ ⊂ R2, then
u is a minimal vector in Λ.

Proof. By definition of a Hermite vector, there exists t > 0 such that u =
(u1, u2) is a shortest vector for the norm | · |t. Since

B(u) ⊂ {v ∈ R2 : |v|t ≤ |u|t}

and
B(u) \ {v ∈ R2 : |v|t < |u|t} = {(±u1,±u2)},

u is a minimal vector in Λ. �

Lemma 14. Let u = (u1, u2) be a Hermite vector of a lattice Λ ⊂ R2. If
|u1| > 0, then

(1) there exists a Hermite vector h = (h1, h2) with |h1| < |u1|,
(2) if h is such a Hermite vector with |h2| minimal, then there exists a

positive real number t such that u and h are shortest vectors of Λ
with respect to the same norm | · |t.

Proof. (1). Since |u1| > 0, there exists at least one nonzero vector v =
(v1, v2) ∈ Λ such that |v1| < |u1|. For s > 0, large enough, |v|2s = s2|v1|2 +
1
s2 |v2|2 < s2|u1|2. Let h = (h1, h2) be a shortest vector in Λ for the norm
| · |s. Then s2|h1|2 ≤ |h|2s ≤ |v|2s < s2|u1|2.

(2). Suppose now that h = (h1, h2) is a Hermite vector with |h1| < |u1|
and |h2| minimal. Let

t = sup{s > 0 : u is a shortest vector with respect to the norm | · |s}.

By continuity, we see that u is still a shortest vector with respect to the
norm | · |t. We want to show that |u|t = |h|t. We use the following short
steps:

• If v = (v1, v2) and w = (w1, w2) are two Hermite vectors and if
|w1| < |v1| then |w2| > |v2| because w is a minimal vector. Therefore
the function s→ |v|2s − |w|2s is strictly increasing.



Titre abrégé 629

• There exists r ≥ t such that h is a shortest vector with respect
to the norm | · |r. Otherwise, there exists r < t such that h is a
shortest vector with respect to | · |r and we would have |u|t− |h|t >
|u|r − |h|r ≥ 0 and u would not be a shortest vector with respect
to | · |t.
• If v = (v1, v2) is a shortest vector of Λ with respect to | · |s for some
s > t then |v1| ≤ |u1|. Otherwise, |v|t − |u|t < |v|s − |u|s ≤ 0 and u
would not be a shortest vector with respect to | · |t.
• Since Λ is discrete, there exists a vector v = (v1, v2) and a sequence

(sn) of real numbers decreasing to t such that v is a shortest vector
with respect to the norm | · |sn for each n.
• We have |v1| 6= |u1|. Otherwise |v2| = |u2| and u would be a shortest
vector with respect to a norm | · |sn with sn > t.
• We have |v1| < |u1|, otherwise |v|t − |u|t < |v|sn − |u|sn < 0.
• If |h1| = |v1| we are done.
• If |h1| 6= |v1| then by definition of h, we have |h2| < |v2| and there-
fore |v1| < |h1|. It follows that |h|t − |v|t ≤ |h|r − |v|r ≤ 0 and
therefore |h|t ≤ |v|t = |u|t. �

Theorem 1 is a particular case of (a) in the next proposition.

Proposition 15. Let Λ be a lattice in R2 and let u = (u1, u2) and v =
(v1, v2) be a pair of consecutive minimal vectors in standard form in Λ.
Let (ε, x, y) ∈ {−1, 1}×U be the intrinsic coordinates of (u, v) (see Defini-
tion 8).

(a) One at least of the two vectors u and v is a Hermite vector (Theo-
rem 1).

(b) u is a Hermite vector and v is not a Hermite vector iff

x >
2y + 1
y + 2 .

Furthermore, if this inequality holds then v and v+u are consecutive
minimal vectors.

Proof. Step1. Let us show that if u is a Hermite vector and v is not a
Hermite vector then w = u + v is a Hermite vector and is the minimal
vector that follows v. We proceed by contradiction and suppose that w is
not a Hermite vector.

Call h = (h1, h2) the Hermite vector with |h1| < |u1| and h2 non negative
and minimal. By Lemma 14, the Hermite vector h exists and there exists
a t > 0 such that u and h are shortest vectors of Λ for the same norm | · |t.
Since v is not a Hermite vector, v is not a shortest vector of Λ for the norm
| · |t, hence

t2|u|2t = t4u2
1 + u2

2 = t2|h|2t = t4h2
1 + h2

2 < t2|v|2t = t4v2
1 + v2

2.
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It follows that t4 = h2
2−u

2
2

u2
1−h

2
1
and that t4(u2

1 − v2
1) + u2

2 − v2
2 < 0, hence

∆ = (h2
2 − u2

2)(u2
1 − v2

1) + (u2
1 − h2

1)(u2
2 − v2

2) < 0.

