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Perturbing Eisenstein polynomials over local fields

par Kevin KEATING

Résumé. Soit K un corps local de caractéristique résiduelle p et soit L/K
une extension séparable finie totalement ramifiée. Soit πL une uniformisante
de L, de polynôme minimal f(X) sur K. Supposons que π̃L est une autre
uniformisante de L telle que π̃L ≡ πL +rπ`+1

L (mod π`+2
L ) pour certains ` ≥ 1

et r ∈ OK . Soit f̃(X) le polynôme minimal de π̃L sur K. Dans cet article nous
donnons des congruences pour les coefficients de f̃(X) en termes de `, r, et
les coefficients de f(X). Ces congruences améliorent le travail de Krasner [8].

Abstract. Let K be a local field whose residue field has characteristic
p and let L/K be a finite separable totally ramified extension. Let πL be
a uniformizer for L and let f(X) be the minimum polynomial for πL over
K. Suppose π̃L is another uniformizer for L such that π̃L ≡ πL + rπ`+1

L

(mod π`+2
L ) for some ` ≥ 1 and r ∈ OK . Let f̃(X) be the minimum polynomial

for π̃L over K. In this paper we give congruences for the coefficients of f̃(X)
in terms of `, r, and the coefficients of f(X). These congruences improve work
of Krasner [8].

1. Introduction
Let K be a field which is complete with respect to a discrete valuation

vK . Let OK be the ring of integers of K and let PK be the maximal ideal
of OK . Assume that the residue field K = OK/PK of K is a perfect field
of characteristic p. Let Ksep be a separable closure of K and let L/K be a
finite totally ramified subextension of Ksep/K. Let πL be a uniformizer for
L and let

f(X) = Xn − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

be the minimum polynomial of πL over K. Let ` ≥ 1, let r ∈ OK , and let
π̃L be another uniformizer for L such that π̃L ≡ πL + rπ`+1

L (mod P`+2
L ).

Let
f̃(X) = Xn − c̃1X

n−1 + · · ·+ (−1)n−1c̃n−1X + (−1)nc̃n
be the minimum polynomial of π̃L over K. In this paper we use the tech-
niques developed in [7] to obtain congruences for the coefficients of f̃(X)
in terms of `, r, and the coefficients of f(X).
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The Hasse–Herbrand function ϕL/K : [−1,∞) → [−1,∞) of L/K is de-
fined in Chapter IV of [10] for finite Galois extensions, and in the appendix
to [1] for finite separable extensions. Krasner [8, p. 157] showed that for
1 ≤ h ≤ n we have c̃h ≡ ch (mod Pκh(`)

K ), where κh(`) = dϕL/K(`) + h
ne. In

Theorem 4.3 we prove that c̃h ≡ ch (mod Pρh(`)
K ) for certain integers ρh(`)

such that ρh(`) ≥ κh(`). Let h be the unique integer such that 1 ≤ h ≤ n
and n divides nϕL/K(`) +h. Krasner [8, p. 157] gave a formula for the con-
gruence class modulo Pκh(`)+1

K of c̃h − ch. In Theorem 4.5 we give similar
formulas for up to vp(n) + 1 values of h.

Heiermann [4] gave formulas which are analogous to the results presented
here. Let S ⊂ OK be the set of Teichmüller representatives for K. Let πK
be a uniformizer for K and let F(X) be the unique power series with coef-
ficients in S such that πK = πnLF(πL). Suppose π̃L is another uniformizer
for L such that π̃L ≡ πL + rπ`+1

L (mod P`+2
L ) for some ` ≥ 1 and r ∈ S.

Let F̃ be the series with coefficients in S such that πK = π̃nLF̃(π̃L). Using
Theorem 4.6 of [4] one can compute some coefficients of F̃ in terms of r
and the coefficients of F .

In Section 2 we recall some facts about symmetric polynomials from [7].
The main focus is on expressing monomial symmetric polynomials in terms
of elementary symmetric polynomials. In Section 3 we define the indices
of inseparability of L/K and some generalizations of the Hasse–Herbrand
function ϕL/K . In Section 4 we prove our main results. In Section 5 we
give some examples which illustrate how the theorems from Section 4 are
applied.

