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An improved bound on the least common
multiple of polynomial sequences

par Ashwin SAH

Résumé. Cilleruelo a conjecturé que si f ∈ Z[x] de degré d ≥ 2 est irréductible
sur les rationnels, alors log lcm(f(1), . . . , f(N)) ∼ (d−1)N logN quand N →
∞. Il l’a prouvé dans le cas d = 2. Très récemment, Maynard et Rudnick ont
prouvé qu’il existe cd > 0 tel que log lcm(f(1), . . . , f(N)) & cdN logN , et ont
montré qu’on peut prendre cd = d−1

d2 . Nous donnons une preuve alternative de
ce résultat avec la constante améliorée cd = 1. De plus, nous prouvons la mi-
noration log rad lcm(f(1), . . . , f(N)) & 2

dN logN et proposons une conjecture
plus forte affirmant que log rad lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN quand
N →∞.

Abstract. Cilleruelo conjectured that if f ∈ Z[x] of degree d ≥ 2 is irre-
ducible over the rationals, then log lcm(f(1), . . . , f(N)) ∼ (d − 1)N logN as
N → ∞. He proved it for the case d = 2. Very recently, Maynard and Rud-
nick proved there exists cd > 0 with log lcm(f(1), . . . , f(N)) & cdN logN ,
and showed one can take cd = d−1

d2 . We give an alternative proof of this re-
sult with the improved constant cd = 1. We additionally prove the bound
log rad lcm(f(1), . . . , f(N)) & 2

dN logN and make the stronger conjecture
that log rad lcm(f(1), . . . , f(N)) ∼ (d− 1)N logN as N →∞.

1. Introduction
If f ∈ Z[x], let Lf (N) = lcm{f(n) : 1 ≤ n ≤ N}, where say we ignore

values of 0 in the LCM and set the LCM of an empty set to be 1. It is a
well-known consequence of the Prime Number Theorem that

log lcm(1, . . . , N) ∼ N

as N → ∞. Therefore, a similar linear behavior should occur if f is a
product of linear polynomials. See the work of Hong, Qian, and Tan [4] for
a more precise analysis of this case. On the other hand, if f is irreducible
over Q and has degree d ≥ 2, logLf (N) ought to grow as N logN rather
than linearly. In particular, Cilleruelo [2] conjectured the following growth
rate.
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Conjecture 1.1 ([2]). If f ∈ Z[x] is irreducible over Q and has degree
d ≥ 2, then

logLf (N) ∼ (d− 1)N logN
as N →∞.

He proved this for d = 2. As noted in [7], his argument demonstrates

(1.1) logLf (N) . (d− 1)N logN.

Hong, Luo, Qian, and Wang [3] showed that logLf (N) � N , which was
for some time the best known lower bound. Then, very recently, Maynard
and Rudnick [5] provided a lower bound of the correct magnitude.

Theorem 1.2 ([5, Theorem 1.2]). Let f ∈ Z[x] be irreducible over Q with
degree d ≥ 2. Then there is c = cf > 0 such that

logLf (N) & cN logN.

The proof given produces cf = d−1
d2 , although a minor modification pro-

duces cf = 1
d . We prove the following improved bound, which in particular

recovers Conjecture 1.1 when d = 2. It also does not decrease with d, unlike
the previous bound.

Theorem 1.3. Let f ∈ Z[x] be irreducible over Q with degree d ≥ 2. Then

logLf (N) & N logN.

It is also interesting to consider the problem of estimating the quantity
`f (N) = rad lcm(f(1), . . . , f(n)). (Recall that rad(n) is the product of the
distinct primes dividing n.) It is easy to see that the proof of Theorem 1.2
that was given in [5] implies

log `f (N) & cfN logN

for the same constant cf = d−1
d2 (or cf = 1

d after slight modifications). We
demonstrate an improved bound.

Theorem 1.4. Let f ∈ Z[x] be irreducible over Q with degree d ≥ 2. Then

log `f (N) & 2
d
N logN.

We conjecture that the radical of the LCM should be the same order of
magnitude as the LCM.

Conjecture 1.5. If f ∈ Z[x] is irreducible over Q with degree d ≥ 2, then

log `f (N) ∼ (d− 1)N logN

as N →∞.
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Finally, we note that Theorem 1.4 proves Conjecture 1.5 for d = 2.
In a couple of different directions, Rudnick and Zehavi [7] have studied

the growth of Lf along a shifted family of polynomials fa(x) = f0(x) − a,
and Cilleruelo has asked for similar bounds in cases when f is not irreducible
as detailed by Candela, Rué, and Serra [1, Problem 4], which may also be
tractable directions to pursue.

