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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 947–964

The Hasse Norm Principle For Biquadratic
Extensions

par Nick ROME

Résumé. Nous donnons une formule asymptotique pour le nombre d’ex-
tensions biquadratiques du corps des rationnels de discriminant borné qui
contredisent le principe de norme de Hasse.

Abstract. We give an asymptotic formula for the number of biquadratic
extensions of the rationals of bounded discriminant that fail the Hasse norm
principle.

1. Introduction

Let K/k be a Galois extension of number fields with Galois group G. If
A∗K denotes the set of idèles of K and NK/k the usual norm map then we
say that K satisfies the Hasse norm principle if

NK/kK
∗ = NK/kA∗K ∩ k∗.

The Hasse norm theorem states that this principle is satisfied by every cyclic
extension (see e.g. [2, p. 185]). Recently, Frei–Loughran–Newton [4] have
shown that for every non-cyclic abelian group G there is an extension K/k
with Galois group G, for which the Hasse norm principle fails. Moreover, if
G ∼= Z/nZ⊕ (Z/QZ)r where r ∈ Z>1 and Q is the smallest prime dividing
n then 0% (when ordered by discriminant) of extensions of k with Galois
group G fail the Hasse norm principle. However this density result is not
explicit, so there is no estimate for the frequency of extensions with a given
Galois group that fail the Hasse norm principle.

In this paper we’ll investigate Hasse norm principle failures in the sim-
plest abelian, non-cyclic case where G = (Z/2Z)2 and k = Q. Let ∆K

denote the discriminant of the field K = Q(
√
a,
√
b). Note that for all such

K, we have ∆K > 0 (c.f. (2.3)). We will first give a proof of the number
of such fields with discriminant bounded above by X, recovering work of
Baily [1].
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Theorem 1.1. Let S(X) denote the number of distinct biquadratic exten-
sions K/Q such that ∆K 6 X. Then

S(X) = 23
960
√
X log2X

∏
p

(
1− 1

p

)3 (
1 + 3

p

)
+O

(√
X logX

)
.

There have been several investigations centered on counting the number
of extensions of a number field of bounded discriminant with a given Galois
group, for various different choices of Galois group (see [3] for a survey).
In particular, Baily [1, Theorem 8] produced Theorem 1.1 in 1980, using
a simple argument about how many primes could divide the discriminant.
Baily’s original result did not include information about the error terms al-
though lower order terms are now known [3, Section 2.5]. We use a different
approach to Baily and have chosen to include the proof of Theorem 1.1 as
the method of computation serves to illustrate the proof of the following
theorem which is the main result of this paper.

Theorem 1.2. Let S̃(X) denote the number of distinct biquadratic exten-
sions K/Q such that ∆K 6 X and K fails the Hasse norm principle. Then

S̃(X) = 1
3
√

2π
√
X logX

∏
p

(
1− 1

p

)3
2
(

1 + 3
2p

)
+O

(√
X
)
.

In particular, these two results combined recover the Frei–Loughran–
Newton result in this setting (i.e. that 0% of biquadratic extensions of Q
fail the Hasse norm principle).

1.1. Layout of the paper. In Section 2, we will develop specific condi-
tions on the integers a and b that ensure that the extension K = Q(

√
a,
√
b)

fails the Hasse norm principle. Section 3 is devoted to the proof of the The-
orem 1.1. Theorem 1.2 is proven in Section 4 using a similar approach. The
main difference is that to apply the criteria developed in Section 2 we must
sum a product of Jacobi symbols and to do this we incorporate ideas of
Friedlander–Iwaniec [6].

Acknowledgements. I would like to thank Daniel Loughran for suggest-
ing this problem and my supervisor Tim Browning for bringing it to my
attention, as well as for his continued advice on ways to proceed. I would
also like to thank Rachel Newton for several useful conversations and Régis
de la Bretèche for numerous helpful suggestions.

2. Criteria for Hasse Norm Principle failure

In this section, we’ll describe criteria on the integers a and b that deter-
mine when the extension Q(

√
a,
√
b) fails the Hasse norm principle. We can

then sum over the a and b satisfying these criteria to get Theorem 1.2.
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First, we describe how to count a and b that define unique biquadratic
extensions of Q. Note that K has 3 quadratic subfields

k1 = Q(
√
a), k2 = Q(

√
b) and k3 = Q(

√
ab/(a, b)).

Each of these quadratic fields can be uniquely identified by a single square-
free integer so fix k1 = Q(

√
a) and k2 = Q(

√
b). Let m = (a, b) so that

(2.1) a = ma1, b = mb1 and (a1,m) = (a1, b1) = (b1,m) = 1.
Then

k1 = Q(
√
ma1), k2 = Q(

√
mb1) and k3 = Q(

√
a1b1).

It is certainly true that specifying m, a1, b1 will determine K. Moreover
since K is determined uniquely by its subfields and these subfields by the
choice of m, a1 and b1, this choice uniquely determines K up to relabelling.

