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Journal de Théorie des Nombres
de Bordeaux 33 (2021), 971–996

Notes on the dual of the ideal class groups
of CM-fields

par Masato KURIHARA

Résumé. Dans cet article, pour une extension abélienne K/k de corps de
nombres de type CM, nous proposons une conjecture qui décrit complètement
l’idéal de Fitting de la partie moins du dual de Pontryagin du groupe de classes
de rayon T de K, pour un ensemble T d’idéaux premiers, comme Gal(K/k)-
module. Nous soulignons que nous considérons ici le groupe de classes au
sens propre, sans laisser de côté les idéaux ramifiés (l’objet que nous étudions
n’est pas le quotient du groupe de classes par le sous-groupe engendré par les
classes des idéaux premiers ramifiés). Nous prouvons que notre conjecture est
une conséquence de la conjecture de nombres de Tamagawa équivariante, et
prouvons la version de notre conjecture en théorie d’Iwasawa.

Abstract. In this paper, for a CM abelian extension K/k of number fields,
we propose a conjecture which describes completely the Fitting ideal of the
minus part of the Pontryagin dual of the T -ray class group of K for a set T
of primes as a Gal(K/k)-module. Here, we emphasize that we consider the
full class group, and do not throw away the ramifying primes (the object we
study is not the quotient of the class group by the subgroup generated by the
classes of ramifying primes). We prove that our conjecture is a consequence
of the equivariant Tamagawa number conjecture, and also prove the Iwasawa
theoretic version of our conjecture.

1. Introduction

It is an important and central theme in number theory to pursue the
relationship between the arithmetic objects such as class groups of number
fields and the analytic objects such as values of L-functions. Let k be a
totally real number field and K/k a finite abelian extension with Galois
group G = Gal(K/k) such that K is a CM-field. Then the Stickelberger
element θK,S(0) (for the definition, see (3.1)) is related to the class group
of K, which we regard as a G-module. For example, Brumer’s conjecture
says that, roughly speaking, the Stickelberger element is in the annihilator
of the class group. It is also in the Fitting ideal of the class group in several
cases, and the determination of the Fitting ideal of the class group is an
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important subject in Iwasawa theory ([18]). If k = Q, it was proven that
the Fitting ideal of the class group of K is equal to the Stickelberger ideal
(except the 2-component, see [21]). However, for a general totally real field
k, the Pontryagin dual of the class group is the right object to study the
Fitting ideal (see [13]). In [11] Greither determined the Fitting ideal of
the dual of the class group assuming the equivariant Tamagawa number
conjecture and that the group of roots of unity is cohomologically trivial.

For any finite set S of primes of k we denote by SK the set of primes of
K above S. For a finite set T of primes of k that are unramified in K, let
ClTK be the (Πw∈TKw)-ray class group of K. In this paper we study ClTK
and generalize the main result in [11] to ClTK (see Corollary 3.7). We note
that we do not assume the cohomological triviality of the group of roots of
unity as in [11].

Let S be a finite set of primes of k containing all infinite primes and
ramifying primes in K such that S ∩ T = ∅. We denote by ClTK,S the
quotient of ClTK by the subgroup generated by the classes of finite primes in
SK . Burns, Sano and the author proved as a special case of Theorem 1.5(i)
in [5] that the equivariant Tamagawa number conjecture (“eTNC” in short)
implies that the Fitting ideal of a certain Selmer module (see Remark 2.2)
is generated by the Stickelberger element θTK,S , and ClTK,S appears as a
subgroup of the Selmer module. Since ClTK,S is a subgroup, this does not
give information on the Fitting ideal of ClTK,S in general. Also, ClTK,S is
smaller than the full class group ClTK which we want to study.

In order to overcome these difficulties we use the beautiful ideas in Grei-
ther’s paper [11]. An important idea in [11] which we also use here is to
use “the local modules” WKw , Wv by Gruenberg and Weiss [16], which we
will introduce in Section 2. In this sense, this paper heavily relies on the
ideas in [11]. A new idea in this paper is to consider a Tate sequence using
linear duals M◦ = Hom(M,Z) of modules M (see the exact sequences in
Proposition 2.3 and Proposition 2.4).

In Section 2 we introduce homomorphisms ψS , ψ for a general Galois
extension of number fields. The Pontryagin dual of ClTK appears as the
cokernel of the linear dual ψ◦ of ψ (see Proposition 2.4). The complex
A

ψS→ B represents RΓT (OK,S ,Gm) in Burns, Sano and the author [5]. We
compare in Section 3.2 the two homomorphisms ψ◦S , ψ◦ in order to get
information on ClTK .

In Section 3.2 we propose Conjecture 3.2 which describes completely the
Fitting ideal of the minus part of the Pontryagin dual of ClTK , and prove it
assuming Conjecture 3.4 which is a conjecture on the homomorphisms ψS .
We show that eTNC implies Conjecture 3.4 (see Proposition 3.5), so also
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implies Conjecture 3.2 (see Corollary 3.7). We use eTNC in the style of [5]
in Proposition 3.5.

In Section 4 we also prove, without assuming eTNC, Theorem 4.4 which
is the Iwasawa theoretic version of Conjecture 3.2, and which determines
completely the Fitting ideal of the T -modified Iwasawa modules. The-
orem 4.4 can be regarded as a refinement of a result by Greither and
Popescu [15], and a generalization of a result in [19] (see Remark 4.5).

There have been so many works related to the subject of this paper,
and it is impossible to mention all of them here. Burns in [2] (see [2, proof
of Corollary 3.11]) and Burns, Sano and the author in [5, Corollary 1.14]
proved that the (dualizing) T -modified Stickelberger element (θTK,S)# be-
longs to the Fitting ideal of the Pontryagin dual of ClTK , assuming eTNC
(for the involution x#, see the paragraph before Conjecture 3.2). A simple
proof of this fact can be also found in the exposition [20] (see [20, Corol-
lary 4.5(2)]). A. Nickel proved that eTNC implies the p-component of the
belonging of θTK,S to the Fitting ideal of ClTK if K/k satisfies several condi-
tions, one of which is that all p-adic primes are almost tame inK/k (see [23,
Theorem 5] and [22, Corollary 5.7]). Note that such belonging does not hold
in general (see [13]).

This paragraph was added in proof. After this paper was accepted to be
published in this journal, a great progess was made by S. Dasgupta and
M. Kakde. They have recently proved the strong Brumer–Stark conjecture,
and proceeded even more; they have proved Conjecture 3.2 in this paper
unconditionally in their final version [8].

Concerning the eTNC, a famous theorem by Burns and Greither [4] says
that it holds when k = Q. For the conditions which imply the eTNC for
K/k with totally real k, see also [23, Theorem 4], [2, Corollary 3.8], and [6,
Theorem 1.1].

Acknowledgments. The author would like to thank Cornelius Greither
for discussion with him on the subjects in this paper, and for giving the
author some comments after reading the first version of this paper, which
was written in 2014. The author thanks very much S. Dasgupta and M.
Kakde for discussion in Tata Institute in January 2020. The author also
expresses his hearty thanks to the referee for their careful reading of this
paper and valuable comments.

2. T -class groups of number fields as Galois modules

2.1. A homomorphism ψS : A → B. In this subsection we suppose
that K/k is a finite Galois extension of number fields with G = Gal(K/k).

The goal of this subsection is to define two Z[G]-modules A, B, and a
homomorphism ψS : A→ B, which represents RΓT (OK,S ,Gm) in [5].
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For any finite set S of primes of k we denote by SK the set of primes
of K above S. Let S∞ be the set of all infinite primes of k. For any finite
set S of primes of k such that S ⊃ S∞ we denote by OK,S the subring
of K consisting of integral elements outside S. The integer ring OK,S∞ is
denoted by OK .

