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Enumerating D4 quartics and a Galois group bias
over function fields

par Daniel KELIHER

Résumé. Nous donnons une formule asymptotique pour le nombre d’exten-
sions quartiques du type D4 et de discriminant donné d’un corps de fonctions
en démontrant un résultat analogue à celui de Cohen, Diaz y Diaz et Oli-
vier pour les corps de nombres mais avec un meilleur terme d’erreur. Nous
étudions aussi la densité relative des extensions quartiques des types D4 et
S4 d’un corps de fonctions. Nous montrons que sous des hypothèses faibles,
le nombre d’extensions quartiques du type D4 peut largement dépasser le
nombre d’extensions quartiques du type S4.

Abstract. We give an asymptotic formula for the number of D4 quartic ex-
tensions of a function field with discriminant equal to some bound, essentially
reproducing the analogous result over number fields due Cohen, Diaz y Diaz,
and Olivier, but with a stronger error term. We also study the relative density
of D4 and S4 quartic extensions of a function field and show that with mild
conditions, the number of D4 quartic extensions can far exceed the number
of S4 quartic extensions.

1. Introduction
If F is a number field, the number of D4 and S4 quartic extensions of F

with bounded discriminant is understood by work of Cohen, Diaz y Diaz,
and Olivier [2], and of Bhargava, Shankar and Wang [1], respectively. In
recent work, Friedrichsen and the author [3] study the relative sizes of these
quantities and prove that 100% of quadratic number fields have arbitrarily
many more D4 quartic than S4 quartic extensions.

In this note we seek to recover the results of [3] but over function fields.
The result of Bhargava, Shankar, and Wang counting S4 quartic extensions
still applies in the function field setting. For counting D4 extensions, the
work of Cohen, Diaz y Diaz, and Olivier, while expected to generalize, has
hitherto been stated only for number fields.

Manuscrit reçu le 30 septembre 2020, accepté le 1er avril 2022.
Mathematics Subject Classification. 11R45, 11R11, 11R16, 11R58.
Mots-clefs. Field counting, function fields, Galois theory, polynomials.
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As such, our first task is to enumerate D4 quartic extensions of function
fields. Throughout, let F be a function field with constants Fq of charac-
teristic not 2, and let NF

d (G; q2n) be the number of degree d extensions of
F with Galois closure G over F and discriminant equal to q2n.1

Theorem 1.1. Let F be a function field with constants Fq of characteristic
not 2 and q ≥ 5. Then,

(1.1) NF
4 (D4; q2n) = q2n log q

∑
K

[K:F ]=2

Res
s=1

ζK(s)

D2
KζF (2)

+O(n4nqn+1)

where DK is the absolute discriminant of K, and ζK(s) is the Dedekind
zeta function of K.

The main tool in proving Theorem 1.1 is an effective count of quadratic
extensions of function fields.

Theorem 1.2. Let F be a function field of genus gF with constants Fq.
Then,

(1.2) NF
2 (S2; q2n) = 2q2n log q

ζF (2) Res
s=1

ζF (s) +O

(
AgF q

n
2 + 2gF +1

4

)
where A and the implied constants are absolute.

For number fields, the expected error term for NF
2 (S2, X) is O(X1/4+ε),

essentially mirroring the conjectured error term to obtain when enumerat-
ing the number of square-free integers up to some bound [6], though this
is not known even assuming the Riemann Hypothesis. As q → ∞, we are
seeing this error term reflected on the funcion field side in Theorem 1.2.
Likewise, Theorem 1.1 has an error term analagous to O(X1/2+ε), which one
might expect to be the best possible for enumerating D4 quartic extensions
over a number field, though again this is not known.

Finally, note that in the function field setting we are counting extensions
with discriminant equal to some bound, namely even powers of q, as in
Theorems 1.1 and 1.2. In the number field setting, one instead usually
counts up to some bound for the discriminant. If we did that here, all of
the mass of our counting function would be concentrated at even powers
of q and we’d fail to get asymptotics. Further, the asymptotic we obtain
by counting discriminant equal to even powers of q tend to mirror the
analogous results over number fields.

Theorem 1.1 together with the n = 4 case of [1, Theorem 1.b] together
imply that NF

4 (D4; q2n) and NF
4 (S4; q2n) have the same order of magnitude.

It’s natural then to compare their relative sizes.

1If F is a function field of genus g, its absolute discriminant is DF = q2g−2.
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Theorem 1.3. For any genus g function field F with constants Fq,

(1.3) lim
n→∞

NF
4 (D4; q2n)

NF
4 (S4; q2n)

� #ClF [2]
(

1− 1
√
q

)4g−2

By specializing to hyperelliptic extensions F of Fq(t), we can make an
analagous statement for a positive proportion of all such F .

Theorem 1.4. For any g ≥ 2 and q a power of an odd prime, the pro-
portion of genus g hyperelliptic extensions F of the rational function field
Fq(t) such that

lim
n→∞

NF
4 (D4; q2n)

NF
4 (S4; q2n)

� g
1
2 log 2

(
1− 1
√
q

)4g−2

is at least 1−O
( 1

log g
)
.

