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On finiteness of odd superperfect numbers

par Tomohiro YAMADA

Résumé. On montre de nouveaux résultats sur l’équation σ(N) = aM ,
σ(M) = bN. On en déduit, comme corollaire, qu’il n’existe qu’un nombre fini
de nombres impairs superparfaits ayant un nombre fixé de facteurs premiers
distincts.

Abstract. Some new results concerning the equation σ(N) = aM , σ(M) =
bN are proved. As a corollary, there are only finitely many odd superperfect
numbers with a fixed number of distinct prime factors.

1. Introduction
As usual, σ(N) shall denote the sum of positive divisors of a positive in-

teger N and call a positive integer N to be perfect if σ(N) = 2N . Though it
is not known whether or not an odd perfect number exists, many conditions
which must be satisfied by such a number are known.

Analogous to this notion, Suryanarayana [17] called N to be superperfect
if σ(σ(N)) = 2N . Suryanarayana showed that if N is even superperfect,
then N = 2m with 2m+1 − 1 prime, and if N is odd superperfect, then N
must be square and have at least two distinct prime factors.

Dandapat, Hunsucker and Pomerance [3] showed that if σ(σ(N)) = kN
for some integer k and σ(N) is a prime power, then N is even superperfect
or N = 21, k = 3. Later Pomerance [12] called N to be super multiply
perfect if σ(σ(N)) = kN for some integer k and showed that if pm | σ(N)
and N | σ(pm) for some prime power pm, then N = 2n−1 or 2n − 1 with
2n − 1 prime or N = 15, 21, 1023.

In the West Coast Number Theory Conference 2005, the author posed
the question whether there exist only finitely many odd integers N such
that N | σ(σ(N)) and ω(σ(N)) = s for each fixed s [19], where ω(n) denotes
the number of distinct prime factors of n. The above-mentioned result of
Dandapat, Hunsucker and Pomerance answers the special case s = 1 of this
question affirmatively.
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Concerning the unitary divisor sum σ∗(N) (d is called a unitary divisor
of N if d | N and d,N/d are coprime), the author already proved that
N = 9, 165 are all the odd integers satisfying σ∗(σ∗(N)) = 2N [20].

In this paper, although we cannot prove the above-mentioned conjec-
tures, some results are proved. Before stating our results, we introduce the
notation Ci( · ) for i = 0, 1, 2, . . . , each of which denotes some effectively
computable positive constant depending only on its arguments.

Theorem 1.1. If a quadruple of integers N,M, a, b satisfies σ(N) = aM ,
σ(M) = bN and ω(σ(N)) ≤ k, then we have a, b < C0(k) for some effec-
tively computable constant C0(k) depending only on k.

Theorem 1.2. Additionally to the condition described in Theorem 1.1,
assume that both M and N are odd. Then each of M and N must have
a prime factor smaller than some effectively computable constant C1(k)
depending only on k.

Remark 1.3. The additional condition would be necessary. Indeed, if we
allowM orN to be even and takeN = 2m,M = 2m+1−1, then Theorem 1.2
would imply that there exist only finitely many Mersenne primes, contary
to the widely believed conjecture!

Theorem 1.4. For any given integers a, b, k, k′, there are only finitely
many pairs of odd integers M,N satisfying σ(N) = aM, σ(M) = bN with
ω1(N) ≤ k′ and ω(M) ≤ k, where ω1(N) denotes the number of primes di-
viding N only once. Moreover, such integers M,N can be bounded by some
effectively computable constant C2(a, b, k, k′) depending only on a, b, k, k′.

Using Suryanarayana’s result that an odd superperfect number must be
square, the latter result gives the following corollary, which implies our
conjecture in the case σ(σ(N)) = 2N . Moreover, we observe that if N is an
odd superperfect number, then σ(N) must be a product of a square and
a prime power pe with p ≡ e ≡ 1 (mod 4) and σ(σ(σ(N))) = σ(2N) =
3σ(N). Hence, we have the following finiteness result.

Corollary 1.5. For each fixed k, there exists some effectively computable
constant Bk such that, if N is an odd superperfect number with either
ω(N) ≤ k or ω(σ(N)) ≤ k, then N ≤ Bk.