2. Symmetric polynomials and cycle digraphs
Let n ≥ 1, let w ≥ 1, and let µ be a partition of w. We view µ as a

multiset of positive integers such that the sum of the elements of µ is equal
to w. The number of parts of µ is called the length of µ, and is denoted
by |µ|. For µ such that |µ| ≤ n we let mµ(X1, . . . , Xn) be the monomial
symmetric polynomial in n variables associated to µ; see [11, Section 7.3]
for the definition and general facts about monomial symmetric polynomi-
als. For 1 ≤ h ≤ n let eh(X1, . . . , Xn) denote the elementary symmetric
polynomial of degree h in n variables. By the fundamental theorem of sym-
metric polynomials there is a unique polynomial ψµ ∈ Z[X1, . . . , Xn] such
that mµ = ψµ(e1, . . . , en). In this section we use a theorem of Kulikauskas
and Remmel [9] to compute certain coefficients of ψµ.

The formula of Kulikauskas and Remmel can be expressed in terms of
tilings of a certain type of digraph. We say that a directed graph Γ is a cycle
digraph if it is a disjoint union of finitely many directed cycles of length
≥ 1. We denote the vertex set of Γ by V (Γ), and we define the sign of Γ to
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be sgn(Γ) = (−1)w−c, where w = |V (Γ)| and c is the number of cycles that
make up Γ.

Let Γ be a cycle digraph with w ≥ 1 vertices and let λ be a partition of
w. A λ-tiling of Γ is a set S of subgraphs of Γ such that

(1) Each γ ∈ S is a directed path of length ≥ 0.
(2) The collection {V (γ) : γ ∈ S} forms a partition of the set V (Γ).
(3) The multiset {|V (γ)| : γ ∈ S} is equal to λ.

Let µ be another partition of w. A (λ,µ)-tiling of Γ is an ordered pair
(S, T ), where S is a λ-tiling of Γ and T is a µ-tiling of Γ. Let Γ′ be another
cycle digraph with w vertices and let (S′, T ′) be a (λ,µ)-tiling of Γ′. An
isomorphism from (Γ, S, T ) to (Γ′, S′, T ′) is an isomorphism of digraphs
θ : Γ→ Γ′ which carries S onto S′ and T onto T ′. Say that the (λ,µ)-tilings
(S, T ) and (S′, T ′) of Γ are isomorphic if there exists an isomorphism from
(Γ, S, T ) to (Γ, S′, T ′). Say that (S, T ) is an admissible (λ,µ)-tiling of Γ if
(Γ, S, T ) has no nontrivial automorphisms. Let ηλµ(Γ) denote the number
of isomorphism classes of admissible (λ,µ)-tilings of Γ.

Let w ≥ 1 and let λ,µ be partitions of w. Set

(2.1) dλµ = (−1)|λ|+|µ| ·
∑
Γ

sgn(Γ)ηλµ(Γ),

where the sum is over all isomorphism classes of cycle digraphs Γ with w
vertices. Since ηµλ = ηλµ we have dµλ = dλµ. In Theorem 1(ii) of [9],
Kulikauskas and Remmel proved the following:

Theorem 2.1. Let n ≥ 1, let w ≥ 1, and let µ be a partition of w whose
length is ≤ n. Let ψµ be the unique element of Z[X1, . . . , Xn] such that
mµ = ψµ(e1, . . . , en). Then

ψµ(X1, . . . , Xn) =
∑
λ

dλµ ·Xλ1Xλ2 . . . Xλk
,

where the sum is over all partitions λ = {λ1, . . . , λk} of w such that 1 ≤
λi ≤ n for 1 ≤ i ≤ k.

We now recall some formulas from [7] for computing values of ηλµ(Γ).

Proposition 2.2. Let a, b, c, d, w be positive integers such that a 6= c, b 6= d,
and let r, s be nonnegative integers. Let Γ be a directed cycle of length w.

(1) Suppose w = ra = sb+ d. Let λ be the partition of w consisting of
r copies of a, and let µ be the partition of w consisting of s copies
of b and one copy of d. Then ηλµ(Γ) = a.

(2) Suppose w = ra+ c = sb+ d. Let λ be the partition of w consisting
of r copies of a and one copy of c, and let µ be the partition of w
consisting of s copies of b and one copy of d. Then ηλµ(Γ) = w.
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Proof. Statement (1) follows from Proposition 2.5 of [7] if s = 0, and from
Proposition 2.3 of [7] if s ≥ 1. Statement (2) follows from Proposition 2.2
of [7]. �

Using these formulas we can compute dλµ in some cases.

Proposition 2.3. Let a, b, c, d, w be positive integers such that a 6= c and
b 6= d. Let r, s be nonnegative integers such that w = ra + c = sb + d and
a > sb. Let λ be the partition of w consisting of r copies of a and 1 copy
of c, and let µ be the partition of w consisting of s copies of b and 1 copy
of d. Then

dλµ =
{

(−1)r+s+w+1w if b - c or sb < c,

(−1)r+s+w+1(w − ab) if b | c and sb ≥ c.