We take and fix a finite set T of finite primes of k that are unramified inK
such that (OTK)× = {x ∈ O×K | x ≡ 1 (modw) for all primes w above T}
is Z-torsion free.

For a finite set S of primes of k such that S ⊃ S∞ and S ∩ T = ∅, we
define

(OTK,S)× = {x ∈ O×K,S | x ≡ 1 (mod w) for all primes w ∈ TK}

and ClTK,S to be the ray class group of OK,S modulo Πw∈TKw.
We define a subgroup JTK,S of the idèle group of K by

JTK,S =
∏

w∈TK

U1
Kw ×

∏
w 6∈(S∪T )K

UKw ×
∏

w∈SK

K×w .

Let Sram(K/k) be the set of all ramifying finite primes in K/k. From
now on we fix a finite set S of primes of k such that S ⊃ S∞ ∪ Sram(K/k)
and S ∩ T = ∅.

We also take a finite set S′ of primes of k such that
(i) S′ ⊃ S,
(ii) ClTK,S′ = 0, and
(iii) the decomposition groups Gv of v for all v ∈ S′ generate G.
Let CK be the idèle class group of K. By definitions, we have an exact

sequence

(2.1) 0 −→ (OTK,S)× −→ JTK,S −→ CK −→ ClTK,S −→ 0.

From our assumption (ii) above, we also have an exact sequence

0 −→ (OTK,S′)× −→ JTK,S′ −→ CK −→ 0

for S′.
For any group G, we denote by ∆G the augmentation ideal in Z[G]. For

a prime w of K, we denote by Gw, Iw the decomposition subgroup and the
inertia subgroup of w in G. We consider VKw the extension of ∆Gw by K×w
corresponding to the local fundamental class (see Gruenberg and Weiss [16],
Ritter and Weiss [24], Greither [11]); 0 → K×w → VKw → ∆Gw → 0. If w
is a finite prime, we define WKw by WKw = Coker(UKw → VKw). Thus we
have an exact sequence

0 −→ Z −→WKw −→ ∆Gw −→ 0.
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More explicitly, as in Ritter and Weiss [24, §3] and Greither [11, (23),
p. 1412], one can write

WKw = Ker(∆Gw × Z[Gw/Iw] −→ Z[Gw/Iw])
where the above homomorphism is defined by (x, y) 7→ x + (F−1

w − 1)y
with x = x mod Iw and the Frobenius Fw of w in Gw/Iw. Note that we
are using a homomorphism which is slightly different from [11, (23)]. This
modification is necessary to get good bases of B and W ◦S∞ ⊗ Q later. We
note that if w is unramified in K/k, Iw = 0 and the projection to the second
component (x, y) 7→ y gives an isomorphism WKw ' Z[Gw].

We put

V T
S′ =

∏
w∈TK

U1
Kw ×

∏
w 6∈(S′∪T )K ,

UKw ×
∏

w∈(S′)K

VKw ,

and WS′ = V T
S′/J

T
K,S′ , WS = V T

S′/J
T
K,S . So we have WS′ =

∏
w∈S′K

∆Gw,
and

WS =
∏

w∈SK

∆Gw ×
∏

w∈(S′\S)K

WKw =
∏

w∈SK

∆Gw ×
∏

w∈(S′\S)K

Z[Gw].

where we used the isomorphisms WKw ' Z[Gw] for w ∈ (S′ \ S)K which
we defined in the previous paragraph to get the second equality (note that
primes in S′ \ S are unramified).

Let
0 −→ CK −→ O −→ ∆G −→ 0

be the extension corresponding to the global fundamental class as in [11],
and consider the commutative diagram of exact sequences;

0 // JTK,S′
//

��

V T
S′

//

��

WS′
//

��

0

0 // CK // O // ∆G // 0.

The conditions (ii) and (iii) imply that the left and right vertical maps in
the diagram are surjective (see also the exact sequence (2.1)). Therefore, the
central vertical map is also surjective (see [11, p. 1409]). We next consider
the commutative diagram

0 // JTK,S
//

��

V T
S′

//

��

WS
//

��

0

0 // CK // O // ∆G // 0.

which is obtained by replacing JTK,S′ by JTK,S . We put A = Ker(V T
S′ → O)

and W ′S = Ker(WS → ∆G). By the exact sequence (2.1) and the snake
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lemma, we have an exact sequence
(2.2) 0 −→ (OTK,S)× −→ A −→W ′S −→ ClTK,S −→ 0.

We put B =
∏
w∈(S′)K Z[Gw], and regard WS as a submodule of B.

By definition B/WS '
∏
w∈SK Z. The map WS → ∆G can be extended

to B → Z[G]. Since S is non-empty, this is surjective. We denote by B
the kernel of this homomorphism. Now we have a commutative diagram of
exact sequences:

0

��

0

��

0

��
0 // W ′S

//

��

WS
//

��

∆G //

��

0

0 // B //

��

B //

��

Z[G] //

��

0

0 // XK,S //

��

∏
w∈SK Z //

��

Z //

��

0

0 0 0
where XK,S is the kernel of the homomorphism

∏
w∈SK Z→ Z.

The map A → W ′S obtained above defines a map ψS : A → B by
regarding W ′S as a submodule of B. We define HTK,S to be the cokernel of
ψS : A→ B. Thus we have obtained the following.

Proposition 2.1. The homomorphism ψS : A → B obtained above has
kernel (OTK,S)× and cokernel HTK,S for which, we have an exact sequence

0 −→ ClTK,S −→ HTK,S −→ XK,S −→ 0.
The module B is a finitely generated free Z[G]-module.

Remark 2.2. The module HTK,S is isomorphic to the module Str
S,T (Gm/K)

constructed in [5, Definition 2.6] by Burns, Sano and the author. This mod-
ule is also regarded as the “Weil étale cohomology group H2

T (OK,S ,Z(1))”.
We note that the assumption S ⊃ Sram(K/k) is important to get this
Proposition.

Note that the middle horizontal exact sequence in the diagram before
Proposition 2.1 splits. So we have an isomorphismB ' B⊕Z[G]. Therefore,
putting A = A⊕Z[G], we can define A→ B which is an extension of A→ B,
and whose kernel and cokernel coincide with the kernel and cokernel of
ψS : A→ B, respectively. We denote this map also by ψS : A→ B.
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For any Z[G]-moduleM , we denote the linear dual byM◦ = Hom(M,Z),
and the Pontryagin dual byM∨ = Hom(M,Q/Z) We endow them with the
contragredient action of G. Taking the linear dual of ψS : A → B, we
have ψ◦S : B◦ → A◦, whose cokernel we denote by STK,S . Of course, this is
isomorphic to the cokernel of B◦ → A◦.

Proposition 2.3. The kernel of ψ◦S : B◦ → A◦ is isomorphic to X◦K,S, and
the cokernel STK,S sits in an exact sequence

0 −→ (ClTK,S)∨ −→ STK,S −→ ((OTK,S)×)◦ −→ 0.

This module STK,S is isomorphic to the module SS,T (Gm/K) in [5, Defi-
nition 2.1]. One can regard 0→ X◦K,S → B◦ → A◦ → STK,S → 0 as a (linear
dual version of) Tate sequence.

