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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 431–448

Extensions of local fields and elementary
symmetric polynomials

par Kevin KEATING

Résumé. SoitK un corps local de caractéristique résiduelle p et soit L/K une
extension séparable finie totalement ramifiée de degré n. Soient σ1, . . . , σn les
K-plongements de L dans une clôture séparable de K. Pour tout 1 ≤ h ≤ n,
soit eh(X1, . . . , Xn) le polynôme symétrique élémentaire en n variables de
degré h, et pour tout α ∈ L, soit Eh(α) = Eh(σ1(α), . . . , σn(α)). Soit PK

l’idéal maximal de l’anneau des entiers de K et soit j = min{vp(h), vp(n)}.
Nous montrons que Eh(Pr

L) ⊂ Pd(ij+hr)/ne
K pour tout r ∈ Z, où ij est l’indice

d’inséparabilité d’ordre j de l’extension L/K. Dans certains cas, nous mon-
trons également que Eh(Pr

L) n’est contenu dans aucune puissance supérieure
de PK .

Abstract. Let K be a local field whose residue field has characteristic p
and let L/K be a finite separable totally ramified extension of degree n. Let
σ1, . . . , σn denote the K-embeddings of L into a separable closure of K. For
1 ≤ h ≤ n let eh(X1, . . . , Xn) denote the hth elementary symmetric polyno-
mial in n variables, and for α ∈ L set Eh(α) = eh(σ1(α), . . . , σn(α)). Let PK

be the maximal ideal of the ring of integers ofK and let j = min{vp(h), vp(n)}.
We show that for r ∈ Z we have Eh(Pr

L) ⊂ Pd(ij+hr)/ne
K , where ij is the jth

index of inseparability of L/K. In certain cases we also show that Eh(Pr
L) is

not contained in any higher power of PK .

1. The problem

Let K be a field which is complete with respect to a discrete valuation
vK . Let OK be the ring of integers of K and let PK be the maximal ideal
of OK . Assume that the residue field K = OK/PK of K is a perfect field
of characteristic p. Let Ksep be a separable closure of K, and let L/K be a
finite totally ramified subextension ofKsep/K of degree n = upν , with p - u.
Let σ1, . . . , σn denote the K-embeddings of L into Ksep. For 1 ≤ h ≤ n
let eh(X1, . . . , Xn) denote the hth elementary symmetric polynomial in n
variables, and define Eh : L→ K by setting Eh(α) = eh(σ1(α), . . . , σn(α))
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for α ∈ L. We are interested in the relation between vL(α) and vK(Eh(α)).
In particular, for r ∈ Z we would like to compute the value of

gh(r) = min{vK(Eh(α)) : α ∈ PrL}.

The following proposition shows that gh(r) is a well-defined integer:

Proposition 1.1. Let L/K be a totally ramified extension of degree n.
Let r ∈ Z and let h satisfy 1 ≤ h ≤ n. Then Eh(PrL) ⊂ Pdhr/neK and
Eh(PrL) 6= {0}.

Proof. For the first claim we observe that if α ∈ PrL then vL(Eh(α)) ≥
hr, and hence vK(Eh(α)) ≥ hr/n. To prove the second claim let πL be a
uniformizer for L and let

f(X) = Xn − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

be the minimum polynomial for πL over K. By Krasner’s lemma [6] there
is D > 1 with the following property: For every Eisenstein polynomial

f̃(X) = Xn − c̃1X
n−1 + · · ·+ (−1)n−1c̃n−1X + (−1)nc̃n

in OK [X] such that c̃i ≡ ci (mod PDK ) for 1 ≤ i ≤ n, there is a root π̃L of
f̃(X) in Ksep such that K(π̃L) = K(πL) = L. By choosing c̃h to be nonzero
we get a uniformizer π̃L for L such that Eh(π̃L) = c̃h 6= 0. Let πK be a
uniformizer for K. Then for t sufficiently large we have πtK π̃L ∈ PrL and

Eh(πtK π̃L) = πhtKEh(π̃L) = πhtK c̃h 6= 0.

Therefore Eh(PrL) 6= {0}. �

Since L/K is totally ramified, for α ∈ L we have

vK(En(α)) = vK(NL/K(α)) = vL(α).

Therefore gn(r) = r for r ∈ Z. The map E1 = TrL/K is also well-understood,
at least when L/K is a Galois extension of degree p (see [8, V §3, Lem. 4]
or [1, III, Prop. 1.4]).

Proposition 1.2. Let L/K be a totally ramified extension of degree n and
let PdL be the different of L/K. Then for every r ∈ Z we have E1(PrL) =
Pb(d+r)/nc
K . Therefore g1(r) = b(d+ r)/nc.

Proof. Since E1(PrL) is a nonzero fractional ideal of K we have E1(PrL) =
PsK for some s ∈ Z. By Proposition 7 in [8, III §3] we have

Pd+r
L ⊂ OL · PsK = PnsL
Pd+r
L 6⊂ OL · Ps+1

K = Pn(s+1)
L .

It follows that ns ≤ d+ r < n(s+ 1), and hence that s = b(d+ r)/nc. �
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In this paper we determine a lower bound for gh(r) which depends on
the indices of inseparability of L/K. When h = pj with 0 ≤ j ≤ ν and K
is large enough we show that gh(r) is equal to this lower bound. This leads
to a formula for gpj (r) which can be expressed in terms of a generalization
of the different of L/K (see Remark 5.4).

