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Twists of the Albanese varieties of cyclic multiple
planes with large ranks over higher dimension

function fields

par Sajad SALAMI

Résumé. Dans [17], nous avons prouvé un théorème de structure pour les
groupes de Mordell–Weil de variétés abéliennes définies sur des corps de fonc-
tions, obtenues comme tordues de variétés abéliennes par des revêtements
cycliques de variétés projectives, et ce en terme des variétés de Prym asso-
ciées à ces revêtements. Dans ce nouvel article, nous donnons une méthode
explicite pour construire des variétés abéliennes de grands rangs sur les corps
de fonctions. Pour ce faire, nous appliquons le théorème mentionné ci-dessus
aux twists des variétés d’Albanese des plans multiples cycliques.

Abstract. In [17], we proved a structure theorem on the Mordell–Weil group
of abelian varieties over function fields that arise as the twists of abelian
varieties by the cyclic covers of projective varieties in terms of the Prym
varieties associated with covers. In this paper, we provide an explicit way
to construct the abelian varieties with large ranks over the higher dimension
function fields. To do so, we apply the above-mentioned theorem to the twists
of Albanese varieties of the cyclic multiple planes.

1. Introduction
Let A be an abelian variety defined over a given field k of characteristic

0 or a prime p > 0. Denote by A(k) the set of k-rational points on A. It
is well-known [7, 11] that A(k) is a finitely generated abelain group for the
number fields as well as the function fields under mild conditions. Thus,
we have A(k) ∼= A(k)tors ⊕ Zr where A(k)tors is a finite group called the
torsion subgroup of A(k), and r is a positive number called the Mordell–
Weil rank or simply the rank of A(k) and denoted by rk(A(k)). Let A[n](k)
be the group of k-rational n-division points on A for any integer n ≥ 2. It is
remarkable that studying on the rank of abelian varieties is more difficult
than that of the torsion subgroups.

Finding the abelian varieties of a given dimension with large rank is
one of the challenging problems in the modern number theory. There are
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some interesting works in the literature depending on the ground field and
the dimension of abelian varieties. For example, Shafarevitch and Tate [28]
produced isotrivial elliptic curves with arbitrary large rank over the field
Fp(t), and a similar result was proved by Ulmer in [30] for non-isotrivial
case. In the case of higher dimension abelian varieties over Fp(t), Ulmer
showed [31] that for a given prime number p ≥ 2 and the integers g ≥ 2
and r ≥ 1 there exist absolutely simple, non-isotrivial Jacobian varieties of
dimension g and rank ≥ r over Fp(t) for which the Birch and Swinnerton–
Dyer’s conjecture holds. In [32], Ulmer related the Mordell–Weil group of
certain Jacobian varieties over k0(t), where k0 is an arbitrary field, with the
group of homomorphisms of other Jacobian varieties. We note that a similar
result has been proved by several authors in the literature with different
methods [6, 15, 21, 34]. He also showed the unboundedness of the rank of
elliptic curves over F̄p(t) by providing an concrete example of elliptic curve
of large rank with the explicit independent points.

In [13, 14], Lapin stated the unboundedness of the rank of elliptic curves
over C(t), but his proof had a gap! The geometric methods of Ulmer in [32]
led to the construction of elliptic curves of moderate rank over C(t). More-
over, his method suggested a potential way to show the unboundedness of
rank of the elliptic curves over C(t), but he mentioned that it seems likely
to himself that this does not happen.

In his recent work [33], Ulmer proved that for a very general elliptic
curve E over C(t) with height d ≥ 3 and for any finite rational extension
C(u) of C(t) the group E(C(u)) is trivial. It is remarkable that the largest
known rank of elliptic curves over C(t) is 68 due to T. Shioda [24]. Using
the theory of the Mordell–Weil Lattices and symmetry [23, 25, 26], he also
showed the existence of high rank Jacobians of curves with genus greater
than one defined over function fields with base Q. Over the field C(x, y),
in [16], Libgober proved that there are certain simple Jacobians of rank
p− 1 for any prime number p.

The aim of this paper is to provide an explicit method of the construction
of abelian varieties with the large ranks over function field of certainly
defined quotient varieties of high dimensions. The main tools in this work
are the theory of twists as well as the Albanese and Prym varieties.

Given a fixed integer n ≥ 2, we assume that k is a field of characteristic
0 or a prime p > 0 not dividing n, that contains an n-th root of unity ζn.
We denote by P2 the projective plane over k̄, an algebraically closed field
containing k. Given any polynomial f(x, y) ∈ k[x, y] of degree r ≥ 2, let
Xn be the non-singular projective model of the hypersurface Xn defined by
the affine equation wn = f(x, y). For any integer m ≥ 2, we define Um to
be the fibered product of m copies of Xn over k. Then, we let Vm be the
quotient of Um by a certain cyclic subgroup of Aut(Um), see Section 5 for
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more details. We also denote by X̃ n the twist of Xn by the cyclic extension
L|K, where K = k(Vm) and L = k(Um) are the function fields of Um and
Vm respectively. We let Ãlb(Xn) be the twist of Albanese variety Alb(Xn)
of Xn by the extension L|K. We refer the reader to see Sections 2 and 3
for the definitions and basic properties of the Albanese and Prym varieties,
respectively.