Proof. We denote by M the image of ψS : A→ B. Then 0→M◦ → A◦ →
((OTK,S)×)◦ → 0 and

0 −→ X◦K,S −→ B◦ −→M◦ −→ Ext1(HTK,S ,Z) = (ClTK,S)∨ −→ 0

are both exact since the torsion part of HTK,S is ClTK,S and the quotient
HTK,S/ClTK,S is isomorphic to XK,S . Thus ψ◦S has kernel isomorphic to X◦K,S .
Also, concerning the cokernel STK,S , we get the exact sequence in Proposi-
tion 2.3 from the above two exact sequences. �

2.2. A homomorphism ψ. From now on we assume that K/k is a finite
abelian extension such that k is totally real and K is a CM-field as in
Section 1. We will define a homomorphism ψ◦ : (W ◦S∞)−Zp → (A◦Zp)

− and
study it.

We consider JTK,S∞ , and get an exact sequence

(2.3) 0 −→ (OTK)× −→ JTK,S∞ −→ CK −→ ClTK −→ 0

from definitions. We define WS∞ = V T
S′/J

T
K,S∞ , so

WS∞ =
∏

w∈(S′\S∞)K

WKw ×
∏

w∈(S∞)K

∆Gw.

From the commutative diagram

0 // JTK,S∞
//

��

V T
S′

//

��

WS∞
//

��

0

0 // CK // O // ∆G // 0,

defining W ′S∞ = Ker(WS∞ → ∆G), we have an exact sequence

(2.4) 0 −→ (OTK)× −→ A −→W ′S∞ −→ ClTK −→ 0
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as we got the exact sequence (2.2) in the previous subsection.
Now we take an odd prime number p, and study the p-components of

the above modules. For any Z[G]-module M we write MZp = M ⊗ Zp and
denote byM−Zp the minus part ofMZp (which consists of elements on which
the complex conjugation acts as −1).

Since (∆G)−Zp = Zp[G]−, the sequence 0 → (W ′S∞)−Zp → (WS∞)−Zp →
(∆G)−Zp → 0 splits as an exact sequence of Zp[G]−-modules. Therefore,
putting A = A ⊕ Z[G] as in the previous subsection, we can construct a
map

ψ : A−Zp −→ (WS∞)−Zp
which is an extension of A−Zp → (W ′S∞)−Zp , whose kernel is ((OTK)×Zp)

−,
and whose cokernel is ((ClTK)Zp)−. Since (OTK)× is torsion free, we have
((OTK)×Zp)

− = 0. Therefore, we have an exact sequence

(2.5) 0 −→ A−Zp
ψ−→ (WS∞)−Zp −→ ((ClTK)Zp)− −→ 0.

Taking the linear dual of the exact sequence (2.5), we obtain

0 −→ (W ◦S∞)−Zp
ψ◦−→ (A◦)−Zp −→ ((ClTK)∨Zp)

− −→ 0

because Ext1
Zp((Cl

T
K)Zp)−,Zp) = ((ClTK)∨Zp)

−.
For an infinite prime v ∈ S∞ we consider ∆v =

⊕
w|v ∆Gw. Here and

from now on, we use the notation
⊕

instead of
∏
. Since the complex

conjugation ρ acts as−1 on ∆Gw, (∆v)−Zp = (
⊕

w|v ∆Gw)−Zp is a free Zp[G]−-
module of rank 1. Choosing a prime w above v and taking ev ∈ (∆v)−Zp
whose w-component is 1−ρ

2 and other components are zero where ρ is the
complex conjugation, we have an equality (∆v)−Zp = Zp[G]−ev.

For a finite prime v in S′, we put Wv =
⊕

w|vWKw . For w|v, by the
description of WKw mentioned in the previous subsection, we can show
thatW ◦Kw is isomorphic to the quotient of Z[Gw]/(NGw)⊕Z[Gw/Iw] by the
submodule generated by (NIwx, (Fw − 1)(x)) for all x ∈ Z[G/Iw] (see [11,
(24) on p. 1412]). In this way we regardW ◦Kw as a quotient of Z[Gw]⊕Z[Gw].
The natural map Z[Gw] ⊕ Z[Gw] → W ◦Kw induces cw : Q[Gw] ⊕ Q[Gw] →
W ◦Kw ⊗Q. By Greither [11, Lemma 6.1] cw((1, 1)) is a basis of W ◦Kw ⊗Q;

(2.6) Q[Gw]cw((1, 1)) = W ◦Kw ⊗Q.

Since we slightly modified the homomorphism used in the definition ofWKw

as we mentioned in the previous subsection, we give a proof of (2.6). Since
G is abelian, Fw and Iw are independent of the choice of w above v, so we
write Iv and Fv for them. Put

(2.7) gv = 1−Fv + #Iv.
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This is a nonzero divisor in Q[Gw]. Since
(0,−gv) = (NIv ,Fv − 1)− (NIv ,#Iv),

cw((NIv ,Fv − 1)) = 0 and cw((NIv , NIv)) = cw((NIv ,#Iv)), we have

(2.8) cw((0, 1)) = g−1
v NIvcw((1, 1))

in W ◦Kw⊗Q. This shows that both cw((0, 1)) and cw((1, 0)) are in the space
generated by cw((1, 1)) and we get Q[Gw]cw((1, 1)) = W ◦Kw ⊗Q.

Thus, by fixing w above v and using cw, we have an isomorphism Q[G] '⊕
w|v Q[Gw] and a homomorphism

cv : Q[G]⊕Q[G] −→
⊕
w|v

W ◦Kw ⊗Q = W ◦v ⊗Q.

We define
(2.9) ev = cv((1, 1)) ∈W ◦v ⊗Q,

which is a basis of W ◦v ⊗Q.
In this way we get a basis (ev)v∈S′ of a free Q[G]-module W ◦S∞ ⊗ Q of

rank #S′.
For a finite prime v ∈ S′ we consider the equality (2.6). Since W ◦Kw is

generated by cw((1, 1)) and cw((0, 1)), using (2.8), we have

W ◦Kw =
(

1, 1
gv
NIv

)
Z[Gw]cw((1, 1)).

Therefore, we get
W ◦v =

(
1, 1
gv
NIv

)
Z[G]ev

where gv = 1−Fv + #Iv as in (2.7).
Put

(2.10) hv =
(

1− NIv

#Iv

)
+ NIv

#Iv
gv

which is a nonzero divisor of Q[G] as in Greither [11, Lemma 8.3]. Then by
this lemma we have(

1, 1
gv
NIv

)
Z[G] = h−1

v

(
NIv , 1−

NIv

#Iv
Fv
)
Z[G]

because hv = 1− NIv
#IvFv +NIv . Therefore, we have

(2.11) W ◦v =
(

1, 1
gv
NIv

)
Z[G]ev = h−1

v

(
NIv , 1−

NIv

#Iv
Fv
)
ev

and an isomorphism

W ◦v '
(
NIv , 1−

NIv

#Iv
Fv
)
Z[G].
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We note that if v is unramified,
(
NIv , 1−

NIv
#IvFv

)
Z[G] = (1, 1−Fv)Z[G] =

Z[G]. Therefore, recalling that Sram(K/k) is the set of finite primes that
are ramified in K, we have an isomorphism⊕
v∈S′\S∞

W ◦v '
⊕

v∈Sram(K/k)

(
NIv , 1−

NIv

#Iv
Fv
)
Z[G]⊕

⊕
v∈S′\(S∞∪Sram(K/k))

Z[G].

Thus we get information of the Galois module structure of W ◦S∞ . We
have obtained

Proposition 2.4.