The corresponding result for odd perfect numbers has been known for
years. Dickson [4] proved that there exist only finitely many odd perfect
numbers N with ω(N) ≤ k for each fixed k and an effective upper bound
was given by Pomerance [13], improved by Nielsen [10, 11].

It will be relatively easy to show that there exist only finitely many odd
superperfect numbersN with both ω(N) and ω(σ(N)) fixed, using Dickson’s
argument. However, if we only require that ω(N) or ω(σ(N)) is fixed, we
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have only known that ω(N) ≥ 2 from [18] and ω(σ(N)) ≥ 2 from [3], which
is implied by the result of [12] mentioned above. Our corollary states that,
even under this restriction, we can obtain an effective upper bound for an
odd superperfect number N .

Our argument in this paper is based upon the one in [20]. In [20], we used
the fact that if σ∗(σ∗(N)) = 2N , then N must be factored into N =

∏
i p

ei
i

with pei
i + 1 = 2aiqbi for some integers ai, bi, q. This means that pei

i ’s must
be distributed very thin and therefore the product of σ∗(pei

i )/pei
i ’s must be

small.
However, we deal with the σ function in this paper. For a small prime

p, σ(pe)/pe must be fairly large and therefore our argument from [20] does
not work.

We introduce some preliminary notations. In order to prove Theorems 1.1,
1.2 and 1.4, we consider slightly more general situation. Assume that N is
an integer such that ω(σ(N)) = k and we let q1 < q2 < · · · < qk to be
the prime divisors of σ(N). For each 1 ≤ r ≤ k and a prime power l, let
Sr,l = Sr,l(q1, q2, . . . , qr) denote the set of prime divisors p of N such that
pe ‖N with l | (e+ 1) and

(1.1) pl − 1
p− 1 = σ(pl−1) =

r∏
i=1

qai
i

for some integers ai(1 ≤ i ≤ r) with ar 6= 0 and let Sr =
⋃

l Sr,l, where l
runs over all prime powers. Clearly, each prime divisor of N must belong
to a set Sr,l for some 1 ≤ r ≤ k and a prime power l.

In Section 4, using a lower bound for linear forms of logarithms, we
shall show that each Sr contains at most r small primes. Combined with
Lemma 3.3, which states that the contribution of large prime factors to the
size of σ(M)σ(N)/MN must be very small, we shall prove the following
fact.

Theorem 1.6. Let N be an integer such that ω(σ(N)) = k and let q1 <
q2 < · · · < qk be the prime divisors of σ(N) = aM as introduced above.
Then, for every r = 1, 2, . . . , k, N has at most r prime factors in Sr below
C4(r, qr) = exp(C3(r)(log qr/ log log qr)1/2(r+1)) and

(1.2)
∑

p∈Sr,
p≥C4(r,qr)

1
p
< exp

(
−C5(r)

( log qr

log log qr

) 1
2(r+1)

)
.

This theorem allows us to overcome the above-mentioned obstacle. In-
deed, it is not difficult to derive Theorem 1.1 from Theorem 1.6, as shown
in Section 5. With the aid of a diophantine inequality shown in Section 6,
we shall prove Theorems 1.2 and 1.4.
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2. Preliminary lemmas
In this section, we introduce some preliminary lemmas. The first lemma

is a special case of Matveev [9, Theorem 2.2], which gives a lower bound for
linear forms of logarithms. We use this lemma to prove our gap principle
in Section 4. The second lemma describes an elementary property of values
of cyclotomic polynomials.
Lemma 2.1. Let a1, a2, . . . , an be positive integers with a1 > 1. For each
j = 1, . . . , n, let Aj ≥ max{0.16, log aj}. Let b1, b2, . . . , bn be arbitrary inte-
gers.

Put
B = max{1, |b1|A1/An, |b2|A2/An, . . . , |bn|},
Ω = A1A2 . . . An,

C ′(n) = 4.4n+ 5.5 logn+ 7,

C(n) = 16
n! e

n(2n+ 3)(n+ 2)(4(n+ 1))n+1
(1

2en
)
C ′(n)

(2.1)

and
(2.2) Λ = b1 log a1 + · · ·+ bn log an.

Then we have Λ = 0 or

(2.3) log |Λ| > −C(n)(1 + log 3− log 2 + logB) max
{

1, n6

}
Ω.

