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Zeta-like Multizeta Values for higher genus curves

par Josk ALEJANDRO LARA RODRIGUEZ et DiNesH S. THAKUR

Dedicated to Jean-Pierre Serre

RiESUME. Nous démontrons certaines relations (et en conjecturons d’autres)
entre les valeurs des multizétas pour les corps de fonctions de genre positif et
de nombre de classes 1, en nous concentrant sur les valeurs de type zéta, a
savoir celles dont le rapport & la valeur zéta de méme poids est rationnel (ou,
conjecturalement de maniére équivalente, algébrique). Ce sont les premiéres
relations connues entre multizétas dont les coefficients ne sont pas dans un
corps premier. Nous semblons avoir une famille universelle. Nous constatons
également que, de maniére intéressante, le mécanisme selon lequel les relations
fonctionnent est assez différent du cas du corps des fractions rationnelles, ce
qui souléve des questions intéressantes sur l'interprétation motivique attendue
en genre supérieur.

ABSTRACT. We prove some (and conjecture more) relations between the mul-
tizeta values for positive genus function fields of class number one, focusing
on the zeta-like values, namely those whose ratio with the zeta value of the
same weight is rational (or conjecturally equivalently, algebraic). These are
the first known relations between multizetas, which are not with prime field
coefficients. We seem to have one universal family. We also find that, interest-
ingly, the mechanism with which the relations work is quite different from the
rational function field case, raising interesting questions about the expected
motivic interpretation in higher genus.

1. Introduction

Recently studied connections of the multizeta values
C(s1y.veySp) i=Cz(S15.-1,8)
1

= Z ﬁER, (8i6Z,SiZl,81>1),
ni>esne>0 T
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introduced by Euler, with the arithmetic fundamental groups have made
them an important tool in the recent push towards non-abelian, homotopi-
cal directions in number theory. See e.g., [27] and references there to the
huge body of work by several mathematicians.

For a survey of work on function field analogs of multizeta, with con-
nections to Drinfeld modules and Anderson’s t-motives (see [1, 13, 20] for
background), we refer to the survey [25]. For the definitions of the multizeta
values ((s1,...,5r) = Ca(s1,-..,5r), now defined for certain analogs A of Z
and taking values in appropriate completions of the corresponding function
fields, we refer to the Section 2 below.

Let us focus on very simple type of relations between the multizeta values.
Following [15], we call a multizeta value zetalike, if its ratio with the zeta
value of the same weight, i.e., Y s; in the notation above, is rational. In
the special case of even weight (for a function field over F,, this “even”
condition gets replaced by the analog “g-even”, i.e. multiple of ¢ — 1), we
also call it Eulerian. (Often we restrict to multizeta of depth more than
one, without mention, since only then the concept is really significant). In
the case of rational number field (i.e., ( = (z), we know some eulerian
families [15], but we speculated that only ¢(2m+1) and its “dual” (see [27]
for the explanation of this terminology) ((2,1,...,1), where 1 is repeated
2m — 1 times, may be the only multizetas that are zetalike of odd weight.

In contrast, we proved [15] (see also [9, 10, 25]) some multizeta families
to be Eulerian for the rational function field case, and conjectured that
these are the only Eulerian multizetas, but could only prove and conjecture
several zetalike families of weights which are not g-even, without getting
full characterization, even conjecturally.

For the t-motivic interpretation of these notions of zetalike and eulerian,
at least in the rational functions field case, we refer the interested reader
to [9].

In this paper, we investigate this question for higher genus function
fields, where, up till now, the only relations known [23] were the sum shuf-
fle type relations (with prime field coefficients), and the obvious relations
C(ps1,...,psr) = C(s1,...,s.)P in characteristic p, which are also derivable
from the more complicated sum shuffle type relations mentioned. In both
number field and function field cases, the shuffle relations reduce the study
of algebraic relations to linear relations.

The t-motivic period interpretation [5] in depth more than one is also
only developed so far in genus zero. Now we find (and can prove some)
much more interesting relations involving non-prime field coefficients. See
the conjectures and theorems in Sections 3 and 5 below.

Several years ago, the second author had checked (numerically) that
¢(1,q — 1) is not zetalike (for one class number one elliptic curve over Fy,
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with ¢ = 2), in contrast to what he had proved [20, 22] in the rational func-
tion field case over F,. That this multizeta being zetalike is (conjecturally)
the only non-trivial linear relation in weights at most ¢. So in contrast to
the rational function fields, in higher genus, it seems that the relations start
at higher weights. (It seems at weight ¢ — 1, see Section 3 for details.)

Now with more extensive use of computer aided numerical experiments,
we have better understanding (see below) of what should happen and some
“positive identifications” of zetalike multizeta.

We then prove some of these conjectures by developing further, from the
zeta case to multizeta, the “polylog-algebraicity techniques” of [18], where
an appropriately constructed algebraic function on the curve (correspond-
ing to the function field) cross itself (or its Hilbert cover cross itself, in
general) specialized at the graph of the d-th power of the Frobenius endo-
morphism gives appropriate power sums of degree d (or at most d) times the
d-th coefficient of appropriate polylog, for all d. (See Section 3, and Theo-
rem 3.5 in particular, for several examples.) In [18], these special algebraic
functions (called F-functions) were used to give motivic algebraic incarna-
tion of some zeta values (especially at 1, in class number one situation)
generalizing partially the results of [4] to higher genus.

In 2009, these were used to verify [21] that Taelman’s beautiful analog
of analytic class number formula [17], which was then made only for the
base F,[t], works also for the higher genus cases of class number one. As-
pects of log-algebraicity were developed much further in various directions
e.g., [2,3,6, 7, 11, 12, 14, 16] by Anderson, Angleés, Bockle, Debry, Fang,
Green, Mornev, Ngo Dac, Papanikolas, Pellarin, Taelman, Tavares Ribeiro,
and [20, §§8.9-8.10]. Since we do not make any use of these developments in
this paper, we just refer the interested reader to the original papers, by only
making a remark that to use them, we would need to extend these tech-
niques to adapt to multizeta. We have not resolved this issue of the extent
of log-algebraicity for multizetas fully in this paper, but have just developed
it sufficient to prove our theorems and to illustrate the techniques.

Interestingly, the proofs as well as the mechanisms how these identities
work out at infinite level, as limits from finite levels, are now quite different
than in the genus zero case. It shows that we will need a better understand-
ing of the underlying t-motivic mechanisms to understand the situation in
general. In informal terms, the motives here are constructed through such
algebraic functions on products of curves and the motivic identities are
identities between such functions, and the iterated sum mechanism comes
via the Frobenius-difference matrix equations [5, §2.5] that arise in An-
derson’s theory of ¢t-motives. We expect (and know to a large extent by
the works of Anderson, Brownawell, Papanikolas, Chang and Yu) that the
multizeta values relations come from motivic identities, but in our higher
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genus, in contrast to what we know in genus zero, though it is certainly not
ruled out, we have not been able to do this (as explained in Section 4), but
have resorted to different mechanism of proofs, which raise some interesting
questions and formulations. Roughly, in addition to the algebraic geomet-
ric techniques (which we will only identify by keywords such as Drinfeld
modules, Shtukas, and Frobenius difference equations), in our proofs, we
had to also use the limit processes. See Remark (II) in Section 4 for more
on this.

We find (with only numerical evidence in low weights) exactly one ze-
talike/eulerian family ¢(¢" — 1, (¢ — 1)¢™, ..., (¢ — 1)¢"**) (where ¢ is the
cardinality of the field of constants ) surviving from the rational function
field case, for all (4 of them) class number one situations of higher genus.
(Here we have restricted, without loss of generality, to “primitive” tuples
(s;), i.e. those which are not multiples of p). We have not yet found any
nontrivial zetalike example in weights which are not ¢g-even, in the higher
genus case.

We did not find any zetalike examples in higher class number function
fields, and speculate that probably there are families of Hilbert class field
coefficient linear combinations of multizeta values of different ideal classes
(for the same tuple of s;’s) that are algebraic multiples of zeta of the same
weight, but it might be rare or impossible for a single value to be zetalike
in this case, unless you use variant definitions (see e.g., [13, 20]) of the
multizeta taking all ideal classes into account.

In the function field analog that we investigate (see [25] for survey
and references), the relations are still not conjecturally well-understood,
though in contrast, there are also some very strong transcendence and
linear/algebraic independence results (by Anderson, Brownawell, Chang,
Papanikolas, Yu, et al.) proved. Note that the various transcendence, in-
dependence results that have been proved for the zeta immediately carry
over to the zetalike multizeta.