In Sections 2 and 3 we prove some preliminary results involving sym-
metric polynomials. The main focus is on expressing monomial symmetric
polynomials in terms of elementary symmetric polynomials. In Section 4 we
prove our lower bound for gh(r). In Section 5 we show that gh(r) is equal
to this lower bound in some special cases.

The author thanks the referee for suggesting improvements to the proofs
of Propositions 1.1 and 3.3.

2. Symmetric polynomials and cycle digraphs

Let n ≥ 1, let w ≥ 1, and let λ be a partition of w. We view λ as a
multiset of positive integers such that the sum Σ(λ) of the elements of λ
is equal to w. The number of parts of λ is called the length of λ, and is
denoted by |λ|. For k ≥ 1 we let k ∗ λ be the partition of kw which is
the multiset sum of k copies of λ, and we let k · λ be the partition of kw
obtained by multiplying the parts of λ by k. If |λ| ≤ n let mλ(X1, . . . , Xn)
be the monomial symmetric polynomial in n variables associated to λ, as
defined for instance in Section 7.3 of [9]. For 1 ≤ h ≤ n let eh(X1, . . . , Xn)
denote the hth elementary symmetric polynomial in n variables.

Let r ≥ 1 and let φ(X) = arX
r + ar+1X

r+1 + · · · be a power series
with generic coefficients ai. Let 1 ≤ h ≤ n and let µ = {µ1, . . . , µh} be
a partition with h parts, all of which are ≥ r. Then for every sequence
t1, . . . , th consisting of h distinct elements of {1, . . . , n}, the coefficient of
Xµ1
t1 X

µ2
t2 . . . Xµh

th
in eh(φ(X1), . . . , φ(Xn)) is equal to aµ := aµ1aµ2 . . . aµh

.
It follows that

(2.1) eh(φ(X1), . . . , φ(Xn)) =
∑
µ

aµmµ(X1, . . . , Xn),

where the sum ranges over all partitions µ with h parts, all of which are
≥ r. By the fundamental theorem of symmetric polynomials there is ψµ ∈
Z[X1, . . . , Xn] such that mµ = ψµ(e1, . . . , en). In this section we use a
theorem of Kulikauskas and Remmel [7] to compute some of the coefficients
of ψµ.

The formula of Kulikauskas and Remmel can be expressed in terms of
tilings of a certain type of digraph. We say that a directed graph Γ is a cycle
digraph if it is a disjoint union of finitely many directed cycles of length
≥ 1. We denote the vertex set of Γ by V (Γ), and we define the sign of Γ to
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be sgn(Γ) = (−1)w−c, where w = |V (Γ)| and c is the number of cycles that
make up Γ.

Let Γ be a cycle digraph with w ≥ 1 vertices and let λ be a partition of
w. A λ-tiling of Γ is a set S of subgraphs of Γ such that:

(1) Each γ ∈ S is a directed path of length ≥ 0.
(2) The collection {V (γ) : γ ∈ S} forms a partition of the set V (Γ).
(3) The multiset {|V (γ)| : γ ∈ S} is equal to λ.

Let µ be another partition of w. A (λ,µ)-tiling of Γ is an ordered pair
(S, T ), where S is a λ-tiling of Γ and T is a µ-tiling of Γ. Let Γ′ be another
cycle digraph with w vertices and let (S′, T ′) be a (λ,µ)-tiling of Γ′. An
isomorphism from (Γ, S, T ) to (Γ′, S′, T ′) is an isomorphism of digraphs
θ : Γ→ Γ′ which carries S onto S′ and T onto T ′. Say that the (λ,µ)-tilings
(S, T ) and (S′, T ′) of Γ are isomorphic if there exists an isomorphism from
(Γ, S, T ) to (Γ, S′, T ′). Say that (S, T ) is an admissible (λ,µ)-tiling of Γ if
(Γ, S, T ) has no nontrivial automorphisms. Let ηλµ(Γ) denote the number
of isomorphism classes of admissible (λ,µ)-tilings of Γ.

Let w ≥ 1 and let λ,µ be partitions of w. Set

(2.2) dλµ = (−1)|λ|+|µ| ·
∑
Γ

sgn(Γ)ηλµ(Γ),

where the sum is over all isomorphism classes of cycle digraphs Γ with w
vertices. Since ηµλ = ηλµ we have dµλ = dλµ. Kulikauskas and Remmel [7,
Thm. 1(ii)] proved the following:

Theorem 2.1. Let n ≥ 1, let w ≥ 1, and let µ be a partition of w with
at most n parts. Let ψµ be the unique element of Z[X1, . . . , Xn] such that
mµ = ψµ(e1, . . . , en). Then

ψµ(X1, . . . , Xn) =
∑
λ

dλµ ·Xλ1Xλ2 . . . Xλk
,

where the sum is over all partitions λ = {λ1, . . . , λk} of w such that λi ≤ n
for 1 ≤ i ≤ k.

The remainder of this section is devoted to computing the values of
ηλµ(Γ) and dλµ in some special cases.

Proposition 2.2. Let w ≥ 1, let λ,µ be partitions of w, and let Γ be a
directed cycle of length w. Assume that Γ has a λ-tiling S which is unique
up to isomorphism, and that Aut(Γ, S) is trivial. Similarly, assume that Γ
has a µ-tiling T which is unique up to isomorphism, and that Aut(Γ, T ) is
trivial. Then ηλµ(Γ) = w.

Proof. For 0 ≤ i < w let Si be the rotation of S by i steps. Then the
isomorphism classes of (λ,µ)-tilings of Γ are represented by (Si, T ) for
0 ≤ i < w. Since Aut(Γ, T ) is trivial, all these tilings are admissible. �
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Proposition 2.3. Let a, b, c, `,m,w be positive integers such that `a =
mb+ c = w and b 6= c. Let λ be the partition of w consisting of ` copies of
a, let µ be the partition of w consisting of m copies of b and 1 copy of c,
and let Γ be a directed cycle of length w. Then ηλµ(Γ) = a.