Remark 2.2. The assumption that a1 > 1 is added in order to ensure
that log a1, log a2, . . . , log ar are linearly independent over the integers for
some r(1 ≤ r ≤ n). We note that we do not need recent results for linear
forms in logarithms. We can see that a lower bound of the form log |Λ| >
−B1/g(n) logf(n)A, where f(n), g(n) are effectively computable functions of
n such that g(n) > 1, is strong enough for our purpose. Such an estimate
would increase the right hand side of (4.2) but still give an estimate that
lognr < logh(r)mr+1 for some effectively computable function h(r). Thus
even an old estimate such as Fel’dman [7] suffices.
Lemma 2.3. If a, l are positive integers with a ≥ 2, l ≥ 3 and (a, l) 6= (2, 6),
then (al − 1)/(a − 1) must have at least τ(l) − 1 distinct prime factors,
where τ(l) denotes the number of divisors of l. Moreover, at least one of
such prime factors is congruent to 1 (mod l).
Proof. A well known result of Zsigmondy [21] states that if a ≥ 2, n ≥ 3
and (a, n) 6= (2, 6), then an − 1 has a prime factor which does not divide
am−1 for any m < n. Applying this result to each divisor d > 1 of l, we see
that (al−1)/(a−1) must have at least τ(l)−1 prime factors. In particular,
applying with n = l, we obtain a prime factor q such that a (mod q) has
order l and therefore q ≡ 1 (mod l). �
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3. The distribution of large primes in Sr,l

In this section, we shall give an upper bound for the sum
∑

p∈Sr,l, p>X 1/p
for each fixed r, l.

Lemma 3.1. Let p0, p1, p2 be distinct primes with p0 odd, l and f be positive
integers and put Hi = bf log p0/ log pic for i = 1, 2. If the congruence

(3.1) pl
i ≡ 1 (mod pf

0)
holds for i = 1, 2, then

(3.2) 1
2H1H2 ≤ gcd(l, pf−1

0 (p0 − 1)).

Proof. It is clear that pa1
1 p

a2
2 takes distinct values modulo pf

0 for all non-
negative integers a1 and a2 with 0 ≤ a1 log p1 + a2 log p2 < f log p0. So
that pa1

1 p
a2
2 takes at least H1H2/2 distinct values modulo pf

0 . But these can
take at most gcd(l, pf−1

0 (p0 − 1)) distinct values since both p1 and p2 have
residual orders dividing gcd(l, pf−1

0 (p0− 1)) modulo pf
0 by (3.1). Hence, we

obtain H1H2/2 ≤ gcd(l, pf−1
0 (p0 − 1)). �

Lemma 3.2. Let p0, p1, p2 be distinct primes with p2 > p1 and p0 > 2 and
q, s be positive integers. If l is an integer greater than 5s2 and there are
integers f1, f2 such that pfi

0 | σ(pl−1
i ) and pfi

0 ≥ σ(pl−1
i )1/s for i = 1, 2, then

(3.3) log p2 >
5
4 log p1.

Proof. Assume that p1, p2 are two distinct primes satisfying the assump-
tion in the lemma but log p2 ≤ (5/4) log p1, contrary to the statement
of the lemma. Let f = min{f1, f2} and Hi = bf log p0/ log pic. We ob-
serve that pfi

0 ≥ σ(pl−1
i )1/s > p

(l−1)/s
i for i = 1, 2 and therefore f log p0 >

(l − 1) log p1/s. Since we have assumed that l > 5s2, we have

(3.4) H1 ≥
⌊
l − 1
s

⌋
≥ 5s

and

(3.5) H2 ≥
⌊(l − 1) log p1

s log p2

⌋
≥
⌊4(l − 1)

5s

⌋
≥ 4s.

By the definition of Hi, we can easily see that

(3.6) H1 >
5sf log p0

(5s+ 1) log p1
≥ 5f log p0

6 log p1

and

(3.7) H2 >
4sf log p0

(4s+ 1) log p2
≥ 4f log p0

5 log p2
.
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Hence, Lemma 3.1 gives

(3.8) l log p1 log p2 >
1
3f

2 log2 p0 >
(l − 1)2

3s2 log2 p1.

