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Bounds of the rank of the Mordell–Weil group of
Jacobians of Hyperelliptic Curves

par Harris B. DANIELS, Álvaro LOZANO-ROBLEDO
et Erik WALLACE

Résumé. Dans cet article, nous étendons les travaux de Shanks et Washing-
ton sur les extensions cycliques et les courbes elliptiques associées aux corps
cubiques les plus simples. En particulier, nous donnons des familles d’exemples
de courbes hyperelliptiques C : y2 = f(x) définies sur Q, avec f(x) de degré p,
où p est un nombre premier de Sophie Germain, telles que le rang du groupe
de Mordell–Weil de la jacobienne J/Q de C est borné par le genre de C et le
rang de la 2-torsion du groupe des classes d’idéaux du corps (cyclique) défini
par f(x), et présentons des exemples où cette borne est optimale.

Abstract. In this article we extend work of Shanks and Washington on
cyclic extensions, and elliptic curves associated to the simplest cubic fields. In
particular, we give families of examples of hyperelliptic curves C : y2 = f(x)
defined over Q, with f(x) of degree p, where p is a Sophie Germain prime,
such that the rank of the Mordell–Weil group of the jacobian J/Q of C is
bounded by the genus of C and the 2-rank of the class group of the (cyclic)
field defined by f(x), and exhibit examples where this bound is sharp.

1. Introduction

Let C/Q be a hyperelliptic curve, given by a model y2 = f(x), with
f(x) ∈ Q[x], and let J/Q be the jacobian variety attached to C. The
Mordell–Weil theorem shows that J(Q) is a finitely generated abelian group
and, therefore,

J(Q) ∼= J(Q)tors ⊕ ZRJ/Q ,

where J(Q)tors is the (finite) subgroup of torsion elements, and RJ/Q =
rankZ(J(Q)) ≥ 0 is the rank of J(Q). In this article we are interested in
bounds of RJ/Q in terms of invariants of C or f(x).

In [20], Washington showed the following bound for the rank of certain
elliptic curves, building on work of Shanks on the so-called simplest cubic
fields (see [17]).
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2020 Mathematics Subject Classification. 11G10, 14K15.
Mots-clefs. Jacobian, hyperelliptic curve, Mordell–Weil, rank, Selmer, descent.



232 Harris B. Daniels, Álvaro Lozano-Robledo, Erik Wallace

Theorem 1.1 ([20, Theorem 1]). Let m ≥ 0 be an integer such that m2 +
3m+ 9 is square-free. Let Em be the elliptic curve given by the Weierstrass
equation

Em : y2 = fm(x) = x3 +mx2 − (m+ 3)x+ 1.
Let Lm be the number field generated by a root of fm(x), let Cl(Lm) be its
class group, and let Cl(Lm)[2] be the 2-torsion subgroup of Cl(Lm). Then,

rankZ(Em(Q)) ≤ 1 + dimF2(Cl(Lm)[2]).

In this article, we extend Washington’s result to curves of genus g ≥ 2.
In order to find other families of hyperelliptic curves of genus g ≥ 2 where a
similar bound applies, we use a method of 2-descent for jacobians described
by Cassels, Poonen, Schaefer, and Stoll (see Section 2; in particular, we fol-
low the implementation described in [19]). The examples come from hyper-
elliptic curves y2 = f(x) such that f(x) defines the maximal real subfield of
a cyclotomic extension of Q, and the degree of f(x) is p, a Sophie Germain
prime. We obtain the following result.

Theorem 1.2. Let q ≥ 7 be a prime such that p = (q − 1)/2 is also
prime, and let L = Q(ζq)+ be the maximal totally real subfield of Q(ζq).
Let f(x) be the minimal polynomial of ζq + ζ−1

q or −(ζq + ζ−1
q ), let C/Q be

the hyperelliptic curve y2 = f(x), of genus g = (p − 1)/2, and let J/Q be
its jacobian. Then, there are constants ρ∞ and j∞, that depend on q, such
that

rankZ(J(Q)) ≤ dimF2 Sel(2)(Q, J) ≤ ρ∞ + j∞ + dimF2(Cl+(L)[2]),
where ρ∞ + j∞ ≤ p − 1. Further, if one of the following conditions is
satisfied,

(1) the Davis–Taussky conjecture holds (Conjecture 2.20), or
(2) the prime 2 is inert in the extension Q(ζp)+/Q, or
(3) q ≤ 92459,

then ρ∞ = 0 and j∞ = g = (p − 1)/2, and dimF2 Sel(2)(Q, J) ≤ g +
dimF2(Cl(L)[2]).

In fact, if the Davis–Taussky conjecture holds (see Remark 4.4), then the
bound of Theorem 1.2 becomes dimF2 Sel(2)(Q, J) ≤ g.

The organization of the paper is as follows. In Section 2, we review the
method of 2-descent as implemented by Stoll in [19]. In Sections 2.1, 2.2,
and 2.4, we specialize the 2-descent method for the situations we encounter
in the rest of the paper, namely the case when f(x) defines a totally real
extensions, or cyclic extension of Q, of prime degree. In Section 3, we give a
new proof of Washington’s theorem using the method of 2-descent. In Sec-
tion 4 we provide examples of hyperelliptic curves of genus g = (p− 1)/2
where p is a Sophie Germain prime, and prove Theorem 1.2. Finally, in



Rank bounds for jacobians 233

Section 5, we illustrate the previous sections with examples of curves, ja-
cobians, and how their ranks compare to the bounds.

Acknowledgments. The authors would like to thank Keith Conrad,
Gürkan Dogan, Franz Lemmermeyer, Paul Pollack, and Barry Smith, for
several helpful comments and suggestions. We would also like to express
our gratitude to David Dummit for very useful suggestions and noticing an
error in an earlier version of the paper. Finally we would like to express our
thanks to the referees who have given us helpful suggestions and pointed
out some errors in previous versions of this paper.

2. Stoll’s Implementation of 2-Descent

In this section we summarize the method of 2-descent as implemented
by Stoll in [19]. The method was first described by Cassels [2], and by
Schaefer [16], and Poonen–Schaefer [15] in more generality. Throughout
the rest of this section we will focus on computing the dimension of the
2-Selmer group of the jacobian J of a hyperelliptic curve C, given by an
affine equation of the form

C : y2 = f(x),

where f ∈ Z[x] is square-free and deg(f) is odd (Stoll also treats the case
when deg(f) is even, but we do not need it for our purposes). In this case,
the curve C is of genus g = (deg(f) − 1)/2 with a single point at infinity
in the projective closure. Before we can compute the dimension of the 2-
Selmer group, we must define a few objects of interest and examine some
of their properties. We will follow the notation laid out in [19].

Let Sel(2)(Q, J) be the 2-Selmer group of J over Q, and let X(Q, J)[2] be
the 2-torsion of the Tate–Shafarevich group of J (as defined, for instance,
in Section 1 of [19]). Selmer and Sha fit in the following fundamental short
exact sequence:

0 // J(Q)/2J(Q) // Sel(2)(Q, J) //X(Q, J)[2] // 0.

With this sequence in hand we get a relationship between for the rank of
J(Q) and the F2-dimensions of the other groups that we defined.

(2.1) rankZ J(Q)+dimF2 J(Q)[2]+dimF2 X(Q, J)[2] = dimF2 Sel(2)(Q, J).

Using equation (2.1), we get our first upper bound on the rank

(2.2)
rankZ J(Q) ≤ dimF2 Sel(2)(Q, J)− dimF2 X(Q, J)[2]

≤ dimF2 Sel(2)(Q, J).

This upper bound is computable, in the sense that J(Q)[2] and the Selmer
group are computable, as we describe below.
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Definition 2.1. For any field extension K of Q and f ∈ Q[x], let LK =
K[T ]/(f(T )) denote the algebra defined by f and let NK denote the norm
map from LK down to K.

We denote LK = K[θ], where θ is the image of T under the reduction
map K[T ]→ K[T ]/(f(T )), and LK is a product of finite extensions of K:

LK = LK,1 × · · · × LK,mK
,

where mK is the number of irreducible factors of f(x) in K[x]. Here, the
fields LK,j correspond to the irreducible factors of f(x) in K[x], and the
map NK : LK → K is just the product of the norms on each component
of LK . That is, if α = (α1, α2, . . . , αmK ), then NK(α) =

∏mK
i=1 NLK,i/K(αi)

where NLK,i/K : LK,i → K is the usual norm map for the extension of fields
LK,i/K.

In order to ease notation, we establish the following notational conven-
tions: when K = Q we will drop the field from the subscripts altogether,
and if K = Qv, we will just use the subscript v. This convention will apply
to anything that has a field as a subscript throughout the rest of the paper.
As an example, Lv = Qv[T ]/(f(T )) and L = Q[T ]/(f(T )).