Let us show that |v1| ≤ 1
2 |u1| is not possible. Set a =

⌊
|u1|
|v1|

⌋
. On the

one hand, by Proposition 7, v and u + av are the two minimal vectors
that follows u, on the other hand, h is a minimal vector that follows u and
(|h1|, |h2|) 6= (|v1|, |v2|), hence h = u+av or h is after u+av. In both cases,
h2 ≥ u2 + av2. If a ≥ 2, we have

∆ ≥ (4v2
2 + 4v2u2)3

4u
2
1 + u2

1(u2
2 − v2

2)
= 2u2

1v
2
2 + 3u2

1u2v2 + u2
1u

2
2

≥ u2
1(2v2

2 − 3
2(v2

2 + u2
2) + u2

2) > 0,

a contradiction. It follows that |v1| > 1
2 |u1| and a = 1.

Since a = 1, w = u+v = (w1, w2) is a minimal vector and h 6= w because
we have assumed that w is not a Hermite vector. Now, w = (w1, w2) where
|w1| = |u1| − |v1| and w2 = u2 + v2, hence

h2 ≥ w2 + v2 = 2v2 + u2.

We have |w|t > |u|t, hence

∆′ = t2(|u|2t − |w|2t ) < 0.

But

(u2
1 − h2

1)∆′ = (h2
2 − u2

2)(u2
1 − w2

1) + (u2
1 − h2

1)(u2
2 − w2

2)
≥ (4v2

2 + 4v2u2)(2|u1||v1| − v2
1) + u2

1(−2u2v2 − v2
2)

≥ (4v2
2 + 4v2u2)|u1||v1|+ u2

1(−2u2v2 − v2
2)

≥ (4v2
2 + 4v2u2)1

2u
2
1 + u2

1(−2u2v2 − v2
2)

≥ 0

a contradiction. Hence w is Hermite vector and by Proposition 7, w is the
minimal vector that follows v.

Step 2. For every minimal vector u = (u1, u2) with u2 > 0, there exists
a Hermite vector z = (z1, z2) with 0 ≤ z2 < u2. Indeed, if Λ contains a
nonzero vector whose second coordinate vanishes, just take z = (z1, 0) with
0 ≤ z1 minimal. z is a Hermite vector with respect to | · |t when t > 0 is small
enough. Otherwise there is a vector x = (x1, x2) ∈ Λ with 0 < x2 < u2.
One can find s > 0 such that

1
s2u

2
2 > |x|2s.
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A shortest vector z = (z1, z2) associated with such a s, is by definition a
Hermite vector and we have 0 < |z2| < u2 because 1

s2 |z2|2 ≤ |z|2s ≤ |x|2s <
1
s2 |u2|2.

Step 3. Let us show (a). If u2 = 0 then u is a Hermite vector. If u2 > 0,
by Step 2, there exists a Hermite vector z = (z1, z2) with 0 ≤ z2 < u2.
There exists a complete sequence of minimal vectors (Xn = (an, bn))n∈I in
Λ such that (|z1|, |z2|) = (|an1 |, |bn1 |) and (|u1|, |u2|) = (|an2 |, |bn2 |) with
n1 < n2 ∈ I. Let us show by induction that for all n ≥ n1 such that
n+ 1 ∈ I, Xn or Xn+1 is a Hermite vector. If n = n1 it holds because z is
a Hermite vector. If Xn is not a Hermite vector, by induction hypothesis,
Xn−1 is a Hermite vector. By 1, Xn−1 +Xn is a Hermite vector and is the
minimal vector that follows Xn. Therefore, Xn+1 is a Hermite vector. It
follows that Xn2 or Xn2+1 is a Hermite vector which proves (a).

Step 4. Let u and v be two consecutive minimal vectors. With r = |u1|, q =
v2 > 0 by definition of the intrinsic coordinate, u = (εr, qy) and v =
(−εrx, q). Suppose that u is a Hermite vector and v is not. Let w = u+ v.
By 1, there exists t > 0 such that

|u|t = |w|t < |v|t.
As in Step 1, this implies

t4 = q2((1 + y)2 − y2)
r2(1− (1− x)2) ,

t4r2(1− x2) + q2(y2 − 1) < 0,
thus

((1 + y)2 − y2)
(1− (1− x)2) (1− x2) + (y2 − 1) < 0.

which is equivalent to
(2y + y2)x2 + 2(1− y2)x− (2y + 1) > 0

Solving in x, the discriminant is (1−y2)2 +(2y+y2)(2y+1) = (1+y+y2)2,
thus we obtain

x >
2y + 1
y + 2 or x < −1

y

and since x ≥ 0, x > 2y+1
y+2 .