(2.12) 0 −→ (W ◦S∞)−Zp
ψ◦−→ (A◦Zp)

− −→ ((ClTK)∨Zp)
− −→ 0

is exact. Here, (A◦Zp)
− is a free Zp[G]−-module of rank #S′, and

(2.13) (W ◦S∞)−Zp

'
⊕

v∈S′\Sram(K/k)
Zp[G]− ⊕

⊕
v∈Sram(K/k)

(
NIv , 1−

NIv

#Iv
Fv
)
Zp[G]−.

Proof. The exactness of the sequence (2.12) and the isomorphism (2.13)
were already proved before this proposition. Since A is torsion free and co-
homologically trivial, A−Zp is also cohomologically trivial. Note that A−Zp⊗Zp
Qp is isomorphic to (W ◦)−Zp ⊗Zp Qp which is free of rank #S′ over Qp[G]−.
So A−Zp is a free Zp[G]−-module of rank #S′. �

3. Fitting ideals

3.1. Stickelberger ideals and a conjecture on Fitting ideals. Let
K/k be a finite abelian CM-extension, and G, T , . . . be as in Section 2.2.
We will first define a certain Stickelberger ideal ΘT (K) ⊂ Z[G].

For a character χ of G, we write L(s, χ) for the primitive L-function
for χ; this function omits exactly the Euler factors of primes dividing the
conductor of χ. We define

ωT =
∑
χ∈Ĝ

LT (0, χ−1)εχ ∈ Q[G]

where

LT (s, χ) =
( ∏
v∈T

(1− χ(Fv)N(v)1−s)
)
L(s, χ)

is the T -modified L-function and εχ = (#G)−1∑
σ∈G χ(σ)σ−1 is the idem-

potent of the χ-component. We know that ωT ∈ Q[G] by [25].
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As in the previous section we denote by Sram(K/k) the set of all ramifying
finite primes in K/k. For v ∈ Sram(K/k) we define a Z[G]-module Uv in
Q[G] by

Uv =
(
NIv , 1−

NIv

#Iv
F−1
v

)
Z[G] ⊂ Q[G].

We define the Stickelberger ideal ΘT (K) by

ΘT (K) =
( ∏
v∈Sram(K/k)

Uv

)
ωT

(cf. the definition of SKu′(K/k) in Greither [10, §2]).

Proposition 3.1. This Stickelberger ideal ΘT (K) is in Z[G], namely it is
an ideal of Z[G].

Proof. This is essentially obtained in Greither [10, §2]. In fact, our ΘT (K)
is the T -modified version of SKu′(K/k) in [10, §2], and one can show by
the argument of Proposition 2.4 in [10] that it is equal to the T -modified
version of SKu′1(K/k) which can be seen to be integral. But here, we give
a slightly different proof for the convenience of readers.

For an intermediate field F of K/k and a finite set S of finite primes that
contains all ramifying primes in F , we define the equivariant zeta function
θF,S(s) by

(3.1) θF,S(s) =
∏

χ∈Ĝal(F/k)

LS(s, χ−1)εχ

where LS(s, χ) is the L-function obtained by removing the Euler factors
for all v ∈ S. We consider its T -modification

θTF,S(s) =
( ∏
v∈T

(1−F−1
v N(v)1−s)

)
θF,S(s)

and the (S, T )-Stickelberger element

(3.2) θTF,S = θTF,S(0) =
( ∏
v∈T

(1−F−1
v N(v))

)
θF,S(0).

It is known by Deligne and Ribet [9] and Cassou-Noguès [7] that θTF,S ∈
Z[Gal(F/k)].

We put Sr = Sram(K/k). For a subset J of Sr we define KJ to be the
maximal subextension of k in K that are unramified at all primes in J .
Namely KJ is the fixed subfield of the subgroup of G generated by Iv for
all v ∈ J . If J is empty, we take KJ = K. We put NJ =

∏
v∈J NIv ∈ Z[G].

Then the multiplication by NJ defines a homomorphism
νJ : Z[Gal(KJ/k)] −→ Z[G].
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Note that this is not a norm homomorphism for K/KJ but the multiplica-
tion by some constant of the norm homomorphism. We have

νJ(θTFJ ,Sr\J) =
∏
v∈J

NIv

∏
v∈Sr\J

(
1− NIv

#Iv
F−1
v

)
ωT .

This equality can be proved by comparing the χ-components of both sides
for each character χ of G (see, for example, [18, Lemma 2.1]).

This equality shows that ΘT (K) is generated by νJ(θTFJ ,Sr\J) for all sub-
sets J of Sr. In particular, we obtain ΘT (K) ⊂ Z[G]. This completes the
proof. �

For any group ring R[G] we denote by x 7→ x# the involution R[G] →
R[G] induced by σ 7→ σ−1 for all σ ∈ G.

Conjecture 3.2. Put R = Z[1/2][G]−, ((ClTK)′)∨ = ((ClTK ⊗ Z[1/2])−)∨,
and ΘT (K)′ = (ΘT (K)⊗ Z[1/2])− ⊂ R. Then

FittR(((ClTK)′)∨) = (ΘT (K)′)#

holds true.

Now we study this conjecture, using Proposition 2.4. Consider the
Qp[G]−-homomorphism

ψ◦ : (W ◦S∞ ⊗Qp)− −→ (A◦ ⊗Qp)− .

For a finite prime v in S′ let ev be as in (2.9) (see also (2.8)). For an infinite
prime v we also defined ev of W ◦S∞ ⊗Q in Section 2.2. We also write ev for
the minus component of ev, and take a basis (ev)v∈S′ of (W ◦S∞ ⊗Qp)−.

We consider detψ◦ ∈ Q[G]− with respect to the basis (ev)v∈S′ and a basis
of (A◦⊗Zp)− which is a free Zp[G]−-module of rank #S′ by Proposition 2.4.
Then detψ◦ is determined up to unit of Zp[G]−, and is a nonzero divisor
of Qp[G]−.

Recall that hv ∈ Q[G] was defined in (2.10) (see also (2.7)).

Theorem 3.3. For any odd prime number p we have

FittZp[G]−(((ClTK)∨)−Zp) =
(( ∏

v∈Sram(K/k)
U#
v

)( ∏
v∈S′\S∞

h−1
v

))−
Zp

detψ◦

where detψ◦ is taken with respect to (ev)v∈S′ and a basis of (A◦ ⊗ Zp)−.

Proof. We use the presentation of ((ClTK)∨)−Zp in Proposition 2.4. For a
finite prime v ∈ S′ we proved in (2.11) that

W ◦v = h−1
v U#

v Z[G]ev.
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Therefore, the minus part of (W ◦S∞)Zp can be written as

(W ◦S∞)−Zp =
⊕
v∈S∞

Zp[G]−ev ⊕
⊕

v∈S′\S∞

(h−1
v U#

v )−Zpev.

It follows from the exact sequence (2.12) that

FittZp[G]−(((ClTK)∨)−Zp) =
( ∏
v∈S′\S∞

h−1
v U#

v

)−
Zp

detψ◦

If v is unramified, we have Uv = Z[G], which implies the conclusion of
Theorem 3.3. �

By Theorem 3.3, we know that Conjecture 3.2 is equivalent to

(3.3)
( ∏
v∈S′\S∞

h−1
v

)
detψ◦ · Zp[G]− = (ωTZp[G]−)#

for all odd p.

3.2. A conjecture on detψS. For a finite set S of primes such that
S∞ ∪ Sram(K/k) ⊂ S ⊂ S′, we consider the homomorphism ψS : A → B
which was constructed in Section 2.1, and study its determinant detψS .

Since we defined B by B =
⊕
w∈(S′)K Z[Gw], fixing a prime w above v,

we have B =
⊕
v∈S′ Z[G]. For each v, we take a canonical basis (eBv )v∈S′ of

B where eBv is the element whose v-component is 1 and other components
are zero.