Following standard notational conventions, we let OK , I(K), and Cl(K)
denote the ring of integers of K, the group of fractional ideals in K, and
the ideal class group of K, respectively. We define analogous objects for the
algebra LK as products of each component, as follows:

OLK
= OLK,1 × · · · × OLK,mK

,

I(LK) = I(LK,1)× · · · × I(LK,mK
),

Cl(LK) = Cl(LK,1)× · · · × Cl(LK,mK
).

Definition 2.2. Let K be a field extension of Q, and let L = Q[T ]/(f(T ))
be as before.

(1) Let Iv(L) denote the subgroup of I(L) generated, in each component,
by fractional ideals in LQ,i with support above a prime v in Z. For
a finite set S of places of Q, let

IS(L) =
∏

v∈S\{∞}
Iv(L).

(2) For any field extension K of Q, let

HK = ker(NK : L×K/(L
×
K)2 → K×/(K×)2).

For any place v of Q, we let resv : H → Hv be the canonical restric-
tion map induced by the natural inclusion of fields Q ↪→ Qv.

(3) Let Div0
−(C) denote the group of degree-zero divisors on C with

support disjoint from the principal divisor div(y).
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Remark 2.3. In our case, the curve is given by C : y2 = f(x), and the
support of div(y) is exactly the points with coordinates (α, 0), where α is
a root of f , and the unique point at infinity.

Now for each K, there is a homomorphism

FK : Div0
−(C)(K)→ L×K ,

∑
P

nPP 7→
∏
P

(x(P )− θ)nP ,

and this homomorphism induces a homomorphism δK : J(K) → HK with
kernel 2J(K) by [19, Lemma 4.1]. By abusing notation, we also use δK to
denote the induced map J(K)/2J(K)→ HK .

All of these facts, together with some category theory, give us the fol-
lowing characterization of the 2-Selmer group of J over Q.

Proposition 2.4 ([19, Proposition 4.2]). The 2-Selmer group of J over Q
can be identified as follows:

Sel(2)(Q, J) = {ξ ∈ H | resv(ξ) ∈ δv(J(Qv)) for all v}.

In order to take advantage of this description of the Selmer group, we
need some additional facts about the 2-torsion of J and the δK maps.

Lemma 2.5 ([19, Lemma 4.3]). Let K be a field extension of Q.
(1) For a point P ∈ C(K) not in the support of div(y), δK(P −∞) =

x(P )− θ mod (L×K)2.
(2) Let f = f1 . . . fmK be the factorization of f over K into monic

irreducible factors. Then, to every factor fj, we can associate an
element Pj ∈ J(K)[2] such that:
(i) The points {Pj} generate J(K)[2] and satisfy

∑mK
j=1 Pj = 0.

(ii) Let hj be the polynomial such that f = fjhj. Then

δK(Pj) = (−1)deg(fj)fj(θ) + (−1)deg(hj)hj(θ) mod (L×K)2.

(3) dim J(K)[2] = mK − 1.

Definition 2.6. Let Iv = ker(N : Iv(L)/Iv(L)2 → I(Q)/I(Q)2) and let
valv : Hv → Iv be the map induced by the valuations on each component
of Lv. Considering all primes at once, we get another map val : H →
I(L)/I(L)2. More specifically, the val map is the product of valv(resv) over
all places v.

Next, the following lemma helps us compute the dimensions of various
groups when K is a local field or R.
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Lemma 2.7 ([19, Lemma 4.4]). Let K be a v-adic local field, and let dK =
[K : Q2] if v = 2 and dK = 0 if v is odd. Then

(1) dim J(K)/2J(K) = dim J(K)[2] + dKg = mK − 1 + dKg.
(2) dimHK = 2 dim J(K)/2J(K) = 2(mK − 1 + dKg).
(3) dim IK = mK − 1.

With all of this machinery the description of Sel(2)(Q, J) given in Propo-
sition 2.4 can be refined as follows.

Proposition 2.8 ([19, Corollary 4.7]). Let

S = {∞, 2} ∪ {v | v2 divides disc(f)}.

Then

Sel(2)(Q, J) =
{
ξ ∈ H

∣∣∣∣∣ val(ξ) ∈ IS(L)/IS(L)2,
resv(ξ) ∈ δv(J(Qv)) for all v ∈ S

}
.

This new characterization suggests the following method to compute
Sel(2)(Q, J):

S1: Find the set S.
S2: For each v ∈ S, determine Jv = δv(J(Qv)) ⊆ Hv.

S3: Find a basis for a suitable finite subgroup H̃ ⊆ L×/(L×)2 such that
Sel(2)(Q, J) ⊆ H̃.

S4: Compute Sel(2)(Q, J) as the inverse image of
∏
v∈S Jv under∏

v∈S
resv : H̃ →

∏
v∈S

Hv.

Ignoring any complications that arise from computing and factoring the
discriminant of f , we focus on steps 2 and 3. We omit the details of how
to carry out step 4, since we are only interested in an upper bound for the
F2-dimension of Sel(2)(J,Q). Step 2 can be broken down into three substeps:
S2.1: For all v ∈ S \ {∞}, compute Jv = δv(J(Qv)) and its image Gv =

valv(Jv) in Iv.
S2.2: If Gv = 0 for some v, with v odd, remove v from S.
S2.3: Compute J∞.
To complete step 2.3, we need the following lemma.

Lemma 2.9 ([19, Lemma 4.8]). With notation as above:
(1) dim J(R)/2J(R) = m∞ − 1− g.
(2) J∞ is generated by {δ∞(P −∞) | P ∈ C(R)}.
(3) The value of δ∞(P −∞) only depends on the connected component

of C(R) containing P .
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Next, for step 3, we see that if we let

G =
∏

v∈S\{∞}
Gv ⊆ I(L)/I(L)2,

then the group {ξ ∈ H | val(ξ) ∈ G} contains Sel(2)(Q, J). In fact, the
larger group H̃ = {ξ ∈ L×/(L×)2 | val(ξ) ∈ G} also contains the 2-Selmer
group and we can compute its basis using the following two steps.
S3.1: Find a basis of V = ker(val : L×/(L×)2 → I(L)/I(L)2).
S3.2: Enlarge this basis to get a basis of H̃ = val−1(G).

With notation as above, Stoll deduces an upper bound and a formula for
the F2-dimension of the 2-Selmer group (see Lemma 4.10 and the discussion
under Step 4), as follows.

Proposition 2.10 ([19, Lemma 4.10]). With notation as above,

dimF2 Sel(2)(Q, J)
≤ (m∞ − 1) + dimF2(Cl(L)[2]) + dimF2 ker

(
G→ Cl(L)/2 Cl(L)

)
.

In the next section, we modify the proof of the bound in Proposition 2.10
to allow for extra conditions at infinity, before we specialize to totally real,
and cyclic extensions.

2.1. About the proof of Proposition 2.10. The following commutative
diagrams helps understand where the Selmer group fits:

J(Q)/2J(Q) �
� δ //

��

H
val //∏

v
resv

��

I(L)/I(L)2

��∏
v J(Qv)/2J(Qv) �

�
∏

v
δv

// ∏
vHv

∏
v

valv
// ∏

v Iv(L)/Iv(L)2

The 2-Selmer group of J over Q is then given, as in Proposition 2.8, by

Sel(2)(Q, J) =
{
ξ ∈ H

∣∣∣∣∣ val(ξ) ∈ IS(L)/IS(L)2,
resv(ξ) ∈ δv(J(Qv)) for all v ∈ S

}
.

The Selmer group is thus contained in H ⊆ L×/(L×)2, and more precisely,

Sel(2)(Q, J) ⊆ {ξ ∈ H | val(ξ) ∈ G, res∞(ξ) ∈ J∞}

where J∞ = δ∞(J(R)), the group G is the product
∏
v∈S\{∞}Gv ⊆

I(L)/I(L)2, and recall thatH is the kernel of the norm map from L×/(L×)2

down to Q×/(Q×)2. Thus, Sel(2)(Q, J) is contained in the larger group

Ĥ = {ξ ∈ L×/(L×)2 | val(ξ) ∈ G, res∞(ξ) ∈ J∞}.



238 Harris B. Daniels, Álvaro Lozano-Robledo, Erik Wallace

We emphasize here that the definition of H̃ in [19] does not impose a
condition at ∞, but the definition of Ĥ does to improve the bounds ac-
curacy (thus Ĥ ⊆ H̃). In an attempt to simplify notation, let LJ∞ be
the subspace of L×/(L×)2 with a condition added at infinite primes by
LJ∞ = L×/(L×)2 ∩ res−1

∞ (J∞). Thus, Ĥ = {ξ ∈ LJ∞ | val(ξ) ∈ G}, and
Sel(2)(Q, J) ⊆ Ĥ.