We can write the discriminant of K in terms of (m, a1, b1) as follows.
By [7, Chapter 8, 7.23] we can express the discriminant of K, denoted ∆K ,
in terms of the discriminants of its quadratic subfields by

∆K = ∆k1∆k2∆k3 .

Recall that

(2.2) ∆Q(
√
d ) =

{
d if d ≡ 1 mod 4
4d if d ≡ 2 or 3 mod 4.

We observe that it is not possible for just one of the integers ma1,mb1
and a1b1 to be congruent to 2 or 3 mod 4. For if ma1 ≡ 2 mod 4 then
either m or b1 ≡ 2 mod 4 and hence so is their product with a1. Moreover
ma1 ≡ 3 mod 4 if and only if m ≡ −a1 mod 4 so either m ≡ −b1 mod 4 or
a1 ≡ −b1 mod 4. Therefore
(2.3) ∆K = c2m2a2

1b
2
1

where c is either 1 if all the ki are in the first case of (2.2), 4 if exactly one
ki is in the first case of (2.2) or 8 if all the ki are in the second case.

We now turn our attention to how to identify Hasse norm principle fail-
ures and see that the congruence class of (m, a1, b1) mod 4 again plays a
role.

Lemma 2.1. Let (m, a1, b1) ≡ (ε1, ε2, ε3) mod 4. Then
(1) When ε1 = ε2 = ε3, K fails the Hasse norm principle if and only if

all of the following hold:
(a) p | a1 =⇒

(mb1
p

)
= +1,

(b) p | b1 =⇒
(ma1
p

)
= +1,

(c) p | m =⇒
(a1b1
p

)
= +1.

(2) When ε1 = ε2 6= ε3, K fails the Hasse norm principle if and only if
all of the following hold:
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(a) p | a1 =⇒
(mb1
p

)
= +1,

(b) p | b1 =⇒
(ma1
p

)
= +1,

(c) p | m =⇒
(a1b1
p

)
= +1,

(d) m ≡ a1 mod 8.
Similarly for ε2 = ε3 6= ε1 and ε3 = ε1 6= ε2.

(3) If ε1, ε2 and ε3 are pairwise distinct, then K satisfies the Hasse norm
principle.

Proof. The Hasse norm principle fails in biquadratics if and only if all
decomposition groups are cyclic (see e.g. [2, Chapter 7, Section 11.4]). Hence
to come up with a criterion for Hasse norm principle failure we need to
ensure that all decomposition groups are proper subgroups of the Galois
group (Z/2Z)2. Therefore we need every rational prime to split in K.

A prime splits in K if and only if it splits in at least one of the three
quadratic subfields Q(√ma1), Q(

√
mb1) and Q(

√
a1b1).

(1) If a1 ≡ m ≡ b1mod4 then the only primes that ramify in Q(√ma1)
are those dividing ma1, therefore since m, a1 and b1 are pairwise
coprime, no prime ramifies in all three quadratic subextensions. A
prime p splits in Q(

√
a) if and only if

(
a
p

)
= +1 otherwise it remains

inert. This means a prime cannot be inert in all three subfields.
Hence we must ensure that all primes that ramify in two of the
subfields split in the third.

(2) If m ≡ a1 6≡ b1 mod 4 then ma1 ≡ 1 mod 4, mb1 ≡ 2 or 3 mod 4
and a1b1 ≡ 2 or 3 mod 4. Note that since m and a1 are coprime
they cannot both be congruent to 2, so they must be odd. We see
that the rational prime 2 ramifies in the subfields Q(

√
mb1) and

Q(
√
a1b1). Therefore we must also ensure that 2 splits in Q(√ma1)

so we must impose the extra condition ma1 ≡ 1 mod 8.
(3) In this case we have ma1 ≡ 2 or 3 mod 4, mb1 ≡ 2 or 3 mod 4 and

a1b1 ≡ 2 or 3 mod 4 so 2 ramifies in all 3 quadratic subextensions
hence is totally ramified in K. Therefore the Hasse norm principle
holds. �

3. Proof of Theorem 1.1

We move on to establishing the asymptotic formula for the number of
biquadratic extensions K = Q(

√
a,
√
b) of bounded discriminant. In Sec-

tion 2 we saw that this means counting the number of integer triples which
are square-free, pairwise coprime and whose product is bounded above in
a way that depends on the congruence class of the tuple mod 4. In Sec-
tion 2, these triples were denoted (m, a1, b1) however from here on out we
will write them (m1,m2,m3) for simplicity.
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Let δ = (δ2, δ3) where δ2 denotes the sign of m2 and δ3 the sign of m3.
We note that it would be redundant to keep track of all 3 signs and just 2
will suffice. Observe that the highest power of 2 dividing m1m2m3 is either
0 or 1. To keep track of this we write

m1 = 2µm′1, m2 = δ22αm′2 and m3 = δ32βm′3,

where 2 - m′1m′2m′3. Finally we denote by ε the congruence class of the m′i
mod 4. Then

S(X) = 1
6

∑
δ∈{±1}2

∑
µ+α+β∈{0,1}
µ,α,β∈{0,1}

∑
ε∈{±1}3

T (δ, ε, µ, α, β),

where T (δ, ε, µ, α, β) counts the number of tuples (m′1,m′2,m′3) ∈ N3 such
that the following all hold:

(1) µ2(m′1m′2m′3) = 1,
(2) (m′1,m′2,m′3) ≡ ε mod 4,
(3) 2µ+α+βcδ,ε,µ,α,βm

′
1m
′
2m
′
3 6
√
X.