We write AK , BK for A, B in order to clarify the field over which these
modules are defined. For modulesWS ,A,B, . . . and for an intermediate field
F of K/k, we write WF,S , AF , BF , . . . for the corresponding modules for
F . Let ψF,S : AF → BF denote the ψS for F . For BF we use the canonical
basis (eBF,v)v∈S′ which is defined similar to the above (eBv )v∈S′ = (eBK,v)v∈S′ .
More precisely, recalling that for v ∈ S′ we fixed a prime w of K above v,
we define eBF,v by using the prime wF of F below w. In other words, eBF,v is
the image of eBK,v under the canonical homomorphism BK → BF .

In order to compare ψF,S for several F and S below, it is convenient to
remove the ambiguity of the definition of this map (recall that ψF,S was
defined as an extension of ψF,S : AF → BF ). We take and fix an infinite
prime v∞ ∈ S, and define ψF,S : AF = AF ⊕ Z[Gal(F/k)] → BF by
ψF,S((0, 1)) = eBF,v∞ .

For S such that S∞∪Sram(F/k) ⊂ S ⊂ S′, we define θTF,S ∈ Z[Gal(F/k)]
as in (3.2).
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Conjecture 3.4. Put r = #S′. The module AK is a free Z[G]-module of
rank r with a basis (eAK,i)1≤i≤r such that for any intermediate field F of
K/k and for any S such that S∞ ∪ Sram(F/k) ⊂ S ⊂ S′, we have

det(ψF,S) = θTF,S

Here, we define a basis (eAF,i)1≤i≤r of AF as the image of (eAK,i)1≤i≤r under
the natural map AK → AF , and det(ψF,S) is taken with respect to the bases
(eAF,i)1≤i≤r of AF and (eBF,v)v∈S′ of BF .

We note that det(ψF,S) = θTF,S in Conjecture 3.4 is not an equality of
ideals, but of elements in Z[Gal(F/k)]. Also, this conjecture asserts the
existence of a good basis which can be used for any F and S. This equi-
variant statement would remind one of the equivariant Tamagawa number
conjecture. In fact,

Proposition 3.5. The equivariant Tamagawa number conjecture for K/k
(eTNC in short) implies Conjecture 3.4.

Proof. We use the notation and terminology in [5]. Let RΓT ((OK,S)W ,Gm)
be the complex defined in [5, §2.2]. We use Conjecture 3.6 in [5] as
eTNC, which claims that there is an element zK/k,S,T which is a basis of
detGRΓT ((OK,S)W ,Gm) as a Z[G]-module such that ϑλK,S (zK/k,S,T ) =
θT ∗K/k,S(0) where

ϑλK,S : det
G
RΓT ((OK,S)W ,Gm)⊗ R '−→ R[G]

is the isomorphism defined by using the Dirichlet regulator, detGC• is the
determinant module of the complex C•, and θT ∗K/k,S(0) is the leading term
of (S, T )-modified equivariant zeta function θTK/k,S(s) at s = 0 (see in [5,
§3]). We assume this conjecture. Since the complex RΓT ((OK,S)W ,Gm) is
represented by AK

ψS→ BK , AK is a free Z[G]-module (see, for example, [1,
Lemma 3.2]). Also, since we fixed a basis of BK , zK/k,S,T yields a basis of
AK up to base change of determinant 1. We take such a basis (eAK,i)1≤i≤r,
and use it from now on. By definition, we have det(ψK,S) = θTK/k,S(0) =
θTK/k,S . Also, for an intermediate field F , we know that the zeta element
zF/k,S,T is the image of zK/k,S,T . This shows that

det(ψF,S) = θTF/k,S(0) = θTF/k,S .

Suppose that v is in S \ Sram(F/k), and put S′′ = S \ {v}. We will next
prove det(ψF,S′′) = θTF/k,S′′ .

We first suppose that v splits completely in F . We put Yv =
⊕
w∈{v}F Z.

Recall that we fixed in the beginning of this subsection a prime wF of F
above v in S′ when we defined eBF,v ∈ BF . Since v splits completely in F ,
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the prime wF gives a basis of Yv as a free Z[Gal(F/k)] of rank 1. We have
a distinguished triangle (see [5, (18), §3.2])

RΓT ((OF,S′′)W ,Gm) −→ RΓT ((OF,S)W ,Gm) −→ Yv[−1]⊕ Yv[−2].

Put Yv = Yv[−1]⊕ Yv[−2]. We define a basis u of detYv, using the basis of
Yv we explained above.

Using the equality

detRΓT ((OF,S)W ,Gm) = detRΓT ((OF,S′′)W ,Gm)⊗ detYv ,

we write zF/k,S,T = z ⊗ u for some z ∈ detRΓT ((OF,S′′)W ,Gm). Then we
know z = zF/k,S′′,T . In fact, from the commutative diagram

0 // (OTF,S′′)× ⊗ R //

λK,S′′

��

(OTF,S)× ⊗ R //

λK,S

��

Yv ⊗ R //

logN(v)
��

0

0 // XF,S′′ ⊗ R // XF,S ⊗ R // Yv ⊗ R // 0

of exact sequences where the first two vertical arrows are regulator maps
(λK,S(a) = −

∑
w∈SK log |a|ww and λK,S′′ is defined similarly) and the

rightmost map is the multiplication by logN(v), we get

ϑλF,S (zF/k,S,T ) = ϑλF,S′′ (z) logN(v).

This shows that

ϑλF,S′′ (z) = θT ∗F/k,S(0)(logN(v))−1 = θT ∗F/k,S′′(0)

from which we deduce z = zF/k,S′′,T . This fact means the following. The

complex RΓT ((OF,S′′)W ,Gm) is represented by AF
ψS′′→ BF , and the basis

(eAF,i)1≤i≤r of AF and the basis (eBF,v)v∈S′ of BF yield an element z in
detRΓT ((OF,S′′)W ,Gm). In this situation we have shown z = zF/k,S′′,T .
Therefore, in particular, det(ψF,S′′) = θTF/k,S′′ holds.

Next, we consider a general v. For an element x ∈ Q[Gal(F/k)] and a
character χ of Gal(F/k), we denote by εχ = εF,χ the idempotent of the
χ-component for Gal(F/k), and write xχ = εχx which is an element of
the χ-component of Q(µm)[Gal(F/k)] where m = # Gal(F/k). In order to
prove det(ψF,S′′) = θTF/k,S′′ , it suffices to show the equality det(ψF,S′′)χ =
(θTF/k,S′′)

χ for all characters χ of Gal(F/k).
Note that v is unramified in F . If χ(Fv) = 1, then we can prove this

equality by the same argument as when v splits completely. So we assume
χ(Fv) 6= 1.

The images of ψF,S , ψF,S′′ are inWF,S ,WF,S′′ , respectively. The difference
betweenWF,S andWF,S′′ lies only on the v-component; the former is ∆F,v =⊕
w|v ∆Gw(F/k) and the latter is WF,v ' Z[Gal(F/k)] which is defined by
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(x, y) 7→ y. If (x, y) is inWF,v, then x = (1−F−1
v )y by definition. Therefore,

the natural map WF,S′′ → WF,S is the multiplication by 1 − F−1
v on the

v-component and the identity on other components. Let φv : BF → BF be
the map which is the multiplication by 1 − F−1

v on the v-component and
the identity on other components. Then we have

ψF,S = φv ◦ ψF,S′′ .
Since detφv = 1−F−1

v , we get
det(ψF,S)χ = (1− χ(Fv)−1) det(ψF,S′′)χ.