Proof. The cycle digraph Γ has a λ-tiling S which is unique up to isomor-
phism, and a µ-tiling T which is unique up to isomorphism. For 0 ≤ i < a
let Si be the rotation of S by i steps. Then the isomorphism classes of
(λ,µ)-tilings of Γ are represented by (Si, T ) for 0 ≤ i < a. Since Aut(Γ, T )
is trivial, all these tilings are admissible. �

Proposition 2.4. Let b, c,m,w be positive integers such that mb + c = w
and b 6= c. Let λ be the partition of w consisting of 1 copy of w and let
µ be the partition of w consisting of m copies of b and 1 copy of c. Then
dλµ = (−1)w+m+1w.

Proof. If the cycle digraph Γ has a λ-tiling then Γ consists of a single cycle
of length w. Hence by (2.2) we get dλµ = (−1)w+m+1ηλµ(Γ). It follows from
Proposition 2.3 that ηλµ(Γ) = w. Therefore dλµ = (−1)w+m+1w. �

Proposition 2.5. Let a, b, `,m,w be positive integers such that `a = mb =
w. Let λ be the partition of w consisting of ` copies of a, let µ be the
partition of w consisting of m copies of b, and let Γ be a directed cycle of
length w.

(1) The number of isomorphism classes of (λ,µ)-tilings of Γ is gcd(a, b).
(2) Let (S, T ) be a (λ,µ)-tiling of Γ. Then the order of Aut(Γ, S, T ) is

gcd(`,m).

Proof. (1) Identify V (Γ) with Z/wZ and consider the translation action of
bZ/wZ on (Z/wZ)/(aZ/wZ). The isomorphism classes of (λ,µ)-tilings of
Γ correspond to the orbits of this action, and these orbits correspond to
cosets of aZ + bZ = gcd(a, b) · Z in Z.

(2) The automorphisms of (Γ, S, T ) are rotations of Γ by k steps, where
k is a multiple of both a and b. Hence the number of automorphisms is
w/ lcm(a, b), which is easily seen to be equal to gcd(`,m). �

The following proposition generalizes the second part of [7, Thm. 6].

Proposition 2.6. Let a, b, `,m,w be positive integers such that `a = mb =
w. Let λ be the partition of w consisting of ` copies of a and let µ be
the partition of w consisting of m copies of b. Set u = gcd(a, b) and
v = gcd(`,m). Then dλµ = (−1)w−v+`+m(u

v

)
. In particular, if u < v then

dλµ = 0.

Proof. Set i = a/u and j = b/u. Then m = vi and ` = vj. Let Γ be a cycle
digraph which has an admissible (λ,µ)-tiling, and let Γ0 be one of the cycles
which make up Γ. Then the length of Γ0 is divisible by lcm(a, b) = uij.
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Suppose Γ0 has length k · uij. Let λ0 be the partition of kuij consisting
of kj copies of a = ui, and let µ0 be the partition of kuij consisting
of ki copies of b = uj. Then by Proposition 2.5(2) every (λ0,µ0)-tiling
of Γ0 has automorphism group of order gcd(ki, kj) = k. Since Γ has an
admissible (λ,µ)-tiling we must have k = 1. Therefore Γ consists of v
cycles, each of length uij. By Proposition 2.5(1) the number of isomorphism
classes of (λ0,µ0)-tilings of a uij-cycle Γ0 is gcd(a, b) = u. An admissible
(λ,µ)-tiling of Γ consists of v nonisomorphic (λ0,µ0)-tilings of uij-cycles.
Hence the number of isomorphism classes of admissible (λ,µ)-tilings of Γ
is ηλµ(Γ) =

(u
v

)
. Hence by (2.2) we get dλµ = (−1)w−v+`+m(u

v

)
. �

3. Some subrings of Z[X1, . . . , Xn]

Let n ≥ 1. In some cases we can get information about the coefficients
dλµ which appear in the formula for ψµ given in Theorem 2.1 by working
directly with the ring Z[X1, . . . , Xn]. In this section we define a family
of subrings of Z[X1, . . . , Xn]. We then study the p-adic properties of the
coefficients dλµ by showing that for certain partitions µ the polynomial ψµ
is an element of one of these subrings.

For k ≥ 0 define a subring Rk of Z[X1, . . . , Xn] by

Rk = Z[Xpk

1 , . . . , Xpk

n ] + pZ[Xpk−1

1 , . . . , Xpk−1
n ] + · · ·+ pkZ[X1, . . . , Xn].

We can characterize Rk as the set of F ∈ Z[X1, . . . , Xn] such that for
1 ≤ i ≤ k there exists Fi ∈ Z[X1, . . . , Xn] such that

(3.1) F (X1, . . . , Xn) ≡ Fi(Xpi

1 , . . . , X
pi

n ) (mod pk+1−i).

Lemma 3.1. Let k, ` ≥ 0 and let F ∈ Rk. Then p`F ∈ Rk+` and F p` ∈
Rk+`.

Proof. The first claim is clear. To prove the second claim with ` = 1 we
note that for 1 ≤ i ≤ k it follows from (3.1) that

F (X1, . . . , Xn)p ≡ Fi(Xpi

1 , . . . , X
pi

n )p (mod pk+2−i).