Note that T (δ, ε, µ, α, β) overcounts each triple (m′1,m′2,m′3) by counting
every permutation of the components so we divide the sum by 6 to compen-
sate. The constants cδ,ε,µ,α,β correspond to the constant c in (2.3). Recall
that c = 1 if all the components of (m1,m2,m3) are congruent mod 4, c = 4
if two of the components are congruent, and 8 otherwise. We summarise
the values below

cδ,ε,0,0,0 =
{

1 if ε1 = δ2ε2 = δ3ε3,

4 otherwise;
cδ,ε,1,0,0 =

{
4 if δ2ε2 = δ3ε3,

8 otherwise;

cδ,ε,0,1,0 =
{

4 if ε1 = δ3ε3,

8 otherwise;
cδ,ε,0,0,1 =

{
4 if ε1 = δ2ε2,

8 otherwise.

We’ll first tackle the evaluation of T (δ, ε, µ, α, β), for fixed δ, ε, α, β and µ
then the remaining summation will be a simple computation.

Lemma 3.1. Let c = cδ,ε,µ,α,β. Then we have

T (δ, ε, µ, α, β) =
√
X log2X

160c2µ+α+β

∏
p

(
1− 1

p

)3 (
1 + 3

p

)
+O

(√
X logX

)
.

Proof. To ease notation, we will denote N =
√
X/

(
c2µ+α+β

)
. Then,

T (δ, ε, µ, α, β) =
∑

m′1m
′
2m
′
36N

m′i≡εi mod 4

µ2(m′1m′2m′3).
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We first remove the congruence condition by applying the character sum

1{m′i≡εi mod 4} = 1
2

∑
νi∈{1,2}

χνi(m′iεi),

where χ is the non-principal character mod 4. Then,

T (δ, ε, µ, α, β) = 1
8

∑
m′1m

′
2m
′
36N

µ2(m′1m′2m′3)
∑

ν∈{1,2}3

∏
i∈{1,2,3}

χνi(m′iεi)

= 1
8

∑
ν∈{1,2}3

∏
i

χνi(εi)
∑

m′1m
′
2m
′
36N

µ2(m′1m′2m′3)
∏
i

χνi(m′i).

We investigate∑
n6N

an :=
∑
n6N

µ2(n)
∑

m1m2m3=n
χν1(m1)χν2(m2)χν3(m3)

by looking at the associated Dirichlet series

F (s) :=
∑
n

an
ns
.

Comparing this to the product of the L-functions associated to χνi we
introduce

G(s) := F (s)
3∏
i=1

L(χνi , s)−1,

where L(χ2, s) =
(
1− 1

2s
)
ζ(s). For example, when νi = 2 for all i we have

G(s) =
(

1− 1
2s
)3 (

1 + 3
2s
)−1∏

p

(
1 + 3

ps

)(
1− 1

ps

)3
.

For any νi, the Euler product G(s) is absolutely convergent for Re(s) > 1
2

and in this region G(s) � 1. The L-function associated to χ is entire and
in the region 1

2 < σ 6 1, we have

L(χ, σ + it)�ε |t|
1−σ

2 ,

see for example [8, 5.20]. Therefore the Dirichlet series F (s) satisfies the
conditions of the Selberg–Delange theorem [9, II.5.2, Theorem 5.2]. When
νi = 2 for all i, the L-functions each correspond to a copy of ζ(s) and
therefore the sum has order of magnitude N log2N . In each other case,
there are at most 2 copies of ζ(s) and hence the contribution is O (N logN) .
We conclude that ∑

n6N

an = CN log2N +O(N logN),
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where

C =
(1− 1

2)−3

Γ(3) G(1) = 1
5
∏
p

(
1 + 3

p

)(
1− 1

p

)3
. �

All that’s left is to apply the definition of cδ,ε,µ,α,β in each case and find
that ∑

δ∈{±1}2

∑
µ+α+β∈{0,1}

∑
ε∈{±1}3

1
cδ,ε,µ,α,β2µ+α+β = 23.