The main results of the paper are given as follows.

Theorem 1.1. Notation being as above, we assume that there exists at least
one k-rational point on Xn and hence on Xn. Then, as an isomorphism of
abelian groups, we have:

Ãlb(Xn)(K) ∼= Alb(X̃ n)(K) ∼=
(
Endk(Alb(Xn))

)m ⊕Alb(Xn)[m](k),

and hence, rk(Ãlb(Xn)(K)) = m · rk(Endk(Alb(Xn))), where Endk(∗) is the
ring of endomorphisms over k of its origin (∗) and rk(Endk(∗)) denotes its
rank as a Z-module.

This theorem generalizes the main results of [6, 21, 34] for the higher
dimensional abelian varieties risen as the twist of Albanesse variety of the
cyclic n-covers of a projective plane. For a given cyclic n-cover Xn, by
enlarging the integer m, one may obtain the abelian varieties of arbitrary
large rank over the function field of Wm with the base field k of arbitrary
characteristic.

On the other hand, for a fixed integer m ≥ 2, one may be interested to
compute the rank of Ãlb(Xn)(K) in terms of m and the other geometric
quantities of Alb(Xn), for example its dimension dn = dim (Alb(Xn)). In
general, dn ≤ dimH0(Xn,Ω1

Xn
), where Ω1

Xn
is the vector space of differential

1-forms on Xn. We note that “=” holds when the field k is of characteristic
zero. In the following we are going to calculate rk(Endk(Alb(Xn))) in terms
of dn when k is a number field.

We assume that k ⊂ C is a number field which contains Q(ζn) and
let πn : Xn → P2 be a cyclic n-cover. Its Galois group is a cyclic group
generated by the order n automorphism τ̄ of Xn induced by

τ : (x, y, w) 7→ (x, y, ζn · w),

an automorphism ofXn which acts on Xn and induces an action on Alb(Xn).
Let Alb(Xn) ∼= Wn/Λn, where Wn is a C-vector space of dimension dn and
Λn is a lattice. Then Λn⊗C is of dimension 2dn as a C-vector space and we
have Λn⊗C =

⊕
λHλ, where Hλ is the eigenspace of Λn⊗C corresponding

to each character λ of µn the cyclic group of primitive n-th roots. Therefore,
we can write Wn =

⊕
λWn,λ, where Wn,λ = Wn ∩ Hλ. To state the next

results, we shall consider the following assumption.
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Assumption 1.2. Keeping the above notations, we further assume that Λn
is a Z[ζn]-module and no conjugate character appears in Wn.

Theorem 1.3. Keeping the hypothesis of Theorem 1.1 and the above no-
tation, we suppose further that k ⊂ C is a number field containing Q(ζn)
and Assumption 1.2 holds on Alb(Xn) for the positive integer n satisfying
3 ≤ n ≤ 12 but n 6= 7, 9, 11. Then,

rk(Ãlb(Xn)(K)) ≥ m · cn,

where cn = 2d2
n for n = 3, 4, 5, 6, 10 and cn = d2

n−8n1n2 with n1+n2 = dn/2
for n = 8, 12. Moreover, the equality holds for all cases except n = 8.

The next theorem gives a sufficient condition that provides a way to find
explicit examples for the case n = 6 in the above theorem.

Theorem 1.4. Keeping the hypothesis of Theorem 1.1, we assume that
k ⊂ C is a number field containing Q(ζ3) and Assumption 1.2 holds on
Alb(X6). Let F (u0, u1, u2) be a homogeneous polynomial that can be written
in two forms F = G2

1 +H3
1 = G2

2 +H3
2 , where G1, G2, H1, H2 ∈ k[u0, u1, u2]

are homogeneous polynomials such that

{λ0G
2
1 + λ1H

3
1 : [λ0 : λ1] ∈ P1}, {λ0G

2
2 + λ1H

3
2 : [λ0 : λ1] ∈ P1},

are two different pencils. Then, rk(Ãlb(X6)(K)) = 2md2
6. One may consider

the following two cases as explicit examples:
(i) X6 is associated to C = E∨ the dual of a smooth plane cubic E;
(ii) X6 is associated to the affine curve

C : f(x, y) = x3 − 3xy(y3 − 8) + 2(y6 − 20y3 − 8) = 0.

Remark 1.5.
(1) The Theorem 1.1 can be generalized for the twists of Albanese vari-

ety associated with n-covers of the projective space P` of dimension
` ≥ 3. Indeed, given any polynomial f(u1, . . . , u`) with coefficients
in k, if Xn denotes a non-singular projective model of the hyper-
surface defined by the affine equation wn = f(u1, . . . , u`), and X̃ n,
Um, Vm, K and L are defined in a similar way, then the assertion
of Theorem 1.1 hold for X̃ n by adapting its proof. Furthermore, it
is remarkable that the cyclic n-covers of the projective line P1 has
been treated by the author in [21].