1.1. Commentary and setup. Interestingly, we avoid analysis of what
is known as “Chebyshev’s problem” regarding the greatest prime factor
P+(f(n)) of f(n), which is an essential element of the argument in [5]. Our
approach is to study the product

Q(N) =
N∏
n=1
|f(n)|.

We first analyze the contribution of small primes and linear-sized primes,
which we show we can remove and retain a large product. Then we show
that each large prime appears in the product a fixed number of times,
hence providing a lower bound for the LCM and radical of the LCM. For
convenience of our later analysis we write

Q(N) =
∏
p

pαp(N).

Note that logQ(N) = dN logN + O(N) by Stirling’s approximation, if
d is the degree of f . Finally, let ρf (m) denote the number of roots of f
modulo m.

Remark on notation. Throughout, we use g(n)� h(n) to mean |g(n)| ≤
ch(n) for some constant c, g(n) . h(n) to mean for every ε > 0 we have
|g(n)| ≤ (1 + ε)h(n) for sufficiently large n, and g(n) ∼ h(n) to mean
limn→∞

g(n)
h(n) = 1. Additionally, throughout, we will fix a single f ∈ Z[x]

that is irreducible over Q and has degree d ≥ 2. We will often suppress the
dependence of constants on f . We will also write

f(x) =
d∑
i=0

fix
i.

Acknowledgements. I thank Ze’ev Rudnick, Juanjo Rué, and Mark Shus-
terman for helpful comments, suggestions, and references.

2. Bounding small primes
The analysis in this section is very similar to that of [5, Section 3], except

that we do not use the resulting bounds to study the Chebyshev problem.
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We define
QS(N) =

∏
p≤N

pαp(N),

the part of Q(N) =
∏N
n=1 |f(n)| containing small prime factors. The main

result of this section is the following asymptotic.

Proposition 2.1. We have logQS(N) ∼ N logN .

Remark 2.2. This asymptotic directly implies the earlier stated Equa-
tion (1.1).

The argument is a simple analysis involving Hensel’s Lemma and the
Chebotarev density theorem. The Hensel-related work has already been
done in [5].

Lemma 2.3 ([5, Lemma 3.1]). Fix f ∈ Z[x] and assume that it has no
rational zeros. Let ρf (m) denote the number of roots of f modulo m. Then
if p - disc(f) we have

αp(N) = N
ρf (p)
p− 1 +O

( logN
log p

)
and if p | disc(f) we have

αp(N)� N

p
,

where the implicit constant depends only on f .

Proof of Proposition 2.1. We use Lemma 2.3. Noting that the deviation of
the finitely many ramified primes from the typical formula is linear-sized,
we will be able to ignore them with an error of O(N). We thus have

logQS(N) =
∑
p≤N

αp(N) log p =
∑
p≤N

N
log p
p− 1ρf (p) +O

(
N +

∑
p≤N

logN
)

= N
∑
p≤N

log p
p− 1ρf (p) +O(N) = N logN +O(N),

using the Chebotarev density theorem alongside the fact that f is irre-
ducible over Q in the last equation (see e.g. [6, Equation (4)]). �

3. Removing linear-sized primes
We define

QLI(N) =
∏

N<p≤DN
pαp(N),

for appropriately chosen constant D = Df . We will end up choosing D =
1 + d|fd| or so, although any greater constant will also work for the final
argument. The result main result of this section is the following.
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Proposition 3.1. We have logQLI(N) = O(N).

In order to prove this, we show that all large primes appear in the product
Q(N) a limited number of times.

Lemma 3.2. Let N be sufficiently large depending on f , and let p > N be
prime. Then

αp(N) ≤ d2.

Proof. Note that f ≡ 0 (mod p) has at most d solutions, hence at most d
values of n ∈ [1, N ] satisfy p|f(n) since p > N . For those values, we see
pd+1 > Nd+1 ≥ |f(n)| for all n ∈ [1, N ] if N is sufficiently large, and f is
irreducible hence has no roots. Thus pd+1 does not divide any f(n) when
n ∈ [1, N ].