Proof. Let Γ be a cycle digraph which has an admissible (λ,µ)-tiling. Sup-
pose Γ consists of a single cycle of length w. Then by Proposition 2.2(2)
we have ηλµ(Γ) = w. Suppose Γ has more than one cycle. Since Γ has a
µ-tiling, Γ has a cycle Γ1 such that |V (Γ1)| ≤ sb. Since a > sb and Γ has a
λ-tiling, it follows that |V (Γ1)| = c = mb for some m such that 1 ≤ m ≤ s.
Hence if Γ has more than one cycle we must have b | c and c ≤ sb. Let λ1 be
the partition of c consisting of one copy of c and let µ1 be the partition of c
consisting of m copies of b. Then every λ-tiling of Γ restricts to a λ1-tiling
of Γ1, and every µ-tiling of Γ restricts to a µ1-tiling of Γ1. It follows from
Proposition 2.2(1) that ηλ1µ1(Γ1) = b.

Let Γ2 be another cycle of Γ. Since Γ has a λ-tiling, |V (Γ2)| ≥ a > sb.
Hence every µ-tiling of Γ restricts to a tiling of Γ2 which includes a path
δ with |V (δ)| = d. Since µ has only one part equal to d, it follows that
Γ = Γ1 ∪ Γ2. Therefore we have |V (Γ2)| = ra = (s −m)b + d. Let λ2 be
the partition of ra consisting of r copies of a and let µ2 be the partition of
(s−m)b+d = ra consisting of s−m copies of b and 1 copy of d. Then every
λ-tiling of Γ restricts to a λ2-tiling of Γ2, and every µ-tiling of Γ restricts
to a µ2-tiling of Γ2. It follows from Proposition 2.2(1) that ηλ2µ2(Γ2) = a.
Hence

ηλµ(Γ) = ηλ1µ1(Γ1) · ηλ2µ2(Γ2) = ba.

Suppose b - c or c > sb. Then it follows from the above that the only
cycle digraph which has a (λ,µ)-tiling consists of a single cycle of length
w. Hence by (2.1) we get

dλµ = (−1)(r+1)+(s+1) · (−1)w−1w.

Suppose b | c and sb ≥ c. Then c = mb with 1 ≤ m ≤ s. Hence there are
two cycle digraphs which have a (λ,µ)-tiling: a single cycle of length w,
and the union of two cycles with lengths c = mb and ra = (s −m)b + d.
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Therefore by (2.1) we get

dλµ = (−1)(r+1)+(s+1)((−1)w−1w + (−1)w−2ab).
Hence the formula for dλµ given in the theorem holds in both cases. �

We recall some results from [7] regarding the p-adic properties of the
coefficients dλµ. Let w ≥ 1 and let λ be a partition of w. For k ≥ 1 let k ∗λ
be the partition of kw which is the multiset sum of k copies of λ, and let
k · λ be the partition of kw obtained by multiplying the parts of λ by k.

Proposition 2.4. Let t ≥ j ≥ 0, let w′ ≥ 1, and set w = w′pt. Let λ′ be a
partition of w′ and set λ = pt ·λ′. Let µ be a partition of w such that there
does not exist a partition µ′ with µ = pj+1 ∗ µ′. Then pt−j divides dλµ.

Proof. This is proved in Corollary 3.4 of [7]. �

Proposition 2.5. Let w′ ≥ 1, j ≥ 1, and t ≥ 0. Let λ′, µ′ be partitions
of w′ such that the parts of λ′ are all divisible by pt. Set w = w′pj, so
that λ = pj · λ′ and µ = pj ∗ µ′ are partitions of w. Then dλµ ≡ dλ′µ′

(mod pt+1).

Proof. This is proved in Proposition 3.5 of [7]. �

3. Indices of inseparability
Let L/K be a totally ramified extension of degree n = upν , with p - u.

Let πL be a uniformizer for L whose minimum polynomial over K is
f(X) = Xn − c1X

n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn.
For k ∈ Z define vp(k) = min{vp(k), ν}. For 0 ≤ j ≤ ν set

(3.1)
iπL
j = min{nvK(ch)− h : 1 ≤ h ≤ n, vp(h) ≤ j}

= min{vL(chπn−hL ) : 1 ≤ h ≤ n, vp(h) ≤ j} − n.

Then iπL
j is either a nonnegative integer or ∞; if char(K) = p then iπL

j

must be finite, since L/K is separable. Let eL = vL(p) denote the absolute
ramification index of L. We define the jth index of inseparability of L/K
to be
(3.2) ij = min{iπL

j′ + (j′ − j)eL : j ≤ j′ ≤ ν}.