(2) One can use the Theorems 1.3 and 1.4 to obtain abelian varieties
of arbitrary large ranks over the number fields by considering the
Silverman’s specialization theorem [27] and study on the k-rational
points on the variety Vm.
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The present paper is organized as follows. The Section 2 is devoted to
recalling the definitions and fundamental properties of the Albanese and
Prym varieties. In Section 3, we briefly review the basics of twisting theory
of algebraic varieties. Then, we provide some results on the multiple planes
Xn in Section 4. We give the proofs of Theorems 1.1, 1.3 and 1.4 in Sections 5
and 6.

2. Albanese and Prym varieties
In this section, we let X be a non-singular projective variety over k̄ and

Pic(X ) denotes its reduced Picard variety. By an abelian variety over k̄
we mean an algebraic group A over k̄ which is non-singular, proper, and
connected as a variety. In below, we are going to give the definition and
basic properties of an abelian varity associated to X . For more details, we
refer the reader to [10, 22].

Definition 2.1. The Albanese variety of X is an abelian variety Alb(X )
together with the morphism of varieties α : X → Alb(X ) satisfying the
following universal property:

For any morphism α′ : X → A, where A is an abelian variety, there
exists a unique homomorphism α′′ : Alb(X )→ A, up to a translation, such
that the following diagram commutes:

(2.1) X α //

id
��

Alb(X )

∃!α′′
��

X α′ // A
The morphism α is called the Albanese morphism and α(X ) is known as
the Albanese image of X . Moreover, the dimension of α(X ) is called the
Albanese dimension of X .

The notion of Albanese variety is a classic one in the case k̄ ∼= C. Indeed,
for a smooth complex variety X one has Alb(X ) = H0(X ,Ω1

X )∨/H1(X ,Z),
and the Albanese map is given by x 7→

∫ x
x0
ω where x0 is a base point and

the integral is viewed as a linear function on H0(X ,Ω1
X ) well-defined up to

the periods.
It can be shown that if Alb(X ) exists, then it is unique up to isomor-

phism. Moreover, it is equal to Pic∨(X), the dual of reduced Picard variety
of X . For example, when X is a non-singular projective curve, then the
Albanese variety is nothing but the Jacobian variety of X .

We note that the Albanese variety Alb(X ) is generated by α(X ), i.e.,
there is no abelian subvariety of Alb(X ) containing α(X ). In particular,
α(X ) is not reduced to a point if Alb(X ) is not a singleton set. In general,
one has dim Alb(X ) ≤ dimH0(X ,Ω1

X ), where Ω1
X is the vector space of
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regular 1-forms on X and the equality holds if k̄ is of characteristic zero.
We note that the quantity dimH0(X ,Ω1

X ) is well-known as the irregularity
of X .

The assignment X 7→ Alb(X ) is a covariant functor from the category of
non-singular projective varieties to the category of abelian varieties. In other
words, for any morphism π : X ′ → X of the non-singular projective varieties
X and X ′, there exists a unique morphism π̃ : Alb(X ′)→ Alb(X ) such that
the digram (2.2) in below commutes. In particular, if the morphism π is
surjective, then the morphism π̃ is also surjective.

(2.2)

X ′ π //

α′

��

X

α
��

Alb(X ′) π̃ // Alb(X )

In the rest of this section, we recall the definition of Prym varieties for
cyclic n-cover π : X ′ → X of non-singular projective varieties. Classically,
the notion of Prym variety has been introduced by Mumford [19] for the
double covers of curves over the complexes and it is extensively studied
by Beauville in [1]. Then, it has been considered for the double covers of
smooth surfaces by Khashin in [8], and for the double covers of projective
varieties by Hazama in [6]. Recently, the Prym variety of cyclic n-covers of
curves are studied in [12]. In [18], it is defined in a more abstract setting,
but is used for arbitrary covers of curves over the complexes.
Definition 2.2. The Prym variety of the cyclic n-covers π : X ′ → X of
non-singular projective varieties is defined as the quotient abelian variety,

PrymX ′/X := Alb(X ′)
Im(id +γ̃ + · · ·+ γ̃n−1) ,

where γ̃ is the automorphism on Alb(X ′) induced by an order n automor-
phism γ of X ′.

When X ,X ′ are irreducible and both of them as well as the cyclic n-cover
π are defined over k, there is a k-isogeny of abelian varieties,
(2.3) PrymX ′/X ∼k ker(id +γ̃ + · · ·+ γ̃n−1 : Alb(X ′)→ Alb(X ′))◦,
where (∗)◦ means the unique connected component of the origin (∗).