In particular, the case i = k gives

F (X1, . . . , Xn)p ≡ Fk(Xpk

1 , . . . , Xpk

n )p (mod p2)

≡ Fk(Xpk+1

1 , . . . , Xpk+1
n ) (mod p).

It follows that F p ∈ Rk+1. By induction we get F p` ∈ Rk+` for ` ≥ 0. �

Lemma 3.2. Let k, ` ≥ 0 and let F ∈ Rk. Then for any ψ1, . . . , ψn ∈ R`
we have F (ψ1, . . . , ψn) ∈ Rk+`.
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Proof. Since F ∈ Rk we have

F (X1, . . . , Xn) =
k∑
i=0

pk−iφi(Xpi

1 , . . . , X
pi

n )

for some φi ∈ Z[X1, . . . , Xn]. Since ψj ∈ R`, by Lemma 3.1 we get ψp
i

j ∈
Ri+`. Since Ri+` is a subring of Z[X1, . . . , Xn] it follows that φi(ψp

i

1 , . . . ,

ψp
i

n ) ∈ Ri+`. By Lemma 3.1 we get pk−iφi(ψp
i

1 , . . . , ψ
pi

n ) ∈ Rk+`. We con-
clude that F (ψ1, . . . , ψn) ∈ Rk+`. �

Proposition 3.3. Let w ≥ 1 and let λ be a partition of w with at most n
parts. For j ≥ 0 let λj = pj · λ. Then ψλj ∈ Rj.

Proof. We use induction on j. The case j = 0 is trivial. Let j ≥ 0 and
assume that ψλj ∈ Rj . Since λj+1 = p · λj we get

mλj+1(X1, . . . , Xn) = mλj (Xp
1 , . . . , X

p
n)

= ψλj (e1(Xp
1 , . . . , X

p
n), . . . , en(Xp

1 , . . . , X
p
n)).

For 1 ≤ i ≤ n let θi ∈ Z[X1, . . . , Xn] be such that

ei(Xp
1 , . . . , X

p
n) = θi(e1, . . . , en).

It follows from the above that

ψλj+1(X1, . . . , Xn) = ψλj (θ1(X1, . . . , Xn), . . . , θn(X1, . . . , Xn)).

Since

ei(X1, . . . , Xn)p ≡ ei(Xp
1 , . . . , X

p
n) (mod p)

≡ θi(e1, . . . , en) (mod p)

we have θi(X1, . . . , Xn) ≡ Xp
i (mod p), and hence θi ∈ R1. Therefore by

Lemma 3.2 we get ψλj+1 ∈ Rj+1. �

Corollary 3.4. Let t ≥ j ≥ 0, let w′ ≥ 1, and set w = w′pt. Let λ′ be a
partition of w′ and set λ = pt ·λ′. Let µ be a partition of w such that there
does not exist a partition µ′ with µ = pj+1 ∗ µ′. Then pt−j divides dλµ.
This holds in particular if pj+1 - |µ|.

Proof. Since dλµ does not depend on n we may assume without loss of
generality that n ≥ w. It follows from this assumption that |λ| ≤ n, so by
Proposition 3.3 we have ψλ ∈ Rt. Since w ≤ n the parts of µ = {µ1, . . . , µh}
satisfy µi ≤ n for 1 ≤ i ≤ h. Therefore the formula for ψλ given by
Theorem 2.1 includes the term dµλXµ1Xµ2 . . . Xµh

. The assumption on µ
implies that Xµ1Xµ2 . . . Xµh

is not a pj+1 power. Since ψλ ∈ Rt this implies
that pt−j divides dµλ. Since dλµ = dµλ we get pt−j | dλµ. �
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Proposition 3.5. Let w′ ≥ 1, j ≥ 1, and t ≥ 0. Let λ′, µ′ be partitions
of w′ such that the parts of λ′ are all divisible by pt. Set w = w′pj, so
that λ = pj · λ′ and µ = pj ∗ µ′ are partitions of w. Then dλµ ≡ dλ′µ′

(mod pt+1).

Proof. As in the proof of Corollary 3.4 we may assume without loss of
generality that n ≥ w′. Then |λ′| = |λ| ≤ n. It follows from Proposition 3.3
that mλ′ = ψλ′(e1, . . . , en) for some ψλ′ ∈ Rt. Using induction on k we see
that for 1 ≤ i ≤ n and k ≥ 0 we have

ei(Xpj

1 , . . . , Xpj

n )pk ≡ ei(X1, . . . , Xn)pj+k (mod pk+1).

Since ψλ′ ∈ Rt it follows that

mλ(X1, . . . , Xn) = mλ′(X
pj

1 , . . . , Xpj

n )

= ψλ′(e1(Xpj

1 , . . . , Xpj

n ), . . . , en(Xpj

1 , . . . , Xpj

n ))

≡ ψλ′(e1(X1, . . . , Xn)pj
, . . . , en(X1, . . . , Xn)pj) (mod pt+1).

We also have mλ = ψλ(e1, . . . , en). Therefore there is a symmetric polyno-
mial τ ∈ Z[X1, . . . , Xn] such that

ψλ(e1, . . . , en) = ψλ′(e
pj

1 , . . . , e
pj

n ) + pt+1τ(X1, . . . , Xn).

It follows from the fundamental theorem of symmetric polynomials that
τ ∈ Z[e1, . . . , en]. Hence we have

ψλ(X1, . . . , Xn) ≡ ψλ′(X
pj

1 , . . . , Xpj

n ) (mod pt+1).