By Proposition 3.12 and Theorem 7.1 of [4], ij does not depend on the
choice of πL. Furthermore, our definition of ij agrees with Definition 7.3
in [4]; for the characteristic-p case see also [2, p. 232–233] and [3, Section 2].
Write ij = Ajn− bj with 1 ≤ bj ≤ n.

Remark 3.1. If iπL
j is finite we can write iπL

j = ajn−bj with aj ≥ 1 (see [7,
Section 4]). Thus if ij = iπL

j′ + (j′ − j)eL then Aj = aj′ + (j′ − j)eK .
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The following facts are easy consequences of the definitions:
(1) 0 = iν < iν−1 ≤ . . . ≤ i1 ≤ i0 <∞.
(2) If char(K) = p then ij = iπL

j .
(3) Let m = vp(ij). If m ≤ j then ij = im = iπL

j = iπL
m . If m > j then

char(K) = 0 and ij = iπL
m + (m− j)eL.

Following [4, (4.4)], for 0 ≤ j ≤ ν we define functions ϕ̃j : [0,∞) →
[0,∞) by ϕ̃j(x) = ij + pjx. The generalized Hasse–Herbrand functions
ϕj : [0,∞)→ [0,∞) are then defined by
(3.3) ϕj(x) = min{ϕ̃j0(x) : 0 ≤ j0 ≤ j}.
It follows that ϕj(x) ≤ ϕj′(x) for 0 ≤ j′ ≤ j. By Corollary 6.11 of [4] we
have ϕν(x) = nϕL/K(x) for all x ≥ 0.

For a partition λ = {λ1, . . . , λk} whose parts satisfy 1 ≤ λi ≤ n define
cλ = cλ1cλ2 . . . cλk

. The following is proved in Proposition 4.2 of [7].

Proposition 3.2. Let w ≥ 1 and let λ = {λ1, . . . , λk} be a partition of
w whose parts satisfy 1 ≤ λi ≤ n. Choose q to minimize vp(λq) and set
t = vp(λq). Then vL(cλ) ≥ iπL

t + w. If vL(cλ) = iπL
t + w and iπL

t <∞ then
λq = bt and λi = bν = n for all i 6= q.

4. Perturbing πL
In this section we prove our main theorems. We begin by applying the

results of Section 2 to the totally ramified extension L/K. Write [L : K] =
n = upν with p - u. Let πL, π̃L be uniformizers for L, with minimum
polynomials over K given by

f(X) = Xn − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

f̃(X) = Xn − c̃1X
n−1 + · · ·+ (−1)n−1c̃n−1X + (−1)nc̃n.

Let 1 ≤ h ≤ n and set j = vp(h). Define a function ρh : N→ N by

ρh(`) =
⌈
ϕj(`) + h

n

⌉
.

Let ` ≥ 1. We say f̃ ∼` f if c̃h ≡ ch (mod Pρh(`)
K ) for 1 ≤ h ≤ n. Thus ∼`

is an equivalence relation on the set of minimum polynomials over K for
uniformizers of L.

Let σ1, . . . , σn be the K-embeddings of L into Ksep. For each partition
µ of length ≤ n define Mµ : L→ K by

Mµ(α) = mµ(σ1(α), . . . , σn(α)).
For 1 ≤ h ≤ n define Eh : L→ K by

Eh(α) = eh(σ1(α), . . . , σn(α)).
Then ch = Eh(πL) and c̃h = Eh(π̃L).
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Proposition 4.1. Let ϕ(X) = r1X + r2X
2 + · · · be a power series with

coefficients in OK such that π̃L = ϕ(πL). Then for 1 ≤ h ≤ n we have

Eh(π̃L) =
∑
µ

rµ1rµ2 . . . rµh
Mµ(πL),

where the sum ranges over all partitions µ = {µ1, . . . , µh} of length h.

Proof. This is a special case of Proposition 4.4 in [7]. �

Proposition 4.2. Let n ≥ 1, let w ≥ 1, and let µ be a partition of w whose
length is ≤ n. Then

Mµ(πL) =
∑
λ

dλµcλ,

where the sum is over all partitions λ = {λ1, . . . , λk} of w such that 1 ≤
λi ≤ n for 1 ≤ i ≤ k.

Proof. This follows from Theorem 2.1 by setting Xi = Ei(πL) = ci. �

Let ` ≥ 1. Our first main result gives congruences between the coeffi-
cients of f(X) and the coefficients of f̃(X) under the assumption π̃L ≡ πL
(mod P`+1

L ).