Observe that as q → ∞ the lower bound from Theorem 1.4 aproaches
g

1
2 log 2. Thus, Theorem 1.4 implies, as q → ∞ and for g sufficiently large,

an arbitrarily large proportion of genus g hyperelliptic extensions of Fq(t)
have arbitrarily many more D4 quartic than S4 quartic extensions.

Later, in Theorem 4.1, we extend Theorem 1.3 in a different direction
than Theorem 1.4 by giving conditions under which one can artificially
inflate the number D4 relative to the number of S4 by base changing the
function field under consideration to one with a larger field of constants.

Throughout, function fields will be taken to have constants Fq where 2
does not divide q. In our setting, these function fields correspond to smooth
projective and geometrically connected curves over Fq.

In Section 2 we prove Theorem 1.2. In Section 3 we collect more re-
sults from field counting and prove Theorem 1.1. The main idea is to
count quadratic-on-quadratic extensions of a ground field using the esti-
mates obtained in Section 2. In Section 4 we turn to the study of the ratio
NF

4 (D4;X)/NF
4 (S4;X) and prove Theorem 1.3. Finally, in Section 5, we

study the statistics of the number of irreducible factors of polynomials over
Fq in order to prove Theorem 1.4.

2. Enumerating Quadratic Extensions
Throughout, let F be the function field of a smooth projective and ge-

ometrically connected curve of genus gF over Fq. We denote by Cl(F ) the
class group of F , and by ClF [2] those elements of the class group with order
dividing 2. The goal of this section is to prove an estimate for the number
of quadratic extensions of F with discriminant equal to q2n.



374 Daniel Keliher

Our first goal is to prove Theorem 1.2. To begin, we’ll focus on the
Dirichlet series

(2.1) φF,2(s) :=
∑
K

[K:F ]=2

1
Ds
K/F

where the sum ranges over quadratic extensions K over F ; DK/F is the
norm of the relative discriminant ideal. Its coefficients will determine the
quantity NF

2 (S2, q
2n) of interest. We first obtain the following characteri-

zation of φF,2(s):

Lemma 2.1. If φF,2(s) is as above, then,

φF,2(s) = 2
ζF (2s)

∑
χ∈ ̂Cl(F )[2]

L(s, χ)

where the sum ranges over the group characters of Cl(F )[2].

Proof. Let OF be the integral closure of Fq[x] in F . Then we can write
any quadratic extension K/F as F (

√
α) for some non-square α ∈ OF .

Write αOF = ab2 with a square free, this determines the discriminant,
DK/F = |a|. Further, if for some α′ ∈ F we had F (

√
α) ' F (

√
α′) and

α′OF = ab′2 then b and b′ belong to the same ideal class in Cl(F ).
Indeed, we may think of any quadratic extension K/F as determined by

a choice of a (giving the discriminant), a choice of class [b] ∈ Cl(F ) and a
unit u (cf. [2, Lemma 3.3]).

Note that if u 6= u′ are two non-square units, then F (
√
α) � F (

√
uα),

but F (
√
uα) ∼= F (

√
u′α) since u and u′ differ by a square as the unit group

of a finite field is cyclic. This establishes a bijection between quadratic
extensions K over F and triples of the form (a, [b], u) where a is a square-
free ideal of OF , [b] is a class of ideal in Cl(F ) such that ab2 = αOF and
u ∈ O×F /O

×2
F . Now, by orthogonality, the number of quadratic extensions

K over F with discriminant a is

2
∑

χ∈ ̂Cl(F )[2]

χ(a).

Observing that

NF
2 (S2; qn) = 2

∑
a

|a|=qn

∑
χ∈ ̂Cl(F )[2]

χ(a),
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where the sum is over square-free ideals a of OF , we then have

φF,2(s) =
∞∑
n=1

∑
K

[K:F ]=2
DK/F =qn

q−ns =
∞∑
n=1

NF
2 (S2, q

n)q−ns(2.2)

= 2
∞∑
n=1

∑
a

|a|=qn

∑
χ∈ ̂Cl(F )[2]

χ(a)|a|−s = 2
∑
a

∑
χ∈ ̂Cl(F )[2]

χ(a)|a|−s

= 2
∑

χ∈ ̂Cl(F )[2]

L(s, χ)
L(2s, χ2) = 2

ζF (2s)
∑

χ∈ ̂Cl(F )[2]

L(s, χ)

as needed. �

This is reminiscent of the expression for the Dirichlet series obtained
in [2, Theorem 1.3], but the computations are significantly simpler in the
function field setting. In particular, 2 does not divide the characteristic
of F .

Before proceeding to the proof of Theorem 1.2, we state some additional
supporting lemmas needed for the proof and in further sections. A detailed
discussion of the following two lemmas can be found, for example, in Rosen’s
book [7].

Making the change of variables u = q−s, the zeta function of F is given
by

(2.3) ζF (s) := ZF (u) = LF (u)
(1− u)(1− qu) with LF (u) ∈ Z[u].