Since w′ ≤ n the parts of µ′ and µ are all ≤ n. Therefore the formula for
ψλ′ given by Theorem 2.1 includes the term dµ′λ′Xµ′1

Xµ′2
. . . Xµ′

h
, and the

formula for ψλ includes the term

dµλXµ1Xµ2 . . . Xµ
pj h

= dµλX
pj

µ′1
Xpj

µ′2
. . . Xpj

µ′
h
.

It follows that dµλ ≡ dµ′λ′ (mod pt+1). Therefore we have dλµ ≡ dλ′µ′

(mod pt+1). �

4. Containment

Let L/K be a totally ramified extension of degree n = upν , with p - u.
Let σ1, . . . , σn be the K-embeddings of L into Ksep. Let 1 ≤ h ≤ n and
recall that Eh : L → K is defined by Eh(α) = eh(σ1(α), . . . , σn(α)) for
α ∈ L. In this section we define a function γh : Z→ Z such that for r ∈ Z
we have Eh(PrL) ⊂ Pγh(r)

K . The function γh will be defined in terms of the
indices of inseparability of the extension L/K. In the next section we show
that OK · Eh(PrL) = Pγh(r)

K holds in certain cases.
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Let πL be a uniformizer for L and let
f(X) = Xn − c1X

n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn
be the minimum polynomial of πL over K. Then ch = Eh(πL). For k ∈ Z
define vp(k) = min{vp(k), ν}. For 0 ≤ j ≤ ν set

iπL
j = min{nvK(ch)− h : 1 ≤ h ≤ n, vp(h) ≤ j}

= min{vL(chπn−hL ) : 1 ≤ h ≤ n, vp(h) ≤ j} − n.
Then iπL

j is either a nonnegative integer or ∞. If char(K) = p then iπL
j

must be finite, since L/K is separable. If iπL
j is finite write iπL

j = ajn− bj
with 1 ≤ bj ≤ n. Then vK(cbj

) = aj , vK(ch) ≥ aj for all h with 1 ≤ h < bj
and vp(h) ≤ j, and vK(ch) ≥ aj+1 for all h with bj < h ≤ n and vp(h) ≤ j.
Let eL = vL(p) denote the absolute ramification index of L. We define the
jth index of inseparability of L/K to be

ij = min{iπL
j′ + (j′ − j)eL : j ≤ j′ ≤ ν}.

By Proposition 3.12 and Theorem 7.1 of [4], ij does not depend on the
choice of πL. Furthermore, our definition of ij agrees with Definition 7.3
in [4] (see also [5, Rem. 2.5]; for the characteristic-p case see [2, p. 232–233]
and [3, §2]).

The following facts are easy consequences of the definitions:
(1) 0 = iν < iν−1 ≤ · · · ≤ i1 ≤ i0 <∞.
(2) If char(K) = p then eL =∞, and hence ij = iπL

j .
(3) Let m = vp(ij). If m ≤ j then ij = im = iπL

j = iπL
m . If m > j then

char(K) = 0 and ij = iπL
m + (m− j)eL.

Lemma 4.1. Let 1 ≤ h ≤ n and set j = vp(h). Then vL(ch) ≥ iπL
j + h,

with equality if and only if either iπL
j =∞ or iπL

j <∞ and h = bj.

Proof. If iπL
j = ∞ then we certainly have vL(ch) = ∞. Suppose iπL

j < ∞.
If bj < h ≤ n then vL(ch) = nvK(ch) ≥ n(aj + 1), and hence

vL(ch) ≥ naj + n > naj − bj + h = iπL
j + h.

If 1 ≤ h < bj then
vL(ch) ≥ naj > naj − bj + h = iπL

j + h.

Finally, we observe that vL(cbj
) = naj = iπL

j + bj . �

For a partition λ = {λ1, . . . , λk} whose parts satisfy λi ≤ n for 1 ≤ i ≤ k
define cλ = cλ1cλ2 . . . cλk

.

Proposition 4.2. Let w ≥ 1 and let λ = {λ1, . . . , λk} be a partition of w
whose parts satisfy λi ≤ n. Choose q to minimize vp(λq) and set t = vp(λq).
Then vL(cλ) ≥ iπL

t +w. If vL(cλ) = iπL
t +w and iπL

t <∞ then λq = bt and
λi = bν = n for all i 6= q.
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Proof. If iπL
t = ∞ then vL(cλq ) = ∞, and hence vL(cλ) = ∞. Suppose

iπL
t <∞. By Lemma 4.1 we have vL(cλq ) ≥ iπL

t + λq, and vL(cλi
) ≥ λi for

i 6= q. Hence vL(cλ) ≥ iπL
t +w, with equality if and only if vL(cλq ) = iπL

t +λq
and vL(cλi

) = λi for i 6= q. It follows from Lemma 4.1 that these conditions
hold if and only if λq = bt and λi = bν for all i 6= q. �

Proposition 4.3. Let w ≥ 1, let µ be a partition of w with h ≤ n parts,
and set j = vp(h). Let λ = {λ1, . . . , λk} be a partition of w whose parts
satisfy λi ≤ n, choose q to minimize vp(λq), and set t = vp(λq). Then

(1) vL(dλµcλ) ≥ ij + w.
(2) Suppose vL(dλµcλ) = ij +w. Then iπL

t is finite, λq = bt, and λi = n
for all i 6= q.

Proof. (1) Suppose t ≥ j. Then by Corollary 3.4 we have vp(dλµ) ≥ t − j.
Hence by Proposition 4.2 we get

vL(dλµcλ) ≥ (t− j)eL + iπL
t + w ≥ ij + w.

Suppose t < j. Using Proposition 4.2 we get
vL(dλµcλ) ≥ vL(cλ) ≥ iπL

t + w ≥ it + w ≥ ij + w.