Theorem 4.3. Let πL, π̃L be uniformizers for L and let f(X), f̃(X) be
the minimum polynomials for πL, π̃L over K. Suppose there are ` ≥ 1 and
σ ∈ AutK(L) such that σ(π̃L) ≡ πL (mod P`+1

L ). Then f̃ ∼` f .

Proof. We first show that the theorem holds in the case where π̃L = πL +
rπ`+1

L , with r ∈ OK . Let 1 ≤ h ≤ n and set j = vp(h). For 0 ≤ s ≤ h let
µs be the partition of `s+ h consisting of h− s copies of 1 and s copies of
`+ 1. Then by Proposition 4.1 we have

(4.1) c̃h = Eh(π̃L) =
h∑
s=0

Mµs
(πL)rs = ch +

h∑
s=1

Mµs
(πL)rs.

To prove that c̃h ≡ ch (mod Pρh(`)
K ) it suffices to show that vK(Mµs

(πL)) ≥
ρh(`) for 1 ≤ s ≤ h. Therefore by Proposition 4.2 it suffices to show
vL(dλµs

cλ) ≥ ϕj(`) + h for all 1 ≤ s ≤ h and all partitions λ of `s + h
whose parts are at most n.

Let 1 ≤ s ≤ h and set m = min{j, vp(s)}. Then m ≤ j and s ≥ pm. Let
λ = {λ1, . . . , λk} be a partition of `s+h such that 1 ≤ λi ≤ n for 1 ≤ i ≤ k.
Choose q to minimize vp(λq) and set t = vp(λq). By Proposition 3.2 we
have vL(cλ) ≥ iπL

t + `s + h. Suppose m < t. Then m < ν, so we have
pm+1 - gcd(h − s, s). Hence by Proposition 2.4 we get vp(dλµs

) ≥ t − m.
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Thus

vL(dλµs
cλ) = vL(dλµs

) + vL(cλ)
≥ (t−m)vL(p) + iπL

t + `s+ h

≥ im + `pm + h.

Suppose m ≥ t. Then

vL(dλµs
cλ) ≥ vL(cλ)
≥ iπL

t + `s+ h

≥ it + `pm + h

≥ im + `pm + h.

In both cases we get

vL(dλµs
cλ) ≥ ϕ̃m(`) + h ≥ ϕj(`) + h,

and hence c̃h ≡ ch (mod Pρh(`)
K ). Since this holds for 1 ≤ h ≤ n we get

f̃ ∼` f .
We now prove the general case. Since f̃ is the minimum polynomial

of σ(π̃L) over K we may assume without loss of generality that π̃L ≡
πL (mod P`+1

L ). By repeated application of the special case above we get
a sequence π(0)

L = πL, π
(1)
L , π

(2)
L , . . . of uniformizers for L with minimum

polynomials f (0) = f, f (1), f (2), . . . such that for all i ≥ 0 we have π(i)
L ≡

π̃L (mod P`+i+1
L ) and f (i+1) ∼`+i f (i). It follows that f (i+1) ∼` f (i), and

hence that f (i) ∼` f for all i ≥ 0. Since the sequence (f (i)) converges
coefficientwise to f̃ it follows that f̃ ∼` f . �

Recall that the Hasse–Herbrand function ϕL/K : [−1,∞) → [−1,∞) is
defined for arbitrary finite separable extensions L/K (see for instance the
appendix to [1]). We say that b ≥ 0 is a lower ramification break of L/K if
ϕ′L/K(b) is undefined. This extends the usual definition of lower ramification
breaks for Galois extensions.

Remark 4.4. It follows from Theorem 4.3 that if σ(π̃L) ≡ πL (mod P`+1
L )

for some σ ∈ AutK(L) then c̃h ≡ ch (mod Pρh(`)
K ) for 1 ≤ h ≤ n. Define

functions κh : N→ N by

κh(`) =
⌈
ϕν(`) + h

n

⌉
.

Krasner [8, p. 157] showed that c̃h ≡ ch (mod Pκh(`)
K ). Since κh(`) ≤ ρh(`)

Krasner’s congruences are in general weaker than the congruences that
follow from Theorem 4.3. If ` is greater than or equal to the largest lower
ramification break of L/K then for 0 ≤ j ≤ ν we have ϕj(`) = ϕν(`), and
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hence κh(`) = ρh(`). Therefore Theorem 4.3 does not improve on Krasner’s
results in these cases.

For certain values of h we get a more refined version of the congruences
given by Theorem 4.3.