4. Proof of Theorem 1.2

Similarly to the previous section, we start by making the change of vari-
ables

(4.1) m1 = 2µm′1, m2 = δ22αm′2 and m3 = δ32βm′3,

where µ2(2m′1m′2m′3) = 1 and µ, β, α ∈ Z>0 such that µ + α + β 6 1.
We saw in Section 2 that when counting Hasse norm principle failure it is
important to keep track of the residue class of (m′1,m′2,m′3) mod 8 rather
than just mod 4 as in Section 3. Recall from Section 2 that if the congruence
classes of m1,m2 and m3 mod 4 are all distinct then K always satisfies the
Hasse norm principle. Moreover if exactly two of them are congruent mod 4
then we require that these two are in fact congruent mod 8 to ensure Hasse
norm principle failure. Hence we restrict our attention to such classes which
we denote E(µ, α, β). Specifically

E(0) = E1(0) ∪ E2(0),

where

E1(0) := {ε ∈ ((Z/8Z)×)3 : ε1 ≡ ε2 ≡ ε3 mod 4};

E2(0) :=
⋃
i,j,k

pairwise distinct

{ε ∈ ((Z/8Z)×)3 : εi = εj ≡ −εk mod 4},

and

E(1, 0, 0) = {ε ∈ ((Z/8Z)×)3 : ε2 = ε3};
E(0, 1, 0) = {ε ∈ ((Z/8Z)×)3 : ε1 = ε3};
E(0, 0, 1) = {ε ∈ ((Z/8Z)×)3 : ε1 = ε2}.

Analogously to Section 3, we define the constants cδ,ε,µ,α,β to account for
the different discriminants in each case by setting

cδ,ε,µ,α,β =
{

1 if (ε1, δ2ε2, δ3ε3) ∈ E1(0) and µ = 0 = α = β

4 otherwise.
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Then

(4.2) S̃(X) = 1
6

∑
(δ2,δ3)∈{±1}2

∑
µ+α+β∈{0,1}
µ,α,β∈{0,1}

∑
(ε1,δ2ε2,δ3ε3)∈E(µ,α,β)̃

T (δ, ε, µ, α, β),

where T̃ (δ, ε, µ, α, β) counts the number of tuples (m′1,m′2,m′3) ∈ N3 such
that the following all hold:

(1) µ2(m′1m′2m′3) = 1,
(2) (m′1,m′2,m′3) ≡ ε mod 8,
(3) 2µ+α+βcδ,ε,µ,α,βm

′
1m
′
2m
′
3 6
√
X,

(4) (m′1,m′2,m′3) satisfies the local conditions for Hasse norm principle
failure in Lemma 2.1.

Observe that condition (4) can be detected by the following indicator
function∏

p|m′1

1
2

(
1 +

(
m2m3
p

)) ∏
p|m′2

1
2

(
1 +

(
m1m3
p

)) ∏
p|m′3

1
2

(
1 +

(
m1m2
p

))
.

WritingM =
√
X

2µ+α+βcδ,ε,µ,α,β
this means that we may express T̃ (δ, ε, µ, α, β)

as ∑
m′1m

′
2m
′
36M

m′i≡εi mod 8

µ2(m′1m′2m′3)
τ(m′1m′2m′3)

∏
p

(
1 +

(
m1m2
p

))(
1 +

(
m2m3
p

))(
1 +

(
m3m1
p

))
,

where the product runs over primes that divide m′1m′2m′3. By expanding
out the product, we clearly have

T̃ (δ, ε, µ, α, β) =
∑

m′1m
′
2m
′
36M

m′i≡εi mod 8
m′i=kik̃i

µ2(m′1m′2m′3)
τ(m′1m′2m′3)

(
m1m2
k3

)(
m2m3
k1

)(
m3m1
k2

)
.

Recalling (4.1), we see that(
m1m2
k3

)
=
(

2µ+αk1k2k̃1k̃2
k3

)
,(

m2m3
k1

)
=
(

2α+βk2k3k̃2k̃3
k1

)
,(

m3m1
k2

)
=
(

2µ+βk1k3k̃1k̃3
k2

)
.
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We may now repeatedly apply the law of quadratic reciprocity to con-
clude

(4.3) T̃ (δ, ε, µ, α, β) =
∑

m′1m
′
2m
′
36M

m′i≡εi mod 8
m′i=kik̃i

u(k)µ
2(m′1m′2m′3)
τ(m′1m′2m′3)

(
k̃1
k2k3

)(
k̃2
k3k1

)(
k̃3
k1k2

)
,

where u(k) = (−1)ν(k1)ν(k2)+ν(k2)ν(k3)+ν(k3)ν(k1)( 2µ
k2k3

)(2αδ2
k3k1

)(2βδ3
k1k2

)
. Here ν(b)

is defined to be 0 if b ≡ 1 mod 4 and 1 otherwise, for any odd integer b.
These character sums are strongly reminiscent of the ones studied by

Friedlander and Iwaniec in [6], and we will follow their approach to evaluate
them, making use of the following results.
Lemma 4.1. If q = q1q2 where (q1, q2) = 1, (ad, q) = 1 and χ2 is a non-
principal character modulo q2. Then for any C > 0 we have∑

n6x
(n,d)=1

n≡amod q1

µ2(n)χ2(n)
τ(n) �C τ(d)qx(log x)−C .