Here is the organization of the paper. We first fix the notation and give
the basic definitions. Next, we state our conjectures on the zetalike families
and give the proof of the special cases of conjectures in one example of class
number one and positive genus. Then we give several remarks on possible
generalization of the proof techniques, the contrasts with the genus zero
case and the motivic implications. Then we discuss the relative situation,
as well as the numerical methods, and the data, calculated by the first
author, for some variants explored. Finally, we give all the computational
details of the similar proofs of the cases for the remaining three class number
one examples of positive genus.
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2. Notation and definitions

Consider a function field K (of one variable over finite field ), having
a rational place i.e., a place of degree one. We choose any such place and
label it co. Denote the corresponding ring of integers by A (consisting of
elements of K having no pole outside 00), the completion of K by K, and
the completion of its fixed algebraic closure by Cy,. Fix a uniformizer at
infinity, so that we have corresponding sign (and degree) function. Let A+
(Agq+, respectively) denote the set of monic, i.e., of sign 1 (monic of degree
d respectively) elements of A.

For k, k;,d € Z, consider the power sums (sometimes denoted by Sy(—k)
in the references)

1
Sd(k) - Z 7 S K,
a€EAG+

and extend inductively to the iterated power sums

Sa(ki,... k) = Sq(k1)S<q(ka, ... k)
= Sd(kl) Z Sd2 (k’g) e Sdr (kr),

d>dy>->d,

where S.4 = Z?:_ol S; as the notation suggests.
For positive integers s;, we consider the multizeta values

e 1
C(81y.vySp) = ZSd(sl,...,sr) :Zﬁ € Ko,
d=0

ay ...ap"

of weight Y~ s; and depth r (associated, a priori, to the tuple s; rather than
the value). (Here the second sum is over monic a; € A of strictly decreasing
degrees).

We call a multizeta value ((s1,...,s,) zetalike (we only care, if r > 1) if
C(s1y.-4,8)/C(Xs:) € K.

In the case the weight Y s; is g-even (i.e., a multiple of ¢ — 1), we also
call the zetalike value eulerian, in recognition of the simple evaluation by
Euler in the rational case, and analogous evaluations [8, 20] by Carlitz and
Goss in function fields.

Finally, for p a sign normalized rank one Drinfeld A-module (also called
Hayes module), we denote the corresponding exponential and logarithm
functions as exp,(z) = S 2% /d; and log,(2) = S 2% /¢;. While ¢; and d;
are polynomials in ¢ in the A = [F[t] case, in higher genus case, they are
rational functions (non-integral in general) in the Hilbert class field. (see
e.g., [20, Chapter 2] for details).
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3. Class number one situation: Conjectures and theorems

Apart from A = F,[t]’s (one for each prime power ¢), there are exactly
four (see [20] for references and corresponding Hayes modules) other A’s of
class number one:

(i) Folz,y], with y? +y =2 + 2 + 1,
(ii) Fs[z,y], with y? = 2% — 2 — 1,

(iii) Fylz,y], with y? +y = 2% + w, where w? +w + 1 = 0,

(iv) Folz,y], with y? +y = 2° + 23 + 1.

Note that the first three are of genus 1 while the last one is of genus 2.

Conjecture 3.1. For any class number one A with constant field Fy, the
multizeta values C(¢"—1, (g—1)q", ..., (q—1)¢"*) are zetalike (equivalently
eulerian, in this case.)

Remarks 3.2.

(i) For the case of A = Ft]’s, following more explicit form below was
conjectured, proved in depth 2 in [15] and proved for any depth by
Chen in [10].

C(q" —1,(q—1)g", ..., (q—1)g"™")

_ _IntKlntk-1--n] ik
- [1]qn+k[2]qn+k—1.” [k“l- 1]an(q R 1)7

where [n] = t7" —t.

(ii) In genus zero case, there are more such families [15], but in higher
genus, our limited exploration leads only to the family in the conjec-
ture. (Of course, we restrict to “primitive” tuples, i.e. not divisible
by the characteristic).

Here are some more explicit conjectures, when k£ = 0, in higher genus,
class number one cases, listed above.

Conjecture 3.3. Put R, = ((¢" — 1,¢"(q — 1))/¢(¢" " — 1).
For the case (i), we have
22" 4 22

oy gy a2
For the case (ii), we have
(@ —2)(y”" —y)?+ (@ —a) (=2 2’ —x +1)

I e I R PR IE
For the case (iii), we have
@+ )" )+ @ )@ P 1) + @V )

A2 g A AT Ty AT gy T oy '

Ry,

R, =

4n+1

R, =
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For the case (iv), we have
R _X22+(1—|—x)(X20+X18+X16)+LRn
" XMy X0 4+ 1)XS8 a2+

where X = 22" and Y = y¥" and LR, = (1 + z + 22)(X'2 + X10) 4
X'+ 2 X8+ X2+ (Y +9) (X2 + XY + 2% + .

Note that in addition to the non-uniqueness of expressions coming
through the relations between x, y, the fractions in the conjecture are not in
the reduced form either, and in fact, there is a lot of cancellation (making
it hard to guess from numerical data!). Compare, for example, the reduced
forms in the special case of the theorems below. Thus, to make these guesses,
we had to use theoretical ideas and expressions found in the proof of the
first theorem below, then generalize and verify. See Remark (V) of Section 4
for some indication. We have numerically verified the case (i) for n < 11,
and (ii) for n <9, (iii) for n < 5 and (iv) for n < 12.

We also have some more such explicit ratio conjectures, but not yet for
large satisfactory families.

Our main theorems below prove the following cases of the conjecture in
higher genus for k = 0: the case (i), when n = 1,2 (Theorems 3.4 and 5.1
respectively), the cases (ii, iii, iv) when n = 1 (Theorems 8.1, 8.2, 8.3
respectively).

We start with case (i) and note here that for this example, the Taelman’s
class module [17] is also trivial (as proved in [21]), in addition to the class
group. We will use the theory of [18] (see also [20, §§4.15 and 8.2]), but
recalling everything (Theorem 3.5 (i)—(v)) that we need from there.

Theorem 3.4. For A = Fa[z,y]/(y? +y+ 23+ 2 + 1), we have
(2% + 2+ 1)¢(1,2) = ¢(3).

Proof. We first give some explicit “(poly-)log-algebraicity” formulae devel-
oped in [18] for the relevant power sums, and in [22] for the iterated ver-
sions, together with one extension needed for the multizeta case. These give
expressions for polylog-coefficient £ times power sums Sy(k1,...,k;)’s in
terms of algebraic functions, on the curve (corresponding to K) cross itself,
specialized at the graph of d-th power of Frobenius map.

We will now define several functions in Fa(z,y, X, Y'), where z and X are
independent transcendentals and y%2 +y = 23+ 2+ 1, Y2 +Y = X3+ X + 1.
For each such function, say f, put f*) for the function resulting from f
after substituting X2k, y?* respectively for X, Y, and put f(d) € K for the
function resulting from f after substituting a:2d, y2d for X,Y.

More generally, we say [18], in class number one case, that a function
h : Z~. — Cy is F-function, if there is a rational function H on C' cross
itself such that H specialized to the graph of d-th power of Frobenius on C
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is h(d+k), i.e., the value of h at d+k (for sufficiently large d, fixed k). Since

we use such usual function notation h(k) below, only for the various power

sums S4(k)’s, there should be no confusion between the usual functional

notation and the “twist” notation introduced in the previous paragraph.
Put

B, + XB, _ X + 2?
Bg(cl)—f—l ’ 1_By+wa+x2+a:’
Fa=g¢*+F+F, Fo=RF2, F3=FI(4+F),
_Y2+y4—|—X2(X2—|-.%’4)
X4+ zt4+1

4
ao=R( 50 (@4 R BP0 4R,

By=X+z, By=Y+y, g=

9Im s

A
Fos= Ff + (P +F2+ R,

C=By+aB+ 2> +2,Cpn=Y +¢° +2%(X +22) +2* + 27,

(X +2H) (X3 + X%r)  X?