Remark 2.11. Note that Ĥ is the largest subgroup of LJ∞ such that
val(Ĥ) ∼= G ∩ val(LJ∞).

Let us show that indeed val(Ĥ) ∼= G ∩ val(LJ∞). Indeed:
• Suppose ξ ∈ Ĥ and consider val(ξ). By definition, since ξ ∈ Ĥ,
we have that val(ξ) is in G, and ξ ∈ LJ∞ , thus val(ξ) ∈ val(LJ∞).
Hence, val(ξ) ∈ G ∩ val(LJ∞).
• Conversely, suppose g ∈ G∩val(LJ∞). Then, there is some ξ ∈ LJ∞
such that val(ξ) = g. In particular, res∞(ξ) ∈ J∞ and since val(ξ) =
g ∈ G, it follows that ξ ∈ Ĥ. Hence, val(ξ) ∈ val(Ĥ).

Also, let us show that Ĥ is the largest subgroup of LJ∞ such that val(Ĥ) ∼=
G ∩ val(LJ∞). Suppose that ξ ∈ LJ∞ and val(ξ) ∈ G ∩ val(LJ∞). Then,
ξ ∈ LJ∞ and val(ξ) ∈ G, so ξ ∈ Ĥ by definition.

Next, we define subspaces V and W of L×/(L×)2 as follows:
• Let {ξi}ri=1 be generators of G∩val(LJ∞) with dim(G∩val(LJ∞)) =
r, and for each 1 ≤ i ≤ r pick one µi ∈ LJ∞ such that val(µi) = ξi.
LetW be the subspace generated by {µi}ri=1. Note thatW ⊆ LJ∞ ⊆
L×/(L×)2. In particular, res∞(w) ∈ J∞ for all w ∈ W . Moreover,
W and val(W ) are isomorphic by construction, so

W ∼= val(W ) = G ∩ val(LJ∞)
⊆ G ∩ val(L×/(L×)2) = ker(G→ Cl(L)/2 Cl(L)).

Thus,
r = dim(W ) = dim(G ∩ val(LJ∞)) ≤ dim ker(G→ Cl(L)/2 Cl(L)).
• Next, let us write V = ker(val : LJ∞ → I(L)/I(L)2). It follows that
Ĥ = V ⊕W (note that val(V ) is trivial, while val(w) is non-trivial
for every w 6= 0 in W ).

Lemma 2.12. Let V = ker(val : LJ∞→I(L)/I(L)2), let U= (O×L/(O
×
L )2)∩

LJ∞, and let Cl(LJ∞) be the class group defined as follows Cl(LJ∞) =
I(L)/P (LJ∞), where I(L) is the group of fractional ideals of L, and P (LJ∞)
is the group of principal fractional ideals A = (α) with a generator such that
res∞(α) ∈ J∞. Then, there is an exact sequence:

0 7→ U → V → Cl(LJ∞)[2]→ 0.
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Proof. Consider

L× ∩ res−1
∞ (J∞) 2 //

��

L× ∩ res−1
∞ (J∞) //

��

LJ∞ //

val
��

0

0 // I(L) 2 // I(L) // I(L)/I(L)2 // 0

and apply the snake lemma. �

Remark 2.13. Let P (L) be the subgroup of all principal fractional ideals,
let P+(L) be the subgroup of principal ideals generated by a totally pos-
itive element, and let P (LJ∞) be as above. Since the trivial signature
(1, 1, . . . , 1) ∈ J∞, it implies that P+(L) ⊆ P (LJ∞) ⊆ P (L), and there-
fore there are surjections

Cl(L) � Cl(LJ∞) � Cl+(L),

where Cl+(L) = I(L)/P+(L) is the narrow class group of L.

Putting all this together (and writing dim for dimF2), we obtain a bound

(2.3)

dim Sel(2)(Q, J)

≤ dim(Ĥ) = dimU + dim Cl(LJ∞)[2] + dimW

= dim(O×L/(O
×
L )2∩res−1

∞ (J∞))+dim Cl(LJ∞)[2]+dimG∩val(LJ∞)
≤ dim(O×L/(O

×
L )2∩res−1

∞ (J∞))+dim Cl+(L)[2]+dimG∩val(LJ∞).

We note here that dim(O×L/(O
×
L )2 ∩ res−1

∞ (J∞)) ≤ m∞ − 1, where we have
used the fact that dim(O×L/(O

×
L )2) = m∞, and the fact that res∞(−1) is

not in J∞ (because J∞ = δ∞(J(R)) ⊆ H∞, which is the kernel of the norm
map, so N(j) = 1 for j ∈ J∞, but the norm N(−1) = −1 because the
degree of L is odd). We will improve on the bound given by (2.3) above
by making certain assumptions about G and a more careful analysis of the
dimension of the subgroup of totally positive units. Before we state our
refinements, we review some of the results on totally positive units that we
shall need.

It is worth pointing out that the fourth line of (2.3) is not necessarily
an improvement over the bound in Proposition 2.10 if dim Cl+(L)[2] >
dim Cl(L)[2]. In our setting, we will seek conditions where dim Cl+(L)[2] =
dim Cl(L)[2] and then our bound in (2.3) will be an improvement due to
the more careful counting of units according to their infinite valuations.

2.2. Totally Positive Units. Let L be a totally real Galois number field
of prime degree p > 2, with embeddings τi : L → R, for i = 1, . . . , p, and
maximal order OL. Let Cl(L) = Cl(OL) be the ideal class group of L, and
let Cl+(L) be the narrow class group. Let V∞ = {±1}p ∼= (F2)p and, by
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abuse of notation, we extend the map res∞ (as in Definition 2.2, where we
note that H∞ ∼= V∞ and H ⊆ L×/(L×)2) to

res∞ : L×/(L×)2 → V∞

by res∞(α) = (sgn(τ1(α)), sgn(τ2(α)), . . . , sgn(τp(α))). Let O×L be the unit
group of OL, and let O×,+L be the subgroup of totally positive units. Thus,

ker
(
res∞ |O×L /(O×L )2

)
= O×,+L /(O×L )2.

We refer the reader to [5] for heuristics and conjectures about the dimension
of the totally positive units (in particular, the conjecture on page 4). In the
following theorem, we use the notation of [5].

Theorem 2.14. Let ρ, ρ+, and ρ∞ be defined by
ρ = dimF2 Cl(L)/2 Cl(L), ρ+ = dimF2 Cl+(L)/2 Cl+(L),

and ρ∞ = dimF2 O
×,+
L /(O×L )2

Then,
(1) ρ∞ = p−dimF2 res∞(O×L/(O

×
L )2) = dimF2{±1}p/ res∞(O×L/(O

×
L )2).

(2) We have

0→ {±1}p/ res∞(O×L/(O
×
L )2)→ Cl+(L)→ Cl(L)→ 0.

In particular, max{ρ, ρ∞} ≤ ρ+ ≤ ρ∞ + ρ, and ρ+ = ρ∞ + ρ if and
only if the exact sequence splits.

(3) (Armitage–Fröhlich) ρ+ − ρ ≤ (p− 1)/2.

Proof. For part (1), note that ρ∞ = dimF2 O
×,+
L /(O×L )2 is the dimension

of ker(res∞ |O×L /(O×L )2), and the dimension of O×L/(O
×
L )2 is p. Thus, the

dimension of the image of res∞ |O×L /(O×L )2 is p minus the dimension of the
kernel.

For part (2), see Section 2 of [5], and in particular Equation (2.9). Part (3)
is shown in [1], where it is shown that ρ+ − ρ ≤ br1/2c, where r1 is the
number of real embeddings of L. Here r1 = p is an odd prime, so the proof
is concluded. �

From the statement of the previous theorem, we see that ρ+ ≥ ρ∞.
However, ρ ≥ ρ∞ is not necessarily true. In the following result, a condition
is given that implies ρ ≥ ρ∞ (see also [10, Section 3]).

Theorem 2.15 ([14, Corollaire 2c]). Let L/Q be a finite abelian extension
with Galois group of odd exponent n, and suppose that −1 is congruent to
a power of 2 modulo n. Then, in the notation of Theorem 2.14, we have
ρ = ρ+. In particular, ρ ≥ ρ∞.