Recalling the assumption that l > 5s2, we have

(3.9) log p2
log p1

>
(l − 1)2

3ls2 ≥ 25s2

3(5s2 + 1) ≥
25
18 >

5
4 ,

which contradicts to the assumption. Hence, we have p2 > p
5/4
1 . �

Using this result, we obtain the following inequality.

Lemma 3.3. For any set Sr,l defined in the introduction and X > 2, we
have

(3.10)
∑

p>X,p∈Sr,l

1
p
<
C6(r) logr X

X
.

Remark 3.4. It is well known that, for fixed integers l > 2, r and fixed
primes q1, q2, . . . , qr, there exist only finitely many primes p and integers
a1, a2, . . . , ar satisfying (1.1). Combining Coates’ theorem [2] and Schinzel’s
theorem [14], it follows that such integers and, consequently, the elements of
Sr,l are bounded by an effectively computable constant depending on l and
the qi’s. For details of the history of the largest prime factor of polynomial
values, see Shorey and Tijdeman’s book [16, Chapter 7]. Furthermore, two
theorems of Evertse [5, 6] imply that |Sr,l| is bounded by an effectively
computable constant depending on r, l. However, in this paper, we need a
result depending only on r.

Proof. First we note that Sr,l can be divided into r sets Sr,l,j(1 ≤ j ≤ r) so
that if p∈Sr,l,j , then q

fj
j |σ(pl−1) for an integer fj such that qfj

j ≥σ(pl−1)1/r.
Assume that l > 5r2. If p1 < p2 are two primes belonging to Sr,l,j , then

log p2 > (5/4) log p1 by Lemma 3.2. Hence, we obtain

(3.11)
∑

p>X,
p∈Sr,l,j

1
p
<
∞∑

i=0

1
X(5/4)i <

4
X

and therefore

(3.12)
∑

p>X,
p∈Sr,l

1
p
<

r∑
j=1

∑
p>X,

p∈Sr,l,j

1
p
<

2r
X

<
C6(r) logr X

X
.

Next assume that l ≤ 5r2. It is clear that the number of primes p < x
belonging to Sr,l is at most (l log x)r/

∏r
i=1 log qi and partial summation
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gives

(3.13)
∑

p>X,p∈Sr,l

1
p
<

1
X

+
∫ ∞

X

(l log t)rdt
t2
∏r

i=1 log qi
< C7(r)(l logX)r

X
.

Since l ≤ 5r2, we have (l logX)r ≤ (5r2 logX)r and therefore

�(3.14)
∑

p>X,p∈Sr,l

1
p
< C6(r) logr X

X
.

4. Main theory – proof of Theorem 1.6
In this section, we shall prove Theorem 1.6, which plays the most essential

role in this paper. We begin by proving the following lemma.

Lemma 4.1. Let r, l1, . . . , lr+1 and n1 < n2 < · · · < nr be positive integers.
Let m1 < m2 < · · · < mr+1 be distinct primes. Assume that there exist
integers aij(1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s) such that

(4.1)
m

lj
j − 1

mj − 1 =
r∏

i=1
n

aij
i

for j = 1, 2, . . . , r + 1 and aij > 0 for the index i for which ni assumes the
maximum. Then we have

(4.2) lognr < C8(r)(log2(r+1)mr+1)(log logmr+1).

Proof. We put

(4.3) Λj = −lj logmj + log(mj − 1) +
∑

i

aij logni = log

mlj
j − 1

m
lj
j

 6= 0

for each j = 1, 2, . . . , r + 1. Since Λj 6= 0, using Matveev’s lower bound
given in Lemma 2.1 we obtain

(4.4) log |Λj | > −C(r + 2) log
(3elj logmj

2 lognr

)
log2mj

r∏
i=1

logni.

Observing that |Λj | < 1/(mlj
j − 1), we have

(4.5) lj < C9(r) logmj logr nr log(log2mj logr−1 nr)

and therefore

(4.6) aij < lj
logmj

logni
< C10(r) log2mj logr nr log(logmj lognr).
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Putting A = C10(r) log2mr+1 logr nr log(logmr+1 lognr), we see that
(4.1) ensures the existence of integers g1, . . . , gr+1 not all zero with ab-
solute values at most ((r + 1)1/2A)r such that

(4.7)
r+1∏
j=1

mlj
j − 1

mj − 1

gj

= 1

by an improved form of Siegel’s lemma (the original form of Siegel’s lemma
gives the upper bound 1 + ((r + 1)A)r. For detail, see [15, Chapter I]).