Therefore αp(N) is the sum of at most d terms coming from the val-
ues f(n) that are divisible by p. Each term, by the above analysis, has
multiplicity at most d. This immediately gives the desired bound. �

Proof of Proposition 3.1. Using Lemma 3.2 we find

logQLI(N) ≤ d2 ∑
N<p≤DN

log p = O(N)

by the Prime Number Theorem. �

4. Multiplicity of large primes
Note that Lemma 3.2 is already enough to recreate Theorem 1.2. Indeed,

we see that
log Q(N)

QS(N) = (d− 1)N logN +O(N)

from Q(N) = dN logN +O(N) and Proposition 2.1. Furthermore, by def-
inition and by Lemma 3.2,

Q(N)
QS(N) =

∏
p>N

pαp(N) ≤
∏

p>N,p|Q(N)
pd

2 ≤ `f (N)d2 ≤ Lf (N)d2
.

This immediately gives the desired result (and recreates the constant d−1
d2

appearing in the proof given in [5]).
In order to improve this bound, we will provide a more refined analysis of

the multiplicity of large primes. More specifically, we will show that we have
a multiplicity of d(d−1)

2 for primes p > DN , with D chosen as in Section 3.

Lemma 4.1. Let N be sufficiently large depending on f , and let p > DN
be prime, where D = 1 + d|fd|. Then

αp(N) ≤ d(d− 1)
2 .
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Proof. Fix prime p > DN . As in the proof of Lemma 3.2, when N is
large enough in terms of f , we have that pd+1 never divides any f(n) for
n ∈ [1, N ]. Thus for 1 ≤ i ≤ d + 1 let bi = #{n ∈ [1, N ] : pi|f(n)}, where
we see bd+1 = 0. Note that

αp(N) =
d∑
i=1

i(bi − bi+1) =
d∑
i=1

bi.

We claim that bi ≤ d − i for all 1 ≤ i ≤ d, which immediately implies the
desired result.

Suppose for the sake of contradiction that bi ≥ d−i+1 for some 1 ≤ i ≤ d.
Then let m1, . . . ,md−i+1 be distinct values of m ∈ [1, N ] such that pi|f(m).
Consider the value

A = Ai =
d−i+1∑
j=1

f(mj)∏
k 6=j(mj −mk)

.

We have from the standard theory of polynomial identities that

A =
d∑
`=0

f`

d−i+1∑
j=1

m`
j∏

k 6=j(mj −mk)

=
d∑

`=d−i
f`

∑
a1+···+ad−i+1=`−(d−i)

d−i+1∏
j=1

m
aj

j ,

where the inner sum is over all tuples (a1, . . . , ad−i+1) of nonnegative inte-
gers that sum to `− (d− i). Therefore A ∈ Z. Furthermore, since pi|f(mj)
for all 1 ≤ j ≤ d− i+ 1, we have from the definition of A that

pi|A
∏

1≤j<k≤d−i+1
(mj −mk).

Note that each mj −mk is nonzero and bounded in magnitude by N < p,
hence we deduce pi|A.

But from the above formula and the triangle inequality we have

|A| =
∣∣∣∣∣

d∑
`=d−i

f`
∑

a1+···+ad−i+1=`−(d−i)

d−i+1∏
j=1

m
aj

j

∣∣∣∣∣
≤

d∑
`=d−i

|f`|
(

`

d− i

)
N `−(d−i)

≤ (1 + |fd|di)N i

for sufficiently large N in terms of f , using the fact that there are
( `
d−i
)

tuples of nonnegative integers (a1, . . . , ad−i+1) with sum `−(d− i) and that
|mj | ≤ N for all 1 ≤ j ≤ d− i+ 1.



LCM of polynomial sequences 897

Thus, as p > DN ≥ (1 + |fd|d)N , we have

|A| ≤ (1 + |fd|di)N i ≤ (1 + |fd|d)iN i < pi.

Combining this with pi|A, we deduce A = 0.
However, we will see that this leads to a contradiction as the “top-degree”

term of A is too large in magnitude for this to occur. First, we claim that
if 1 ≤ i ≤ d and d− i ≤ ` ≤ d, then

(4.1)
∑
a1+···+ad−i+1=`−(d−i)

∏d−i+1
j=1 m

aj

j∑d−i+1
j=1 m

`−(d−i)
j

∈ [1, 2d].