We obtain the following corollary.
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Corollary 2.16. Let L/Q be a cyclic extension of odd prime degree p, and
suppose that the order of 2 in (Z/pZ)× is even. Then, ρ = ρ+. In particular,
dimF2 Cl(L)[2] = dimF2 Cl+(L)[2].
Proof. Suppose that Gal(L/Q) ∼= Z/pZ for some prime p > 2, such that
the order of 2 in (Z/pZ)× is even (since Gal(L/Q) is cyclic of order p, this
is equivalent to −1 being congruent to a power of 2 modulo p). Hence,
Theorem 2.15 applies, and ρ = ρ+. �

The odd primes below 100 such that the order of 2 is odd modulo p are
7, 23, 31, 47, 71, 73, 79, and 89, so the corollary applies to all other primes
not in this list (i.e., 3, 5, 11, 13, 17, 19, etc.).
Theorem 2.17 ([8]). Let K/Q be an (imaginary) abelian extension of
the rationals of degree n, let hK be the class number of K, and let CK ⊆
O×K the groups of circular units of K (as defined in [8, p. 376]), and let
C+
K ⊆ O

×,+
K be the subgroup of circular units that are totally positive. Let

K+ be the maximal real subfield of K, and let h+
K be its class number. Let

h−K = hK/h
+
K . Further, assume that each prime p which ramifies in K does

not split in K+. Then:
(1) The index [O×,+K : (O×K)2] is a divisor of the index [C+

K : C2
K ].

(2) If the discriminant of K is plus or minus a power of a prime, then
h−K is odd if and only if [C+

L : C2
L] = 1, where CL is the subgroup of

circular units of L = K+.
(3) Suppose the discriminant of K is plus or minus a power of a prime,

[K+ : Q] = n is a power of an odd prime p, and the order of 2 mod p
is even. Then, h−K is odd if and only if h+

K is odd.
Proof. The results are, respectively, Lemma 5, Theorem 3, and Theorem 4
of [8]. �

Next, we cite a results of Estes which extends work of Davis ([4, Corol-
lary 2]), and Stevenhagen ([18, Theorem 2.5]). See also [11, Theorems 3.1
and 3.3].
Theorem 2.18 ([7]). Let q and p be primes such that q = 2p + 1. If 2 is
inert in Q(ζp)+, where ζp is a primitive p-th root of unity, then the class
number of Q(ζq) is odd.

The following result combines the results of Davis, Estes, Stevenhagen,
and Garbanati, and gives a specific criterion to check that ρ∞ = 0 for the
maximal real subfield of a cyclotomic field.
Theorem 2.19. Let q and p > 2 be primes such that q = 2p + 1, and
let L = Q(ζq + ζ−1

q ), where ζq is a primitive q-th root of unity. Further,
assume that the prime 2 is inert in the extension Q(ζp)+/Q. Then, ρ∞ =
dimF2 O

×,+
L /(O×L )2 = 0.
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Proof. Let K = Q(ζq) and let K+ = L = Q(ζq + ζ−1
q ). We note that

the discriminant of K is a power of a prime (namely q), and therefore
the primes of K or L that are ramified (namely the primes above q), are
totally ramified, so they do not split. Moreover, p = (q − 1)/2 is prime
and [L : Q] = p. Thus, the hypotheses of Theorem 2.17 are satisfied for K
and L.

If 2 is inert in Q(ζp)+/Q, then Theorem 2.18 shows that hK is odd,
and therefore h−K is odd as well, since h−K = hK/h

+
K by definition. Since

the discriminant of K is a power of q, Theorem 2.17 part (2) shows that
[C+
L : C2

L] = 1 and therefore [O×,+L : (O×L )2] = 1 as well by part (1). We
conclude that ρ∞ = 0. �

There is in fact a conjecture of Davis and Taussky that says that ρ∞ = 0
in the case of L = Q(ζq + ζ−1

q ), where p = (q − 1)/2 is a Sophie Ger-
main prime. For more on the Davis–Taussky conjecture see [4], [6], [7], [11],
and [18].
Conjecture 2.20 (Davis–Taussky conjecture). Let q and p be primes such
that q = 2p+1, and let L = Q(ζq+ζ−1

q ), where ζq is a primitive q-th root of
unity. Then, C+

L =C2
L. (Thus, it follows that ρ∞= dimF2 O

×,+
L /(O×L )2 = 0.)

In the next result we note that the Davis–Taussky conjecture is equiva-
lent to the class number of Q(ζq) being odd. (We thank David Dummit for
pointing out the following equivalence to us.)
Theorem 2.21. Let q and p be primes such that q = 2p + 1, let L =
Q(ζq + ζ−1

q ), where ζq is a primitive q-th root of unity, and let K = Q(ζq).
Then, C+

L = C2
L if and only if the class number of K is odd.

Proof. If h+
K is even, then h−K is even (see, for instance, [18, p. 773–774],

for a proof of this fact). Since hK = h+
Kh
−
K , it follows that h−K is odd if

and only if hK is odd. Since the discriminant of K is a power of q (prime),
Theorem 2.17 part (2), implies that h−K is odd if and only if C+

L = (CL)2.
Hence, the Davis–Taussky conjecture holds if and only if h−K is odd, if and
only if hK is odd. �

We conclude this section with some remarks about how to compute an
upper bound of ρ∞ in the cyclic case, working in coordinates over F2. Let
L be a cyclic extension of Q of degree p > 2, and let Gal(L/Q) = 〈σ〉.
Then, L is totally real (since L is Galois over Q, then it is totally real or
totally imaginary, so [L : Q] = p > 2 is odd, and p = 2r2 is impossible).
Let u 6= ±1 be a fixed (known) unit in O×L and let

res∞(u) = (ε1, . . . , εp)
where τ1, . . . , τp are the real embeddings of L and εi is the sign of τi(u) ∈
R. We order our embeddings in the following manner. Let gu(x) be the
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minimal polynomial of u over Q, and let r1, . . . , rp be the real roots of
gu(x) ordered so that r1 < r2 < · · · < rp. Then, {ri} = {τj(u)}, and
we choose τi so that τi(u) = ri for all 1 ≤ i ≤ p. With this notation,
res∞(u) = (−1,−1,−1, . . . , 1, 1, 1), i.e., it consists of a non-negative number
of −1 signs followed by a non-negative number of +1 signs. Recall that u
is in the kernel of res∞ if and only if u is a totally positive unit.

Attached to the generator σ ∈ G = Gal(L/Q), there is a permutation
φ = φσ ∈ Sp, where φ is considered here as a permutation of {1, 2, . . . , n},
such that τi(σ(u)) = rφ(i), and therefore

res∞(σ(u)) = (εφ(1), . . . , εφ(p)).

Since τ is an embedding (injective), if τi(α) = ri for some α ∈ L×, then
τi(σ(α)) = rφ(i). It follows that τi(σn(u)) = rφn(i), and

res∞(σn(u)) = (εφn(1), . . . , εφn(p)),

for all n ≥ 1.
Now, in addition, suppose that u is a unit of norm 1, and let G ·u be the

subgroup of units generated by the conjugates of u, i.e.,

G · u = 〈u, σ(u), σ2(u), . . . , σp−1(u)〉 ⊆ O×L
generate a subgroup of O×L . Note that the product

∏p−1
n=0 σ

n(u) = 1, so

G · u = 〈u, σ(u), σ2(u), . . . , σp−2(u)〉.

Then,

res∞ (G · u) = 〈(εφn(1), . . . , εφn(p)) : 0 ≤ n ≤ p− 2〉 ⊆ V∞,

where we have defined V∞ = {±1}p. If we fix an isomorphism ψ : {±1} ∼=
F2, and write fi = ψ(εi), then the map res∞ : G ·u→ V∞ can be written in
F2-coordinates, and the corresponding p×(p−1) matrix over F2 is given by

M∞,u =
(
fφj(i)

)
1≤i≤p

0≤j≤p−2
=


f1 fφ(1) . . . fφp−2(1)
f2 fφ(2) . . . fφp−2(2)
...

... . . . ...
fp fφ(p) . . . fφp−2(p)

 .
Lemma 2.22. Let u be a unit of norm 1, and let d∞,u be the dimension
of the column space of M∞,u or, equivalently, the dimension of res∞(G ·u).
Then, ρ∞ ≤ (p− 1)− d∞,u. In particular, if d∞,u = p− 1, then ρ∞ = 0.

Proof. If u is of norm 1, then −1 6∈ G ·u, because the norm of −1 is −1, and
the norm of every element in G ·u is 1. In particular, 〈res∞(−1), res∞(G ·u)〉
is a space of dimension 1 + d∞,u. Hence, the kernel of res∞ is at most of
dimension p− (1+d∞,u). It follows that ρ∞ ≤ (p−1)−d∞,u as desired. �
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2.3. Totally positive units in cyclic extensions of prime degree.
Let L be a cyclic extension of prime degree p > 2, and let O×L be the unit
group of OL. Let O×,1L be the units of norm 1, so that O×L ∼= {±1} ×O×,1L .
In this section we show the following result:

Proposition 2.23. Let p ≥ 3 be a prime, let L be a cyclic extension of
degree p, and suppose that the polynomial φp(x) = (xp − 1)/(x − 1) is
irreducible over F2. Then, either ρ∞ = 0 (i.e., O×,+L = (O×L )2), or ρ∞ =
p− 1 in which case every unit in O×,1L is totally positive.