We put

(4.8) Λ =
r+1∑
j=1

gjlj logmj − gj log(mj − 1).

Since

(4.9) Λ =
r+1∑
j=1

gj log

 m
lj
j

mj − 1

 =
r+1∑
j=1

gj log

 m
lj
j

m
lj
j − 1


and mlj

j − 1 must be divisible by nr by assumption, we have

(4.10)
|Λ| <

r+1∑
j=1

gj

m
lj
j − 1

≤ 2(r + 1)(rA)r

nr

< 2(r+1)2(rC10(r))r× log2r mr+1 logr2
nr logr(logmr+1 lognr)
nr

.

We observe that Λ does not vanish since eΛ =
∏r+1

j=1 m
ljgj
j /(mj − 1)gj

must be divisible by the largest prime mt among mj ’s for which ltgt 6= 0.
Hence, taking G = max{|gjlj logmj/ logmr+1| | 1 ≤ j ≤ r + 1}, for which
we have

(4.11) G < C11(r)(r + 1)r/2 log2r+3mr+1 logr2+1 nr

from (4.6), we can apply Matveev’s theorem to Λ and obtain

log |Λ| ≥ − C(2(r + 1))
(

log
(3

2eG
)) r+1∏

j=1
(logmj)2

≥− C12(r) log(logmr+1 lognr) log2(r+1)mr+1.

(4.12)

Now, combining inequalities (4.10) and (4.12), we have

(4.13) lognr < C8(r)(log2(r+1)mr+1)(log logmr+1),

which proves the lemma. �
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We see that the former part of Theorem 1.6 is an immediate conse-
quence of this lemma. Indeed, taking p1 < p2 < · · · < pr+1 to be any
r + 1 prime factors of N and applying Lemma 4.1 with mi = pi for
i = 1, 2, . . . , r + 1 and nj = qj for j = 1, 2, . . . , r, we must have log pr+1 >

C3(r)(log qr/ log log qr)1/2(r+1). Thus it remains to prove (1.2). By Lem-
ma 3.3, we have, for each r, l,

(4.14)
∑

p∈Sr,l,
p≥C4(r,qr)

1
p
< exp

(
−C13(r)

( log qr

log log qr

) 1
2(r+1)

)
.

Since l must be a prime power dividing one of (qi − 1)’s (1 ≤ i ≤ r) by
Lemma 2.3, there exist at most logr qr choices for l. Hence, we obtain

(4.15)

∑
p∈Sr,

p≥C4(r,qr)

1
p
< (log qr)r exp

(
−C13(r)

( log qr

log log qr

) 1
2(r+1)

)

< exp
(
−C5(r)

( log qr

log log qr

) 1
2(r+1)

)
.

This completes the proof of Theorem 1.6.

5. Proof of Theorem 1.1
We may assume that σ(N) has exactly k distinct prime factors. By The-

orem 1.6, there exist at most k(k + 1)/2 prime factors p of N for which
p ∈ Sr and p < C4(r, qr) for some r. Let T be the set of such primes. Then,
summing (1.2) over r = 1, 2, . . . , k, we obtain

(5.1)
∑

p|N,p6∈T

1
p

=
k∑

r=1

∑
p∈Sr,

p≥C4(r,qr)

1
p
< exp

(
−C14(k)

( log q1
log log q1

) 1
2(k+1)

)
.

Since the sum of reciprocals of the first k(k+1)/2 primes is<C15 log log k,
we have

(5.2)

∑
p|N

1
p

=
∑
p∈T

1
p

+
∑

p|N,p6∈T

1
p

< C15 log log k + exp
(
−C14(k)

( log q1
log log q1

) 1
2(k+1)

)
.