It is useful to construct the new cyclic n-covers using the given ones. To
this end, we let πi : X ′i → Xi (i = 1, 2) be two cyclic n-covers of irreducible
non-singular projective varieties, γi ∈ Aut(X ′i ) be an automorphism of order
n ≥ 2 for i = 1, 2, all defined over k. Moreover, we assume that there exist
k-rational points x′i ∈ X ′i (k) for i = 1, 2. Then, we have a k-rational isogeny
of abelian varieties,
(2.4) PrymX ′1×X ′2/Y ∼k PrymX ′1/X1 ×PrymX ′2/X2 ,
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where Y = X ′1 × X ′2/G is the intermediate cover and G is the cyclic group
generated by γ = (γ1, γ2) ∈ Aut(X ′1 ×X ′2).

For the proof of above assertions, we refer the reader to [21]. Note that we
have to restrict ourselves to non-singular projective varieties in Section 2
of [21] instead of the quasi-projective ones. Because, Alb(X ) is a semi-
abelian variety for any quasi-projective variety X . This means that it is an
extension of an algebraic group by a torus. For more details, consult [22].

3. G-sets and twists
In this section, we briefly recall the two equivalent definitions of the twist

of an algebraic variety and its basic properties. To see more on the subject,
consult [2].

Let K be a field and L|K a finite extension with Galois group G =
Gal(L|K). A G-set is a discrete topological space X such that the left
action of G on X is continuous. For every x ∈ X and u ∈ G, we denote
by ux the left action of u on x. A G-group is a G-set A equipped with a
group structure invariant under the action of G, i.e., u(x · y) = ux · uy for
x, y ∈ A and u ∈ G. Any continuous application a : u 7→ au of G to a G-set
A is called a cochain of G with values in A. A cochain a = (au) is called
a 1-cocycle of G with values in A if auv = au · uav for u, v ∈ G. For any
1-cocycle a = (au), one has aid = 1 and au · uau−1 = 1, where u ∈ G, and
1 ∈ A is the identity element. The set of 1-cocycles of G with values in
a G-set A, is denoted by Z1(G,A). We say that a G-group A acts on the
G-set X from left, in a compatible way with the action of G, if there is an
application (a, x)→ a ·x of A×X to X satisfying the following conditions:

(i) u(a · x) = ua · ux (a ∈ A, x ∈ X , u ∈ G)
(ii) a · (b · x) = (a · b) · x, and 1 · x = x, (a, b ∈ A, x ∈ X ).

Let A be a G-group, a = (au) ∈ Z1(G,A) a 1-cocycle of A, and X a G-set
that is compatible with the group action of G. For any u ∈ G and x ∈ X ,
define u′x := au · ux. The G-set with this action of G is denoted by Xa and
is called the twist of X obtained by the 1-cocycle a = (au).

In what follows, we will give another definition of the twist in terms of the
schemes and its relation with the previous definition. Let X be a projective
scheme defined over k and denote its function field by K. Let Aut(X ) be
the automorphism scheme of X and a = (au) ∈ Z1(G,Aut(X )) be a 1-
cocyle. Then, Alb(a) := (Alb(au)) satisfies the 1-cocycle condition, i.e.,
Alb(a) ∈ Z1(G,Aut(Alb(X ))). Indeed, the equality auv = au ◦ uav implies
Alb(auv) = Alb(au) ◦ u Alb(av), since the construction of the Albanese
variety is compatible with base change. Here, we have a proposition that
provides the second definition for the twist of X . For its proof, one can see
the Propositions 2.6 and 2.7 in [2].
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Proposition 3.1. Keeping the above notations, there exist a unique quasi-
projective K-scheme X̃ and a unique L-isomorphism

g : X ⊗K L → X̃ ⊗K L

such that ug = g ◦ au holds for any u ∈ G. The map g induces an isomor-
phism of the twisted G-set Xa(L) onto the G-set X̃ (L).

The scheme X̃ in the above theorem is called the twist of X by the
extension L|K, or equivalently by the 1-cocycle a = (au).

The following proposition shows the relation between Albanese variety
and the twists.

Proposition 3.2. Keeping the above notations, the twist Alb(X )Alb(a) of
Alb(X ) by the 1-cocycle Alb(a) is K-isomorphic to Alb(Xa). Equivalently,
Ãlb(X ) the twist of Alb(X ) is K-isomorphic to Alb(X̃ ).

Proof. If g : X ⊗K L → Xa ⊗K L denotes the isomorphism such that ug =
g ◦ au, then the induced isomorphism of Albanese varieties

Alb(g) : Alb(X )⊗K L → Alb(Xa)⊗K L

satisfies uAlb(g) = Alb(g) ◦ uAlb(au) for any u ∈ G, by the functoriality of
twists. Therefore, the uniqueness of the twist implies that Alb(X )Alb(a) is
K-isomorphic to Alb(Xa). Equivalently, we have Ãlb(X ) ∼=K Alb(X̃ ). �

In [21], we proved a structure theorem on the set of rational points of the
twists of abelian varieties by cyclic covers over function fields of (quasi)-
projective varieties. In order to make this work be self-contained and for
convenience of the reader, we recall here the main result of [21] which plays
an essential rule in the proof of Theorem 1.1.