Therefore, the equality det(ψF,S)χ = (θTF/k,S)χ we obtained above implies
det(ψF,S′′)χ = (θTF/k,S′′)

χ. Now we have obtained the equality for all χ-
components, so we get

det(ψF,S′′) = θTF/k,S′′ .

By induction on #(S′ \S), starting from S = S′ and applying the above
argument, we obtain for any S and any F

det(ψF,S) = θTF/k,S . �

It is also easily checked by the argument in the above proof that Con-
jecture 3.4 implies the eTNC, namely the existence of zK/k,S,T .

We assume Conjecture 3.4, so the existence of a basis (eAK,i)1≤i≤r of
AK . We denote by (eA◦K,i)1≤i≤r the dual basis of A◦K . We next study the
homomorphism

ψ◦ : (W ◦K,S∞ ⊗Qp)− −→ (A◦K ⊗Qp)− .
in Proposition 2.4. We take a basis (ev)v∈S′ of W ◦S∞ as in Theorem 3.3, and
(eA◦K,i)1≤i≤r as a basis of (A◦K ⊗Qp)− to study detψ◦ ∈ Qp[G]−.
Theorem 3.6. We assume Conjecture 3.4.

(1) We have
detψ◦ = (ωT )# ∏

v∈S′\S∞

hv

where detψ◦ is taken with respect to the bases (ev)v∈S′ and
(eA◦K,i)1≤i≤r, and hv was defined in (2.10).

(2) Conjecture 3.2 holds, namely
FittZ[1/2](((ClTK)′)∨) = (ΘT (K)′)#.

Proof. Theorem 3.6(2) is a consequence of Theorems 3.3 and 3.6(1) (see
also (3.3)). So it suffices to prove Theorem 3.6(1). To do this, we prove

(detψ◦)χ =
(

(ωT )# ∏
v∈S′\S∞

hv

)χ
= LT (0, χ)

∏
v∈S′\S∞

hχv
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for any character χ of G where we denote the χ-component εχx by xχ for
any element x in Qp[G]−.

We use the notation in Section 2.2. Suppose that v is a finite prime
in S′, and w is the prime we fixed above v. It follows from (2.8) that
cw((0, 1)) = g−1

v NIvcw((1, 1)) and

(3.4) cw((1, 0)) = cw((1, 1))− cw((0, 1)) = (1− g−1
v NIv)cw((1, 1)).

Let Kχ/k be the intermediate field of K/k corresponding to H = Kerχ.
We put F = Kχ, Sχ = S∞ ∪ Sram(F/k) = S∞ ∪ Sram(Kχ/k), and consider
ψF,Sχ : AF → BF and its dual ψ◦F,Sχ : B◦F → A◦F with which we compare
ψ◦ : (W ◦K,S∞ ⊗Qp)− → (A◦K ⊗Qp)−.

Consider a homomorphism

ι : B◦F
α−→W ◦F,S∞ ⊗Q β−→W ◦K,S∞ ⊗Q

where α is induced by the natural inclusion WF,S∞ ⊂ BF and β is induced
by the canonical homomorphism WK,S∞ →WF,S∞ . Since detψ◦, detψ◦F,Sχ
are defined by using the basis (ev)v∈S′ , (eB◦F,v)v∈S′ , respectively, we compare
the image under the homomorphism ι of the dual basis (eB◦K,v)v∈S′ of B◦F ,
obtained from (eBF,v)v∈S′ , with the basis (ev)v∈S′ of W ◦K,S∞ ⊗Q. (Note that
since BF was constructed from WF,S , it depends on S though the notation
does not carry S. In our case above, S = Sχ.)

We denote by w′ the prime of F below w that is the prime we fixed of
K above v. Put Hw = Gal(Kw/Fw′), and Gw′ = Gal(Fw′/kv), then since
Gw = Gal(Kw/kv), we have Gw′ = Gw/Hw.

Suppose at first v is in Sχ = Sram(F/k). We will prove

(3.5) ι(eB◦F,v) = NH(1− g−1
v NIv)ev.

Since w′ is ramified, the w′-component of the natural map WF,Sχ → BF is
WFw′ → Z[Gw]; (x, y) 7→ x. Let

cw′ : Q[Gw′ ]⊕Q[Gw′ ] −→W ◦Fw′ ⊗Q

be the homomorphism obtained by applying the definition of cw in Sec-
tion 2.2 to w′. We consider the natural map WF,S∞ → BF and its dual
α : B◦F →W ◦F,S∞ ⊂W

◦
F,S∞ ⊗Q. Then the w′-component αw′ of α,

αw′ : Z[Gw′ ] −→W ◦Fw′ ⊗Q
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is described as αw′(1) = cw′((1, 0)) by what we explained above and the
definitions of the modules. Since the diagram

Z[Gw′ ]
αw′ //

NHw
��

W ◦Fw′ ⊗Q

��
Z[Gw] p1 // W ◦Kw ⊗Q

is commutative where the bottom map p1 is p1(x) = cw((x, 0)), the w′-
component of ι = β ◦ α can be described as

Z[Gw′ ] −→W ◦Kw ⊗Q;
1 7−→ NHwcw((1, 0)) = NHw(1− g−1

v NIv)cw((1, 1))
where we used (3.4) to get the last equality. This shows that

ι(eB◦F,v) = NH(1− g−1
v NIv)ev,

which completes the proof of (3.5).
Since v is ramified, taking the χ-component (multiplying (3.5) by εχ),

we get
(3.6) α(eB◦F,vεF,χ) = evεχ

where εF,χ = # Gal(F/k)−1∑
σ∈Gal(F/k) χ(σ)σ−1 is the idempotent of the

χ-component of the group ring for Gal(F/k).
Next, suppose that v is unramified in F = Kχ. This time v is not in

Sχ, so the w′-component of WF,Sχ → BF is WFw′ → Z[Gw]; (x, y) 7→ y.
Therefore, αw′ : Z[Gw′ ]→W ◦Fw′ ⊗Q is described as

αw′(1) = cw′((0, 1)).
Since v is unramified, Iv is in Hw. We note that the map x 7→ cw((0, 1))
factors through Z[Gw/Iw]. We denote this map Z[Gw/Iw] → W ◦Kw ⊗Q by
p2. Then the diagram

Z[Gw′ ]
αw′ //

NHw/Iv
��

W ◦Fw′ ⊗Q

��
Z[Gw/Iv]

p2 // W ◦Kw ⊗Q

is commutative. Thus the w′-component of ι = β ◦ α, Z[Gw′ ] → W ◦Kw ⊗Q
is described as

1 7−→ NHw/Ivcw((0, 1)) = NHw/IvNIvg
−1
v cw((1, 1)) = NHwg

−1
v cw((1, 1))

where we used (2.8) to get the first equality. This implies that

(3.7) ι(eB◦F,v) = NHg
−1
v ev.
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Multiplying εχ, we now get

(3.8) α(eB◦F,vεF,χ) = g−1
v evεχ.

Recall that detψ◦, detψ◦F,Sχ are computed by using the basis (ev)v∈S′ ,
(eB◦F,v)v∈S′ , respectively. Therefore, it follows from (3.6) and (3.8) that

det(ψ◦F,Sχ)χ =
(( ∏

S′\(S∞∪Sχ)
g−1
v

)
det(ψ◦)

)χ
=
(( ∏

S′\S∞

h−1
v

)
det(ψ◦)

)χ
.