Step 5. Conversely if the inequality x > 2y+1
y+2 holds then with the value

t4 = q2((1+y)2−y2)
r2(1−(1−x)2) , we obtain

|u|t = |w = u+ v|t < |v|t
which implies that v is not a Hermite vector. Actually, if s > t then |w|s <
|v|s and if s < t then |u|s < |v|s.
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Step 6. It remains to show that if

x >
2y + 1
y + 2 ,

then u is a Hermite vector. Since v is not a Hermite vector this follows
from (a). �

5. Proportion and growth rate of Hermite best approximations

Lemma 16. Let V = {(x, y) ∈ U : x > 2y+1
y+2 }. Then∫ ∫

V

1
(1 + xy)2 dxdy = ln 2− 1

2 ln 3

Proof. The lemma follows from the two standard calculations:∫ 1

2y+1
y+2

1
(1 + xy)2 dx =

[
−1
y

1
1 + xy

]1

2y+1
y+2

= 1− y
2(1 + y)(1 + y + y2)

and ∫ 1− y
2(1 + y)(1 + y + y2)dy = ln(1 + y)− 1

2 ln(1 + y + y2). �

Lemma 17. Let Λ be a lattice in R2 and let Xn = (rn, qn), n ∈ I ⊂ Z, be
a complete sequence of minimal vectors with qn ≥ 0 for all n. Suppose that
0, 1 ∈ I and let (ε, x, y) be the intrinsic coordinates of the pair (X0, X1).
Then, for all n ∈ I such that n+ 1 ∈ I, Xn+1 is not a Hermite vector of Λ
iff Tn(x, y) ∈ V .

Proof. By Proposition 7, for all n ∈ I such that n + 1 ∈ I, the intrinsic
coordinates of (Xn, Xn+1) are

εn = (−1)nε, (xn, yn) = Tn(x, y).
If Xn+1 is not a Hermite vector, Xn is a Hermite vector by Proposi-
tion 15(a), and therefore (xn, yn) ∈ V by (b). Conversely, if (xn, yn) ∈ V
then Xn+1 is not a Hermite vector again by Proposition 15(b). �

Proof of Theorem 2. Let θ be in R. The first two minimal vectors of Λθ are
X0 = ±(1, 0) andX1 = (−θ′, 1) where θ′ = θ−[θ] and [θ] is the integer near-
est to θ. The intrinsic coordinates of these two consecutive minimal vectors
are (ε, x, 0) = (sgn θ′, |θ′|, 0). So that, thanks to the previous Lemma, it is
enough to prove that

lim
n→∞

1
n

n∑
k=0

1V ◦ T k(x, 0) = 1− ln 3
2 ln 2
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for almost all x ∈ [0, 1
2 ]. By Birkhoff Theorem applied to the natural ex-

tension of the Gauss map and to the indicator function 1V , we know that
for almost all (x, y) ∈ U ,

lim
n→∞

1
n

n∑
k=0

1V ◦ T k(x, y) = 1− ln 3
2 ln 2 .

The problem is that the limit holds for almost all (x, y) and not for almost
all x. The method to overcome this problem is standard, we have just to
use that T does not increase the distance along the y direction (contraction
Lemma).

Suppose on the contrary that there exist a > 0 and a measurable set
S ⊂ [0, 1

2 ] of positive measure such that for all x ∈ S

lim sup
n→∞

1
n

n∑
k=0

1V (T k(x, 0)) ≥ 1− ln 3
2 ln 2 + a

or

lim inf
n→∞

1
n

n∑
k=0

1V (T k(x, 0)) ≤ 1− ln 3
2 ln 2 − a.

We deal with the first case, the second is similar. Let t be positive real
number and let

Vt = {(x, y) ∈ U : ∃ (x, y′) ∈ V, |y − y′| ≤ t}.
We can choose t small enough so that µ(Vt) < µ(V )+ a

2 . By the contraction
Lemma, for all (x, y) ∈ S × [0, t] and all integers n ≥ 0,

Tn(x, 0)− Tn(x, y) = (0, zn)
with |zn| ≤ t. It follows that for all n and all (x, y) ∈ S × [0, t],

lim sup
n→∞

1
n

n∑
k=0

1Vt(T k(x, y)) ≥ lim sup
n→∞

1
n

n∑
k=0

1V (T k(x, 0))