Proof. If every unit in O×,1L is totally positive, then ρ∞ = p − 1 since we
would have

ρ∞ = dimF2 O
×,+
L /(O×L )2 = dimF2 O

×,1
L /(O×L )2 = p− 1.

Otherwise, there must be a unit u ∈ O×,1L that is not totally positive (in
particular, u is not in ±1 · (O×L )2). Let G = Gal(L/Q) = 〈σ〉 ∼= Z/pZ, and
let ui = σi(u) for i = 0, . . . , p− 1, be the conjugates of u. Let τ be a fixed
embedding of L in R, let τ(ui) = εi ∈ {±1} for i = 0, . . . , p− 1, and order
the embeddings τ = τ0, . . . , τp−1 of L such that res∞(u) = (ε0, . . . , εp−1).
In other words, τi = τ ◦ σi. Thus,

res∞(σ(u)) = res∞(u1) = (ε1, . . . , εp−1, ε0).
Consider the class u ∈ O×L/(O

×
L )2 and its non-trivial signature res∞(u).

The group ring F2[G] acts on the module M = F2[G] · u. Since G is of
prime order and by assumption φp(x) is irreducible, it follows that M is ir-
reducible. Furthermore, since u 6= ±1 it follows that res∞(u) 6= (1, 1, . . . , 1)
or (−1,−1, . . . ,−1). Hence, res∞(σ(u)) 6= res∞(u) by our formula above,
and therefore M is not 1-dimensional.

Moreover,
F2[G] ∼= F2[x]/(xp − 1) ∼= F2[x]/(x− 1)⊕ F2[x]/(φp(x)),

Since we are assuming that φp(x) is irreducible over F2, the only irreducible
representations of G over F2 are the trivial (1-dimensional) representation,
and a representation of dimension p−1. Since the irreducible F2[G]-module
M is not 1-dimensional, it must be (p − 1)-dimensional. Finally, we note
that M ⊆ O×,1L /(O×L )2, and every unit class in M has non-trivial signature
(the norm is 1 and there are p > 2 signs, so both 1 and −1 appear in the
signature). Since the dimension of all possible signatures in O×,1L is p − 1,
and M is (p − 1)-dimensional, we conclude that all signatures occur, and
therefore ρ∞ = 0, as desired. �

We conclude this section quoting a conjectural density of cubic fields and
quintic fields with maximal ρ∞, which is part of a broader conjecture of
Dummit and Voight (see [5]).
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Conjecture 2.24 ([5]). Let p = 3 (resp. p = 5). As L varies over all
totally real fields of degree p ordered by absolute discriminant, the density
of such fields with ρ∞ = 2 (resp. ρ∞ = 4) is approximately 1.9% (resp.
0.000019%).

Remark 2.25. By Proposition 2.23, if L is a cyclic field of degree p =
5, and ρ∞ 6= 4, then it must be 0. By Conjecture 2.24, approximately
99.999981% of all totally real quintic fields conjecturally have ρ∞ 6= 4. Thus,
we expect that cyclic quintic fields with ρ∞ = 0 must be quite abundant.
Note, however, that cyclic quintic fields are a subset of density 0 among all
totally real quintic fields, so the conjectures of Dummit and Voight do not
apply directly here.

2.4. Refinements of the bound on the rank. Now we are ready to
improve the bound in Proposition 2.10. We will continue using the notation
of Section 2.2.

Proposition 2.26. Let p be an odd prime, let C : y2 = f(x) with f(x) of
degree p (and genus g = (p − 1)/2), such that L, the number field defined
by f(x), is totally real of degree p, and let J/Q be the jacobian of C/Q.
Let ρ∞ = dimF2 O

×,+
L /(O×L )2, and let j∞ = dimF2(res∞(O×L/(O

×
L )2)∩J∞).

Then:

dim Sel(2)(Q, J) ≤ j∞ + ρ∞ + dim Cl+(L)[2] + dimG ∩ val(LJ∞),

In particular,
(1) ρ∞ + j∞ ≤ p− 1.
(2) j∞ ≤ dim J∞ = (p− 1)/2 = genus(C).
(3) dim Cl+(L)[2] ≤ ρ∞ + dim Cl(L)[2]. In particular,

dim Sel(2)(Q, J) ≤ j∞ + 2ρ∞ + dim Cl(L)[2] + dimG ∩ val(LJ∞),

(4) If G ∩ val(LJ∞) is trivial, then

dim Sel(2)(Q, J) ≤ j∞ + ρ∞ + dim Cl+(L)[2] ≤ j∞ + 2ρ∞ + dim Cl(L)[2].

Proof. Let p be an odd prime, let C : y2 = f(x) with f(x) of degree p, such
that L, the number field defined by f(x), is totally real of degree p, and let
J/Q be the jacobian of C/Q. Recall that in Section 2.1 we showed

dim Sel(2)(Q, J)

≤ dim(Ĥ) = dimU + dimV + dimW

= dim(O×L/(O
×
L )2 ∩ res−1

∞ (J∞)) + dim Cl(LJ∞)[2] + dimG ∩ val(LJ∞).
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Clearly,

dim(O×L/(O
×
L )2 ∩ res−1

∞ (J∞))
= dim res∞(O×L/(O

×
L )2) ∩ J∞ + dim ker(res∞ |O×L /(O×L )2)

= j∞ + dimO×,+L /(O×L )2 = j∞ + ρ∞.

Now, for part (1), notice that (O×L/(O
×
L )2∩res−1

∞ (J∞)) ⊆ O×L/(O
×
L )2 so the

dimension as a F2-vector space is at most p. Moreover, res∞(−1) is not in
J∞ (because J∞ = δ∞(J(R)) ⊆ H∞, which is the kernel of the norm map,
soNL

Q(j) = 1 for j ∈ L such that res∞(j) ∈ J∞, butNL
Q(−1) = −1 since the

degree of L is odd). Thus, j∞+ρ∞ = dim(O×L/(O
×
L )2∩ res−1

∞ (J∞)) ≤ p−1,
as claimed.

For part (2), recall that we have defined J∞ = δ∞(J(R)/2J(R)) ⊆ H∞.
By Lemma 2.9, and the fact that δ∞ is injective ([19, Lemma 4.1]), we have

dim(J∞) = m∞ − 1− g = p− 1− p− 1
2 = p− 1

2 ,

where we have used the fact that L is totally real to claim that m∞ = p.
Part (3) follows from Theorem 2.14, which shows that ρ+ ≤ ρ∞+ρ. And

part (4) is immediate from (3), so the proof is complete. �

Now we can put together Corollary 2.16 and Proposition 2.26 to give a
bound in the cases when the multiplicative order of 2 mod p is even.

Theorem 2.27. Suppose L is a cyclic, totally real number field of degree
p > 2, such that the order of 2 in (Z/pZ)× is even. Then, in the notation
of Proposition 2.26, we have

dim Sel(2)(Q, J) ≤ j∞ + ρ∞ + dim Cl(L)[2] + dim ker
(
G→ Cl(L)/2 Cl(L)

)
≤ p− 1 + dim Cl(L)[2] + dim ker

(
G→ Cl(L)/2 Cl(L)

)
.

Moreover, if ρ∞ = 0, then

dim Sel(2)(Q, J) ≤ g + dim Cl(L)[2] + dim ker
(
G→ Cl(L)/2 Cl(L)

)
= p− 1

2 + dim Cl(L)[2] + dim ker
(
G→ Cl(L)/2 Cl(L)

)
.

Proof. Suppose L is a cyclic, totally real number field of degree p > 2,
such that the order of 2 in (Z/pZ)× is even. Then, Corollary 2.16 implies
that ρ = ρ+. Thus, the bound follows from Proposition 2.26. Note that the
bound p − 1 + dim Cl(L)[2] + dim ker

(
G → Cl(L)/2 Cl(L)

)
is the bound

that appears in Proposition 2.10. �
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3. Genus 1

The goal of this section is to show an alternative proof of Theorem 1.1,
using Stoll’s implementation of the 2-descent algorithm and the results
we showed in the previous section. Let m be an integer such that D =
m2 + 3m+ 9 is square-free. Let C be the (hyper)elliptic curve given by the
Weierstrass equation

C : y2 = fm(x) = x3 +mx2 − (m+ 3)x+ 1.

Since C is elliptic, the jacobian J is isomorphic to C, so we will identify C
with J . We will conclude the bound stated in the theorem as a consequence
of Theorem 2.27. Since the order of 2 ≡ −1 mod 3 is 2, Corollary 2.16 shows
that ρ+ = ρ. In Section 2.3 we discussed that cyclic cubic fields with ρ∞ 6= 0
are rare. Let us show that in fact O×,+L = (O×L )2, and therefore ρ∞ = 0, for
the cyclic cubic fields L = Lm defined by fm(x) = 0.