U— b X+,
X

24+
U+ C? JF
J = N Fglg = c 12 .
1+ ((gM)3C?F12) /CrF1y) m

Theorem 3.5. For A as in the previous theorem, and for {4 the (reciprocal)
coefficients of the logarithm for the Hayes module for this A as defined at
the end of Section 2, for d > 2 (check d=0, 1, 2) we have
(i) €aSa(1) = Fi(d),
(i) LaS<a(1) = F<i(d),
(iii) €3S4(1,2) = Fi2(d),
(iv) £35a(3) = F3(d),
(v) 635<d(3) = Fe3(d) and
(vi) £35<4(1,2) = F<q2(d).

Proof. We use the generating functions Ag/(1 — 3. Agitd') = 3 Sy(k)tk—1
of [18, (18)] for Sg(k) and (Agox)(Y Agizd)™' = 1+ 3 Scq(k)a” of [22,
3.2] for S—4(k) given by one type of binomial coefficient [18, 22|, and the
method of [18] to calculate this in higher genus. (Here ¢ runs from 0 to d
and k from 1 to oo, and S—4(k) = 0 unless k is g-even.)

We first explain briefly, how (i)—(v) follow from theory developed in [18],
by unwinding and specializing the genus one formulas there to our specific
A. Note the notations matches B, (i) = [i|,, By(i) = [i],. Once one uses the
known coefficients of p (see [18, Ex. C, p. 192]) to get 71 = 2% + z,y; =
y%+y, y2 = z(y?+y), the recursions for ¢;, d; (and this a, by (7), (14) of [18])
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from the functional equations of logarithm, exponential in terms of p, give
formulas (we use ¢1 = 1,d; = 1 in particular) for f;, g;, p; in (20), (27), (28),
(23) of [18] implying in particular that g(i) = g; = ¢;/¢;—1. This allows us to
calculate Az, Aj1, Az of [18, (14)] by comparing ¢, 19, t7° coefficients in (21)
(see also (14), (7)) of [18], which is all we need from the generating function
coefficients. (In fact, As(d) = ¢4 A4 and (¢*Fi1+FP+F?)(d) = (3A41.) Then
we need only to verify by straightforward manipulation that (we note here
that gn(d) = g(d — 1)", Cy(d) = C(d — 1)?)

0qSa(1) = L3Aq0 = F1(d),

CAn
EdS<d(1) - gdAdO,
EzSd(?)) = EdAdO(fZAdl + £¢21A(210) = Fg(d),
CAnN\?
6384(1,2) = (£4S4(1))(£aS<a(1))* = (fdAdo)< d d1> = Fia(d),
LqAqo
PAp  (PALN°
(35 4(3) = 2 +<d >:F d).
d <d( ) edAdO gdAdO <3( )

Finally, we verify (vi) by induction on d, using (ii) and the iterated
definition: it is enough to check the initial value and the identity corre-
sponding to S<gi1 — Sgy1 = S<q. Since g (d) = Lgy1/€4, the identity is
FY, — Fy) = (9M)3F<2, which follows directly. 0

Now it is easy to finish the proof of the main theorem by just noticing
that (22 + 2 + 1)F<12 — F-3 has negative degree in X,Y, so that as d
tends to infinity, the “error” (z? + x 4+ 1)S<4(1,2) — S~4(3) tends to zero,
establishing the theorem. O

4. Some remarks

(I) Explicit F-functions in standard forms. To get more concrete

perspective, we give some of these functions more explicitly. We split lower

order part of numerators just for the display convenience.

_ X34+ 2?2X2 4+ Y+ X+ 23+ +y+a+1

B X4+ 2241

XY 42X+ X3Y + (y+ DX 4+ 22X2Y + (23 +y +2) X3 + Lo
X6+ x4+ D)X+ (22 4+ D) X2+ 23+ 22+ +1

with Lio = (z + )XY + (2%y + 22 + 22 + ) X2 + 23Y + (2* + 2y + 2% +

y+2)X + 23y + 2t + 22,

(> + 2+ )X+ X5+ (2t + 23 + 2% + 2) X + X2V + L

(@2 +2) X0+ (B3 + )X+ (2t + 23+ 22 +2) X2+ 2% +

3

)

Fig =

<3 —
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with Loz = (z4+1) X3+ (2t + 23+ 22 +y) X2+ 2Y +a X + 20+ a5+ 23 +ay+22,

X0+ @+ + )X+ (@3 +2) X4+ (22 + 2+ DX + L<p
(22 +2) X6+ (3 4+ 2) X4+ (2t + 23+ 22+ 0) X2+ 2%+

Feip =

with Lejg = (22 + 22 + 2+ 1) X3 + (2%y + 23 + 2y + y) X2 + 23Y + 23X +
2 + 23y + 3.

Note that the denominators are (X2 + x + 1)2, (X2 + z + 1)3,
(22 +2)(X? + 2+ 1)3 (twice) respectively.

Comparing the dominating terms of the last two expressions, makes vis-
ible the last calculation of the proof above.

(II) Comparison with the genus zero situation. For the genus zero
case A = IF[t], we have [20, 22] the F-function identity Sg(¢—1,¢9(¢—1)) =
Sq-1(¢*> —1)/(t—t1)971 which by summing over degrees up to d then gives
corresponding F-function identity for S<4, and then, by taking the limits,
the identity at the multizeta level. The same is true in any depth by the
formula for S, (d) in the proof on page 795 in [15]. On the other hand,
in our case here, we have the identity only at the level of {, only leading
terms matches at S<4 level, and nothing at Sy level! In fact, for ¢ = 2 case
above (for example, by the Theorem 3.5 and (I)), for d > 2, the degree
of both Sg(1,2) and Sy_1(3) is —2¢. The degree of Sy(1,2) + S;_1(3) +
(t24+1)S441(1,2) is —27F1 and the degree of (t2+t+1)S<4(1,2)+ S<a(3) +
(t2 +1)Sqy1(1,2) is —29+2,

Consider the genus zero zetalike basic identity ((1,q—1) = ((q)/(t —t9),
which is not eulerian, if ¢ > 2. It corresponds to F-function identity at Sy
level, we do not think that the resulting identity at S<g level obtained by
summing is F-function identity.

We have checked (by computing the rank of the relevant matrices) that
in the case (i), there is no non-trivial linear relation (leading to our theorem
by summing) between the 8 quantities Sk (3), Sk(1,2), Sk(2,1), Sk(1,1,1)’s,
with k = d or d 4 1, of weight 3, (working for all d, or equivalently work-
ing for the corresponding F-functions), in contrast to the existence of such
“binary” relations [26]. We have also checked that the same situation per-
sists, even if we add Sg12(1,2),S7-1(3), Sg+2(3), but have not tried adding
more terms. Similarly, we have checked that there is no non-trivial linear
relation (leading to our theorem by summing) between the 10 quantities
Sk(1,2), 9, (3), with d <m < d+4,d < k < d+ 5, again in contrast to the
genus zero situation [26]. (See also [25, p. 17-18] for relevant discussion of
Todd’s data.)

Since the F-functions involved in Sz-level identities were used to define [4,
5] the corresponding motives in the genus zero case, we need to understand
better the motivic mechanisms underlying these relations in higher genus.
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(ITII) Comparison of polylog-algebraicity for iterated sums and
zetalike property. As mentioned above, for a positive integer k and a
positive g-even integer m, ¢£S;(k) and £7S_4(m) are F-functions [2, 14,
18, 22] (we say alternately that S;(k) and S—4(m) satisfy “log-algebraicity”
property).

In our situation, if weight w = " s; is g-even, and if £7S4(s1,...,5s,) is
F-function, then as in the proof above, comparison of leading terms shows
that ((s1,...,s,) is zetalike (equivalently, eulerian, in this case).

For simplicity, let s, s2 be g-even, w = s1 + s9. If F< is the F-function
for £ S<4(s1,s2), and if F' is the F-function representing £ S4(s1, s2), and
g represents the F-function £4/¢4_1, then F<(d) — F(d) = g(d)*F<(d — 1),
so to get such F< from (known) F' and g, we need to solve the Frobenius-
difference equation F< — ngifl) = F. When exactly is it solvable? If this
is understood, the method explained in the next section to solve it should
then give (case-by-case) proofs for such multizeta relations through directly
verifiable relations between such functions.