To get the last equality, we used (2.10). Using Conjecture 3.4, we obtain

det(ψ◦)χ =
(( ∏

S′\S∞

hv

)
det(ψ◦F,Sχ)

)χ
=
(( ∏

S′\S∞

hv

)
(θTF,Sχ)#

)χ

= LT (0, χ)
∏

v∈S′\S∞

hχv .

This holds for all characters χ of G, so we get the desired equality in
Theorem 3.6(1). �

Corollary 3.7. The equivariant Tamagawa number conjecture for K/k
implies Conjecture 3.2 1.

Proof. This follows from Theorem 3.6(2) and Proposition 3.5. �

4. Cyclotomic Zp-extensions

Let K∞/K be the cyclotomic Zp-extension and Kn the n-th layer. Put
Λ =Zp[[Gal(K∞/k)]]. We first take the projective limit of the sequence (2.12)
in Proposition 2.4.

We denote by Sram = Sram(K∞/k) the set of all finite primes of k rami-
fying in K∞. The set Sp of all primes above p is contained in Sram. We put
Snon p

ram = Sram \Sp. We take S′ which satisfies the conditions in Section 2.1
for K/k and which satisfies S′ ⊃ Sram.

We consider WKn,S∞ which is WS∞ in Section 2.2 for Kn. Let w be a
prime of K∞. We also denote by w the prime of Kn below w and consider
WKn,w . We define

W (K∞/k)◦Zp = lim←−(W ◦Kn,S∞ ⊗ Zp),
Ww(K∞/k)◦Zp = lim←−(W ◦Kn,w ⊗ Zp)

and Wv(K∞/k)◦Zp =
⊕
w|vWw(K∞/k)◦Zp for a finite prime v of k.

We first consider a prime w above p. Suppose that n is sufficiently large
such that K∞/Kn is totally ramified at all primes above p. Consider the

1See the comment in the end of Section 1 on the recent work by Dasgupta and Kakde [8].



990 Masato Kurihara

canonical exact sequences for WKn,w and WKn+1,w (see (1.4) in [16]). Then
we have a commutative diagram of exact sequences

0 // Z //

ξ

��

WKn,w
//

��

∆Dw(Kn/k) //

ν

��

0

0 // Z // WKn+1,w
// ∆Dw(Kn+1/k) // 0

where Dw(Kn/k) is the decomposition subgroup of w in Gal(Kn/k), ξ is
the multiplication by p and ν is the norm map. The above commutative
diagram shows that for a prime w of K∞ above p,

Ww(K∞/k)◦Zp = lim←−Zp[Dw(Kn/k)]/(NDw(Kn/k)) = Zp[[Dw(K∞/k)]].

Therefore,Wv(K∞/k)◦Zp =
⊕

w|vWw(K∞/k)◦Zp is a free Λ-module of rank 1
for v ∈ Sp.

We use the notation in Section 2.2. Let

cw : Z[Gw(Kn/k)]⊕ Z[Gw(Kn/k)] −→W ◦Kn,w

be the map obtained by applying to Kn/k the definition for K/k before
Proposition 2.4 in Section 2.2. Taking the projective limit, we have a map

cw : Zp[[Dw(K∞/k)]]⊕ Zp[[Dw(K∞/k)]] −→Ww(K∞/k)◦Zp .

What we have shown in the previous paragraph, means that cw((1, 0)) gen-
erates Ww(K∞/k)◦Zp , namely Ww(K∞/k)◦Zp = Zp[[Dw(K∞/k)]]cw((1, 0)).

Fixing w above v, we have a map

cv : Zp[[Gal(K∞/k)]]⊕ Zp[[Gal(K∞/k)]] = Λ⊕ Λ −→Wv(K∞/k)◦Zp .

We put e′v = cv((1, 0)). Then we have Wv(K∞/k)◦Zp = Λe′v.
Next, suppose that v is a non p-adic finite prime. Note that the inertia

group Iv(K∞/k) of Gal(K∞/k) coincides with the inertia group Iv(K/k)
of Gal(K/k). We denote it by Iv.

We define cv as above and also define e′v = cv((1, 0)). Then the map
Λ→Wv(K∞/k)◦Zp , a 7→ ae′v is injective because Fv− 1 is a nonzero divisor
in Λ.

Let R be the total quotient ring of Λ. Then R → Wv(K∞/k)◦Zp ⊗ R
which is defined by a 7→ ae′v is bijective. Since Wv(K∞/k)◦Zp is generated
by cv((1, 0)) and cv((0, 1)), we have

(4.1) Wv(K∞/k)◦Zp = (1, NIv

1−Fv
)Λe′v.

We now suppose that v is an infinite prime. Then the v-component of
WKn is canonically isomorphic to Z[Gal(Kn/k)] (after fixing a prime w
above v). We took a generator ev of (W ◦Kn,v)

−
Zp in Section 2.2. We define
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e′v to be the projective limit of ev as n → ∞. So in this case we have
Wv(K∞/k)◦Zp = Λe′v. Thus if v is p-adic or infinite,

Wv(K∞/k)◦Zp = Λe′v

holds.
We regard e′v as an element of W (K∞/k)◦Zp (by defining that the v′-

component of e′v is zero for all v′ 6= v). Then (e′v)v∈S′ is a basis of a free
R-module W (K∞/k)◦Zp ⊗R.

We first note that Coker(V T
Kn,S′

→ OKn) ⊗ Zp = 0 for any n ≥ 0 where
V T
Kn,S′

, OKn are V T
S′ , O for Kn. This can be checked as follows. Put Gn =

Gal(Kn/K). Since the natural maps induce isomorphisms (V T
Kn,S′

)Gn '
V T
K,S′ and (OKn)Gn ' OK , the surjectivity of V T

K,S′ → OK implies
Coker(V T

Kn,S′
→ OKn)Gn = 0. Therefore, Nakayama’s lemma implies

Coker(V T
Kn,S′

→ OKn)⊗ Zp = 0.
Thus we have exact sequences (2.12) in Proposition 2.4 for any Kn, and

can take the projective limit.
Consider A◦Kn which is A◦ for Kn, and define

A◦(K∞/k)Zp = lim←−(A◦Kn ⊗ Zp).

The minus part A◦(K∞/k)−Zp is a free Λ−-module of finite rank. We put

ClTK∞,p = lim−→(ClTKn ⊗ Zp).

Taking the projective limit of the exact sequence (2.12), we have an exact
sequence

(4.2) 0 −→ (W (K∞/k)◦Zp)
− −→ A◦(K∞/k)−Zp −→ ((ClTK∞,p)

∨)− −→ 0.

Let W ′ be the Λ-submodule of (W (K∞/k)◦Zp)
− generated by e′v for all

v ∈ S′. Then W ′ is a free Λ−-module. We write f for the restriction of the
homomorphism (W (K∞/k)◦Zp)

− → A◦(K∞/k)−Zp to W ′. We consider det f
with respect to the basis (e′v)v∈S′ . So det f is determined up to Λ×.

Lemma 4.1. Suppose that f : W ′ → A◦(K∞/k)−Zp is the homomorphism
defined above, and we take det f with respect to the basis (e′v)v∈S′. Then we
have

FittΛ−(((ClTK∞,p)
∨)−) =

( ∏
v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

))
det f

where Iv = Iv(K/k) for each v.
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Proof. If v ∈ S∞∪Sp, we knowWv(K∞/k)◦Zp = Λe′v. For v ∈ S′\(S∞∪Sp),
we have Wv(K∞/k)◦Zp = (1, NIv

1−Fv )Λe′v by (4.1). Therefore, we have

(W (K∞/k)◦Zp)
− =

⊕
v∈S∞∪Sp

Λ−e′v ⊕
⊕

v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

)
Λ−e′v.