Indeed, note that each mj > 0 and the denominator occurs as a subset of
the terms in the numerator, hence the desired fraction is always at least 1.
For an upper bound, simply use the well-known AM-GM inequality. As it
turns out, a sharp upper bound for the above is 1

d−i+1
( `
d−i
)
, which does not

exceed 2d for the given range of i and `.
Next, we see that, using Equation (4.1) and the triangle inequality,

|A| =
∣∣∣∣∣

d∑
`=d−i

f`
∑

a1+···+ad−i+1=`−(d−i)

d−i+1∏
j=1

m
aj

j

∣∣∣∣∣
≥ |fd|

∑
a1+···+ad−i+1=i

d−i+1∏
j=1

m
aj

j −
d−1∑
`=d−i

|f`|
∑

a1+···+ad−i+1=`−(d−i)

d−i+1∏
j=1

m
aj

j

≥ |fd|
d−i+1∑
j=1

mi
j − 2d

d−1∑
`=d−i

|f`|
d−i+1∑
j=1

m
`−(d−i)
j

=
d−i+1∑
j=1

f∗(mj),

where we define f∗(x) = |fd|xi−2d
∑d−1
`=d−i |f`|x`−(d−i). But since A = 0 and

f∗ clearly has a global minimum over the positive integers, we immediately
deduce that |mj | for all 1 ≤ j ≤ d − i + 1 is bounded in terms of some
constant depending only on f and d = deg f .

But then, in particular, we also have |f(m1)| < Cf for some constant Cf
depending only on f , yet it is divisible by p > DN . For N sufficiently large
in terms of f , this can only happen if f(m1) = 0, but since f is irreducible
over Q and deg f = d ≥ 2 this is a contradiction! Therefore we conclude
that in fact bi ≤ d − i for all 1 ≤ i ≤ d, which as remarked above finishes
the proof. �

We have actually proven something stronger, namely that for this range
of p we have at most d− i values n ∈ [1, N ] with pi|f(n). In particular, this
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implies that for p > DN we have

(4.2) #{n ∈ [1, N ] : p|f(n)} ≤ d− 1.

5. Finishing the argument
Proof of Theorem 1.3. The argument is similar to the one at the beginning
of Section 4, but refined. We have

log Q(N)
QS(N)QLI(N) = (d− 1)N logN +O(N)

by Q(N) = dN logN + O(N) and Propositions 2.1 and 3.1. Furthermore,
by definition and by Equation (4.2),

Q(N)
QS(N)QLI(N) =

∏
p>DN

pαp(N) ≤ Lf (N)d−1.

The inequality comes from the fact that for p > DN > N , there are at
most d − 1 values of n ∈ [1, N ] with p|f(n) from Equation (4.2), and the
LCM takes the largest power of p from those involved hence has a power
of at least αp(N)

d−1 on p. Taking logarithms, we deduce

(d− 1) logLf (N) ≥ (d− 1)N logN +O(N),

which immediately implies the result since d ≥ 2. �

Proof of Theorem 1.4. The argument is essentially identical to the one at
the beginning of Section 4, but with a better multiplicity bound from
Lemma 4.1. We have

log Q(N)
QS(N)QLI(N) = (d− 1)N logN +O(N)

by Q(N) = dN logN + O(N) and Propositions 2.1 and 3.1. Furthermore,
by definition and by Lemma 4.1,

Q(N)
QS(N)QLI(N) =

∏
p>DN

pαp(N) ≤
∏

p>DN,p|Q(N)
p

d(d−1)
2 ≤ `f (N)

d(d−1)
2 .

Taking logarithms, we deduce

d(d− 1)
2 log `f (N) ≥ (d− 1)N logN +O(N),

which immediately implies the result since d ≥ 2. �
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6. Discussion
We see from our approach that the major obstruction to proving Conjec-

ture 1.1 is the potential for large prime factors p > N to appear multiple
times in the product Q(N). In particular, it is possible to show that Con-
jecture 1.5 is equivalent to the assertion that

lim
N→∞

#{p prime : p2|Q(N)}
#{p prime : p|Q(N)} = 0.

Indeed, the bounds we have given are sufficient to show that there are
Θ(N) prime factors of Q(N), of which only O

(
N

logN
)
are less than DN .

Therefore the asymptotic size of the LCM is purely controlled by whether
multiplicities for large primes in

[
2, d(d−1)

2
]
appear a constant fraction of

the time or not (noting that log p = Θ(logN) for these large primes, so
that the sizes of their contributions are the same up to constant factors).

Similarly, Conjecture 1.1 is equivalent to the assertion that

lim
N→∞

#{p prime : ∃ 1 ≤ m < n ≤ N : p|f(m), p|f(n)}
#{p prime : p|Q(N)} = 0.

Our bound for Conjecture 1.5 corresponds to using the fact that we can
upper bound the multiplicities for all primes p > DN by d(d−1)

2 . In general,
smaller multiplicities other than 1 could be possible but infrequent, which
may be a direction to further approach Conjecture 1.1 and Conjecture 1.5.
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