Lemma 3.1 ([20, Section 1, p. 371]). Let m be an integer such that m ≡
3 mod 9, and let L be the number field defined by fm(x) = x3 +mx2− (m+
3)x+ 1 = 0. Then, ρ∞ = 0.

Proof. Let α be the negative root of fm(x). Then α′ = 1/(1 − α), and
α′′ = 1 − 1/α are the two other roots, and in fact they are units in O×L .
Moreover,

−m− 2 < α < −m− 1 < 0 < α′ < 1 < α′′ < 2

and therefore all eight possible sign signatures may be obtained from α and
its conjugates. Thus, every totally positive unit is a square, and ρ∞ = 0,
as claimed. �

Thus, in order to prove Theorem 1.1, it is enough to show that G is
trivial.

Lemma 3.2. Let m ≥ 0 be an integer such that D = m2 + 3m + 9 is
square-free. Let v = 2, or let v be a prime divisor of D, and let fm(x) =
x3 + mx2 − (m + 3)x + 1. Then, fm(x) is irreducible as a polynomial in
Qv[x].

Proof. Let v = 2. Then, if we consider fm(x) as a polynomial in F2[x], we
have

fm(x) =
{
x3 + x2 + 1 if m ≡ 1 mod 2,
x3 + x+ 1 if m ≡ 0 mod 2.

In both cases, fm is irreducible over F2, hence it is irreducible over Q2.
Now, let v > 2 be a prime divisor of D. Then, by assumption, v > 3 and

fm(x−m/3) = x3 − D

3 x+ D · (2m+ 3)
27
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is integral over Zv. SinceD = m2+3m+9, it follows that 4D−(2m+3)2 = 27
and therefore the greatest common divisor of D and 2m + 3 divides 27.
Since by assumption D is square-free, it cannot be divisible by 3, and so
gcd(D, 2m+3) = 1; this together with the fact that D is square-free implies
that fm(x −m/3) is Eisenstein over Zv. Hence, fm is irreducible over Qv,
as claimed. �

We are now ready to prove Theorem 1.1.

Theorem 3.3 ([20, Theorem 1]). Let m ≥ 0 be an integer such that m2 +
3m+ 9 is square-free. Let Em be the elliptic curve given by the Weierstrass
equation

Em : y2 = fm(x) = x3 +mx2 − (m+ 3)x+ 1.
Let Lm be the number field generated by a root of fm(x), and let Cl(Lm) be
its class group. Then,

rankZ(Em(Q)) ≤ 1 + dimF2(Cl(Lm)[2]).

Proof. We shall use Theorem 2.27. The order of 2 ≡ −1 mod 3 is 2, even,
so ρ = ρ+, and Lemma 3.1 shows that ρ∞ = 0, so it remains to compute
Gm =

∏
v∈Sm\{∞}Gm,v.

The discriminant of fm is D2 = (m2 + 3m+ 9)2, so we have
Sm = {∞, 2} ∪ {v | D}.

However, by Lemma 3.2, the polynomial fm(x) is irreducible over Qv for
any finite prime v ∈ Sm. It follows that the number of irreducible factors of
fm(x) over Qv is 1, and therefore Im,v is zero-dimensional by Lemma 2.7.
Since Gm,v ⊆ Im,v, we conclude that Gm,v is always trivial. Hence, Gm is
trivial, and Theorem 2.27 implies that

dim Sel(2)(Q, Jm) ≤ g + dim Cl(Lm)[2] + dim ker(Gm → Cl(Lm)/2 Cl(Lm))
= g + dim Cl(Lm)[2],

where Jm is the jacobian of the elliptic curve Em. Since the genus of Em is
1, then Em ∼= Jm over Q. Hence,

rankZ(Em(Q)) ≤ dim Sel(2)(Q, Em) ≤ 1 + dim Cl(Lm)[2],
as desired. �

4. Genus g = (p − 1)/2, where p is a Sophie Germain prime

The goal of this section is to find examples of hyperelliptic curves of
genus g ≥ 2 where the dimension of the Selmer group can be bounded in
terms of a class group, as in Theorem 1.1 (the genus 1 case). We begin by
looking at polynomials f(x) that cut out extensions of degree p, contained
inside a q-th cyclotomic extension, where q is another prime.
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Theorem 4.1. Let q > 2 be a prime such that the multiplicative order of
2 mod q is either q−1 or (q−1)/2, and let p > 2 be a prime dividing q−1.
Let Q(ζq) be the q-th cyclotomic field, and let L be the unique extension
of degree p contained in Q(ζq). Further, suppose that OL = Z[α] for some
algebraic integer α ∈ L, let f(x) be the minimal polynomial of α, and let
J/Q be the jacobian variety associated to the hyperelliptic curve C : y2 =
f(x). Then,

dim Sel(2)(Q, J) ≤ ρ∞ + g + dim Cl+(L)[2].

If in addition the multiplicative order of 2 mod p is even, then

dim Sel(2)(Q, J) ≤ ρ∞ + g + dim Cl(L)[2].

Proof. We apply Stoll’s algorithm to y2 = f(x), in order to compute G.
Note that f(x) is monic, integral, and irreducible over Q, since α generates
OL as a ring. Moreover, since OL = Z[α], it also follows that

disc(f(x)) = disc(OL),

and since L ⊆ Q(ζq), the only prime dividing disc(OL) is q. Hence, the set
S = {∞, 2, q}. We will show that G2 and Gq are trivial, and therefore G is
trivial as well. Indeed:

• Let v = 2. Since the order of 2 modulo q is q − 1 or (q − 1)/2 by
hypothesis, it follows from [13, Theorem 26] that 2 splits into 1 or 2
prime ideals in Z(ζq)/Z, and therefore 2 must be inert in the inter-
mediary extension L/Q of degree p. In particular, the polynomial
f(x) is irreducible over Q2, since it defines an unramified exten-
sion L2/Q2 of degree p. Hence, m2 = 1, and the dimension of I2 is
m2 − 1 = 0 by Lemma 2.7. Since G2 ⊆ I2, we conclude that G2 is
trivial as well.
• Let v = q. Since L ⊆ Q(ζq) and q is totally ramified in the cyclo-
tomic extension, it is also totally ramified in L/Q. Thus, f(x) is
irreducible over Qq because it defines a totally ramified extension
Lq/Qq of degree p. Thus, mq = 1 and arguing as above in the case
of v = 2, we conclude that Gq is trivial.

Since the only finite primes in S are 2 and q, it follows that G = G2 ×Gq
is trivial. Now, Proposition 2.26 shows the bound dim Sel(2)(Q, J) ≤ ρ∞ +
g + dim Cl+(L)[2]. If in addition the order of 2 mod p is even, and since
L/Q is cyclic of degree p, then Corollary 2.16 shows that ρ = ρ+. Hence
dim Sel(2)(Q, J) ≤ ρ∞ + g + dim Cl(L)[2], as claimed. �

The drawback, however, of the previous result is that there are very few
subfields of cyclotomic extensions with a power basis, as the following result
points out.
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Theorem 4.2 (Gras, [9]). Let L be an extension of degree p ≥ 5, and let
OL be the maximal order of L. Then, OL has a power basis if and only if
L = Q(ζq)+ is the maximal real subfield of the q-th cyclotomic field, where
q is a prime with q = 2p+ 1.

For instance, the unique cyclic number field of degree 5 with a power
basis for the maximal order is Q(ζ11)+. Also, there is no cyclic number
field of degree 7 with a power basis for its maximal order (since 15 is not a
prime). Hence, we concentrate on those cyclic extensions of degree p, where
p is a Sophie Germain prime, i.e., q = 2p+ 1 is also prime.

Theorem 4.3. Let q ≥ 7 be a prime such that p = (q− 1)/2 is also prime,
and let L = Q(ζq)+ be the maximal real subfield of Q(ζq). Let f(x) ∈ Z[x]
be any monic integral polynomial defining L, let C : y2 = f(x), and let J/Q
be its jacobian. Then,

dim Sel(2)(Q, J)
≤ ρ∞ + j∞ + dim Cl+(L)[2] + dim ker(G→ Cl(L)/2 Cl(L)).

Moreover, if f(x) is the minimal polynomial of ζq + ζ−1
q or −(ζq + ζ−1

q ),
then

dim Sel(2)(Q, J) ≤ ρ∞ + j∞ + dim Cl+(L)[2].

Further, if one of the following conditions is satisfied,
(1) the Davis–Taussky conjecture holds, or
(2) the prime 2 is inert in the extension Q(ζp)+/Q,
(3) q ≤ 92459,

then ρ∞ = 0, and dim Sel(2)(Q, J) ≤ g + dim Cl(L)[2].