Over C, LF (u) factors as

(2.4) LF (u) =
2gF∏
i=1

(1− πiu)

where gF is the genus of the function field F . We mainly will use the fact
that the Riemann Hypothesis for Function Fields implies that the inverse
roots of LF (u) have absolute value√q. We will make frequent use of the fact
that ζF (s) and related L-functions may be written as rational functions.

We also need an estimate for the 2-part of the class group of K, # ClF [2].
See [7, Proposition 5.11].

Lemma 2.2. With the notation all as before,

# ClF [2] ≤ # ClF ≤ (1 +√q)2gF .

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Beginning with (2.2) and making the convenient
change of variables u := q−s we have

φF,2(s) =
∞∑
n=1

NF
2 (S2, q

n)us.

Write Lχ(u) for the L-function L(s, χ) after the change of varibles to u =
q−s. By applying Cauchy’s integral formula to the expression for φF,2(s) of
Lemma 2.1, we have

(2.5) NF
2 (S2; q2n) = 1

πi

∑
χ∈ ̂Cl(F )[2]

∮
γ

Lχ(u)
ZF (u2)u2n+1 du

where γ is a circle of sufficiently small radius ε > 0 centered at u = 0. We
compute an by expanding the radius of γ and computing residues of the
integrand. The integrand has poles at the poles of Lχ(u) and at the zeros
of denominator.

Observe that if χ in the sum of (2.5) is the trivial character, then Lχ(u) =
ZF (u) and we get a pole at u = 1

q . In other cases, Lχ(u) doesn’t contribute
a pole, and so we will focus on the trivial χ case. The rest will follow
in a similar fashion. Note, the zeros of ZF (u2) occur, by the Weil’s work
on the Riemann Hypothesis for function fields, only for values of u where
|u| = q−

1
4 .

Let γ′ be a circle centered at u = 0 with radius R satisfying q−1 <

R < q−
1
4 . In shifting the contour from γ to γ′, this constraint forces us to

pick up the residue of the integrand at u = 1
q but not any of the residues

contributed from the zeros of ZF (u2). For any such R we have

(2.6) 1
πi

∮
γ

ZF (u)
ZF (u2)u2n+1 du = 1

πi

∮
γ′

ZF (u)
ZF (u2)u2n+1 du−2 Res

u= 1
q

ZF (u)
ZF (u2)u2n+1 .

One verifies, using the change of variables u = q−s, that

Res
u= 1

q

ZF (u)
ZF (u2)u2n+1 = −q

2n log q
ζF (2) Res

s=1
ζF (s).

This shows the right side of (2.6) yields

(2.7) NF
2 (S2; q2n) = 2q2n log q

ζF (s) Res
s=1

ζF (s) + 1
πi

∮
γ′

ZF (u)
ZF (u2)u2n+1 du.

Using the factorization of ZF (u) as a rational function [7, Theorem 5.6],
bound the integral above by bounding the integrand. Set

(2.8) E :=
∣∣∣∣ ZF (u)
ZF (u2)u2n+1

∣∣∣∣ =
∣∣∣∣∣ (1− u2)(1− qu2)

∏2gF
i=1(1− αiu)

(1− u)(1− qu)
∏2gF
i=1(1− αiu2)u2n+1

∣∣∣∣∣
where |αi| =

√
q.
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To complete our understanding of (2.7), we will bound E in the cases
R = q−

1
2 and R = q−

1
4−ε for some small ε > 0. In both cases we bound the

size of ZF (u)/ZF (u2) when |u| = R. In bounding the numerator from above
and denominator from below, we simply suppose each term is as large or
small as possible, i.e. bounds following from taking αi = ±√q and u = ±R.

First, setting R = q−
1
2 , one finds

(2.9) E ≤ 2

 2
1− 1√

q

2gF
1 + 1√

q√
q − 1

 qn.
Second, setting R = q−

1
4−ε, one finds,

(2.10) E ≤
(

(1 + q
1
4−ε)2gF (1 + q−

1
4−ε)(1 + q

3
4−ε)

(1− q−ε)2gF (q
3
4−ε − 1)

)
q

2n−1+ε
4 .

Repeating these computations for nontrivial χ which contributed to the
remaining terms in (2.5) suffices to prove the lemma. We then multiply each
E by 2πR, the length of the circle of integration, to get an error term. After
doing so and substituting 2n for n, (2.9) and (2.10) yield, respectively,
(2.11)

NF
2 (S2; q2n) = 2q2n log q

ζF (2) Res
s=1

ζF (s) +O

2

 2
1− 1√

q

2gF (
1 + 1
√
q

)
qn


and, for any ε > 0,

(2.12) NF
2 (S2; q2n) = 2q2n log q

ζF (2) Res
s=1

ζF (s)

+O

((
(1+q

1
4−ε)2gF (1+q−

1
2−ε)(1+q

3
4−ε)

(1− q−ε)2gF

)
q

n+ε
2

)
.

Note that each of the two formulas in (2.11) and (2.12) may have utility
in their own right. We now make a choice of ε > 0 in (2.12) that gives the
statment of the theorem and a formula which is amenable to computation.