≥ µ(V ) + a

≥ µ(Vt) + a

2 ,

Which contradicts Birkhoff Theorem used with the function 1Vt . �

Proof of Corollary 1. Let (gn − hnθ, hn)n≥0 be the sequence of Hermite
vectors in Λθ and Xn(θ) = (pn − qnθ, qn), n ≥ 0, be the complete sequence
of minimal vectors of Λθ. We can suppose that the qn and hn are ≥ 0.
By Lemma 13, the sequence (hn)n≥0 is a sub-sequence of the sequence
(qn)n≥0. Therefore, there exists an increasing sequence (nk)k≥0 such that
for all k ≥ 0, hk = qnk

. By definition,
{0 ≤ n < 1 + nk : Xk(θ) is a Hermite vector} = {n0, . . . , nk},



634 Nicolas Chevallier

and by Theorem 2, for almost all θ,

lim
k→∞

k + 1
1 + nk

= ln 3
2 ln 2 ,

so that by Levy’s Theorem ([9]),
1

k + 1 ln hk = 1
k + 1 ln qnk

= nk
k + 1 ×

1
nk

ln qnk

−→ 2 ln 2
ln 3 ×

π2

12 ln 2 = π2

6 ln 3
when k goes to infinity. �

6. Minimal vectors, cross sections and the hyperbolic plane
Thanks to Proposition 7, there is an algorithm that associates to a pair of

consecutive minimal vectors (u, v) in a lattice Λ ⊂ R2, the minimal vector
w that follows v. With the intrinsic coordinates, the map (u, v) → (v, w)
is given by the natural extension T of the Gauss map and a sign (see
Proposition 7). We can think of this map another way. For each pair of
consecutive minimal vectors u = (u1, u2), v = (v1, v2), since |u1| > |v1| and
|v2| > |u2|, the diagonal matrix

gt =
(
et 0
0 e−t

)
, with t = 1

2 ln |v2|
|u1|

,

is such that |ugt|∞ = |vgt|∞ where |(x, y)|∞ = max(|x|, |y|). This brings the
lattice Λ in the cross section S of the diagonal flow in SL(2,Z)\SL(2,R)
defined by Λ ∈ S iff there exist two vectors u = (u1, u2) and v = (v1, v2) in
Λ such that

• |u2| and |v1| < r = |u1| = |v2| and
• ±u and ±v are the only nonzero vectors in Λ that are in the closed
ball B∞(0, r) associated with the sup norm.

Observe that the vectors u and v in the definition of S are consecutive
minimal vectors. Now we can replace the previous map (u, v) → (v, w)
by the first return map of the flow (gt)t∈R in the cross section S. The
ergodicity of the natural extension T of the Gauss map can be deduced
from the ergodicity of the diagonal flow in the space of unimodular lattices.

Many authors used a first return map defined on the quotient of the unit
tangent bundle of the hyperbolic plane PSL(2,Z)\T1H (see [3, 14]). Iden-
tifying the space of unimodular lattices with the quotient PSL(2,Z)\T1H,
the diagonal flow becomes the geodesic flow. Meignen used the action of
the whole isometry group instead of just PSL(2,R). To be precise, on the
one hand, T1H can be identified with SL±(2,R)/{diag(±1,±1)} and on the
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other hand, the quotient of the space of unimodular lattices by the symme-
tries with respect to the two axes can be identified with PGL(2,Z)\T1H.
Now the geodesic flow in the space of unimodular lattices can be view as a
billiard in a well-chosen fundamental domain for the action of PGL(2,Z).
Meignen used a hyperbolic triangle with one vertex at infinity as fundamen-
tal domain. The trajectories of the billiard are piecewise geodesics with the
usual laws of reflection along the sides of the triangle. So that the geodesics
in the modular surface become billiard trajectories. Then the ergodicity of
the geodesic flow and a cross section allowed Meignen to prove his version
of Corollary 1.

The common characteristic of the methods based on the hyperbolic plane
is to use the geodesic flow on a quotient of T1H and the first return map
on a cross section whose projection in the corresponding quotient of H, is
a finite union of geodesic segments. For instance, the cross section used by
Meignen projects on the bounded side of the hyperbolic triangle.

We want to point out that the projection in H of the cross section S
defined with the minimal vectors, has non empty interior. Indeed, thanks
to Proposition 7, it is easy to see that the projection of S contains all the
complex numbers

z = i+ εy

−εxi+ 1 with (x, y) ∈ ]0, 1[2, ε = ±1.

Thus, the cross section S, when seen in the hyperbolic plane, is not of
the usual type, i.e., the projection of S is not a finite union of geodesic
segments.
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