Given an integer n ≥ 2, let π : X ′ → X be a cyclic n-cover of irreducible
projective varieties, both as well as π defined over a field k. Denote by K and
L the function fields of X and X ′ respectively. Assume that A is an abelian
variety with an automorphism σ of order n, and let A[n](k) be the group of
k-rational n-division points on A. Define Ã to be the twist of A by the cyclic
extension L|K, or equivalently, by the 1-cocycle a = (au) ∈ Z1(G,Aut(A)),
where aid = id, aγj = σj for j = 0, . . . , n − 1, and G is the Galois group
of the extension L|K. The following theorem describes the structure of
Mordell–Weil group of K-rational points on the twist Ã which generalizes
the main result of [6, 34].

Theorem 3.3. Notation being as above, we assume that there exists at
least one k-rational point on X ′. Then,

Ã(K) ∼= Homk(PrymX ′/X ,A)⊕A[n](k).
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as an isomorphism of abelian groups. Moreover, if PrymX ′/X is k-isogenous
with Am × B for some integer m > 0 and B is an abelian variety defined
over k so that none of its irreducible components is k-isogenous to A, then

rk(Ã(K)) = m · rk(Endk(A)).

We used this opportunity to correct Theorem 1.1 in [21] as the above
form by removing the irrelevant conditions on the dimension of B as well as
changing the symbol “≥” with “=” in the assertion of the theorem. Indeed,
by rechecking and specially considering the series of isogenies in the proof
of above theorem, one can conclude that the dimension of B does not have
any role in the proof and we have “=” instead of “≥”.

4. Cyclic multiple planes
Given an integer n ≥ 2 and a polynomial f(x, y) ∈ k[x, y] of degree

r ≥ 2, we suppose that F (u0, u1, u2) is a homogeneous polynomial such
that f(x, y) = F (1, x, y). Denote by C and C the affine and projective
plane curves defined by f = 0 and F = 0, respectively. Let L∞ be the
line at infinity, say u0 = 0. Assume that e is the smallest integer satisfying
e ≥ n/r and set n0 = ne−r. Define Xn to be the projective surface given by
the affine equation wn = f(x, y), which can be expressed by the equation
un3 = un0

0 F (u0, u1, u2) in the weighted projective space P3
(1,1,1,n0). Let B be

the branch locus of the map p : Xn → P2 which drops the last coordinate.
Then B is C if n0 = 0 and C∪L∞ otherwise. Doing a series of blow-ups gives
us a map ψ : Y → P2 so that B′ := ψ−1(B) has normal crossings. Hence,
the projection on the second factor p′ : X ′n = Xn × Y → Y will be a cyclic
n-cover of Y . Let ν : X ′′n → X ′n be the normalization map and p′′ : X ′′n → Y
the composition of ν and p′, which is again a cyclic n-cover of Y . Denote by
Xn the desingularization of X ′′n and let β : Xn → X ′′n be a morphism such
that the map p̃ = p′′ ◦ β : Xn → Y is a cyclic n-cover of Y over an open
subset of Y and the Albanese map α : Xn → Alb(Xn) factor through a map
α′ : X ′′n → Alb(Xn). Thus, we obtain a cyclic n-cover πn : Xn → P2 which
is the composition ψ ◦ p̃ and fits in the following commutative diagram.

(4.1)

X ′′n
ν

~~

α′ //

p′′

��

Alb(Xn)

X ′n
p′ //

��

Y

ψ

��

Xn
p̃

oo

β
cc

πn
{{

α

OO

Xn p
// P2
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Recall that dn is the dimension of Albanese variety Alb(Xn). It is a well
known fact that dn ≤ dimH0(Xn,ΩXn) and “ =′′ holds when the base field
k is of characteristic zero. If we assume that the polynomial f(x, y) has a
decomposition f = fm1

1 · · · fmd
d into the irreducible factors over k̄ ∼= C such

that gcd(n0,m1, . . . ,md) = 1, which implies the irreducibility of Xn, then
letting ri = deg(fi) for 1 ≤ i ≤ d, we have

(4.2) 0 ≤ dn ≤
{

1
2(n− 1)

(∑d
i=1 ri − 2

)
, if n|r

1
2(n− 1)

(∑d
i=1 ri − 1

)
, otherwise,

One can see Proposition 1 and its corollary in [20] for the proof of above
inequality.

Here, there exists an example for which dn = dimH0(Xn,ΩXn) > 0.

Example 4.1. Denote by D` an `-cyclic covering of the projective line P1

defined by the equation v`2 =
∏t
i=1(biv0 − aiv1)si with `|(s1 + · · ·+ st). Let

ϕ : P2 → P1 be a rational map given by
ϕ((u0 : u1 : u2)) = (F1(u0, u1, u2) : F2(u0, u1, u2)),

where both of F1 and F2 are homogeneous polynomials of degree s. If n
divides s · (s1 + · · · + st) and ` is a divisor of n, then the cyclic multiple
plane Xn associated with Xn defined by the affine equation,

wn = f(x, y) =
t∏
i=1

(biF1(1, x, y)− aiF2(1, x, y))si ,

factors through D`. In this case, it is said that Xn factors through a pencil.
One can see that if D` is a curve of genus ≥ 1, then dimH0(Xn,ΩXn) > 0.