Set ε = 1/ log q. Then the error term in (2.12) becomes

O

(
AgF q

n
2 + 2gF +1

4

)
where A = (1−1/e)−2. The implied constant can be computed from (2.10)
and is absolute. �

Remark 2.3. After fixing q (and possibly some ε > 0) in the proof above,
the computations for E for all χ in the proof of Theorem 1.2 can be con-
verted into explicit bounds on the error in the formulae of Theorem 1.2.
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We conclude the section with a uniform upper bound on the number
of quadratic extensions of F . Though it isn’t a strong as the preceding
theorem, it will simplify some computations later.

Lemma 2.4. Fix a function field F with constants Fq. For any n ≥ 0,

NF
2 (S2; q2n)� # ClF [2]B2gF q2n+1

where B =
(

1+e−1q−1/2

1−e−2q−3/2

)2
.

Proof. We will mimic the method used in the proof of Theorem 1.2 and use
the same notation. Starting with (2.5), bound the integrand but now with
R = 1/eq. This has the effect of avoiding the pole at u = 1/q contributed
by the integrand when χ is the trivial character.

When χ is the trivial character and R = 1/eq,

E � BgF q2n+1

where

B =
(

1 + e−1q−1/2

1− e−2q−3/2

)2

.

The same bound, albeit with different implied constants, is obtained
for the remaining # ClF [2]− 1 nontrival characters, χ, appearing in (2.5).
Whence,

NF
2 (S2; q2n)� # ClF [2]B2gF q2n+1. �

3. Enumerating D4 Extensions
We are now ready to enumerate D4 quartic extensions of a function field

F , i.e. to prove Theorem 1.1. We’ll first state some lemmas which, when
taken with the results of Section 2, will suffice to prove the theorem.

Lemma 3.1 ([2, Corollary 2.3]). Fix a global field F . We have the formal
equality:

(3.1)
∑
K

[K:F ]=2

∑
L

[L:K]=2
DL/F≤X

1 = 2NF
4 (D4;X) +NF

4 (C4;X) + 3NF
4 (V4;X)

The proof of this fact is the same as in [2] and relies only on the Ga-
lois correspondence and the structure of quartic extensions obtained as
quadratic-on-quadratic extensions of F . Since we can only have discrimi-
nants which are even powers of q, we’ll take X = q2n.

The idea is to use (3.1) to understand NF
4 (D4;X). Now we state some

lemmas that will control the last two terms of (3.1). Then the remainder
of the section will be devoted to understanding the lefthand side of (3.1).
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Lemma 3.2. If F is a global field, then as n→∞,

NF
4 (C4; q2n) = O (qn)

and

NF
4 (V4; q2n) = O

(
qn log(q2n)2

)
.

Proof. Both of these estimates follow from [8, Theorem 1] and applications
of Tauberian theorems. �

Remark 3.3. An immediate consequence of Lemmas 3.1 and 3.2 is that

(3.2) NF
4 (D4; q2n) = 1

2
∑
K

[K:F ]=2

∑
L

[L:K]=2
DL=q2n

1 +O
(
qn log(q2n)2

)
.

Indeed, analyzing the sum above will constitute the main idea of the proof.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let DF be the discriminant of F and let DL/F be
the norm of the relative discriminant ideal of L/F . We have the relation
that DFD

2
L/F = DL [4, Theorem A].

We are trying to compute the sum (3.2) in Remark 3.3.

(3.3) NF
4 (D4; q2n) = 1

2
∑
K

[K:F ]=2

∑
L

[L:K]=2
DL=q2n

1 +O
(
qn log(q2n)2

)

where the sum counts quadratic-on-quadratic extensions of F of discrimiant
q2n and the error term comes from those biquadratic extensions with Galois
group C4 or V4.

To control the sum above, we introduce an auxiliary parameter j, which
will start at −1 and then run over integers up to n/2, and rewrite (3.3) as:

(3.4)
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

∑
L

[L:K]=2
DL/K=q2n−4j

1 =
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

NK
2 (q2n−4j).

Note that the parameter j controls the discriminant (and also the genus)
of the intermediate field K. In particular, the genus of each intermediate
field K is gK = j + 1.



380 Daniel Keliher

First apply the first estimate for NK
2 (S2; q2n−4j) as it appears in (2.11):

(3.5)
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

NK
2 (S2; q2n−4j)

=
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

[
2q2n−4j log q

ζF (2) Res
s=1

ζK(s)

+O

(
2
(

2
1− 1√

q

)2gK (
1 + 1
√
q

)
qn−2j

)]

The main term of the above is

(3.6) 2q2n log q
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

Res
s=1

ζK(s)

q4jζF (2) .

We can compare the sum above to the same, but untruncated, series
where j runs over all the integers, to find:

(3.7) 2q2n log q
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

Res
s=1

ζK(s)

q4jζK(2)

= 2q2n log q
∞∑
j=0

∑
K

[K:F ]=2
DK=q2j

Res
s=1

ζK(s)

q4jζK(2) +O(1).