Proof. This is the error term in [6, Corollary 2]. �

Lemma 4.2. Let αm, βn be any complex numbers supported on odd integers
with modulus bounded by one. Then∑∑

m,n>V
mn6X

αmβn

(
m

n

)
� XV −

1
6 (logX)

7
6 .

Proof. We break the range of summation into dyadic intervals and then
apply [6, Lemma 2] in each interval. Thus∣∣∣∣∣∣∣∣

∑∑
m,n>V
mn6X

αmβn

(
m

n

)∣∣∣∣∣∣∣∣ 6
∑∑
2i,2j>V
2i+j6X

∣∣∣∣∣∣
∑

2i<m62i+1

∑
2j<n62j+1

αmβn

(
m

n

)∣∣∣∣∣∣
�
∑∑
2i,2j>V
2i+j6X

2i+j(2−
i
6 + 2−

j
6 )(i+ j)

7
6

� (logX)
7
6
∑∑
2i,2j>V
2i+j6X

2i+
5j
6

= (logX)
7
6

∑
V 62i6X/V

2i
∑

V 62j6X/2i
2

5j
6

� XV −
1
6 (logX)

7
6 . �
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The estimate in Lemma 4.1 is only useful when the modulus of the char-
acter in our sum is smaller than a power of logX. Set

V = (logX)B,

for a large constant parameter B at our disposal. The moduli of the charac-
ters involved in (4.3) can either be thought of as being the ki or the k̃i. We
get a main term contribution from Lemma 4.1 in the ranges where each of
the three characters has small modulus, hence there are three possibilities:

(1) ki 6 V for all i.
(2) k̃i 6 V for all i.
(3) k̃i, k̃j , ki, kj 6 V for some choice of i 6= j.

In every other case, we have ki, k̃j > V for some i 6= j and we can apply
Lemma 4.2 to exploit cancellation in the

(k̃i
kj

)
term and get a negligible

contribution. To illustrate this, suppose that k2, k̃1 > V . Then we can
apply Lemma 4.2 to the factor

(k̃1
k2

)
in (4.3). Let

f1(k̃1) = 1{ k̃1≡ε1k1 mod 8
(k̃1,2k1k̃2k3k̃3)=1

}µ2(k̃1)
τ(k̃1)

(
k̃1
k3

)

f2(k2) = 1{ k2≡ε2k̃2 mod 8
(k2,2k1k̃2k3k̃3)=1

}µ2(k2)
τ(k2)

(
k̃3
k2

)
.

Then the k2, k̃1 sum is given by

∑
k2,k̃1>V

k2k̃16
√
X

k1k̃3k3k̃2

f1(k̃1)f2(k2)u(k)
(
k̃1
k2

)
�
√
XV −

1
6 (logX)

7
6

1
k̃2k1k3k̃3

.

When summed trivially over the remaining variables, this leads to a con-
tribution of

�
√
XV −

1
6 (logX)

19
6 .

Of course, this bound applies for all ranges ki, k̃j > V where i 6= j.
From here on out then we will restrict to the three different ranges men-

tioned above. First, consider the range k̃i 6 V for i = 1, 2, 3 and fix k1, k̃1, k̃2
and k̃3. In order to evaluate T̃ (δ, ε, µ, α, β) we need to look at

Tk1,k̃1,k̃2,k̃3
=

∑∑
k2k36M/m′1k̃2k̃3

ki≡εik̃i mod 8 for i=2,3
(k2k3,2m′1k̃2k̃3)=1

µ2(k2k3)
τ(k2k3)

(
k̃3
k2

)(
k̃2
k3

)(
k̃1
k2k3

)
u(k),
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then compute the sum

(4.4)
∑∑∑
k1k̃1k̃2k̃36M

k̃i6V
m′1≡ε1 mod 8

µ2(2m′1k̃2k̃3)
τ(m′1k̃2k̃3)

(
k̃2k̃3
k1

)
Tk1,k̃1,k̃2,k̃3

.

Note here that we can pull u(k) out of the expression for Tk1,k̃1,k̃2,k̃3
. Indeed,

ν(x) only depends on the residue class of x mod 4, and
(2
x

)
is determined

by the residue class of x mod 8. Therefore
u(k) = u(ε1k̃1, ε2k̃2, ε3k̃3).

Analogously in the range ki 6 V for i = 1, 2, 3, we need to evaluate

(4.5)
∑∑∑
k̃1k1k2k36M

ki6V
m′1≡ε1 mod 8

µ2(2m′1k2k3)
τ(m′1k2k3)

(
k̃1
k2k3

)
T ′
k̃1,k1,k2,k3

,

where

T ′
k̃1,k1,k2,k3

=
∑∑

k̃2k̃36M/m′1k2k3
ki≡εik̃i mod 8 for i=2,3

(k̃2k̃3,2m′1k2k3)=1

µ2(k̃2k̃3)
τ(k̃2k̃3)

(
k̃3
k2

)(
k̃2
k3

)(
k̃2k̃3
k1

)
u(k).