From now on, we assume that k ⊂ C is a number field that contains
an n-th root of unity denoted by ζn. In order to give a description of the
structure of Alb(Xn) over C, we also suppose that the assumption (1.2)
holds for Alb(Xn) for 2 ≤ n ≤ 12 but n 6= 7, 9, 11. Let Ei and Eρ be the
elliptic curves associated to the lattices Λρ = Z ⊕ ρZ and Λi = Z ⊕ iZ,
where ρ = ζ3 and i = ζ4. It is easy to see that the affine Weierstrass forms
of the elliptic curves Ei and Eρ are y2 = x3 +x and y2 = x3 +1, respectively.
We denote by C1 and C2 the genus 2 curves which are the normalization
of the projective closure of the affine curves y2 = x5 + 1 and y2 = x5 + x
and let J(C1) and J(C2) be their Jacobians varieties, respectively.

Proposition 4.2. Keeping the above notations and assumptions, for a
given n ∈ {2, 3, 4, 5, 6, 8, 10, 12}, we have

(i) X2 factors through a pencil;
(ii) For n = 3, 6, if α(Xn) is a surface, then Alb(Xn) ∼= Edn

ρ ;
(iii) For n = 4, either X4 factors through a pencil, or Alb(X4) ∼= Ed4

i .
For n = 5, 8, 10, and 12, the dimension of Alb(X ) is an even integer, and
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(iv) Alb(Xn) ∼= J(C1)dn/2 for n = 5, 10;
(v) Alb(X8) ∼= J(C2)n1 × E2n2

i with n1 + n2 = d8/2;
(vi) Alb(X12) ∼= E2n1

i × E2n2
ρ with n1 + n2 = d12/2.

Proof. The part (i) is a result of de Franchis [5]. When α(Xn) is a surface,
the part (ii) for n = 3 is due to Comessati in [4], which is proved in The-
orem 4.10 of [3] with a different method; Otherwise, it is a consequence
of Theorem 5.7 and the remarks (5.5) and (5.6) in [3]. The part (iii) is
Theorem 4 of [20] or one can conclude it from Theorem 5.7 of [3] again.
All of the assertions in (iv-vi) are consequences of Theorem 5.8 of [3], when
α(Xn) is a surface; and they can be concluded in general by Theorem 5.9
and remark (5.11) of [3]. �

We recall that the Albanese dimension of the affine curve
C : f(x, y) = F (1, x, y) = 0

is defined as Albdim(C) = maxn∈N dimα(Xn) where αn : Xn → Alb(Xn)
is the Albanese map. A priori, Albdim(C) can take the values 0, 1, or 2.
In Theorem 1(ii) of [9], Kulikov provides a sufficient condition to have
Albdim(C) = 2 without giving any concrete example.

Theorem 4.3. Assume that F (u0, u1, u2) can be written in two different
forms F = Ga1 + Hb

1 = Ga2 + Hb
2, where a, b are co-prime integers ≥ 2 and

G1, G2, H1, H2 ∈ k[u0, u1, u2], such that thetwo pencils

{λ0G
a
1 + λ1H

b
1 : [λ0 : λ1] ∈ P1}, {λ0G

a
2 + λ1H

b
2 : [λ0 : λ1] ∈ P1},

are different over C. Then α(Xab) is a surface and hence Albdim(C) = 2
for C : f(x, y) = F (1, x, y) = 0.

In Theorem 0.2 of [29], Tokunaga demonstrated an explicit irreducible
affine plane curve satisfying the Kulikov’s condition as follows.

Proposition 4.4. The Albanese image α(X6) is a surface in the following
two cases:

(i) X6 is associated to C = E∨ the dual of a smooth plane cubic E;
(ii) X6 is associated to the projective plane sextic curve C defined by
F (u0, u1, u2) = u3

0u
3
1 − 3u0u1u2(u3

2 − 8) + 2(u6
2 + 20u3

0u
3
2 − 8u6

0) = 0.
Moreover, we have Albdim(C) = 2 for C the affine model of C in both
cases.

5. Proof of Theorem 1.1
It is clear that the hypersurface Xn defined by wn = f(x, y) admits

an order n automorphism τ : (x, y, w) 7→ (x, y, ζn · w), which induces an
automorphism on its non-singular projective model Xn denoted by τ̄ . For
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any integer m ≥ 1, we define Um := X
(1)
n ×k · · · ×k X