The above can be seen by estimating the infinite series with a geometric
series using upper and lower bounds on Res

s=1
ζK(s) and ζK(2). We’ll see the

error term of (3.7) is subsumed by the error term from (3.5).
Now we compute the error term in (3.5). For ease of notation, set cq :=
2

1−q−
1
2
.
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Using Lemma 2.4, the error term can be seen to be of size

qn
∑
j≤n/2

∑
K

[K:F ]=2
DK=q2j

2c2j+2
q

(
1 + 1
√
q

)
q−2j

= qn
∑
j≤n/2

NF
2 (S2, q

2j)2c2j+2
q

(
1 + 1
√
q

)
q−2j

� qn+1c2
qh2(F )BgF

(
1 + 1
√
q

) ∑
j≤n/2

c2j
q

� qn+1h2(F )BgF ncnq .

This gives an error term O
(
ncnq q

n+1
)

which dominates the error term
in (3.3). Notice cq < 5 for any choice of q, and cq < 4 when q ≥ 5. We
have thus proved (1.1) of Theorem 1.1. Further, note that if q ≤ 3, the
main term is not distinguishable from the error term we have just calcu-
lated. �

Remark 3.4. Using (1.2) of Theorem 1.2 in the proof above does not yield
a better error term.

This essentially recovers the asymtotic given by Cohen, Diaz y Diaz, and
Olivier in [2] in the function field setting. The easier analysis granted to
us by the Weil Conjectures lets us improve on the number field version,
yielding more than just an asymptotic. If we take n→∞ in Theorem 1.1,
this connection is made visibly clear by the following formulae.

Corollary 3.5. With the same notation as above,

lim
n→∞

NF
4 (D4; q2n)
q2n = log q

2

∞∑
j=−1

∑
K

[K:F ]=2
DK=q2j

Res
s=1

ζK(s)

q4jζF (2)

= log q
2

∑
K

[K:F ]=2

Res
s=1

ζK(s)

D2
KζF (2)

.

4. Enumerating the D4-S4 disparity
We’ll turn now to considering the ratio NF

4 (D4; q2n)/NF
4 (S4; q2n). In [3],

this quantity is studied in the case that F is a number field. Of interest
is the case when F has more D4 than S4 quartic extensions. One of the
main results of [3] is that this ratio may be skewed arbitrarily much in favor
of the D4 quantity. To obtain the analagous result for function fields, i.e.
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Theorem 1.4, we’ll first address ourselves to the proof of Theorem 1.3 to
give a lower bound for NF

4 (D4; q2n)/NF
4 (S4; q2n).

Proof of Theorem 1.3. First, we underestimate NF
4 (q2n;D4) by restricting

the sum in Theorem 1.1 to be over only those K which are unramified over
F . Given such an extension K, the different divisor Diff(L/K) =

∑
P cPP

is 0, i.e. cP = 0 for all primes P of K. So Riemann–Hurwitz tells us gK =
2gF −1. Note also that class field theory tells us that there are # ClF [2]−1
such extensions K.

Further, in restricting ourselves to unramified extension, the q4j term
appearing in Theorem 1.1 can be rewrriten as q4(2gF−2) via j = gk − 1 =
2gF − 2. Our underestimate for NF

4 (D4; q2n) is

lim
n→∞

NF
4 (D4; q2n)
q2n � log q

∑
K

[K:F ]=2
unram.

Res
s=1

ζK(s)

q4(2gF−2)ζF (2)
(4.1)

= log q
∑
K

[K:F ]=2
unram.

L(1, χK/F )Res
s=1

ζF (s)

q4(2gF−2)ζF (2)

≥ log q # ClF [2]
(

1− 1
√
q

)2(2gF−1) Res
s=1

ζF (s)

q4(2gF−2)ζF (2)
.

Note that this is not such a terrible truncation of the sum in Theorem 1.1:
Estimate each residue of ζK(s) at 1, then factoring these estimates outside
the sum leaves a rapidly convergent series, to which the main contributions
are made by small j terms, including the unramified extensions.

We’ll now estimate NF
4 (S4; q2n). The degree 4 case of [1, Theorem 1.b]

gives the number of S4 quartic extensions of F with relative descriminant
equal to some power of q. Using the relationDL/FD

4
F = DL [4, Theorem A],

we can find the number of S4 quartic extensions L over F with absolute
discriminant q2n by counting the number of S4 quartic extensions L over
F with relative discriminant of norm DL/F = q2n/D4

F = q2n/q4(gF−2).
Whence,

(4.2) lim
n→∞

NF
4 (S4; q2n)
q2n �F q

−4(2gF−2) log q Res
s=1

ζF (s).

Taking the ratio of (4.1) and (4.2) gives us the desired result. �

The contribution from ClF [2] in Theorem 1.3 is not necessarily easily
computed. We can base change our field F over Fq to have some larger
field of constants Fqm to get a more explicit bound on the right of (1.3)
of Theorem 1.3. In doing so, we can understand fully the contribution of
ClF [2].



Quartic extensions of function fields 383

Theorem 4.1. Let F be the function field of a curve C/Fq of genus g.
There exists a constant m such that if we base change C to be over Fqm

and let F ′ be the corresponding function field, then

lim
n→∞

NF ′
4 (q2n;D4)

NF ′
4 (q2n;S4)

� 22g
(

1− 1√
qm

)4g−2
.