(IV) Origin/explanation of some functions introduced in the proof.
For interested reader, we indicate how the formula (vi) was discovered
(without knowledge of such algorithm). To guess what F<jo should be,
comparison of the LHS of (vi) with Fia(d) was made (for small d’s) and
factored to notice match of denominators, so their ratio was considered.
(Note that without the factor ¢(d)3, the relevant denominators do not
match!). Again consideration of factors suggested that primes in denom-
inators came from those of Fio(d —1). Now the expressions show that cube
of C(d) = [d], + z[d]; + [1] kills denominator of F2(d), here the square was
enough so polynomials E(d) = C(d—1)?¢35<4(1,2)/Fi2(d) were calculated
for a few d’s and it was noticed that except for the constant term which
alternated between 0 and 1, the tail of E(d) matched with E(d — 1), so the
recursion between E(d) and E(d — 1) was considered as F-polynomials are
easy to guess explicitly (using geometric series). This led to function U(d)
satisfying E(d) = U(d — 1) + E(d — 1). Next we consider equation coming
from the relation S<4 = S4+ S<4—1, which, after a simple straight manipu-
lation, translates to E(d) = C(d— 1)+ E(d —1)g(d)>C(d —1)?Fi2(d — 1)/
(C(d—2)%Fi2(d)). Solving these two equations led to F-function expression
for E and thus for F<i9. For more streamlined version developed later, see
the next section.

(V) Structure behind the explicit conjecture. In the notation of
the theorem, the first depth 2 explicit conjecture is ((¢" — 1,(¢ — 1)q")/
C(g"tt — 1) = [n)2/C(n + 1). We have similar but more involved descrip-
tions for the rest. We remark that the denominators listed above in each
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case are (Frobenius twists of) denominators of F-function F) satisfying
£aSa(1) = Fi(d).

(VI) Low Fy’s. If F), denotes the F-function with Fj(d) = ¢£S,(k), then
for Fppn = F["" " for m < g, by p-th powers and F,-linearity and power
sums-symmetric sums argument [24, Remark 6.1].

5. Another case

In order not to make the theorem and proof any more complicated by
combining too many formulae at once, we decided to state the second case
separately as the following theorem.

Theorem 5.1. For A =Fsz,y]/(y* +y+ 23 +x + 1), we have
(2® 4 2% 4+ 27 + 23 + 1)¢(3,4) = (a* + 22)¢(7).

Proof. We proceed in a similar way to the proof of the first case. In fact, the
functions interpolating ¢354(3),£3S-4(3), are already computed and since
S4(2"s) = S4(s)?", the similar interpolating functions for s = 4 are just
fourth powers of the functions we calculated above for s = 1.

This gives F34 such that £754(3,4) = F34(d). Here it is explicitly: F3q =
N34/Ds3y, where D3y = (X2 + 2+ 1) and

Nayg= X1 422X @3+ 2 +149) X8+ (2 +1)X7
+ @+t ) X0+ @t 22 )X
+ (@2t a2t 2 oy X+ (28 22 )X
+ @+ttt e+ y(@® + 1) X2+ 25X + 2% +2® 2"
+ ot +y2® + VX + X0+ 2t Xt + (22 + 1) X? + 29
We claim that F<3q = N<3a/D<sq satisfies £7S<4(3,4) = F<34(d), where
Degg= (28 + 2%+t +22 + 22 + 2+ 1)(X? + 2 +1)7 and Negy is
(o)X (P2 + ) XB @+ 25+t 3 2 o+ 1) X2
(@5 + 2% + 2t + 22 + )X
(2®+2" +a% + 2% +at +2? + 2+ y(a® + 2)) XY
(2 + 2* + 23 + 2?) X
(@®+a2"+ab + 2%+ 2 +y(@S + 25 + 2t 4+ 1)) X8
(2° + 2" + 25 42t + 23 X7
(@ +2"+2° + 2+ +1+y@+ 28+ 2% + 23 4 22 42+ 1)) X6
(@422 + a8 a2t 2?4+ 1)X°
("2 + 2+ e+ 1+ 4y@® + 2+ 2T+t 22 24+ 1) X

+ o+ + + + o+
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@ 210 2 4 27 4 2P 4 2t XP
@2+ 20 429 4 28 4+ 28 + 25 + 2 4+ y(@0 + 27 + 25)) X2
@+ 2% 42X + 20 428 42T 428 425+ 2t 4y + 2 4 o)
(22 +2) XV + (2 + 25 + 2t + 24+ 1)XBY
(a8 + 28+ 2° + 2+ 2% + 24+ )XY
(2 +2® 2"+ 2% a2t 2t 2+ )XY
(20 + 2" + 25 XY + (2" + 2% + 2V

+ o+ + + + o+

This is proved by straightforward verification of the initial condition and
the recursion identity F£13)4 —(gM) Fezy = F3(i).

Finally, similar methods as in the proof of the first case, gives F.7 sat-
isfying Fr(d) = £7S4(7) as follows

F.7 = No7/Do7, where Doy = (2% + 2)(X? + 2 +1)7 and N7 is

(@® + 2%+ 2% + 2% + DX + (2® + 20 +2° + 2% + 1) X3

(B2 + 2+ 2+ 22+ 22+ DX+ (2 + 2" + 28+ 22 ) x !

(2 + 2% 42 + 23y + 2 Fy(@® + 28 25+ 23 1) X0
(@2 + 25+ 27 + 2t 4+ %) X?
(2 4+ 28+ 2" 5+ 2?4y + 22T+ 3+ 2 2+ 1) X8
(28 + 2104 2% 42 + 2t + 23+ 2)XT
@+ 22 4 2° 427 + 25 + 2P

+yaP+ a2 v+t 2t o+ 1)X6
T PE SN L I IS RS S W &
+ (M + 2B 2 ot 2% 4 2® 4 ady 423
oyl e 420 4 2% 1 a2 4 1)) XA
+ @B+ e b St 3 2 o+ 1)X3
+(:c16+:1:15+x14+x13+1’10+:1:9+a;8+x7+x6+a:5+w4
+ oyt + 2t 29 42t 1)) X2

F P a2 20 S S P o)X
Lol gl 12 10 0 L 8 T 5y a2
SIS NI E st S L BHp g R Qg
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+Y[(2®+ 2% 427 + 2% + 1) X1
—|—(x9—|—x8—|—m7—|—x5—i—x3—|—x2—|—m+1)X8
+ @2+ + 25+t 2t e+ 1)XC
(33 + 24210 4 2% 425 2% 422 1) X?
+ (2! W10 2t 1) X2

+ 2! +:c4+x12+x10+x8+x6+m3+x2+x].

The proof is thus complete, as before, by observing the ratio of the
leading terms of F7 and F<34 is exactly (after simple cancellations) (28 +
28 + 25 + 23 + 1) /(2 + 22). O

Remarks 5.2.
(1) We solved by using SageMath, the Frobenius-difference equation

(X2424+1)7 [20 = (Xt 42+ DN | = (Vhy+ X+ X34 X 20+ X 11)7Z,

where Z = 211:1:0 apXF+Y 27173:0 b X™, by using the elliptic curve
relation to get rid of higher powers of Y and then equating coef-
ficients of X" and YX™, for 0 < n < 39, 0 < m < 38 in the
resulting linear system in 26 unknowns a;, b;. The unique solution
obtained, in fact, proves the recursion relation. (We note here that
Z =Ncsg/(aS + 25+ 2t + 23 + 22 + 2+ 1).)

(2) We would have complete case-by-case algorithmic proof method for
the whole family (at least in depth 2 and probably in general by
induction on depth), if only we are assured of solvability of such
equations resulting from our recursion. In the last section, we pro-
vide details of proofs of 3 more cases, done this way.

6. Dedekind type relative zeta situation

We also consider Dedekind type relative zeta and multizeta functions
using norms from A to some corresponding F,[z], say and explore corre-
sponding zetalike multizetas.

More precisely, for a monic a € A, we use the monic generator of —k-th
power of the relative norm of a. For the class number one situation, this
corresponds more closely to the Dedekind zeta. See [20, §5.1].

First note that if the relative extension is Galois of degree p and A is class
number one, then (argument of [20, p. 162] generalized to power sums) for
an element of A — Fy[z], the p conjugates having the same norm, the total
norm contribution is zero, where as for an element in the base, the norm
is p-th power, so {A/Fq[m](sl, o vy 8r) = CF,[2)(PS1, - - -, psy). In particular, we
get zetalike elements just from the genus zero case. This works for the three
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class number one examples A with p = 2, which are quadratic over F,[z]
of the form y? + y = P(z), and the fourth class number one example with
g = 3 of the form y? = 23 — 2 — 1 considered as a cubic Galois extension
(since F3 translations of a root are roots) over Fs[y].