(m)
n where X(i)

n is
a copy of Xn given by the affine equation wni = f(xi, yi) for 1 ≤ i ≤
m. Denote by τi the corresponding automorphism. Then γ = (τ1, . . . , τm)
is an order n automorphism of Um which naturally induces an order n
automorphism γ̄ = (τ̄1, . . . , τ̄m) of the fibered product Um = X (1)

n ×k · · · ×k
X (m)
n , where X (i)

n is a non-singular projective model of X(i)
n for each 1 ≤ i ≤

m. Note that Um can be viewed as a non-singular model of Um. Denote by
L and L the function fields of Um and Um, respectively. Let Aut(∗) be the
automorphism group of its origin (∗) and G = 〈γ〉 and Ḡ = 〈γ̄〉 be the cyclic
subgroup of Aut(Um) and Aut(Um) generated by γ and γ̄, respectively. Let
Vm and Vm be the quotient of Um and Um by G and Ḡ, and denote by
K and K the function fields of Vm and Vm, respectively. Then, both of
the extensions L|K and L|K are finite cyclic extension of order n. Indeed,
we have L ⊂ k(x1, x2, . . . , xm, y1, y2, . . . , ym, w1, · · · , wm), where xi’s and
yi’s are independent transcendental variables and each wi satisfies in the
following equations,

(5.1) wni − f(xi, yi) = 0 (i = 1, . . . ,m).

Then, the field K is the G-invariant elements of L, i.e.,

K = LG ⊆ k(x1, . . . , xm, y1, . . . , ym, w
n−1
1 w2, . . . , w

n−1
1 wm−1).

Since (wn−1
1 wi+1)n = f(x1, y1)n−1f(xi+1, yi+1) for 1 ≤ i ≤ m − 1, so by

defining zi := wn−1
1 wi+1 the variety Vm can be expressed by the equations

(5.2) zni = f(x1, y1)n−1f(xi+1, yi+1) (i = 1, . . . ,m− 1).

Thus, L|K is a cyclic extension of degree n determined by the equation
wn1 = f(x1, y1), i.e.,

L = K(w1) ⊆ k(x1, . . . , xm, y1, . . . , ym, z1, . . . , zm−1)(w1).

Note that the cyclic field extension L|K can be determined by considering
the homogenization of the equations (5.1). Furthermore, the variety Vm can
be expressed by the homogenization of equations (5.2).

Let X̃n and X̃ n be the twists of Xn and Xn by the extensions L|K and
L|K, respectively. Then, one can check that the twist X̃n is given by the
affine equation,

(5.3) f(x1, y1)zn = f(x, y),

and X̃ n can be determined by its homogenization. Moreover, it is easy to
check that X̃n contains the m K-rational points:

(5.4) P1 := (x1, y1, 1) and Pi+1 := (xi+1, yi+1, wi+1/w1) for 1 ≤ i ≤ m−1.
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Let us denote by P̃ i the point corresponding to Pi on X̃ n for i = 1, . . . ,m.
Now, by applying (2.3) to the n-cover π : Xn → P2, we obtain

PrymX (i)
n /P2 = Alb(X (i)

n )
Im(id +γ̃ + · · ·+ γ̃n−1) ∼k ker

(
id +γ̃ + · · ·+ γ̃n−1)◦.

Since 0 = id−γ̃n = (id−γ̃)(id +γ̃ + · · ·+ γ̃n−1) and id 6= γ̃, we have

0 = id +γ̃ + · · ·+ γ̃n−1 ∈ End(Alb(X (i)
n )) = End(Alb(Xn)),

which implies that PrymX (i)
n /P2 = Alb(X (i)

n ) = Alb(Xn) for i = 1, . . . ,m.
Then, using (2.4), we get a k-isogeny of abelian varieties,

(5.5) PrymUm/Vm
∼k

m∏
i=1

PrymX (i)
n /P2 = Alb(Xn)m.

Now, let us consider the 1-cocycle a = (au) ∈ Z1(Ḡ,Aut(Alb(Xn))) defined
by aid = id and aγ̄j = τ̄∗

j where γ̄j ∈ Ḡ and τ̄∗ : Alb(Xn) → Alb(Xn) is
the automorphism induced by τ̄ : Xn → Xn. Then, using Proposition 3.2,
we conclude that Ãlb(Xn) ∼K Alb(X̃ n). Thus, by Theorem 1.1 in [21], for
X ′ = Um, X = Vm, and A = Alb(Xn), we get:

Ãlb(Xn)(K) ∼= Homk(PrymUm/Vm
,Alb(Xn))⊕Alb(Xn)[m](k)

∼= Homk(Alb(Xn)m,Alb(Xn))⊕Alb(Xn)[m](k)
∼= (Endk(Alb(Xn)))m ⊕Alb(Xn)[m](k).

We denote by Q̃i the image of P̃ i by the Albanese map α̃n : X̃ n → Alb(X̃ n)
for i = 1, . . . ,m. Then, by tracing back the above isomorphisms, one can
see that the points Q̃1, . . . , Q̃m form a subset of independent generators for
the Mordell–Weil group Alb(X̃ n)(K). Hence, as Z-modules, we have

rk(Ãlb(Xn)(K)) = rk(Alb(X̃ n))(K) = m · rk(Endk(Alb(Xn))).
Therefore, we have completed the proof of Theorem 1.1.