Our approach will be to use Lemma 4.1 to handle the contribution to the
sums Tk1,k̃1,k̃2,k̃3

and T ′
k̃1,k1,k2,k3

arising from non-principal characters, then
compute the main terms where each character is principal. In the latter
range, the reciprocity factor in the main term is u(1, 1, 1) = 1. However in
the former, we have the term u(ε) which when summed over all possible ε
will lead to cancellation (c.f. Lemma 4.6).

Finally, we consider the third type of range. Suppose k2, k3, k̃2, k̃3 6 V
then we will fix all four of these variables and evaluate

T ′′
k2,k̃2,k3,k̃3

=
∑∑

k1k̃16M/m′2m
′
3

k1≡ε1k̃1 mod 8
(k1k̃1,2m′2m′3)=1

u(k)µ
2(k1k̃1)
τ(k1k̃1)

(
k̃2k̃3
k1

)(
k̃1
k2k3

)
,

then compute ∑
k2k̃2k3k̃36min{M,V }
ki≡εik̃i for i=2,3

µ2(k2k̃2k3k̃3)
τ(k2k̃2k3k̃3)

(
k̃2
k3

)(
k̃3
k2

)
T ′′
k2,k̃2,k3,k̃3

.

Before attempting to evaluate T ′′
k2,k̃2,k3,k̃3

, we wish to remove the u(k)
term as in the other ranges. However this is marginally more complicated
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than in the other cases. For fixed k2 and k3, we may think of u(k) as a
character on k1. Our main term contribution will occur when this character
is principal, in particular this requires k2 = k3 = 1. In that case

u(k1, 1, 1) =
(
δ2δ32α+β

k1

)
.

Hence one will only get a main term contribution when k2 = k3 = k̃2 =
k̃3 = 1 and δ2δ32α+β = 1. This gives a further constraint on the outer sum
over δ, µ, α and β. The following lemma deals with the first two types of
ranges.

Lemma 4.3. If k̃i 6 V for i = 1, 2, 3 then for any C > 0, we have

Tk1,k̃1,k̃2,k̃3
= δk̃1=k̃2=k̃3=1

u(ε)M
4k1π2

∏
p|k1

(
1 + 1

p

)−1
1 +O

τ(k1)

√
k1
M


+OC(MV 2 log V (logM)−C).

Analogously, if ki 6 V for i = 1, 2, 3 then for any C > 0,

T ′
k̃1,k1,k2,k3

= δk1=k2=k3=1
u(1, 1, 1)M

4k̃1π2

∏
p|k̃1

(
1 + 1

p

)−1
1 +O

τ(k̃1)

√
k̃1
M


+OC(

√
MV 2 log V (logM)−C).

Here by δk̃1=k̃2=k̃3=1 we simply mean the function that is 1 when all
k̃i = 0 and 0 otherwise. Hence, as expected, our main term corresponds to
the case when all characters are principal. The final set of ranges is dealt
with by the next lemma.

Lemma 4.4. If k2, k̃2, k3, k̃3 6 V then for any C > 0, we have

T ′′
k2,k̃2,k3,k̃3

= δk2=k̃2=k3=k̃3=δ2δ32α+β=1
M

π2

{
1 +O

( 1√
M

)}
+OC(

√
MV 2(log V )2(logM)−C).

The ranges k1, k̃1, k2, k̃2 6 V and k1, k̃1, k3, k̃3 6 V are analagous.

The proof of this follows the proof of Lemma 4.3. Observe that these
ranges differ from those in Lemma 4.3 since in those there is a final variable
(k1 and k̃1 respectively) that needn’t be made 1 in our main term. In
performing the sum over this last variable we pick up a factor of

√
logX

which is absent in the ranges considered in Lemma 4.4 hence these ranges
give a smaller contribution.

Proof of Lemma 4.3. We will focus on the case when k̃i 6 V . The other
case follows the same argument.



Hasse Norm Principle in Biquadratics 959

The first step will be to remove the congruence conditions on k2 and k3
by using a sum of characters mod 8. Performing this and re-arranging, we
may write Tk1,k̃1,k̃2,k̃3

as

u(εk̃)
16

∑
χi mod 8

χ1(ε2)χ2(ε3)S,

where
u(εk̃) = u(ε1k̃1, ε2k̃2, ε3k̃3)

and

S =
∑

k2k36M/k1k̃1k̃2k̃3
(k2k3,2m′1k̃2k̃3)=1

µ2(k2k3)
τ(k2k3)

(
k̃2
k3

)(
k̃3
k2

)(
k̃1
k2k3

)
χ1(k2)χ2(k3).

We gather together the two characters on k2,k3 into new characters labelled
χ̃i. If either of these characters is non-principal then we can use Lemma 4.1
to get a bound. Suppose that χ̃2 is non-principal. Then for any C > 0, the
total sum is bounded by

� τ(m′1k̃2k̃3) M

k1k̃3
(logM/k̃1k̃2k̃3)−C

∑
k26M/k̃1k̃2k̃3

µ2(k2)
k2
|χ̃1(k2)|

� τ(m′1k̃2k̃3) M

k1k̃3
(logM/k̃1k̃2k̃3)1−C .