Considered the class number one examples above of characteristic 2, as
extensions of the relevant [ [y]’s, we did not find any zetalike examples,
in numerical experimentation. Similarly, for ¢ = 3,4% = 23 — 2 — 1, and
Norm(f + yg) = f? — y?*g?, we have not yet found any zetalike examples.

We are in the beginning stages of exploration in the general relative
situation and will report in the future paper about more refined conjectures
on degrees, other F-functions and relations.

For now, we only make following simple remark that in higher genus,
some power sums are zero, not only as the relevant sets are empty because
of Weierstrass gaps (at the point at infinity), but also power sums can
be zero, even if the relevant sets are not empty. For example, consider
Folz,y]/y?> +y = 23 + 2 + 1 over Fa[y]. In this case, since the norm of
as well as of x4 1 is y? +y + 1, all the power sums for degree 2 also (for
degree 1 they vanish for the reason above) vanish.

7. Numerical experiments

The numerical exploration to find zetalike values was done following the
method of [15] using SageMath on laptop, using the continued fractions in
Fq((1/x)). Note that in cases (i, iii, iv), Sq(k) € Fq(x) by invariance with
respect to the Galois action y — y + 1 of K over Fy(x). In the case (ii),
if s;’s are even, we get the relevant Galois invariance. In these cases, the
method of [15] using continued fractions for Fy((1/z)) works immediately.
In case (ii), in general, and in higher class number cases, (for low ¢, g), we
used the norms to descend to this Fy((1/z)) situation.

Apart from higher class number and Dedekind situation, we also looked
for possible rational ratios of multizeta (of depth 2 or 3) of the same weight
in class number one case, not explained by our conjecture on the zeta-
like family. We did not find any, in contrast to several examples in genus
zero. For example, when A = Fy[t], we have rational ratios ((1,3)/((2,2),
€(2,3)/¢(3,2), ((7,4)/¢(4,7), where only for the first example the numera-
tors and denominators are zetalike (so the rationality of the first example is
explained by this observation), but none of the numerators or denominators
of the last 2 are zetalike. (We checked the class number one cases (i), (iv)
for weights up to 32, and (iii) for weights up to 12, only for depth 2).

8. Details of the three other class number one cases proved
Theorem 8.1. For A = F3[z,y]/(y? — (2 —x — 1)), we have
(2% 4 2% 4+ 2% — 23 + 22 — 1)¢(2,6) = (23 — z + 1)¢(8).
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Proof. We proceed in a similar way to the proof of case i). We will now
define several functions in Fs(z,y, X,Y’), where z and X are independent
transcendentals and y? = 23 —x—1 and Y2 = X3— X —1. For each function,
say h, put AV for the function resulting from h after substituting X3,V
respectively for X, Y, and put h(d) € K for the function resulting from h

after substituting 23" and y3d for X, Y. Put
—(X —a)

F =
X2 @+ D)X +yY +at—a+ 1

3 _ —(Y —y)’ +YIX —2)®
T TV —v) - (X —4%) V3V (X3 — X)’

Foy=—yg* + F} — F}, Fog = FYF2,,

(2% — 2+ 1)g° (g )°
3 —x

+ (yg® — F} + F2)*
+(F = F)(y3g° — FY + FP),

Feg=—

Ay = Fi(yg® — FP + F}),

w3 —x+1 _
o= B (TS PP - - RGP - R )

Notice that A;(d) = £3A4 and As(d) = €9 Age. Then, we have £4354(1) =
édAdO = F1 (d) and
—B3An Ai(d)
2S 4(2) = —L% =
d <d( ) gdAdO Fl(d)
(354(2,6) = (£38a(2))(£35<a(2))* = F1(d)*F<2(d)® = Fas(d).
Finally, we have

(3Aa0)* — (LaAao)® - 05 Aae

= (—yg® + F} = F{)(d) = F<o(d),

€§S<d(8) = (EdAdO)Al
_ Ai(d)* — Fi(d)?As(d)
Fi(d)*
(2% — 2 4+ 1)g° (¢’
- 3 —x

+ (yg® — FY + F))' + (FP — FD)(y*g” — FY + FY)
= Fg(d).
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Explicitly Fo = N26/D26, where Dgg = (X3 —x+ 1)8 and Noyg is

(S +at+ 22 422 — 2+ DXV 4 (2By — 2y — ) XY

+(
2T 428 425 — 2t — 23X 4 (By — 22y + 2y — y) XY
-zl =2t — B -+ DX 4 (—2Sy + o) X MY
o 2t 42—t — B XM (—zy — ) XY

B U T B S &

2Ty + 28y — 2By + 2ty — 23y — 2%y + 2y — y) XY
a2 g1 0 T S et p e 1) X2
—2% — 2% + 23y + 2%y X1y

e S B R Y

e T A N L L R L T D, G
—x11y+x10y+x9y+x7y—x6y—:1:5y+x4y—a:3y)X9Y
—x13—x11—x10+x9+m8+x7+x5+x3—m2+37+1)X9
—2%y — 2ty — 2%y + ) XBY

a2 g TS aS gt B e 4 2)XE
—2¥y — 2y — by — Py + 2ty —ay — y) XY

—$13—$12—|—$11—1}10—568—.T6—£E4—|—CL‘3+CE2+.’E—|—1)X7

e S e s i i S S S

(
(
(
(
(
(
(
(
(_xlﬂy _ ny _ x7y + :L'6y + mBy _ $4y _ x3y)X10Y
(
(
(
(
(
(
(
(

L2y = 10y a9y a8y oy
+ 2%y — oty + 23y — 2y + 2y — y) XOY

Mgl 12 p10 08 4 08 g4 9) X6

=)

T y—x7y—x6y—$5y+:p2y—xy—|—y)X5Y

—2%y — 2By + 2Ty — 2By + 2Py + 2ty — 23y 4+ 2y + ) XY

(

(

(—2 o2 4ol — o8 o 2t B 2 ) XO

(

(—aMpatt =210 g% 08 T4 ab 2t 34 2? — 41X
(

— 2By 4 212y — 210 — 19y — 2By 4 2Ty

569

+ 2%y — 2y + a:4y — 23y + 2%y — zy + y)X3Y

+(—x15—xl4+x13—x12—x11—x10+x8+x6—x4+x3—x2+x)X3

+ (—aBy — 2Ty + 2By + 2ty + 23y + 22y + 2y + y) XY

(e B g2 gl 10 00 a8 L p T g6 g8 02 1y x2
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+(—zy—=x yfx9y+:p8yfx7y7x6y+x5y+x4y+$3y)XY
QL B E RS S S BT QRS T35 ¢
+ (—atty — 2By — 22y 4+ 2y + 2% + 2% — 28y — 2By)Y

gtz gl p10 4 0y 08 T

In order to find F<ag, such that Feog(d) = £55<4(2,6), we use the re-

cursion identity FSQ)G — (g(l))8F§26 = Fyg. Let Z = (X3 — 2+ 1)8F<g6. We
solve by using SageMath, the equation

(X3 — 2+ 1820 - Ny = (= X%V + X*Y + (2 — )X3Y
+(—z - 1)XY + (—z—1)Y — )82,

where Z = Z,lfzo ar Xk +Y 271520 b, X™. The unique solution obtained is
7z = NS26/($3 — .I'), so that FS26 = N§26/D§26 where DS% = (233 — 37)
(X3 —2+1)% and Negg is

(23 —x + l)X18 + (=2 — 2ty + 23y — 2%y — ) XY
2’ —at 4t -2 )X
2Oy + zty — 23y + 22y + 2y) XBY

x y+x y — 25y + 25y + a2ty + 23y + 2y) X 2Y
204 a? — 2" a8 —o® —at - 2) X2
acgy—:c y—a: y — 2%y + 23y + 2%y) XY

(—

(

(—

(=

(
(—x — 2%y — 23y + 2%y + ) XY

(—a'! =20 a® —a® 2" a2l ot -2 1) X
(2% —wy y) XY

(—x y+x y + 2%y + 25y + 2ty — 23y — 22y 4+ ) XOV
(—2'2 — 204274 2° — 23 —2? + 2 +1)X6
("% + 2% — 2"y — 2% — 2%y — 2ty + 2Py + ) XY
(— xy—xy—xy—$y—xy—wy+wy+wX%’
(—2? =2 -t ¥ 42 2T 42 2% a2 2 -+ )X
(a:uy+x y— 2y + 28y — 2"y XY