6. Proofs of Theorems 1.3 and 1.4
In order to prove Theorem 1.3, we examine the ring of endomorphisms

of Alb(Xn) for 3 ≤ n ≤ 12 and n 6= 7, 9, 11 case by case. We suppose that k
contains Q(ζn) and there exists a k-rational point on Xn and hence on Xn.
Furthermore, we assume that (1.2) holds for Alb(Xn). By Theorem 1.1,

Ãlb(Xn)(K) ∼=
(

Endk(Alb(Xn))
)m ⊕Alb(Xn)[m](k).

Since Alb(Xn)[m](k) is a trivial or a finite group, so it does not distribute
to the rank of Ãlb(Xn)(K) as a Z-module, but the rank of Endk(Alb(Xn))
does. We recall that dn is the dimension of Albanese variety Alb(Xn).
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First, we let n = 3 and assume that α(X3) is a surface. Then, by the
part (ii) of Proposition 4.2, we have Alb(X3) ∼= Ed3

ρ which implies that
Endk(Alb(X3))⊗Q = Md3 (Endk(Eρ)⊗Q) ,

where Eρ : y2 = x3 + 1 and M∗( ·) denotes the ring of (∗, ∗)-matrices with
entries in its origin ( ·). Since we have assumed that ρ = ζ3 ∈ k, we have
Endk(Eρ) ∼= Z[ρ] which is of rank 2 as a Z-module. Thus,Md3(Endk(Eρ)⊗Q)
has rank d2

3 as a Z[ρ]-module and hence it is of rank 2d2
3 as a Z-module.

Therefore, we conclude that

rk(Ãlb(X3)(K)) = m · rk(Endk(Alb(X3))) = 2md2
3.

Similar arguments work for the case n = 4 and 6, where in the former case
we have to use the fact that Endk(Ei) ∼= Z[i].

Second, we consider the case n = 5. By Proposition 4.2(iv), d5 is an
even number and we have Alb(X5) = J(C1)d5/2, where C1 : y2 = x5 + 1.
This implies that Endk(Alb(X5))⊗Q = Md5/2(Endk(J(C1))⊗Q). We note
that the Jacobian variety J(C1) is a simple abelian variety and its endo-
morphism ring Endk(J(C1)) contains Z[ζ5] as a Z-submodule of rank 4.
Thus, Md5/2(Endk(J(C1)) ⊗ Q) contains Md5/2(Q(ζ5)). This gives us that
Endk(Alb(X5)) has rank at least d2

5 as a Z-module. Therefore,

rk(Ãlb(X5)(K)) = m · rk(Endk(Alb(X5))) ≥ md2
5.

A similar arguments leads to the proof in the case n = 10.
Finally, we consider the case n = 8 and leave n = 12 for the reader. The

part (v) of Proposition 4.2 implies that d8 is an even number and one has
Alb(X8) = J(C2)n1 × E2n2

i , where C2 is the normalization of the projective
closure of the affine curve y2 = x5 + x and n1 and n2 are positive integers
such that n1 + n2 = d8/2. Thus,

Endk(Alb(X5))⊗Q = Mn1(Endk(J(C2)))⊕M2n2(Endk(Ei)).
Since the Jacobian variety J(C2) splits as the product of the elliptic curves,

E1 : y2 = x3 + x2 − 3x+ 1, and E2 : y2 = x3 − x2 − 3x+ 1,
we have Endk(J(C2)) = Endk(E1)⊕ Endk(E2) and hence
Endk(Alb(X5))⊗Q = Mn1(Endk(E1))⊕Mn1(Endk(E2))⊕M2n2(Endk(Ei)).
One can check that the endomorphism ring of E1 and E2 contains the rings
Z[
√
−2] and Z[

√
−3], respectively, which are of rank 2 as Z-modules. This

means that the rank of Endk(J(C2)) is at least 4 as a Z-module. Thus,
considering the fact Endk(Ei) = Z[i] and n1 + n2 = d8/2, one can conclude
that Endk(Alb(X5)) is a Z-module of rank at least 4(n2

1 +n2
2) = d2

8−8n1n2.
Hence,

rk(Ãlb(X8)(K)) ≥ m · (d2
8 − 8n1n2).
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We refer the reader to [17] for more details on the above assertions on the
elliptic curves Ei’s, the Jacobians J(Ci)’s, for i = 1, 2, and their endomor-
phism rings. Therefore, we have completed the proof of Theorem 1.3 as
desired.

To prove Theorem 1.4, we note that the Albanese image α(X6) is a
surface by Theorem 4.3. Thus Alb(X6) ∼= Ed6

ρ by Proposition 4.2 (ii). Then,
applying Theorem 1.3 leads to the equality in the first part of 1.4,

rk(Ãlb(X6)(K)) = rk(Alb(X̃ 6)(K)) = 2md6.

If we assume that X6 is associated to C, the dual of a smooth cubic E or
the projective model of the affine curve

C : f(x, y) = x3 − 3xy(y3 − 8) + 2(y6 − 20y3 − 8) = 0,
then the above equality and Proposition 4.4 proves the last assertion of
Theorem 1.4.
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