(2) If vL(dλµcλ) = ij + w then all the inequalities above are equalities.
In either case it follows that iπL

t is finite and vL(cλ) = iπL
t + w. Therefore

by Proposition 4.2 we get λq = bt and λi = n for all i 6= q. �

We now apply the results of Section 2 to our field extension L/K. For
a partition µ with at most n parts we define Mµ : L → K by setting
Mµ(α) = mµ(σ1(α), . . . , σn(α)) for α ∈ L.

Proposition 4.4. Let r ≥ 1 and let α ∈ PrL. Choose a power series
φ(X) = arX

r + ar+1X
r+1 + · · ·

with coefficients in OK such that α = φ(πL). Then for 1 ≤ h ≤ n we have

Eh(α) =
∑
µ

aµ1aµ2 . . . aµh
Mµ(πL),

where the sum ranges over all partitions µ = {µ1, . . . , µh} with h parts such
that µi ≥ r for 1 ≤ i ≤ h.

Proof. This follows from (2.1) by setting Xi = σi(πL) and taking aj ∈
OK . �

Proposition 4.5. Let n ≥ 1, let w ≥ 1, and let µ be a partition of w with
at most n parts. Then

Mµ(πL) =
∑
λ

dλµcλ,

where the sum is over all partitions λ = {λ1, . . . , λk} of w such that λi ≤ n
for 1 ≤ i ≤ k.
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Proof. This follows from Theorem 2.1 by setting Xi = Ei(πL) = ci. �

Let 1 ≤ h ≤ n and recall that we defined gh : Z→ Z by setting gh(r) = s,
where s is the largest integer such that Eh(PrL) ⊂ PsK .

Theorem 4.6. Let L/K be a totally ramified extension of degree n = upν ,
with p - u. Let r ∈ Z, let 1 ≤ h ≤ n, and set j = vp(h). Then

Eh(PrL) ⊂ Pd(ij+hr)/ne
K

gh(r) ≥
⌈
ij + hr

n

⌉
.

Proof. Let πK be a uniformizer for K. Then for t ∈ Z we have

Eh(Pnt+rL ) = Eh(πtK · PrL) = πhtK · Eh(PrL)(4.1) ⌈
ij + h(nt+ r)

n

⌉
= ht+

⌈
ij + hr

n

⌉
.(4.2)

Therefore it suffices to prove the theorem in the cases with 1 ≤ r ≤ n.
By Proposition 4.4 each element of Eh(PrL) is an OK-linear combination of
terms of the form Mµ(πL), where µ is a partition with h parts, all ≥ r. Fix
one such partition µ and set w = Σ(µ); then w ≥ hr. Using Proposition 4.5
we can expressMµ(πL) as a sum of terms dλµcλ, where λ = {λ1, λ2, . . . , λk}
is a partition of w into parts which are ≤ n. By Proposition 4.3(1) we get
vL(dλµcλ) ≥ ij +w ≥ ij +hr. Since dλµcλ ∈ K it follows that vK(dλµcλ) ≥
d(ij + hr)/ne. Therefore we have vK(Mµ(πL)) ≥ d(ij + hr)/ne, and hence
Eh(PrL) ⊂ Pd(ij+hr)/ne

K . �

5. Equality

In this section we show that in some special cases we have OK ·Eh(PrL) =
Pd(ij+hr)/ne
K , where j = vp(h). This is equivalent to showing that gh(r) =
d(ij+hr)/ne holds in these cases. In particular, we prove that if the residue
field K of K is large enough then gpj (r) = d(ij + rpj)/ne for 0 ≤ j ≤ ν.
To prove that gh(r) = d(ij + hr)/ne holds for all r ∈ Z, by Theorem 4.6 it
suffices to show the following: Let r satisfy

(5.1)
⌈
ij + hr

n

⌉
<

⌈
ij + h(r + 1)

n

⌉
.

Then there is α ∈ PrL such that vK(Eh(α)) = d(ij + hr)/ne. By (4.1)
and (4.2) it’s enough to prove this for r such that 1 ≤ r ≤ n.

Once again we let πL be a uniformizer for L whose minimum polynomial
over K is

f(X) = Xn − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn.
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Theorem 5.1. Let L/K be a totally ramified extension of degree n = upν ,
with p - u. Let j be an integer such that 0 ≤ j ≤ ν and vp(ij) ≥ j. Then for
all r ∈ Z we have

OK · Epj (PrL) = Pd(ij+rpj)/ne
K

gpj (r) =
⌈
ij + rpj

n

⌉
.

Proof. Setm = vp(ij). Then ij = (m−j)eL+iπL
m . In particular, if char(K) =

p then m = j and ij = im = iπL
m . We can write iπL

m = an− b with 1 ≤ b ≤ n
and vp(b) = m. Since j ≤ m there is b′ ∈ Z such that b = b′pj . Let r1 ∈ Z
and set r = b′ + r1up

ν−j . Then
(5.2) ij + rpj = (m− j)eL + an+ r1n.

Therefore we have ⌈
ij + rpj

n

⌉
= (m− j)eK + a+ r1⌈

ij + (r + 1)pj

n

⌉
= (m− j)eK + a+ r1 + 1,

with eK = vK(p) = eL/n. It follows that the only values of r in the range
1 ≤ r ≤ n satisfying (5.1) are of the form r = b′+r1up

ν−j with 0 ≤ r1 < pj .
Therefore it suffices to prove that vK(Epj (πrL)) = (m− j)eK + a+ r1 holds
for these values of r.