(zMy + 2% — 2% + 28y — 2Ty)Y

—M B et 40 2% a8 T

+ 4+ + o+ o+

8
-
o
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F.g = N.g/D_g where Dg = (23 — 2)(X? — 2 +1)® and N_g is
(x9+x6+J:4—$3+x2+2)X18+(—$3y+xy)X15Y—X15

+ (2% — 2y) XY + (—2Py + 20 — 2ty + 2Py + 2y — ay) XY
+(x a8t — 2P 42 — )X 4 (212 — 210 + 2y — 22y) X0V
+ (z"%y — o y+:vy+wy 2y -y — y) XY

+ (—2° —at a4 2)X°

+ (- :ry+xy—|—y)X7Y+(:r y — 2% + 2ty — 23y — 2%y — y) XOY
+ (@ + a2l + 2t 42+ 2? -+ 2)XO

+ (—22y + 2% — 2ty + 22y 4 2y — y) XY

+ (—22y + 2% — 2ty — ) X3Y

+ (= + 2% - 22 + 2+ 2)XP + (2%y + 2y) XY + (2%y + 2y)V

B i N IR R R A )

Notice that denominators of F<os and F.g match. The degree of £ =
(2% + 25 + 2% — 23 + 22 — 1)F<g6 — (2% — 2 + 1)F<g is negative; more
precisely, the degree of E(d) is —(—27 + 15 x 39); since the degree of /4
is —(39+1 — 3)/2, the degree of the E(d)/f5 is —(—15 + 39T1); therefore,
E(d) /3 tends to zero as d tends to infinity. O

Theorem 8.2. For A =Fy[z,y]/(y*+y+ 2> +w), where w? +w+1 =0,
we have

€(3,12)/¢(15) = (e +2® + 2% + 23 + 1) /(@ + 28 + 2% + 23 + 1)

Proof. We will now define several functions in F3(z,y, X,Y’), where = and
X are independent transcendentals and y? +y = 23 +w and Y? = X3 +w.
For each function, say h, put h(Y) for the function resulting from h after
substituting X*, Y respectively for X, Y, and put h(d) € K for the function
resulting from h after substituting 24" and y4d for X,Y. Put

X + x4 Y 4y+ XX —2)
2X2 4+ XY + (y+ D)X +2Y + a2y’ 9= X4+

Foy=(a*+a)g* — F} + F}, Fy10=FFL,,

I =

A = Fl((x4 + x)g4 + F14 + Ff’),

2o zt+x

; (Ff+FE><(x4+x>g4+Ff‘+Ff’>4>,
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and

F 5= ((x4 + 33)94 + F14 + F13)5
4z
Note that A;(d) = €3Ad1 and As(d) = €18 Ago.
We have
£4Sq(1) = Fi(d)
liAq  Fi(d)((z* + 2)g" — FI' + FP)(d)
= = = F3(d),
LqAqo Fi(d)
0>5a(3,12) = (£aSa(3))*(£3S<a(3))" = Fi(d)* F<3(d)" = F312(d),
(04A41)° + (LaAao)* (€5 Ago)
(CqAao)®

Explicitly, we have F.15 = N<15/D<15, where D15 = <$4+$)(X4+.%')15
and

(FH+F) (2t +2)g* + P4 FH*

(35-4(3)

(3P S<alb = = F15(d).

News = (@2 + 2% 122 4 2% + DX 1 (28 + 22) X
F(e0 210 42t ) X3 g (o8 4 22X X3
b (@ 4+ )XY 4 (0% 4 22 4 22 42\ 4 By 4 22y) X5 — X5
+2X30 - XBY + (y+ DX + 2X?7 + 22X 4 2 X%y
¥ 2y + )X+ 22X 43X 4 22XV 4 (22 + 22) X2
F X1 X8 XY (02 18 42 4 2By 4 1) X
Pt X 4 (2 a® ) XM g i 2y
b 42l oty ) X2 4 (2 4 a5 )X
+ (2 + DX+ (2% +2° + 2°)XPY
+ (232 4+ 220 4+ 2% 4 217+ 28y + 2Py + 2+ 2Py X
+ @+ DX+ (2" + 1) X0+ (25 + )XY
+ (@ B 2 4 2y + 28+ 23 ) X 4 (2T 4 2) X3
@)Y + 220 a3 a0 10 4 2Ty T 4t gy,
On the other hand, F312 = N3 12/D312 where D315 = (X* + ) and
N3 12 is (too large to fit in here)
Ni12 = (28 + 28)X% + (216 + 24) X8y
+ (222 4 210y 4 210 4 210 4 2ty F2HX3B 4.
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Next, We calculate F<g 12 such that F<312(d) = 6[115534(3, 15). By using
the identity recursion Fi<3 12 — (g(l))l5F§3712 = F3 12, we get the Frobenius
difference equation

(X +2)5(20 - N = (X2 42X+ X0+ XY +y+1)12,

where Z = (X* + $)15F§3,12. We put Z = Ziozo apX® + YZ?T?:O by X™.
The unique solution obtained is Z = N<312/(z* + x) so that F<zia =
Z/(X4 -+ 33)15 = N§3712/D33712 where D§3712 = (1’4 -+ a:)(X4 -+ $)15 and
N§3712 is

(@2 + 2% + 25 + 2% + DX 4 (22 4+ 217 4 25 + 25X
(@2 4 2% 4 210 4 2TV X% 4 (220 4 217 4 o8 4 25) X3
(@2 4 28 4 2% 4 2P +1)X34+ (m20+x17+x8+m5)X32Y
(@2 4 22 4 2Py 4 21Ty 4 2 4 21 —|—x8y+x5y)X32
(a:24+a:18+w9+x3 T )X 4 (22 4 10 4 210) X3
(e + 2+ 2° 423 + 1) XY
(:U24y+a;24—i—xlgy—i—a:lg+x9y+x9+x6+x3y+y+ 1)x28
(@ 4 219 + xlO)X27 b (@ 4 220 4 o 42 g 25X
(@2 4 2+ 2O XY 4 22y + 2P 1 2% + 210 1 210 4 2T XN
(@20 4 220 2 4 o8 1 2P XB 4 (0 4 2 4 20X 2
(@20 4 220 4 211 4 o8 4 25 X0y
(@2 4+ 220 4 22 4+ 220 4 M 4 2y 4 2By + 28 1 2Oy + %) XD
(@2 4+ 22 4 29X 4 (22 4 22 4 210 4 213 4 2T X8
(.’,U27 + .’L'21 + J)G)XlGY
(¥ + 22" + 2y + 2 + 2B 2P 212 4 2% 2Oy + 23+ 1) X1
(@2 4 222 4 216 4 213 +x7)X15 v (:1:29 FUPR: SIS L g U +x5)X14
(@2 4 22 4 216 4 213 +:c7)X12Y
@2y + 22 + 222y + 22 + 20y 4+ 210 4 213y 4 213 4 210 +m7y)X12
(@2 4 2 Ll gl e
(230 4+ 2%t 4 218 4+ 215 4 23 4 1) X 10
(x29 + 2B 42T M x5)X8Y
@2y + 22 + 2By + 22 + 22 4 2Ty + My + 2 4 2B 4 2Py) XP
(@ 4 22 4 218 4 2 1B 4 1)XT

e i i i S e e sl
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(@ 2 e 4 219X 4 (%0 2 4 2 4B P XYY
+ (@0 + 2% + 22y + 2 4 2y 4 218

+ 2By 42 21?4 2% 4 23y + 23+ y) X!
@ 42 e 4 29X 4 (P 42 42 4 2Oy
4ot p gBly 428y | g2 4 10 L 210 4 16

The leading term of the numerator of £ = (2?4218 +2%+234+1)F<3 10—
(212 + 2% + 28 + 23 + 1) Fq5 is
(M 4 ot % 1 2% g2 g 20 4 1T 1y gl 2y 8
so that the degree of E(d) is —(—80 + 44q?); since the degree of ¢, is

—8(4¢ —1)/3, the degree of E(d)/(% is —(—40 + 4%*1) and thus as d tends
to infinity, the error tends to zero. (|

Theorem 8.3. For A =Faz,y]/(y* +y +2° + 23 + 1), we have
(B 42+ 2% + 2t 23+ 2 +1)¢(1,2) = (25 + 25 + 23 + 2+ 1)¢(3).