Proof. Let JF be the Jacobian of F . There is a natural map JF ↪→ ClF and
so also an injective map on the two-torsion: JF [2] ↪→ ClF [2]. In particular
we can use #JF [2] as a (possibly crude) proxy for # ClF [2]. Consider the
multiplication by 2 endomorphism, [2], on the Fq points of JF ,

JF (Fq)
[2]−→ JF (Fq).

This is a surjective, degree 22g map. The two torsion of JF (Fq) is given
by ker([2]). We’re looking at JF over Fq and we’re concerned only with an
extension of the field of constants to a larger finite field, but we have the
relation JF (Fq)Gal(Fq/Fq) = JF (Fq).

Notice that the 22g points in JF (Fq)[2] are partitioned into Galois orbits
under the action of Ẑ ∼= Gal(Fq/Fq). So there is some positive integer m
such that all of JF (Fq)[2] is stable under the action of mẐ < Ẑ. These are
exactly the points of JF (Fqm)[2].

Let F ′ be the base extension of F having constants Fqm . This is a constant
extension of function fields and so the genus of F ′ is also g [7, Chapter 8],
thus passing from the lower bound given by Theorem 1.3 to the lower
bound under consideration only requires is to make the substitution of 22g

for # ClF ′ [2] since we have just demonstrated that 22g ≤ # ClF ′ [2]. �

Observe then that we need only pick a high enough genus curve with
suitably large q in order to skew the D4-S4 ratio arbitrarily high in favor
of the number of D4 extensions.

5. Typical Behavior of Quadratic Function Fields
Throughout this section, let Pn be the set of degree n square-free poly-

nomials with coefficients in Fq and let π(d) be the number of irreducible
degree d polynomials over Fq. Recall #Pn = qn − qn−1.

Indeed, for everything that follows, all polynomials will be taken to have
coefficients in Fq. In light of Theorem 1.3, our interest is in understand-
ing hyperelliptic curves y2 = f(x) over Fq which have many two torsion
elements in the class groups of their corresponding function fields. Such el-
ements correspond to factors of f(x), and so we will settle for understanding
what the typical number of irreducible factors is for a “random” f(x). Many
results of a similar flavor, particularly regarding mean and variance, due to
Knopfmacher and Knopfmacher can be found in [5].
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In the following two propositions T = T (n) will be a function of n ∈ N
such that both T (n) → ∞ and n − T (n) → ∞ as n → ∞ We will make a
convenient choice of T later.

Our primary tool for understanding the typical number of irreducible
factors is the following theorem due to Chebyshev, stated here in the context
of a finite sets:

Theorem 5.1 (Chebyshev’s Inequality). Let X be a finite set and f : X →
C. Then if φ has mean and variance given respectively by

µ := 1
#X

∑
x∈X

φ(x) and σ2 := 1
#X

∑
x∈X

(φ(x)− µ)2,

then for any k,

#{x ∈ X | |φ(x)− µ| ≥ kσ} ≤ #X
k2 .

For our considerations the X of Theorem 5.1 will be Pn, and the φ will
be the function counting the number of irreducible divisors of all f ∈ Pn
with degree bounded by T . As such, let ωT (f) be the number of irreducible
divisors of f with degree bounded by T .

Proposition 5.2 (“Expected Number” of Factors). The expected number
of irreducible factors with degree bounded by T of polynomials in Pn is

µ := 1
#Pn

∑
f∈Pn

ωT (f) =
∑
d≤T

π(d)
qd + 1 +O

(
q2T−n+1

)
.

Proof. The mean number of irreducible factors with degree bounded by T
of polynomials ranging over Pn is given by

(5.1) µ := 1
#Pn

∑
f∈Pn

∑
p irred.
p|f

deg p≤T

1 = 1
#Pn

∑
d≤T

∑
p irred.
deg p=d

∑
f∈Pn

p|f

1

First, for a fixed d and irreducible p of degree d, we aim to understand
the innermost sum of (5.1), i.e.

∑
f∈Pn

p|f
1. This sum is counting the number

of polynomials f ∈ Pn which can be written as f = gp for some g ∈ Pn−d.
Since f is square-free, we have p - g. Now set

N1 := #{f ∈ Pn | f = pg, g ∈ Pn−d, p - g}.
Computing N1 is the same as understanding the number of g with the given
condition. So similarly, set

N2 := #{g ∈ Pn−d | g = ph, h ∈ Pn−2d, p - h}
and observe

N1 = #Pn−d −N2.
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One can inductively continue this procedure, if

Ns = #{t ∈ Pn−(s−1)d | t = pu, u ∈ Pn−sd, p - u}

then Ns = #Pn−sd − Ns+1. The definition of Ns is only sensical for s + 1
up to bnd c. One then finds that

(5.2) N1 =

bn
d
c−1∑

k=1
(−1)k+1#Pn−kd

±Nbn
d
c.