Let µ be the partition of rpj consisting of pj copies of r. Then Epj (πrL) =
Mµ(πL), so it follows from Proposition 4.5 that

(5.3) Epj (πrL) =
∑
λ

dλµcλ,

where the sum is over all partitions λ = {λ1, . . . , λk} of rpj such that λi ≤ n
for 1 ≤ i ≤ k. It follows from Proposition 4.3(1) that vL(dλµcλ) ≥ ij + rpj .
Suppose vL(dλµcλ) = ij+rpj . Then by Proposition 4.3(2) we see that λ has
at most one element which is not equal to n. Since Σ(λ) = rpj = b+r1n, and
the elements of λ are ≤ n, it follows that λ = κ, where κ is the partition
of rpj which consists of 1 copy of b and r1 copies of n. Since Epj (πrL) ∈ K
and dκµcκ ∈ K it follows from (5.3) and (5.2) that

(5.4) Epj (πrL) ≡ dκµcκ (mod P(m−j)eK+a+r1+1
K ).

Let κ′ be the partition of r consisting of 1 copy of b′ and r1 copies of
upν−j , and let µ′ be the partition of r consisting of 1 copy of r. Then κ = pj ·
κ′ and µ = pj ∗µ′. Since vp(b′) = m−j it follows from Proposition 3.5 that
dκµ ≡ dκ′µ′ (mod pm−j+1). Suppose m < ν. Then b < n, so b′ 6= upν−j .
Hence by Proposition 2.4 we get dκ′µ′ = (−1)r+r1+1r. Since r = b′+r1up

ν−j
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and vp(b′) = m− j this implies vp(dκ′µ′) = vp(r) = m− j. Suppose m = ν.
Then b = n and b′ = p−jb = upν−j , so κ′ consists of r1 + 1 copies of upν−j .
Since gcd(upν−j , r) = upν−j and gcd(r1 + 1, 1) = 1, by Proposition 2.6 we
get dκ′µ′ = (−1)r+r1+1upν−j . Hence vp(dκ′µ′) = ν − j = m − j holds in
this case as well. Since dκµ ≡ dκ′µ′ (mod pm−j+1) it follows that vp(dκµ) =
m− j. Therefore

vK(dκµcκ) = vK(dκµ) + vK(cbcr1
n ) = (m− j)eK + a+ r1.

Using (5.4) we conclude that
vK(Epj (πrL)) = (m− j)eK + a+ r1. �

Theorem 5.2. Let L/K be a totally ramified extension of degree n = upν ,
with p - u. Let j be an integer such that 0 ≤ j ≤ ν and vp(ij) < j. Set
m = vp(ij) and assume that |K| > pm. Then for all r ∈ Z we have

OK · Epj (PrL) = Pd(ij+rpj)/ne
K

gpj (r) =
⌈
ij + rpj

n

⌉
.

Proof. Since m < j we have im = ij = iπL
j . Therefore ij = an− b for some

a, b such that 1 ≤ b < n and vp(b) = m. Hence b = b′pj+b′′pm for some b′, b′′
such that 0 < b′′ < pj−m and p - b′′. Let r1 ∈ Z and set r = b′ + r1up

ν−j .
Then
(5.5) ij + rpj = an+ r1n− b′′pm,
so we have ⌈

ij + rpj

n

⌉
= a+ r1 +

⌈−b′′pm
n

⌉
= a+ r1⌈

ij + (r + 1)pj

n

⌉
= a+ r1 +

⌈
pj − b′′pm

n

⌉
= a+ r1 + 1.

It follows that the only values of r in the range 1 ≤ r ≤ n satisfying (5.1)
are of the form r = b′ + r1up

ν−j with 0 ≤ r1 < pj . It suffices to prove that
for every such r there is β ∈ OK such that vK(Epj (πrL + βπr+b

′′

L )) = a+ r1.
Let η(X) = Epj (πrL + Xπr+b

′′

L ). We need to show that there is β ∈ OK
such that vK(η(β)) = a + r1. It follows from Proposition 4.4 that η(X)
is a polynomial in X of degree at most pj , with coefficients in OK . For
0 ≤ ` ≤ pj let µ` be the partition of rpj + `b′′ consisting of pj − ` copies of
r and ` copies of r+ b′′. By Proposition 4.4 the coefficient of X` in η(X) is
equal to Mµ`(πL). By Proposition 4.5 we have

(5.6) Mµ`(πL) =
∑
λ

dλµ`cλ,
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where the sum is over all partitions λ = {λ1, . . . , λk} of rpj + `b′′ such that
λi ≤ n for 1 ≤ i ≤ k. Using Proposition 4.3(1) and equation (5.5) we get

vL(dλµ`cλ) ≥ ij + rpj + `b′′

= (a+ r1)n+ (`− pm)b′′(5.7)
> (a+ r1 − 1)n.

Since dλµ`cλ ∈ K it follows that dλµ`cλ ∈ Pa+r1
K . Therefore by (5.6) we

have Mµ`(πL) ∈ Pa+r1
K .

Suppose vK(dλµ`cλ) = a+ r1. Then vL(dλµ`cλ) = (a+ r1)n, so by (5.7)
we get ` ≤ pm. Hence for pm < ` ≤ pj we have Mµ`(πL) ∈ Pa+r1+1

K . Let
w = b+ r1n = rpj + b′′pm and let µ = µp

m be the partition of w consisting
of pm copies of r + b′′ and pj − pm copies of r. Then the coefficient of
Xpm in η(X) is Mµ(πL). Let κ be the partition of w consisting of 1 copy
of b and r1 copies of n. Suppose λ is a partition of w with parts ≤ n
such that vK(dλµcλ) = a + r1. Since (a + r1)n = ij + w it follows from
Proposition 4.3(2) that λ has at most one element which is not equal to n.
Since Σ(λ) = b+ r1n, and the elements of λ are ≤ n, it follows that λ = κ.
Hence by (5.6) we have

(5.8) Mµ(πL) ≡ dκµcκ (mod Pa+r1+1
K ).