Proof. We will now define several functions in Fy(z,y, X,Y’), where x and
X are independent transcendentals and y? +y = 2° + 23+ 1 and Y2 4+Y =
X5 4+ X3 4 1. For each function, say h, put h(!) for the function resulting
from h after substituting X2, Y2 respectively for X,Y, and put h(d) € K

for the function resulting from h after substituting 227 and y2d_2 for X, Y.
Put Fy = N1/Dy, where Dy = (X® + 2)(X'6 + 2 + 1) and

N1:X15+ZL‘2X14+$X13+($3+$)X12+$X11—|—X10Y
+ (@ 4+ X4+ (@ + DX+ (2 4+ 1)XPY
+ (@ +ry+y+ DX+ 22X+ XV + (22 +9) X6 + X5
+ 2 XY 4 (2Pt oy + o)X a2 X3+ (23 4 2?) X 42y
+m4+azy+x.

By Conjecture E in [18, p. 194] (which is now a theorem, see [2]), we
get that £454(1) = Fi(d). Next we will calculate F; in such a way that
Foi(d) = £4S<4(1). From the identity Scgy1(1) = S<q(1) + S4(1) we get

lit15<q+1(1) = E(Zl(f(z&d(l) + £aSq4(1))
Fei(d+1) = g(d+ 1)(Fai(d) + F1(d)).

The Frobenius equation to be solved is Fill) = gW(Fq + F). Let Z =
(X8 +2)(X'6 + 2 4+ 1)Fq. The equation to be solved now is

(X8 +2) (X + 2+ 1)20 = (NI)(Z + Ny).
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We put Z = 3218, a; X +Y }20 b; X7, and it is obtained a system of 107
equations with 28 unknowns. The unique solution is Z = N.i, so that
Foy = Noy /(X8 +2)(X + 2+ 1)), where

No=(@+2) X0+ XP 4+ @2+ DXM 4 2XB + (@3 + 22+ 24+ 1) X2
+ 2 XM+ XV 4 (22 + ) X104 2 X% 4 (2 + 1) XBY
+ @+ 224y + )X+ e+ DX+ XY + (22 +x+y+1)XC
+ X5+ @+ DXY + (B 4oy +r+y) X+ X3+ (@3 +22) X2 +Y
+at a4y

Next we define Fo = Fngl. Then

(aSa(1,2) = (€aSa(1))(LaS<a(1))* = Fi(d)F<i(d)* = Fia(d).

Explicitly, F12 = Nia/D12, where D1 = (X8 +2)3(X 0 +2+1)% and Ny is

(@t + )XY 4+ (25 4 X0 4 (20 12+ DX 4 (o7 + 25 + 22 XM

(@° + 2t + 23 + 2+ DX + (2t + 27 XPY

(2 + 2ty + 2t + 2Py + 2 ) X P

(2 + ) XM 4 (2° + 2t + 23+ 2? + 1) XY

(27 4+ 2%+ 2%y + 25 + 2ty + 2 + 2Py + 23 + 22y + y + 1) X

(28 + 2N X3 4+ (22 + 2) X3BY + (28 + 25 + 23 + 2%y + 2% 4 2y) X8

(" + 2%+ 22+ DX+ (2t + 23 + 22 + 1) XY

(2% + 2" + 2% + 2ty + 2 + By + 22y + 22 + 2y + 2) X3

(2" + 22+ 24+ )X 4+ (28 + 23 + 22 + 2) XY

(28 + 27 + 2% + 2t + 2By + 2y + zy + ) X3

(2" 4+t + 22+ 2HXB 4+ T+ 25+ S+t + B+ 2+ XY

(a

+ 4+ + + + o+ o+ o+ o+

x84 27 y—i—:v y—i—x + 2° y+x + 2 y—i—:vy
+a?y+a? fay+r+y+1)X2
(@ 4+ 2) X3 1 (28 4+ 25 + 2t + %) X Py
(22 4+ 2% + 28 + 2By + 2ty + 23) X0 + (2% + 28 + 2t + 23 + )X
(z7 + 25 + 2° 4+ 22) XY
(20 + 2Ty + 27 + 2% + 28 + 2By + 23 + 2%y + 22) X B
@+ 28+ 23+ 2+ DX + (07 + 2% + 27 + 2t + 2%+ ) XY
(2® + 2"y + 27 + 25 + 28 + 2%y + 2ty + 22y + 2y + 1) X0
(B 42+ 2P+t + a3 2+ )X

+ o+ + + + o+
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+ (@ 2"+ + 32?24+ )XY
(@042 by 42 Ty + a7 + 2Py + et + 2y

+ 2%y +ay+r+y+1)X*
(B + 28+ 22+ 22+ DXB 4+ (2" + 2% 4+ 2° + 2H XY
(28 4+ 27y + 28y + 2%y + 2° + 23 + 2%y + 1) X
(B +o)X 4 (@B "+t + 3+t o+ )XY
(2 + 2By +ay+a"+ 2 ety + By + S+t fay+a+y+1) X%
(2 + 2t + 22+ 2) X0+ (2" + 25 + 2 + ) XY
(20 + 2% + 2Ty + 2% + 28 + 25 + 2ty + 2t + 2% 4 2y) X
(B2 v+ 23+ o4+ DX+ (27 + 28 2" 4 23) X Oy
(2™ + 2104+ 2Ty + 27 + 25y + 2ty + 2t + 23y + 23 X 1O
(28 +2° + 2t + 2) XV + (27 + 2% + 22 + 1) X MY
(202 +a® oy + 2 a8+ af 4ot +ady + 23 2y fay ) XM
(2 + 2842+ 25+ 2t + 2?2+ DX 4 (28 + 25 + 1) XY
(M 4+ 20 2 4By + " Sy S+t By D)X
(482t + 22+ DX+ @B+ 2+ 2t 2+ DX OY
(2% + 28y + 27 + 20y + 25 + 2ty + 2t + 2y + ) X1O
@+ +2" 2+ e+ )XY+ (2 + 2 +2® + 1) XBY
(M + 2% + 2% + 28 4 27 4 28 + 2y + 22y + 2% 4 29) X8
(24274242 + 2 X"+ @B+ S+t 3+ 2+ 2+ 1)XOY
(xl + 29 + a8 y—l—x + z° y—i—a: y—i—x + 23 y—l—x +x y—i—my—i—y)X
(2% + 2%+ 2% + 23+ 2?) X0 + (2 + 27 + 2% + 2 + 23 XYY
(2™ + 210 4+ 2% + 2% + 2Ty + 2% + 25 + 2ty + 23y X?
(z° + = +:1:)X3 + (z® + 2 XY
+ (2 + 20 4 2® 42 2ty + 22y X4 (2% 428+ 20)Y
+x12+x9y+x8+$7+x6y+x5y+x5.

+ 4+ + + + o+

Now, we calculate F<io such that F<q2(d) =£3S<4(1,2) by using the iden-
tity recursion FSI)Q (g )P Fepp= F1(2) Let Z=(X8+x)3 (X0 +2+1)3F<yo.
The equation to be solved is

(X8+x)3(X16 Y1) (Z(l) ( )) _ (N(l))?)Z'
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Put Z = 318, a; X" +Y 31% b; X7. This gives a system of 329 equations in
90 unknowns. The unique solutlon implies that F<1s = N<i2/D<12, where

D§12 = (1‘2 —i—a:)(XS +w)3(X16 +x + 1)3), and Nglg is
$6+CC5+JI4+.’E3)X46
x7+x6+z5+x4+x2+x)X42
x9+x7—|—:p6+x4—|—x3+x+1)X4O
o7+ 25+ 20 + )X