Proof. The first bound follows from Proposition 2.26, so let us assume that
f(x) is the minimal polynomial of ζq + ζ−1

q or −(ζq + ζ−1
q ). The ring of

integers OQ(ζq)+ has a power basis, namely Z[ζq + ζ−1
q ]. Moreover, since p

is a Sophie Germain prime (with q = 2p + 1 prime), it follows that the
multiplicative order of 2 mod q is a divisor of 2p = 2 · ((q − 1)/2). Since
q ≥ 7, the order of 2 is bigger than 2, so it must be p = (q − 1)/2 or q − 1.
Thus, Theorem 4.1 applies and we obtain dim Sel(2)(Q, J) ≤ ρ∞ + j∞ +
dim Cl+(L)[2].

Further, if (1), (2), or (3) holds, then by Conjecture 2.20, or Theo-
rem 2.19, respectively, we find that ρ∞ = 0 and ρ = ρ+.

If q ≤ 92459, we shall use the computational approach at the end of
Section 2.2 to show that ρ∞ = 0. Let ζ = ζq = e2πi/q. Then, the ring of
integers of Q(ζq)+ has a power basis, namely OQ(ζq)+ = Z[ζq + ζ−1

q ]. Let
u = −(ζ+ ζ−1) if p ≡ 1 mod 4 and u = ζ+ ζ−1 if p ≡ 3 mod 4, thus chosen
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so that u is a unit in O×L of norm 1. Moreover, we note that if p ≡ 1 mod 4,
then

−(ζ+ζ−1) < −(ζ2 +ζ−2) < · · · < −(ζ
p−1

2 +ζ−
p−1

2 ) < 0 < −(ζ
p+1

2 +ζ−
p+1

2 )
< · · · < −(ζp + ζ−p) < 1,

and if p ≡ 3 mod 4, then

ζp + ζ−p < ζp−1 + ζ−(p−1) < · · · < ζ
p+1

2 + ζ−
p+1

2 < 0 < ζ
p−1

2 + ζ−
p−1

2

< · · · < ζ + ζ−1 < 1.

Thus, according to our conventions described in this section, the embed-
dings τ1, . . . , τp are numbered so that τi(u) = ri ∈ R with

ri =
{
−(ζi + ζ−i) if p ≡ 1 mod 4,
ζp+1−i + ζ−(p+1−i) if p ≡ 3 mod 4,

for all 1 ≤ i ≤ p. Thus,

res∞(u) = (−1,−1,−1, . . . , 1, 1, 1) ∈ H∞

with (p − 1)/2 minus ones when p ≡ 1 mod 4, and (p + 1)/2 minus ones
when p ≡ 3 mod 4.

Now, the Galois group G = Gal(L/Q) is cyclic of order p. Since q = 2p+1
is prime, then the multiplicative order of 2 mod q is (q−1)/2 or q−1. Thus,
either −2 or 2 is a primitive root mod q. Let γ : Q(ζ) → Q(ζ) that sends
γ(ζ) = ζ2. It follows that σ = γ ∈ G ∼= (Z/qZ)×/{±1} is a generator. Thus,
the automorphism σ(ζ+ζ−1) = ζ2+ζ−2 generates G. Let φ = φσ ∈ Sp be the
permutation attached to σ as defined above. For instance, if p ≡ 1 mod 4,
then r1 = −(ζ + ζ−1), where ζ = e2πi/q, so τ1(σ(u)) = r2 = −(ζ2 + ζ−2)
and therefore φ(1) = 2. However, if p ≡ 3 mod 4, then r1 = ζp + ζ−p.
We can find an integer 1 ≤ k ≤ p, and k or −k ≡ 2p mod q, such that
σ(u) = ζk + ζ−k. It follows that τ(σ(u)) = rk and so φ(1) = k in this case.
In general, the permutation φ is defined by

φ(i) = min{2 · i mod q, (−2 · i) mod q}

when p ≡ 1 mod 4, and by

φ(i) = p+ 1−min{(2 · (p+ 1− i)) mod q, q − (2 · (p+ 1− i) mod q)},

when p ≡ 3 mod 4, where our representatives in Z/qZ are always chosen
amongst {0, 1, . . . , q − 1}. With these explicit descriptions of res∞(u) and
φσ, we have computed (using Magma) the matrix M∞,u for all primes p
and q, with q ≤ 92459, as in the statement, and in all cases d∞,u = p − 1.
Hence, ρ∞ = 0 follows from Lemma 2.22. �



252 Harris B. Daniels, Álvaro Lozano-Robledo, Erik Wallace

Remark 4.4. If the Davis–Taussky conjecture holds, then the class number
hK of Q(ζq) is odd (by Theorem 2.21), and therefore the class number h+

K

of L = Q(ζq)+ is odd as well (because h+
K is a divisor of hK). Hence, if the

Davis–Taussky conjecture holds, then Cl(L)[2] is trivial, and the bound of
Theorem 4.3 becomes

dim Sel(2)(Q, J) ≤ g.

5. Examples

5.1. Curves of Genus 1. In this section we present some data that was
collected on the curves described in Theorem 1.1 (the data collected can be
found at [3]). Form ∈ Z, let fm(x), Em, and Lm be as in Theorem 1.1. Using
Magma, we attempted to compute (subject to GRH) the Mordell–Weil rank
of Em(Q) and dimF2 Cl(Lm)[2] for every m ∈ Z such that 1 ≤ m ≤ 20000
and m2 + 3m + 9 is square-free. There are 12462 such values of m in the
given interval, and we were able to compute the rank of Em/Q for 12235 of
them. For the other 227 curves, we were only able to get upper and lower
bounds on their rank.

Of the 12462 curves that we tested, 10327 of them (about 82.87%) had
rank equal to the upper bound given in Theorem 1.1. However, one might
expect that the sharpness of this upper bound would decay as m gets larger
and larger, and in fact that seems to be the case. Let us define a function
to keep track of the sharpness of the bound in an interval.

Definition 5.1. Let

M = {m ∈ Z | 1 ≤ m ≤ 20000 and m2 + 3m+ 9 is square-free}
and S = {m ∈M | rank(Em) = dim Cl(Lm) + 1}.

Given I ⊆M , we define

Sharp(I) = #(S ∩ I)
#(M ∩ I) .

Remark 5.2. The set S only includes curves whose rank was actually
computable and, because of this, the Sharp(I) statistic only gives a lower
bound for how sharp Washington’s upper bound is over the set I.

In order to see how the sharpness of the upper bound degrades as m
grows, in Table 5.1 we present Sharp(I) over disjoint intervals of length
1000. In the data, we clearly see that the number of curves for which Wash-
ington’s bound is sharp in a given interval does start to decrease, but the
bound is still sharp more often than not (notice, however, that the sharp-
ness is inflated by the fact that the bound is sharp every time the bound
is 1, since there is a point of infinite order P = (0, 1) on Em).
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Table 5.1. Measure of the sharpness of the bound pre-
sented in Theorem 1.1.

I Sharp(I) I Sharp(I)

[1, 1000] 0.91451 [10001, 11000] 0.81862

[1001, 2000] 0.88499 [11001, 12000] 0.81451

[2001, 3000] 0.87581 [12001, 13000] 0.79936

[3001, 4000] 0.84665 [13001, 14000] 0.81833

[4001, 5000] 0.82051 [14001, 15000] 0.81760

[5001, 6000] 0.82504 [15001, 16000] 0.78560

[6001, 7000] 0.84911 [16001, 17000] 0.82664

[7001, 8000] 0.84455 [17001, 18000] 0.82258

[8001, 9000] 0.81862 [18001, 19000] 0.80512

[9001, 10000] 0.80000 [19001, 20000] 0.78583

Table 5.2. Sharpness for a fixed rank bound b in the in-
terval 1 ≤ m ≤ 20000.

b #(T (1)∩B(b)) #(T (3)∩B(b)) #(T (5)∩B(b)) #(T (7)∩B(b)) #(T (b)∩B(b))
#B(b)

1 7391 0 0 0 1.0000

3 1565 2809 0 0 0.6422

5 37 298 125 0 0.2717

7 0 1 7 2 0.2000

Totals 8993 3108 132 2 ——

To see how fixing the bound first affects its sharpness, we define the
following sets

T (r) = {m ∈M | rank(Em) = r}
and B(b) = {m ∈M | dim Cl(Lm)[2] + 1 = b}.