When summed trivially over the remaining variables this gives an error
term of size

�
√
XV 2 log V (logX)2−C .

This bound is definitely not best possible, but all that matters is we have
an arbitrary log power saving over our main term.

We turn now to estimating the main term which is given by

u(ε)
16

∑
k2k36M/k1

(k2k3,2k1)=1

µ2(k2k3)
τ(k2k3) = u(ε)

16
∑

n6M/k1
(n,2k1)=1

µ2(n)
τ(n)

∑
n=k2k3

1

= u(ε)
16

∑
n6M/k1

(n,2k1)=1

µ2(n).

The lemma now immediately follows from the simple identity∑
x6X

(x,d)=1

µ2(x) = 6
π2X

∏
p|d

(
1 + 1

p

)−1
+O

(
τ(d)
√
X
)
. �
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We now sketch the proof of Lemma 4.4 although it follows very similar
lines to the above.

Proof of Lemma 4.4. We again perform a character sum mod 8 to express
the congruence condition in the definition of T ′′

k2,k̃2,k3,k̃3
. After re-arranging

this means we can express T ′′
k2,k̃2,k3,k̃3

as

1
4
∑

χmod 8
χ(ε1)

∑
k1k̃16M/k2k3k̃2k̃3

(k1k̃1,2k2k̃2k3k̃3)=1

u(k)µ2(k1k̃1)
τ(k1k̃1)

(
k̃2k̃3
k1

)(
k2k3

k̃1

)
χ(k1)χ(k̃1).

As noted before, we may think of u(k) as a character on k1 which can be
combined with the other characters to form a new one, called χ̃1. Similarly,
the characters on k̃1 may be combined to form the new character χ̃2. The
error term contribution when either of these new characters is non-principal
may again be computed using Lemma 4.1 and it remains to compute the
main term

1
4

∑
k1k̃16M
k1,k̃1 odd

µ2(k1k̃1)
τ(k1k̃1)

.

This is treated exactly as in the earlier proof. �

Finally, to estimate (4.4) we must compute

(4.6) Mu(ε)
4π2

∑
k16M

k1≡ε1 mod 8

µ2(k1)
k1τ(k1)

∏
p|k1

(
1 + 1

p

)−1
.

We again remove the congruence condition with a character sum, we’ll first
deal with the non-principal characters. We write the sum involving non-
principal character χ as∑

k16M

µ2(k1)χ(k1)
k1τ(k1)

∏
p|k1

(
1 + 1

p

)−1
=

∑
k16M

µ2(k1)χ(k1)
k1τ(k1)

∑
d|k

µ(d)f(d),

where f(d) =
∏
p|d

1
p+1 . Then we may re-arrange the sum to
∑
d6M

µ(d)χ(d)f(d)
dτ(d)

∑
k6M/d
(k,d)=1

µ2(k)χ(k)
kτ(k) .

For any C > 0, it follows from Lemma 4.1 (via partial summation) that
the inner sum above is � τ(d)(logM)−C , while the remaining d sum con-
tributes� logM . We employ the following general estimate of Friedlander–
Iwaniec [5, Theorem A.5] to compute the main term arising from the prin-
cipal character.
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Lemma 4.5. Suppose g is a multiplicative function supported on squarefree
integers such that for some κ > −1

2 the following hold:
(1)

∑
p6x g(p) log p = κ log x+O(1),

(2)
∏
w6p<z (1 + |g(p)|)�

(
log z
logw

)|κ|
,

(3)
∑
p g(p)2 log p <∞.

Then we have∑
n6x

g(n) = (log x)κ

Γ(κ+ 1)
∏
p

[(
1− 1

p

)κ
(1 + g(p))

]
+O

(
(log x)|κ|−1

)
.

That

g(n) =

µ2(n)
τ(n)n

∏
p|n

(
1 + 1

p

)−1
if n odd

0 otherwise,
satisfies the assumptions with κ = 1

2 is a simple consequence of Mertens’
theorems. Therefore∑

k16M
k1≡ε1 mod 8

g(k1) =
√

logM
2
√

2π
∏
p>2

(
1− 1

p

)1
2
(
1 + 1

2(p+ 1)

)
+O

(
(logM)−

1
2
)
.

Hence we see that (4.4) is equal to

(4.7) 3u(ε)
28π2√π

M
√

logM
∏
p

(
1− 1

p

) 1
2
(

1 + 1
2p+ 2

)
+O (M) .

Recall that M =
√
X

cδ,ε,µ,α,β2µ+α+β so all that remains is to sum over the
possible values of δ, ε, µ, α and β. The following lemma shows that in the
range where k̃i 6 V for i = 1, 2, 3, the u(ε) factor leads to cancellation in
the main term.