(S +a5 23+ 2+ 1)XB 4 (

+ (@ 42"+ 2t 2 XM 4 (
(28 + 25 + 2t + 23) X4 4 (

(28 + 25 + 2% 4+ 23) X3 4 (

(2" + 23 + 22+ 2) X3 + (2% + 2° + 2t + 23) X3%)7

(28 + 2" + 28y + 20y + 25 + 2ty + 23y + 2) X36

(" + 23+ 22 + 2) X3 + (27 + 2% + 2* + 2% + 2% + 1) X

(2% 4 2% + 2% + 22) X3 + (2" + 2% 4+ 2% + 2) XY

(4 2Ty +a" +aS S+t Sy + 2Py oy + )X

(2% +2® + 23+ 2 X3+ (28 + 2) X0 4 (27 + 2% 4+ 2t + 2) X

(2% 4 2° 4+ 2° + 2*) X BY

(20 4+ 2% 4 28 + 2Oy + Oy + By + 23+ 2%y + 2%+ 2+ 1) X

(2" +2® + 2t + 2) X2+ (2% + 2B+ 28 4 25 2t + 23X

(2® + 2" + 2%+ 2H X + (27 + 2% + 2t + ) XY

(2 + 219 + 2% + 2Ty 4 20y + 2ty + 23 + 2% + ay) X

(B + 2" +25 +2H)XB + (2% 4+ 2% + 25 + 2t + 23 4 1) X2

(% + 2"+ 20 + 2 X2 + (¥ 4 27 + 25 + 2H) XY

(2 + a8y + a8+ 2Ty + 2" + 2% + 25y + 25 + 2ty + 23 + 22+ 1) XP

(@2 +2" + 28+ )X @B+t P+ 42 )X

(74 2% + 2+ 2) X7 + (2% + 27 4+ 2% 4 23) X 10Y

(2 4+ 219 4 2% + 2% + 2Ty + 2% + 2t + 23y + 2% + 1) X1O

"+ 25+t o)X (@ + a2+ e+ )X

(a2 +ab a2t 23 22 D)X (27 + 2% 42t + )XY

(M + 210+ 2% 4 2Ty + 27 + 2Py + 2ty + 23+ zy) X2

(2® + 2"+ 28 42t + 23 2t )X

(20 + 2% 4 2" + 2t + 23 4 2?4 2) X0

(2% 4 28 4+ 2% + 2% + 22 + 2) X°

(2®+ 2" + a2+ 2t + 23+ 22+ 1) XBY

e e e e S e e o S S S e s
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F (@2 42 12 + 2By + B + 2Ty + 2Oy + b 4 25
4ty 42t + By + 2+ 2Py + ) X°

+ @+ + 28 2t 2+ )X+ (20 2 2" 4 20+ 2) X
+ (@0 2P 42"+ 2%+ 2?)X% 4 (2% 42+ 28+t 4 2? ) XYY
+ (2% + 2% 4+ 2By + 28 + 25y + 2° + 2ty + 2t + 2%y + 2y) X!
+ @+ + 2"+ 2+ )X+ (20 + 2+ 2T+ 2%+ )Y
+ 2t 42! 4 :rloy + 219+ :L‘Sy + x7y + 27 + xGy + x3y.
We first calculate F3, such that F3(d) = £3S54(3). Since
An
LiAdqo’
it follows that (2Ag = (L4Aa0)(laS<a(1)) = Fi(d)F<1(d).

035a(3) = LaAaw(GAn + (Lalao)?) = Fi(d)(Fi(d)F<i(d) + Fi(d)?).

We then define F3 = FZF_; + F5.
Finally, F3 is calculated such that Fo3(d) = ¢35-4(3). In a similar way
as F-1 was obtained, we obtain the equation

F<1<d) = EdS<d(l) =

FY = (W) (Fas + F).

Making the change of variable Z = (X8 + z)3(X1¢ 4 2 + 1)3F3 we obtain
(X8 + 2P (X' + 2+ 17 = (N)3(Z + N3). We put Z = Y80, X7 +
YZ;io b; X7 and obtaing a system of 334 equations with 95 unknowns.
Then F.3 = Nc3g/D<s, where Dog = (22 4+ 2)(X8 +2)? (X0 + 2+ 1) and
N<3 is

(:U8+x6—|—335+1‘4+$3+x+1)X48+(:U4—|—x2)X46

2® + 28 42t + 2) XM 4 (28 + 2% 4 2?4 2) X

z+x )X41 + (@0 2" 23+ 22 + )X 4 (2" 4 2?) X

42+ 2?4 ) X3 4 (25 2t 23+ ) X+ (2t + 22 XY

2P0 42 4 a8 2 4 2%+ 2ty 4 2t 4 2?y) X6

428 a® 42t + 23 )X (2 2t 2P+ ) XY
a4+ 2" a8 425 y+x y+ac + 23 y—i—a: +x +:1cy—|—1)X32
2® + 2% +2° + 2t + 27 + 22X + (@t + ) X

+ (2®
(«*
(a®
(
(2P +at + 23+ 2) X3P 4+ (2% 2B+ 2" 428 2 2P 42?4 X
(«®
(«®
(
(2 + 2"+ 2t + ) X2 4 (28 + 25 + 2° + 2 + 23+ ) XBY

+ 4+ + + +
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4 (@ 4 2y + 27 + 20 + a8 + 2By + 2+ oty + 2
+ 3y 4+ 23 + 2Py + 1) X8
+ (@ + 2"+t + o)X+ (2104 2% 4 2B 4 28 4 2+ 2?) X
+ (@ +2)XP + (2% + 2" + 2 + 2) XY + (22 + 2%y + 2 + 28
+aTy+ 2" + 28 + 25 + 2ty + 2t + 23+ 2?4 ay) XM
+ (22 + 2N X+ (210 + 2% 4 2% + 2t 23+ a) X
(@0t 2T 420 128 )X 4 (2 4 )XY
+ (@t + 2% + 2% + 2Ty + 2P+ 2t 2+ 1) X
+ (20 ¥ 2" 2’ 42 )X
+ (@0 e+ DX+ (2% + 2 2T 42t 2 )X
+ (210 4+ 2% + 27 + 25 + 23 + 2?) X Oy
+ (xwy + xSy + x7y 4z’ + $5y + 25 + 2t + $3y + 2% + a:zy)X16
+ @+ a8+ 2"+t + 2+ )X
b+t 2 DX (@042 S T+t b2 )X
+ (@ + 28+ 2T+t 2%+ )XY
F (@2 42 420 2% 4 By 2 12Ty + 2T + 2P+ aly
+ 2t + 22y + 22+ xy + 2) X2
(042 + 2 "+t 2?2+ DX+ @M 28 2" 2 ) X
(20 + 2 a8 + 2" + 25 + 27X
(29 42+ 2 2" 42t 22+ 1) XBY
(2B + 2% + 2% + 2% + 2By + 2% + 2Ty + 27 + 2O
+aty + 28+ 2Py +y) X°
21 4 2% 42 427 428 2P X7
et 210 42?4 2% 4 2% 4+ 2% + 2) XO
e 210 4 2% 4 2% 428 2% 4 2) XP
2P0 4 2% 428 2" 4 a8 4 25 XY
20 + 219 4 2% + 2% + 28y + 2% + 2Ty + 27 + 25y + 25y) X!
PR LS RN - WD €
b 42042 428 S e a)Y
oy + 2 4 20 4 2% + 20 + 27 + 28y + 28 + 20y + 2 + 2 + 22y + .

+(
+(
+(
+(
+(
+(
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Notice that denominators of F<i2 and F.3 match. The leading term
of ¥+ a8+ 25+t + 22+ 2+ 1)Nayg — (2% + 2% + 23 + 2 + 1) N3
is (o1 + 213 + 21 4+ 2% + 27 + 28 + 2% + 22)X 40 so that the degree of
E(d) = (a8 + 2+ a5+t + 23+ 2+ 1) F<ia(d) — (2% + 2% + 22 + 2+ 1) F3(d)
for d > 3 is —(—24 + 52 x 2972); since the degree of £y is — (2912 — 2) the
degree of E(d)/(3 is —(—12 4 2%) (d > 2); therefore, (2% + 2% + 2% + 2% +
23+ 2+1)S<4(1,2) — (2 + 2° + 23 + 2 +1)S<3(d) tends to zero as d tends
to infinity. O

Finally, we take this opportunity to record corrections in normalizations
in [19, p. 561], when the degree § of the infinite place is more than one: In
0.3.7, replace 26 there by 50(~2)+30(~1) and normalize the differential w by
requiring the residue of w(l)/f at 500~ be 1. In 0.3.5 recipe, we just drop
the implied claim that the resulting Drinfeld module p is sgn-normalized
(when § > 1). We are not aware of any mistakes in the literature resulting
from this, as the usage (as in this paper) so far seems to be limited to the
case 0 = 1. We also record that for the Hopf algebra alluded to in [25,
p. 1006], associativity and co-associativity is still conjectural with a lot of
computational evidence, and in [25, Thm. 10.1] the entry A[v"] should be

A[Cv"]'
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