In Table 5.2, for each bound b that occurs we give the number of curves of
rank r whose bound is b for each r that occurs. We also give the percentage
of the curves whose rank is exactly b and provide the totals of each column
so that we can see how many curves of each rank we found (for similar
statistics and conjectures in a broader context, see [12]).
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Table 5.3. The first occurrence of each (rank, bound) pair
that occurs for some m ≤ 20000.

m (r, b) m (r, b) m (r, b)

1 (1, 1) 11 (3, 3) 143 (5, 5)

170 (1, 3) 157 (3, 5) 3461 (5, 7)

2330 (1, 5) 19466 (3, 7) 12563 (7, 7)

From Table 5.2 we can see that all of the curves that we computed,
have odd rank less than or equal to 7. It also turns out that for all of the
curves that we computed, Washington’s bound is also odd and less than or
equal to 7. In Table 5.3, we give the first m such that rank(Em) = r and
dim Cl(Lm) + 1 = b for each pair (r, b) that occurred.

It is also interesting to point out that the average rank among curves
with b = 1 is 1, the average rank among curves with b = 3 is 2.23, among
curves with b = 5 is 3.38, and among curves with b = 7 the average rank is
5.20 (see [12] for other examples of Selmer bias in genus 1).

Example 5.3. Lastly, for the sake of concreteness, we end this section with
an explicit example. When m = 143 we have that

E143 : y2 = x3 + 143x2 − 146x+ 1

with conductor 22 · 208872. Using Magma, we can compute that

Cl(L143) ∼= Z/2Z + Z/2Z + Z/4Z + Z/4Z,

and so Washington’s bound for the Mordell–Weil rank is dim Cl(L143)[2] +
1 = 4 + 1 = 5. Looking for points on E143 we find 5 independent points of
infinite order that generate the Mordell–Weil group.

E143(Q) ∼= Z5 = 〈(126/121,−3023/1331), (90,−1369),
(65/64, 577/512), (21/4,−461/8), (−1, 17)〉.

5.2. Examples in the Sophie Germain case. In this section we show
examples of hyperelliptic curves that arise from Theorem 4.3.

Example 5.4. Let q = 7 and p = 3. Then, L = Q(ζ7)+ is the maximal
real subfield of Q(ζ7), which has degree 3, and class number 1 (see [21,
Tables, Section 3]). Note that the order of 2 in (Z/3Z)× is 2 = p − 1, and
therefore condition (2) of Theorem 4.3 is met. Hence, if f(x) is the minimal
polynomial of ±(ζ7 + ζ−1

7 ), then the jacobian J(Q) of y2 = f(x) satisfies

rankZ(J(Q)) ≤ dimF2 Sel(2)(Q, J) ≤ g + dim Cl(L)[2] = 1.
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For instance, if f(x) is chosen to be the minimal polynomial of −(ζ7 +ζ−1
7 ),

then f(x) = x3 − x2 − 2x + 1 we in fact recover the elliptic curve E−1
of Theorem 1.1 for m = −1. The Mordell–Weil rank of the elliptic curve
E−1 : y2 = x3 − x2 − 2x + 1 is 1, so the bound on the rank given by
Theorem 4.3 in this case is in fact sharp.

Example 5.5. If q = 11 and p = 5, then L = Q(ζ11)+ is a field of degree 5
and trivial class group. Since 2 is a primitive root modulo 5, if f(x) be the
minimal polynomial of ±(ζ11 + ζ−1

11 ), then Theorem 4.3 says

rankZ(J(Q)) ≤ dimF2 Sel(2)(Q, J) ≤ g + dim Cl(L)[2] = p− 1
2 = 2,

where J is the jacobian of y2 = f(x). If f(x) is the minimal polynomial of
ζ11 + ζ−1

11 , then f(x) = x5 +x4− 4x3− 3x2 + 3x+ 1. Below we will describe
a general method to find some rational points on the jacobian, and show
that 2 ≤ rankZ(J) ≤ 2. Thus, the rank is 2 and the bound is sharp.

Example 5.6. If q = 23 and p = 11, then L = Q(ζ23)+ is a field of
degree 11 and trivial class group. Since 2 is a primitive root modulo 11, if
f(x) be the minimal polynomial of ±(ζ23 + ζ−1

23 ), then Theorem 4.3 says

rankZ(J(Q)) ≤ dimF2 Sel(2)(Q, J) ≤ g + dim Cl(L)[2] = p− 1
2 = 5,

where J is the jacobian of y2 = f(x). If f(x) is the minimal polynomial of
−(ζ23 + ζ−1

23 ), then

f(x) = x11 − x10 − 10x9 + 9x8 + 36x7 − 28x6

− 56x5 + 35x4 + 35x3 − 15x2 − 6x+ 1.

Below we will show that 4 ≤ rankZ(J) ≤ 5. A full 2-descent (via Magma)
shows that the rank is, in fact, equal to 4.

We finish this section by describing a method to produce points in J
(as in Theorem 4.3, and compute the rank of the subgroup generated by
these points. Let p be a fixed Sophie Germain prime, let q = 2p+1, and let
L = Q(ζq)+ be the maximal real subfield of Q(ζq), where ζq is a primitive
q-th root of unity. The minimal polynomial for ζq + ζ−1

q has constant term
1 or −1 according to whether p is congruent to 1 or 3 mod 4. If f ∈ Z[x]
is a polynomial with constant term 1, then the point (0, 1) will be on the
curve

C : y2 = f(x)
and furthermore the factorization of f(x) − 1 will provide points on the
jacobian J of C, allowing us to obtain a lower bound for the Mordell–Weil
rank of J(Q). For this reason, we define f to be the minimal polynomial of
θ = (−1)(p−1)/2(ζq + ζ−1

q ).
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A lower bound for the rank can be computed by considering the images
of the factors of f − 1 in L×/(L×)2 under the map δQ : J(Q) → HQ (see
Section 2). Let y0 ∈ Q, let g(x) be an irreducible factor of f(x) − y2

0, and
let K be the splitting field of g(x). Then, over K, we have a factorization

g(x) =
n∏
i=1

(x− xi),

and the points Pi = (xi, y0) are in C(K). Under the map δK : J(K)→ HK ,
as a map from C(K) to L×K/(L

×
K)2 we have

Pi 7→ (xi − θK)(L×K)2.

If f remains irreducible over K, then LK is simply the composite extension
of K and Lq, and θK = θ. As a map from J(K) to L×K/(L

×
K)2, δK is a

homomorphism of groups, and hence the divisor P1 +P2 + · · ·+Pn maps to
n∏
i=1

(xi − θK)(L×K)2 = (−1)ng(θK)(L×K)2.

On the other hand, the divisor P1 + P2 + · · · + Pn can be regarded as the
base extension to K of a certain divisor D defined over Q, hence over Q we
have

D 7→ (−1)ng(θ)(L×)2,

via the map FK of Section 2. Thus, for each irreducible factor g(x) we obtain
a point on the jacobian J(Q) that corresponds to the divisor D = D(g)
defined above. Moreover, since the map J(Q)/2J(Q) → HQ induced by
δQ is injective ([19, Lemma 4.1]), in order to compute the rank of the
subgroup generated by {D(g)}g, it suffices to check the dimension of the
(multiplicative) subgroup generated by {δQ(D(g))} in H = HQ.

Example 5.7. For example let q = 11 and p = 5, as in Example 5.5, so
L = Q(ζ11)+ and f(x) = x5 + x4 − 4x3 − 3x2 + 3x + 1. Then, f(x) − 1
factors as

x(x2 − 3)(x2 + x− 1).
Their images in L×/(L×)2 via δQ are

−θ(L×)2, (θ2 − 3)(L×)2, and (θ2 + θ − 1)(L×)2

respectively. To obtain a lower bound for the rank of J it remains only to
reduce {−θ, (θ2− 3), (θ2 + θ− 1)} to a multiplicatively independent subset
modulo squares. Since the product of all three is

−(f(θ)− 1)(L×)2 = (L×)2

we see that at most two are multiplicatively independent. On the other
hand −θ(θ2 − 3) is not a square in L, so

−θ(L×)2 and (θ2 − 3)(L×)2
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are multiplicatively independent give us a lower bound of 2 as the rank of
J over Q. An upper bound of 2 for the rank was computed in Example 5.5,
hence the rank is exactly 2.

In Table 5.4, we have collected the upper bound given by Theorem 4.3, to-
gether with some computational data of lower bounds for the rank of the ja-
cobian J associated to the first few Sophie Germain primes, obtained using
the method we have described here. It is worth pointing out that the bound
given by Theorem 4.3 in these examples is unconditional (i.e., not depen-
dent on the Davis–Taussky conjecture) since q ≤ 92459. We also note that
2 is inert in Q(ζp)+ in some cases such as p = 5, 11, 23, 29, 53, 83, 131, 173
but not in others such as p = 41, 89, 113.

Table 5.4. Upper and lower bounds for the rank of Jq(Q)
when p = (q − 1)/2 is Sophie Germain.

p 5 11 23 29 41 53 83 89 113 131 173

upper 2 5 11 14 20 26 41 44 56 65 86

lower 2 4 6 4 4 4 10 6 4 10 4
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