Lemma 4.6. We have∑
δ2,δ3∈{±1}2

∑
µ+α+β∈{0,1}
µ,α,β∈{0,1}

2−(µ+α+β) ∑
(ε1,δ2ε2,δ3ε3)∈E(µ,α,β)

u(ε)
cδ,ε,µ,α,β

= 0.

Proof. We start by observing that(
2µ

ε2ε3

)(
2α

ε1ε3

)(
2β

ε1ε2

)
= 1.

Indeed this is clearly true when µ+α+β = 0. If µ = 1 then by the definition
of E(1, 0, 0) we must have δ2ε2 = δ3ε3 therefore(

2
ε2ε3

)
= 1.
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The other cases follow similarly.
Therefore

u(ε) = (−1)ν(ε1)ν(ε2)+ν(ε3)ν(ε1)+ν(ε2)ν(ε3)
(
δ2
ε1ε3

)(
δ3
ε1ε2

)
= (−1)ν(ε1)ν(ε2)+ν(ε3)ν(ε1)+ν(ε2)ν(ε3)+ν(δ2)ν(ε1ε3)+ν(δ3)ν(ε1ε2)

Now we just run through all possible values of δ2, δ3, ε, µ, α and β and see
what comes out. For simplicity we write ε′ := (ε1, δ2ε2, δ3ε3).

First suppose that (δ2, δ3) = (+1,+1) then

u(ε) = (−1)ν(ε1)ν(ε2)+ν(ε3)ν(ε1)+ν(ε2)ν(ε3).

By Lemma 2.1, we know that at least two components of ε′ must be equal
therefore for some µ ∈ (Z/8Z)× we have

u(ε) = (−1)µ

Hence the sum over these is 0.
Now suppose (δ2, δ3) = (+1,−1) so that

u(ε) = (−1)ν(ε1)ν(ε2)+ν(ε3)ν(ε1)+ν(ε2)ν(ε3)+ν(ε1ε2).

If ε′ ∈ E1(0) then ε1 ≡ ε2 ≡ −ε3 mod 4 so

u(ε) = (−1)ν(ε1).

So again this sums to 0. Next suppose ε′ ∈ E2(0) then one of the following
cases occurs

(1) ε1 = ε2 ≡ −ε3 mod 4 then u(ε) = (−1)ν(ε1)+1.
(2) ε2 = ε3 ≡ −ε1 mod 4 then u(ε) = (−1)ν(ε1)+1.
(3) ε3 = ε1 ≡ −ε2 mod 4 then u(ε) = (−1)ν(ε1).

Each of these cases sums to 0.
If ε′ ∈ E(1, 0, 0) then ε2 = −ε3 so

u(ε) = (−1)ν(ε1)+ν(ε1ε2).

If ε′ ∈ E(0, 1, 0) then ε1 = −ε3 so

u(ε′) = (−1)ν(ε2)+ν(ε1ε2).

If ε′ ∈ E(0, 0, 1) then ε1 = ε2 so

u(ε) = (−1)ν(ε1).

Again, all of these sum to 0. The case where (δ2, δ3) = (−1,+1) is similar.
Finally suppose (δ2, δ3) = (−1,−1), in which case

u(ε) = (−1)ν(ε1)ν(ε2)+ν(ε3)ν(ε1)+ν(ε2)ν(ε3)+ν(ε1ε2)+ν(ε1ε3).

Then for ε′ ∈ E1(0) we have

u(ε) = (−1)ν(−ε1).
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For ε′ ∈ E(1, 0, 0) we must have ε2 = ε3 so

u(ε) = (−1)ν(ε2).

For ε′ ∈ E(0, 1, 0) we must have ε1 = −ε3 so

u(ε) = (−1)ν(ε2)+ν(ε1ε2).

For ε′ ∈ E(0, 0, 1) we must have ε1 = −ε2 so

u(ε) = (−1)ν(ε3)+ν(ε1ε3).

In all of these cases the sum is 0. �

As promised the u term cancels the main term of the sum in this range
so the actual main term must be from the range ki 6 V . Evaluating the
sum T ′

k̃1,k1,k2,k3
is identical to evaluating Tk1,k̃1,k̃2,k̃3

and therefore in analogy
with (4.7), we have that (4.5) is equal to

3
28π2√π

M
√

logM
∏
p

(
1− 1

p

) 1
2
(

1 + 1
2p+ 2

)
+O (M) .

It just remains to compute that∑
δ2,δ3∈{±1}2

∑
µ+α+β∈{0,1}
µ,α,β∈{0,1}

2−(µ+α+β) ∑
(ε1,δ2ε2,δ3ε3)∈E(µ,α,β)

1
cδ,ε,µ,α,β

= 112.

Therefore

S̃(X) =
√

2
π

5
2

√
X logX

∏
p

(
1− 1

p

) 1
2
(

1 + 1
2p+ 2

)
+O

(√
X
)
.

The expression in the statement of Theorem 1.2 is achieved by expressing
a factor of π2

6 as part of the Euler product.
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