Therefore, it follows from (4.2) that

FittΛ−(((ClTK∞,p)
∨)−) =

( ∏
v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

))
det f . �

Our final task is to determine det f .
For a finite set S which contains all ramifying primes inK∞, we denote by

θTKn,S the (S, T )-modified Stickelberger element as in (3.2), and by θTK∞,S its
projective limit (for n � 0) in Λ−. We simply write θTK∞ when S = Sram.
Also, for an intermediate CM-subfield F of K/k and the cyclotomic Zp-
extension F∞/F , we define θTF∞ to be θTF∞,Sram(F∞/k) where Sram(F∞/k)
is the set of all ramifying primes in F∞/k. We also use elements θT #

F∞,S
,

θT #
F∞

, . . . where # is the involution of the group ring induced by σ 7→ σ−1

for elements σ in the group as in Section 3.1.

Lemma 4.2. We assume µ = 0 for K∞/k. We have

(det f)Λ− = θT #
K∞,S′

Λ−

as ideals of Λ−.

Proof. We write A◦ = A◦(K∞/k)−Zp , and Cl
∨ = ((ClTK∞,p)

∨)−. Since

(Wv(K∞/k)◦Zp/Λe
′
v)− ' Λ−/(1−Fv,∆Iv),

for v ∈ S′ \ (S∞ ∪ Sp), the exact sequence (4.2) yields an exact sequence

0 −→
⊕

v∈S′\(S∞∪Sp)
Λ−/(1−Fv,∆Iv) −→ A◦/ Image f −→ Cl∨ −→ 0.

Since Gal(K∞/k) is abelian and an extension of Zp by a finite abelian
group, we can write Gal(K∞/k) ' G′×Zp for some finite subgroup G′. Let
K ′ be the field such that Gal(K∞/K ′) = Zp, Gal(K ′/k) = G′, K ′∩k∞ = k.
By taking K = K ′ from the first, we may assume K ∩ k∞ = k. Then Λ is
isomorphic to the power series ring Zp[G][[t]].

For an odd character χ of G, we consider the χ-quotient only in the proof
of this lemma. For a Zp[G]-moduleM and χ : G→ Q×p which is a character
of G, whose image is in an algebraic closure of Qp, we define the χ-quotient
[M ]χ by [M ]χ = M ⊗Zp[G]Oχ where Oχ = Zp[Imageχ] on which G acts via
χ. For an element x of M , the image of x in [M ]χ is denoted by xχ.
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Taking the χ-quotients of the above exact sequence, we get an exact
sequence⊕

v∈S′\(S∞∪Sp)
[Λ−/(1−Fv,∆Iv)]χ −→ [A◦/ Image f ]χ −→ [Cl∨]χ −→ 0.

The kernel of the first map is finite since⊕
v∈S′\(S∞∪Sp)

[(Λ−/(1−Fv,∆Iv))⊗Zp Qp]χ −→ [(A◦/ Image f)⊗Zp Qp]χ

is injective. We consider the characteristic ideals over [Λ]χ = Oχ[[t]]. We
know char([A◦/ Image f ]χ) = ((det f)χ). If χ is trivial on Iv, we have
char([Λ−/(1 − Fv,∆Iv)]χ) = ((1 − Fv)χ). Otherwise, [Λ−/(1 − Fv,∆Iv)]χ
is finite.

Let Kχ be the intermediate field of K/k corresponding to Kerχ, and
Kχ∞ its cyclotomic Zp-extension. Then the characteristic ideal of [Cl∨]χ
is generated by (θT #

Kχ∞
)χ by the main conjecture proved by Wiles [26].

Therefore, the above exact sequence implies that

char([A◦/ Image f ]χ) = ((det f)χ) =
(( ∏

χ|Iv=1

(1−Fv)χ

)
(θT #
Kχ∞

)χ

)

where v ranges over all primes in S′ which are unramified in Kχ∞. Let

resKχ∞ : Λ = Zp[[Gal(K∞/k)]] −→ Zp[[Gal(Kχ∞/k)]]

be the restriction map. Since we know

resKχ∞(θT #
K∞,S′

) =
∏

χ|Iv=1

(1−Fv)θT #
Kχ∞

,

we obtain
((det f)χ) = ((θT #

K∞,S′
)χ)

as ideals of Oχ[[t]]. Since this equality holds for any odd character χ of G,
the conclusion of Lemma 4.2 follows from the next lemma. �

Lemma 4.3. Let a, b be elements of Λ such that the µ-invariants of aχ
and bχ in Oχ[[t]] are zero for any character χ of G. If (aχ) = (bχ) holds as
ideals of Oχ[[t]] for all χ of G, we get (a) = (b) as ideals of Λ.

Proof. This lemma seems to be well-known, but we give here a proof. By
Proposition 2.1 in [3] we may assume that a, b are distinguished polynomials
in the sense of [3]. We write a = bq+r for some q ∈ Λ and some polynomial
r whose degree is smaller than the degree of b. Here, Λ is semi-local, and
the degree means the vector of the degree of each component (see [3, §2]).
The condition (aχ) = (bχ) in Oχ[[t]] implies rχ = 0 for any χ, so we have
r = 0 and (a) ⊂ (b). The converse is also true, and we get (a) = (b). �
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Now we can prove the main theorem in this section. Recall that Snon p
ram =

Sram \ Sp.

Theorem 4.4. Assuming µ = 0 2 for K∞/k, we have

FittΛ−(((ClTK∞,p)
∨)−) =

( ∏
v∈Snon p

ram

(
1, NIv

1−Fv

))
θT #
K∞

.

Proof. By Lemmas 4.1 and 4.2, we have

FittΛ−(((ClTK∞,p)
∨)−) =

( ∏
v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

))
det f

=
( ∏
v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

))
θT #
K∞,S′

.

If v is unramified, we know
(
1, NIv

1−Fv
)
(1−Fv) = Λ, so using

θT #
K∞,S′

=
∏

S′\(S∞∪Sram)
(1−Fv)θT #

K∞
,

we obtain( ∏
v∈S′\(S∞∪Sp)

(
1, NIv

1−Fv

))
θT #
K∞,S′

=
( ∏
v∈Snon p

ram

(
1, NIv

1−Fv

))
θT #
K∞

.

This completes the proof of Theorem 4.4. �

Remark 4.5.
(1) Greither and Popescu proved that θT #

K∞
is in the Fitting ideal of

((ClTK∞,p)
∨)− in [15]. The above theorem gives a refinement in the

sense that it gives a full description of the Fitting ideal.
(2) The author obtained a similar result for the non-Teichmüller char-

acter components of class groups with T = ∅, assuming Leopoldt’s
conjecture in [19, Theorem A.5]. Theorem 4.4 implies Theorem A.5
in [19] without assuming Leopoldt’s conjecture by choosing T suit-
ably as a set of auxiliary primes. Thus Theorem 4.4 is also a gen-
eralization of the main result in the Appendix in [19].

(3) When we study the non-Teichmüller character components of the
class groups (and the T -modified class groups), we saw that the
duals of the class groups are suitable objects for studying their
Galois module structure in our previous papers (see [10, 11, 13, 19],
for example). One can see by Proposition 2.4 in this paper why the

2Using the recent groundbreaking result [8] by Dasgupta and Kakde, H. Johnston and A.
Nickel [17] proved the equivariant Iwasawa main conjecture unconditionally, namely without
assuming µ = 0. Using [17] (or [8] directly), we can remove the assumption µ = 0.
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dual of the class group is relatively easier to handle than the class
group itself. Concerning the study on the dual of the Teichmüller
character components, see [12, 14].
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