We can bound Nbn
d
c trivially by Pn−bn

d
cd. We have n − bnd cd ≤ d so, at

worst Nbn
d
c = O(qd). When we compute the mean and divide through by

#Pn, this error will be negligible.
Beginning from (5.2), we find

N1 =

bn
d
c−1∑

k=1
(−1)k+1#Pn−kd

+O(qd)

=

bn
d
c−1∑

k=1
(−1)k+1(qn−kd − qn−kd−1)

+O(qd)

= (qn − qn−1)

bn
d
c−1∑

k=1
(−1)k+1q−kd

+O(qd)

= (qn − qn−1)
( 1
qd + 1 +O(q−n−1)

)
+O(qd)

= (qn − qn−1) 1
qd + 1 +O(qd)

Substituting this last expression into (5.1) yields,

µ = 1
#Pn

∑
d≤T

∑
p irred.
deg p=d

∑
f∈Pn

p|f

1 =
∑
d≤T

∑
p irred.
deg p=d

( 1
qd + 1 +O(qd−n+1)

)

=
∑
d≤T

π(d)
( 1
qd + 1 +O(qd−n+1)

)
.

Finally, using the prime number theorem for irreducible polynomials over
Fq, the above becomes ∑

d≤T

π(d)
qd + 1 +O

(
q2T−n+1

)
as desired. �
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Proposition 5.3 (The “variance” in the number of irreducible factors).
The variance in the number of irreducible factors with degree bounded by
T of polynomials in Pn is

σ2 := 1
#Pn

∑
f∈Pn

(ωT (f)− µ)2

=
∑
d

π(d) 1
qd + 1

(
1− 1

qd + 1

)
+O

(
q2(T−n+1)

)
.

Proof. For a random variable X, the variance is given by E[X2] − E[X]2.
One easily verifies the following analogue of that identity:

(5.3) σ2 = 1
#Pn

∑
f∈Pn


∑

p irred.
p|f

deg p≤T

1


2

−


1

#Pn

∑
f∈Pn

∑
p irred.
p|f

deg p≤T

1


2

.

We’ll compute the first term in the difference in (5.3):

1
#Pn

∑
f∈Pn


∑

p irred.
p|f

deg p≤T

1


2

= 1
#Pn

∑
f∈Pn

∑
p,p′ irred.
p,p′|f

deg p, deg p′≤T

1(5.4)

= 1
#Pn

∑
d,d′≤T

∑
p,p′ irred.
deg p=d

deg p′=d′

∑
f∈Pn

p,p′|f

1.

Let Np1,...,pr
n be size of the set of all polynomials f ∈ Pn such that

p1|f, . . . , pr|f . Note, for fixed irreducible polynomials p and p′ of degrees
d and d′, respectively. Set Np1,...,pr

n = #P p1,...,pr
n , then we have Np,p′

n =∑
f∈Pn

p,p′|f
1, which is the innermost sum on the right size of (5.4). We have

then that

Np,p′
n = Np

n−d′ −N
p,p′

n−d′

Proceeding in the same was as the proof of Proposition 5.2, we get

Np,p′
n =

b n
d′ c∑
k=1

(−1)k+1Np
n−kd′ +O(qd).
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Proposition 5.2 give us the size of the P pn−kd′ , so

Np,p′
n =

b n
d′ c∑
k=1

(−1)k+1#Pn−kd′
1

qd + 1 +O(qd).

Letting n→∞ we evaluate the geometric series and find

(5.5) Np,p′
n = (qn − qn−1) 1

qd + 1
1

qd′ + 1 +O(qd).

Substituting (5.5) back into (5.4) and rewriting, we get

(5.6) 1
#Pn

∑
d,d′≤T

∑
p,p′ irred.
deg p=d

deg p′=d′

∑
f∈Pn

p,p′|f

1

=
∑

d,d′≤T

∑
p,p′ irred.
deg p=d

deg p′=d′

1
qd + 1

1
qd′ + 1 +O(qd−n+1).

We’ll break the sum in (5.6) up into three cases depending on if d = d′ or
not as follows:

(5.7)
∑

d 6=d′≤T

∑
p,p′ irred.
deg p=d

deg p′=d′

1
qd + 1

1
qd′ + 1 +

∑
d=d′≤T

∑
p 6=p′ irred.

deg p=d
deg p′=d′

1
qd + 1

1
qd′ + 1

+
∑

d=d′≤T

∑
p=p′ irred.

deg p=d

1
qd + 1 +O(qd−n+1).

Notice in the above equation, the summands have no dependence on the
irreducible polynomials p or p′ and so we these terms may be pulled out and
counted as π(d) or π(d′). Then, evaluating each of the three expressions,
(5.7) is equal to

(5.8)
∑

d 6=d′≤T
π(d)π(d′) 1

qd + 1
1

qd′ + 1 +
∑

d=d′≤T

(
π(d)2 − π(d)

)( 1
qd + 1

)2

+
∑

d=d′≤T
π(d) 1

qd + 1 +O(qT−n+1).
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We’ll now address the second term of (5.3). We have, using Proposition 5.2,
that

µ2 =


1

#Pn

∑
f∈Pn

∑
p irred.
p|f

deg p≤T

1


2

=

∑
d≤T

π(d) 1
qd + 1 +O(qT−n+1)

2

=
∑

d,d′≤T
π(d)π(d′) 1

qd + 1
1

qd′ + 1 +O
(
q2(T−n+1)

)

=
∑

d=d′≤T
π(d)2

( 1
qd + 1

)2
+

∑
d6=d′≤T

π(d)π(d′) 1
qd + 1

1
qd′ + 1(5.9)

+O
(
q2(T−n+1)

)
Finally, taking the difference of (5.8) and (5.9) to get σ2 as in (5.3), we

obtain

σ2 =
∑
d

π(d) 1
qd + 1

(
1− 1

qd + 1

)
+O

(
q2(T−n+1)

)
as desired. �

Corollary 5.4. With the notation as above, and as n→∞, we have

µ ∼ log T

and

σ2 ∼ log T.