Theorem 4.5. Let L/K be a finite totally ramified extension of degree
n = upν . For 0 ≤ m ≤ ν write the mth index of inseparability of L/K in
the form im = Amn − bm with 1 ≤ bm ≤ n. Let πL, π̃L be uniformizers
for L such that there are ` ≥ 1, r ∈ OK , and σ ∈ AutK(L) with σ(π̃L) ≡
πL + rπ`+1

L (mod P`+2
L ). Let 0 ≤ j ≤ ν satisfy vp(ϕj(`)) = j, and let h

be the unique integer such that 1 ≤ h ≤ n and n divides ϕj(`) + h. Set
k = (ϕj(`) + h)/n and h0 = h/pj. Then

c̃h ≡ ch +
∑
m∈Sj

gmc
k−Am
n cbmr

pm (mod Pk+1
K ),

where
Sj = {m : 0 ≤ m ≤ j, ϕj(`) = ϕ̃m(`)}

gm =


(−1)k+`+Am(h0p

j−m + `− upν−m) if bm < h

(−1)k+`+Am(h0p
j−m + `) if h ≤ bm < n

(−1)k+`+Amupν−m if bm = n.

Proof. We first prove that the theorem holds for π̂L = πL + rπ`+1
L . Let

f̂(X) = Xn − ĉ1X
n−1 + · · ·+ (−1)n−1ĉn−1X + (−1)nĉn

be the minimum polynomial for π̂L over K. Let 1 ≤ s ≤ h and let λ be a
partition of `s+h whose parts are at most n. Choose q to minimize vp(λq)
and set t = vp(λq). Recall that µs is the partition of `s+h consisting of h−s
copies of 1 and s copies of `+1. Since vp(h) = vp(ϕj(`)) = j it follows from
the proof of Theorem 4.3 that vK(dλµs

cλ) ≥ k. Suppose vK(dλµs
cλ) = k.

Then the inequalities in the proof of Theorem 4.3 must be equalities. Hence
there is 0 ≤ m ≤ j such that s = pm, vL(cλ) = iπL

t + `pm + h, and
ϕj(`) = ϕ̃m(`).

It follows that m ∈ Sj and λ is a partition of wm, where
wm = `pm + h = ϕ̃m(`)− im + h = ϕj(`) + h− im = (k −Am)n+ bm.

Let κm be the partition of wm consisting of k−Am copies of n and 1 copy of
bm. By Proposition 3.2 we see that λ has at most one element not equal to n.
Therefore λ = κm. Hence cλ = cκm = ck−Am

n cbm and vp(bm) = vp(λq) = t.
Using equation (4.1) and Proposition 4.2 we get

(4.2) ĉh ≡ ch +
∑
m∈Sj

dκmµpm c
k−Am
n cbmr

pm (mod Pk+1
K ).
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Let m ∈ Sj . Since
j = vp(ϕj(`)) = vp(ϕ̃m(`)) = vp(im + `pm)

and m ≤ j we get m ≤ vp(im) = vp(bm). Hence b′m = bm/p
m is an integer.

Let κ′m be the partition of

w′m = (k −Am)upν−m + b′m = h0p
j−m + `

consisting of k − Am copies of upν−m and 1 copy of b′m. Let µ′pm be the
partition of w′m consisting of h0p

j−m − 1 copies of 1 and 1 copy of ` + 1.
Since h ≤ n we have upν−m > h0p

j−m − 1. Hence if b′m 6= upν−m then we
can compute dκ′

mµ
′
pm

using Proposition 2.3.
Suppose bm < h. Then h0p

j−m − 1 ≥ b′m, so by Proposition 2.3 we get

dκ′
mµ

′
pm

= (−1)k+`+Am(h0p
j−m + `− upν−m).

Suppose h ≤ bm < n. Then h0p
j−m − 1 < b′m, so by Proposition 2.3 we get

dκ′
mµ

′
pm

= (−1)k+`+Am(h0p
j−m + `).

Suppose bm = n, so that b′m = upν−m. Since upν−m > h0p
j−m− 1, the only

cycle digraph which admits a (κ′m,µ′pm)-tiling consists of a single cycle Γ
of length w′m. By Proposition 2.2(1) we get ηκ′

mµ
′
pm

(Γ) = upν−m. It then
follows from (2.1) that

dκ′
mµ

′
pm

= (−1)k+`+Amupν−m.

Hence in all three cases we have dκ′
mµ

′
pm

= gm.
Since pt | bm we have pt−m | b′m. Therefore by Proposition 2.5 we get

(4.3) dκmµpm ≡ dκ′
mµ

′
pm

(mod pt−m+1).