Hence,
∑

p|N (1/p) < C16(k). Clearly we have
∑

p|M (1/p) < C17(k) since M
has at most k distinct prime factors. Now Theorem 1.1 immediately follows
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from the observation that

σ(N)/N <
∏
p|N

p/(p− 1) < exp

∑
p|N

1/(p− 1)

 < exp

∑
p|N

(2/p)

 .
6. Approximation of rational numbers

In this section, we shall prove a lemma concerning diophantine approx-
imation which is used to prove Theorem 1.2 and 1.4. We shall begin with
introducing some notations. For each prime p, we let h(pg) = σ(pg)/pg

for g = 1, 2, . . . and h(p∞) = p/(p − 1). Moreover, for not necessarily
distinct primes p1, p2, . . . , pk and e1, e2, . . . , ek ∈ {0, 1, 2, . . . ,∞}, we let
h(pe1

1 , p
e2
2 , . . . , p

ek
k ) =

∏k
i=1 h(pei

i ).
We observe that if p1, p2, . . . , pk are distinct primes and e1, e2, . . . , ek are

nonnegative integers, then

(6.1) h(pe1
1 , p

e2
2 , . . . , p

ek
k ) = σ(pe1

1 p
e2
2 . . . pek

k )
pe1

1 p
e2
2 . . . pek

k

.

For brevity, we write h(px1
1 , p

x2
2 , . . . , p

xk
k ) = hk(px) and h(p∞1 , p∞2 , . . . , p∞k ) =

hk(p∞).
For a rational number α and (not necessarily distinct) primes p1, . . . , pk,

let sk(α, p) = s(α, p1, . . . , pk) be the infimum of numbers of the form
α − hk(pe) with e1, . . . , ek such that hl(pe) = α for some (not necessarily
distinct) primes pk+1, pk+2, . . . , pl and exponents ek+1, ek+2, . . . , el. More-
over, let s(α; k) be the infimum of sk(α, p) with p1, . . . , pk running over all
primes.

We shall prove that s(α; k) can be bounded from below by an effectively
computable positive constant depending only on α and k. This result is
essentially included in [13, Theorem 4.2]. But we reproduce the proof of
this lemma since our lemma allows duplication of primes and, as Pomerance
notes in [13, p. 204], the proof can be much shortened when p1, p2, . . . , pk

are all odd.

Lemma 6.1. For any rational number α = n/d > 1 and primes p1, p2,
. . . , pk, we have sk(n/d, p) > δk(n, p), where δk(n, p) = δ(n, p1, p2, . . . , pk) is
an effectively computable positive constant depending only on p1, p2, . . . , pk

and n.

Proof. For k = 0, we clearly have s(α) = α− 1 ≥ 1/d > 1/n. Now we shall
give a lower bound for sk(α, p) in terms of α, p1, p2, . . . , pk and sk−1(α, p).
This inductively prove the lemma.

We first see that hk(p∞) 6= α. Indeed, the denominator of hk(p∞) is even
while the denominator of α = hk(pe) must be odd. So that it suffices to
deal two cases hk(p∞) < α and hk(p∞) > α.
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In the former case, we see that

α− hk(pe) > α− hk(p∞) ≥ 1/
(
d
∏

i

(pi − 1)
)
> 1/

(
n
∏

i

(pi − 1)
)
.

Thus we have
sk(n/d, p) ≥ 1/

(
n
∏

i

(pi − 1)
)

in this case.
In the latter case, letting xj = blog(2kn

∏
i(pi − 1))/ log pjc, we see that

ej < xj for some j since

hk(px) =
∏

i

hk(p∞)
∏

i

(
1− 1

pxi+1
i

)

≥
∏

i

hk(p∞)
(

1−
∑

i

1
pxi+1

i

)

>

(
α+ 1

d
∏

i(pi − 1)

)(
1− 1

2n
∏

i(pi − 1)

)
= α

(
1 + 1

n
∏

i(pi − 1)

)(
1− 1

2n
∏

i(pi − 1)

)
> α.

(6.2)

In this case, we have

sk(α, p) ≥ inf
{
s(α/h(pei

i ), p1, p2, . . . , p̂i, pk)
∣∣∣∣ 1≤ i≤ k,1≤ ej <xj (1≤ j≤ k, j 6= i)

}
.

Observing that the reduced numerator of α/h(pei
i ) divides npei

i , we can take

δk(n, p) = min
{

1/
(
n
∏

i

(pi − 1)
)
,

inf
{
δ(npei

i , p1, p2, . . . , p̂i, pk)
∣∣∣∣ 1≤ i≤ k,1≤ ej <xj (1≤ j≤ k)

}}
.