Proof. Starting with the conclusion of Proposition 5.2, we have as n→∞
that

(5.10) µ ∼
∑
d≤T

π(d) 1
qd + 1 .

It is known, see e.g. [7], that

(5.11) π(d) = qd

d
+O

(
qd/2

d

)
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From (5.10) and (5.11) one obtains∑
d≤T

π(d) 1
qd + 1 =

∑
d<T

(
qd

d(qd + 1) +O(q−d/2)
)

=
∑
d<T

qd

d(qd + 1) +O
(
q−1/2

)
(5.12)

Now we compute the sum on the right side of (5.12),∑
d<T

qd

d(qd + 1) =
∑
d<T

1
d
−
∑
d<T

1
d

( 1
qd + 1

)

= log T +O(1/T )−
∑
d<T

1
d

( 1
qd + 1

)

= log T +O

( 1
T

)
(5.13)

Where the final equality comes by integrating the last sum by parts and
trivially bounding the integrand by 1/qt. The result follows. The analysis
for σ2 is essentially the same. �

Theorem 5.5. As n → ∞, all but a proportion of 1
log n

2
square-free poly-

nomials f ∈ Pn ⊂ Fq[x] are such that f has at least log n
2 + O

(√
log n

2

)
irreducible factors.

Proof. Set k =
√

log n
2 . Now apply Theorem 5.1 with X = Pn, φ = ωT , and

with µ and σ2 given by Corollary 5.4 setting T = n
2 . One finds,

#{f ∈ Pn | |ωn
2
(f)− log n

2 | ≥ log n
2 }

#Pn
≤ 1

log n
2
.

Consequently,

lim
n→∞

#{f ∈ Pn | |ωn
2
(f)− log n

2 | ≤ log n
2 }

qn − qn−1 ≥ lim
n→∞

1− 1
log n

2
= 1. �

Proof of Theorem 1.4. We apply Theorem 5.1 with X = Pd, φ = ωT , T =
d
2 , and k = α

√
log d

2 where α = β +O

(
1

d
√

log d
2

)
.

For the parameter α, we’ll make a choice of β and a choice of error term
in the course of the proof. We essentially mimic the proof of Theorem 5.5
and then apply Theorem 1.3.

With µ and σ as above, an immediate consequence of Theorem 5.1 is
that for a random f(x) ∈ Pd,

(5.14) ωd/2(f) ≥ µ− kσ
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with probability at least 1− 1
k2 . If (5.14) holds, Corollary 5.4 implies

(5.15) ωd/2(f) ≥ (1− α) log d2 +O


√

log d
2

d

 .
Pick α as follows: pick the error term which is the negative of the implicit
error appearing in (5.15) and pick any 0 < β < 1. Note that the error terms
we’re countering with this choice, coming from Corollary 5.4, depend only
on d, not on f(x).

For convenience, pick β = 1/2. We have then that a proportion of least
1− 1

k2 of f(x) ∈ Pd have at least β log n
2 irreducible factors.

Let F be the quadratic extensions of Fq(x) corresponding to a hyperel-
liptic curve y2 = f(x) where f(x) ∈ Pd ⊂ Fq[x]. Note d = deg f(x) = 2g+1
or 2g + 2 where g is the genus of F . The discussion above shows that as
f(x) ranges through Pd, a proportion of 1− 1

k2 = 1−O
(

1
log g

)
of the asso-

ciated F , are such that ClF [2] = 2ω(f) > 2β log g where ω(f) is the number
of irreducible factors of f(x).

So, for a proportion of 1 − O
(

1
log g

)
hyperelliptic genus g extensions

F/Fq(x), we have

lim
n→∞

NF
4 (q2n;D4)

NF
4 (q2n;S4)

� #ClF[2]
(

1− 1
√q

)4g−2

= 2ωT (f)
(

1− 1
√
q

)4g−2

≥ 2β log g
(

1− 1
√
q

)4g−2

= gβ log 2
(

1− 1
√
q

)4g−2

,

proving the theorem. �

For completeness, note that in the proof above any choice 0 < β < 1 will
do. One can thus slightly improve the exponent of g stated in Theorem 1.4.

Finally, note that taking q →∞ and large g in Theorem 1.4 is essentially
an extremal version of [3, Corollary 1.2] but for function fields rather than
number fields. It is plausible that the L-function techniques used in the
number field version could be ported over to the function field setting in
order to ease the condition on q.
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