Since m ≤ t ≤ ν it follows from (3.2) and (3.1) that

(4.4)

im ≤ iπL
t + (t−m)eL

nAm − bm ≤ nvK(cbm)− bm + (t−m)eL
Am ≤ vK(cbm) + (t−m)eK

k + 1 ≤ k −Am + vK(cbm) + (t−m+ 1)eK .

Using (4.3) and (4.4) we get

dκmµpm c
k−Am
n cbm ≡ dκ′

mµ
′
pm
ck−Am
n cbm (mod Pk+1

K )

≡ gmck−Am
n cbm (mod Pk+1

K ).

Hence by (4.2) the theorem holds when π̃L = π̂L.
We now prove the theorem in the general case. We may assume that

π̃L ≡ πL + rπ`+1
L (mod P`+2

L ).
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It follows that π̃L ≡ π̂L (mod P`+2
L ), so by Theorem 4.3 we get c̃h ≡ ĉh

(mod Pρh(`+1)
K ). Since

ρh(`) =
⌈
ϕj(`) + h

n

⌉
= ϕj(`) + h

n
= k

and ϕj(`+1) > ϕj(`) we get ρh(`+1) > k. Therefore c̃h ≡ ĉh (mod Pk+1
K ),

so the theorem holds for π̃L. �

Remark 4.6. Suppose vp(ϕj(`)) = j′ ≤ j. Then ϕj(`) = ϕj′(`). In par-
ticular, ϕν(`) = ϕj′(`) with j′ = vp(ϕν(`)). Hence if 1 ≤ h ≤ n and n

divides ϕν(`)+h then Theorem 4.5 gives a congruence for c̃h modulo Pk+1
K ,

where k = (ϕν(`) + h)/n. This is the congruence obtained by Krasner [8,
p. 157]. If ` is greater than or equal to the largest lower ramification break
of L/K then ϕj(`) = ϕν(`) for 0 ≤ j ≤ ν. Therefore Theorem 4.5 does not
extend [8] in these cases.

5. Some examples
In this section we give two examples related to the theorems proved in

Section 4. We first apply these theorems to a 3-adic extension of degree 9.

Example 5.1. Let K be a finite extension of the 3-adic field Q3 such that
vK(3) ≥ 2. Let

f(X) = X9 − c1X
8 + · · ·+ c8X − c9

be an Eisenstein polynomial over K such that vK(c2) = vK(c6) = 2,
vK(ch) ≥ 2 for h ∈ {1, 3}, and vK(ch) ≥ 3 for h ∈ {4, 5, 7, 8}. Let πL
be a root of f(X). Then L = K(πL) is a totally ramified extension of K of
degree 9, so we have u = 1, ν = 2. It follows from our assumptions about
the valuations of the coefficients of f(X) that the indices of inseparability
of L/K are i0 = 16, i1 = 12, and i2 = 0. Therefore A0 = 2, A1 = 2, A2 = 1,
and b0 = 2, b1 = 6, b2 = 9. We get the following values for ϕ̃j(`) and ϕj(`):

` ϕ̃0(`) ϕ̃1(`) ϕ̃2(`) ϕ0(`) ϕ1(`) ϕ2(`)
0 16 12 0 16 12 0
1 17 15 9 17 15 9
2 18 18 18 18 18 18
3 19 21 27 19 19 19

Now let π̃L be another uniformizer for L, with minimum polynomial

f̃(X) = X9 − c̃1X
8 + · · ·+ c̃8X − c̃9.
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Suppose π̃L ≡ πL (mod P2
L). Then by Theorem 4.3 we get f̃ ∼1 f . Using

the table above we find that
c̃h ≡ ch (mod P2

K) for h ∈ {1, 3, 9},
c̃h ≡ ch (mod P3

K) for h ∈ {2, 4, 5, 6, 7, 8}.

This is an improvement on [8], which gives c̃h ≡ ch (mod P2
K) for 1 ≤ h ≤ 9.

If π̃L ≡ πL (mod P3
L) we get f̃ ∼2 f , and hence c̃h ≡ ch (mod P3

K) for
1 ≤ h ≤ 9. If π̃L ≡ πL (mod P4

L) we get f̃ ∼3 f , and hence

c̃h ≡ ch (mod P3
K) for 1 ≤ h ≤ 8,

c̃9 ≡ c9 (mod P4
K).

Since the largest lower ramification break of L/K is 2, the congruences we
get for ` ≥ 2 are the same as those in [8].