By induction, this completes the proof. �

Lemma 6.2. Let n, d be integers with d odd, p1, . . . , ps any odd (not nec-
essarily distinct) primes and e1, . . . , es non-negative integers. Assume that
h(pe1

1 , p
e2
2 , . . . , p

es
s ) < n/d but h(pe1

1 , p
e2
2 , . . . , p

el
l ) = n/d for some (not nec-

essarily distinct) primes ps+1, ps+2, . . . , pl and positive integral exponents
es+1, es+2, . . . , el. Then the inequality

(6.3) n

d
−

s∏
i=1

h(pei
i ) > C18(s, n)

holds for effectively computable constants C18(s, n) depending only on s, n.
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Proof. For s = 0, we have a trivial estimate C18(0, n) ≥ n/(n−1)−1 > 1/n.
Next we shall show that we can compute C18(s+1, n) in term of C18(s, n).

This gives the lemma by induction. If

(6.4) pi >
2n

dC18(s, n) − 1

for some i, then we have

(6.5) h(pei
i ) <

(
1− 1

pi

)−1
<

(
1−

C18(s,n)
2

n
d −

C18(s,n)
2

)−1

=
n
d −

C18(s,n)
2

n
d − C18(s, n)

and therefore the inductive hypothesis yields that

(6.6)
s+1∏
i=1

h(pei
i ) ≤ h(pei

i )
(
n

d
− C18(s, n)

)
<
n

d
− C18(s, n)

2 .

If (6.4) does not hold for any i, then we have

(6.7)
s+1∏
i=1

h(pei
i ) < n

d
−min δ(n, p1, . . . , ps+1),

where p1, . . . , ps+1 run all primes below 2n/(dC18(s, n)). Hence, we have

(6.8) n

d
−

s+1∏
i=1

h(pei
i ) > min

{
C18(s, n)

2 , δ̄(s, n)
}
,

where δ̄(s, n) denotes the minimum value of δ(n, p1, . . . , ps+1) with pi ≤
2n/C18(s, n). Now, Lemma 6.1 ensures that C18(s + 1, n) is positive and
effectively computable. �

7. Proof of Theorem 1.2
First we shall show thatM must have a prime factor smaller than C1(k).

Let T be the same set as defined in Section 5. By Theorem 1.6, T contains
at most k(k+1)/2 primes. Since N is odd, we can apply Lemma 6.2 taking
p1, p2, . . . , ps to be the primes in T and ps+1, . . . , pl to be the prime factors
of MN not in T , with primes dividing both M and N counted doubly, to
obtain

∏
p∈T h(p) < ab−C19(k, ab). Hence,

∏
p|MN,p 6∈T h(p) > 1+C20(k, ab),

implying

(7.1)
∑

p|MN,p 6∈T

1
p
> C21(k, ab).

But, as in the proof of Theorem 1.1, we have

(7.2)
∑

p|N,p6∈T

1
p
< exp

(
−C14(k)

( log q1
log log q1

) 1
2(k+1)

)
.
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Hence, observing that ω(M) ≤ ω(σ(N)) ≤ k, we have q1 < C22(k, ab).
Since a, b < C0(k), we have q1 < C1(k).

Next we shall show that N must have a prime factor smaller than C1(k).
X shall denote the smallest prime factor of N . Let Q be an arbitrary real
number which shall be chosen later and s be the index satisfying qs ≤ Q <
qs+1. Similarly to (4.15), there exist at most r primes below C4(r, qr) in Sr

and we have
k∑

r=s+1

∑
p∈Sr,

p≥C4(r,qr)

1
p
< exp

(
−C5(r)

( log qr

log log qr

) 1
2(r+1)

)

< exp
(
−C5(r)

( logQ
log logQ

) 1
2(r+1)

)
.

(7.3)

Hence, for any real X, we obtain

(7.4)
k∑

r=s+1

∑
p∈Sr,p≥X

1
p
<
k(k + 1)

2X + exp
(
−C5(k)

( logQ
log logQ

) 1
2(k+1)

)
.

Since qs ≤ Q, Lemma 3.3 gives that

(7.5)
∑

p∈Sr,p≥X

1
p
<

(logQ logX)r

X

for each r ≤ s.
Hence, we have

(7.6)
∑
p|N

1
p
<
s(logQ logX)s

X
+ k(k+1)

2X +exp
(
−C5(k)

( logQ
log logQ

) 1
2(k+1)

)
.

Taking Q so that C5(k)(logQ/ log logQ)1/2(k+1) = logX, we have

(7.7)
∑
p|N

1
p
<
C23(k) log2k2+k X

X
.

However, since σ(M)σ(N)/MN = ab and M is odd with ω(M) ≤ k,
Lemma 6.2 gives that σ(M)/M < ab−C18(k, ab) and therefore σ(N)/N >
1 + C(k, ab), implying that

(7.8)
∑
p|N

1
p
> C24(k, ab).

Hence, we must have X < C25(k, ab). Since a, b < C0(k) by Theorem 1.1,
we have X < C1(k), which proves Theorem 1.2.
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8. Proof of Theorem 1.4
First we shall show that qs < C26(a, b, k, k′, s) by induction. The induc-

tive base is that q1 < C1(k), which is the former part of Theorem 1.2. Now,
it suffices to prove that for any positive integer s ≤ k − 1 we have qs+1 <
C26(a, b, k, k′, s+1) under the assumption that q1, . . . , qs < C26(a, b, k, k′, s).

We see that for each r ≤ s, Sr contains at most a bounded number
of primes. Each Sr,l with l ≥ 3 contains at most C27(r, l) primes by two
theorems of Evertse [5, 6]. Since q1, q2, . . . , qs ≤ C26(a, b, k, k′, s) by the
inductive hypothesis, we see that l ≤ qs is also bounded by C28(a, b, k, k′, s).
By assumption, for each r ≤ s, except at most k′ primes, any prime in Sr

belongs to some Sr,l for some prime power l ≥ 3. Hence, each Sr with r ≤ s
contains at most C29(a, b, k, k′, r) primes. We note that, by virtue of the
inductive assumption that q1, q2, . . . , qs ≤ C26(a, b, k, k′, s), we can also use
classical finiteness results such as Bugeaud and Győry [1], Coates [2] and
Kotov [8].

Moreover, by Theorem 1.6, for r > s, Sr contains at most r prime factors
below C4(r, qr).

Now, let Us be the set of prime factors p dividing N at least twice for
which p ≥ C4(r, qr) and p ∈ Sr for some r > s. It follows from the above
observations that there exist at most C30(a, b, k, k′, s) + s(s+ 1)/2 + k+ k′

primes outside Us dividing MN and therefore Lemma 6.2 yields that

(8.1)
∑

p∈Us

1
p

=
k∑

r=s+1

∑
p∈Sr,

p≥C4(r,qr)

1
p
> C31(a, b, k, k′, s).

However, (1.2) gives that

(8.2)
∑

p∈Sr,
p≥C4(r,qr)

1
p
< exp

(
−C5(r)

( log qr

log log qr

) 1
2(r+1)

)

and therefore∑
p∈Us

1
p

=
k∑

r=s+1

∑
p∈Sr,

p≥C4(r,qr)

1
p
< exp

(
−C32(k)

( log qs+1
log log qs+1

) 1
2(k+1)

)
.(8.3)

In order that both (8.1) and (8.3) simultaneously hold, we must have
qs+1 < C26(a, b, k, k′, s + 1), which completes our inductive argument to
prove that qj < C26(a, b, k, k′, j) for every j = 1, 2, . . . , k.

Now, by virtue of Lemma 2.3,

(8.4) pl − 1
p− 1 = qe1

1 q
e2
2 . . . qek

k



On finiteness of odd superperfect numbers 273

implies that l < qk < C26(a, b, k, k′, j) and, using classical finiteness results
such as Bugeaud and Győry [1], Coates [2] and Kotov [8], we finally obtain
p < C33(l, q1, q2, . . . , qk) < C34(a, b, k, k′). This proves the theorem.

9. Concluding remarks
Our proof of Theorem 1.4 exhibited in the last section indicates that we

can explicitly give the upper bound for N in terms of a, b, k, k′; although
Evertse’s results [5, 6] are not effective for the size of solutions, these results
give an effective upper bounds for the number of solutions. However, the
upper bound which our proof yields would become considerably large due
to its inductive nature exhibited in the last section. For sufficiently large k,
our proof yields that
(9.1) N < exp exp · · · exp(a+ b+ k + k′),
where the number of iterations of the exponential function is� k and� k.
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