Suppose π̃L ≡ πL + rπ2
L (mod P3

L), with r ∈ OK . By the table above we
get v3(ϕ0(1)) = 0, v3(ϕ1(1)) = 1, v3(ϕ2(1)) = 2 and S0 = {0}, S1 = {1},
S2 = {2}. The corresponding values of h are 1, 3, 9, and we have h0 = 1,
k = 2 in all three cases. By applying Theorem 4.5 with ` = 1, j = 0, 1, 2 we
get the following congruences:

c̃1 ≡ c1 + (−1)2+1+2(1 + 1)c2r (mod P3
K)

≡ c1 − 2c2r (mod P3
K)

c̃3 ≡ c3 + (−1)2+1+2(1 + 1)c6r
3 (mod P3

K)
≡ c3 − 2c6r

3 (mod P3
K)

c̃9 ≡ c9 + (−1)2+1+1c2
9r

9 (mod P3
K)

≡ c9 + c2
9r

9 (mod P3
K).

Only the congruence for c̃9 follows from [8].
Suppose π̃L ≡ πL + rπ3

L (mod P4
L). Then v3(ϕ2(2)) = 2 and S2 =

{0, 1, 2}, which gives h = 9, h0 = 1, and k = 3. By applying Theorem 4.5
with ` = 2, j = 2 we get the following congruence:

c̃9 ≡ c9 + (−1)3+2+2(9 + 2− 9)c9c2r

+ (−1)3+2+2(3 + 2− 3)c9c6r
3 + (−1)3+2+1c2

9c9r
9 (mod P4

K)
≡ c9 − 2c2c9r − 2c6c9r

3 + c3
9r

9 (mod P4
K).

Suppose π̃L ≡ πL + rπ4
L (mod P5

L). Then v3(ϕ0(3)) = 0 and S0 = {0}, so
we get h = 8, h0 = 8, and k = 3. By applying Theorem 4.5 with ` = 3,
j = 0 we get the following congruence:

c̃8 ≡ c8 + (−1)3+3+2(8 + 3− 9)c9c2r (mod P4
K)

≡ c8 + 2c2c9r (mod P4
K).
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Again, since the largest lower ramification break of L/K is 2, the congru-
ences we get for ` ≥ 2 are the same as those in [8].

One might hope to prove the following converse to Theorem 4.3: If πL,
π̃L are uniformizers for L whose minimum polynomials satisfy f̃ ∼` f , then
there is σ ∈ AutK(L) such that σ(π̃L) ≡ πL (mod P`+1

L ). The example
below shows that this is not necessarily the case:

Example 5.2. Let πL be a root of the Eisenstein polynomial f(X) =
X4 + 6X2 + 4X + 2 over the 2-adic field Q2. Then L = Q2(πL) is a totally
ramified extension of Q2 of degree 4, with indices of inseparability i0 = 5,
i1 = 2, and i2 = 0. We get the following values for ϕ̃j(`) and ϕj(`):

` ϕ̃0(`) ϕ̃1(`) ϕ̃2(`) ϕ0(`) ϕ1(`) ϕ2(`)
0 5 2 0 5 2 0
1 6 4 4 6 4 4
2 7 6 8 7 6 6
3 8 8 12 8 8 8

Set π̃L = πL + π2
L, and let the minimum polynomial for π̃L over Q2 be

f̃(X) = X4 − c̃1X
3 + c̃2X

2 − c̃3X + c̃4.

By Theorem 4.3 we have f̃ ∼1 f , and hence

c̃1 ≡ 0 (mod 4)
c̃2 ≡ 6 (mod 4)
c̃3 ≡ −4 (mod 8)
c̃4 ≡ 2 (mod 4).

Theorem 4.5 gives a refinement of the last congruence:

c̃4 ≡ 2 + (−1)2+1+1(2 + 1− 2) · 22−1 · 6 + (−1)2+1+1 · 22−1 · 2 (mod 8)
≡ 2 (mod 8).

Using this refinement we get f̃ ∼2 f .
Using [5] (see also [6, Table 4.2]) we obtain a list of the degree-4 exten-

sions of Q2. Using the data in this list we find that L/Q2 is not Galois, and
the only quadratic subextension of L/Q2 is M/Q2, where M = Q2(

√
−1).

Hence AutQ2(L) = Gal(L/M). Since the lower ramification breaks of L/Q2
are 1, 3, and the lower ramification break of M/Q2 is 1, the lower ramifica-
tion break of L/M is 3. Hence if σ ∈ AutQ2(L) then σ(π̃L) ≡ π̃L (mod P4

L).
Since π̃L = πL + π2

L we get σ(π̃L) 6≡ πL (mod P3
L).
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