Set w′ = b′pj−m + b′′ + r1up
ν−m = rpj−m + b′′. Let κ′ be the partition

of w′ consisting of 1 copy of b′pj−m + b′′ and r1 copies of upν−m, and let
µ′ be the partition of w′ consisting of 1 copy of r+ b′′ and pj−m − 1 copies
of r. Then κ = pm · κ′ and µ = pm ∗ µ′, so by Proposition 3.5 we have
dκµ ≡ dκ′µ′ (mod p).

Let Γ be a cycle digraph which has an admissible (κ′,µ′)-tiling. Suppose
Γ has more than one component. Since Γ has a κ′-tiling, Γ has at least
one component Γ0 such that |V (Γ0)| = k · upν−m for some k such that
1 ≤ k ≤ r1. Let κ′0 be the submultiset of κ′ consisting of k copies of
upν−m. Then κ′0 is the unique submultiset of κ′ such that Γ0 has a κ′0-
tiling. Furthermore there is a submultiset µ′0 of µ′ such that Γ0 has a
µ′0-tiling. We will see below that µ′0 is uniquely determined.

Suppose r does not divide kupν−m. Then there is ` ≥ 0 such that µ′0
consists of 1 copy of r + b′′ together with ` copies of r. By Proposition 2.3
we have ηκ′0µ′0(Γ0) = upν−m. Let Γ1 be the complement of Γ0 in Γ, let
κ′1 = κ′ r κ′0, and let µ′1 = µ′ r µ′0. Since Γ1 has no cycle of length
|V (Γ0)| = b′′ + (` + 1)r we have ηκ′µ′(Γ) = ηκ′0µ′0(Γ0)ηκ′1µ′1(Γ1). Hence
ηκ′µ′(Γ) is divisible by p in this case.

On the other hand, suppose r divides kupν−m. If r also divides r+b′′ then
p - r, so r | ku. It follows that r1up

ν−j +b′ = r ≤ ku ≤ r1u, a contradiction.
Hence there is ` ≥ 1 such that µ′0 consists of ` copies of r. Let (S, T ) be an
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admissible (κ′,µ′)-tiling of Γ and let (S0, T0) be the restriction of (S, T ) to
Γ0. Then (S0, T0) is a (κ′0,µ′0)-tiling of Γ0. By Proposition 2.5(2) the auto-
morphism group of (Γ0, S0, T0) has order gcd(k, `). Since Aut(Γ0, S0, T0) is
isomorphic to a subgroup of Aut(Γ, S, T ), it follows that gcd(k, `) divides
|Aut(Γ, S, T )|. Therefore the assumption that (S, T ) is admissible implies
that gcd(k, `) = 1. Since k · upν−m = ` · r we get k | r and ` | upν−m. It fol-
lows that there is q ∈ Z with r = kq and upν−m = `q. By Proposition 2.5(1)
the number of isomorphism classes of (κ′0,µ′0)-tilings of Γ0 is

ηκ′0µ′0(Γ0) = gcd(upν−m, r) = gcd(`q, kq) = q.

If p | q then as above we deduce that ηκ′µ′(Γ) is divisible by p. On the other
hand, if p - q then q | u; in particular, q ≤ u. Since k ≤ r1 this gives the
contradiction r = kq ≤ r1u. By combining the two cases we find that if Γ
has more than one component then ηκ′µ′(Γ) is divisible by p.

Finally, suppose that Γ consists of a single cycle of length w′. Then by
Proposition 2.2 we have ηκ′,µ′(Γ) = w′. Hence by (2.2) we get

dκµ ≡ dκ′µ′ ≡ ±ηκ′µ′(Γ) ≡ ±w′ (mod p).
Since w′ ≡ b′′ (mod p) it follows that p - dκµ. Hence by (5.8) we get

vK(Mµ(πL)) = vK(cκ) = a+ r1.

Let πK be a uniformizer for K and set φ(X) = π−a−r1
K η(X). Then φ(X) ∈

OK [X]. Let φ(X) be the image of φ(X) in K[X]. We have shown that
φ(X) has degree pm. Since |K| > pm there is β ∈ K such that φ(β) 6= 0.
Let β ∈ OK be a lifting of β. Then φ(β) ∈ O×K . It follows that

vK(Epj (πrL + βπr+b
′′

L )) = vK(η(β)) = a+ r1.

Hence if r = b′ + r1up
ν−j with 0 ≤ r1 < pj then

OK · Epj (PrL) = Pa+r1
K = Pd(ij+rpj)/ne

K .

We conclude that this formula holds for all r ∈ Z. �

Remark 5.3. Theorems 5.1 and 5.2 together imply that if K is sufficiently
large then gpj (r) = d(ij + rpj)/ne for 0 ≤ j ≤ ν. This holds for instance if
|K| ≥ pν .

Remark 5.4. Let L/K be a totally ramified separable extension of degree
n = upν . The different Pd0

L of L/K is defined by letting d0 be the largest
integer such that E1(P−d0

L ) ⊂ OK . For 1 ≤ j ≤ ν one can define higher
order analogs Pdj

L of the different by letting dj be the largest integer such
that Epj (P−dj

L ) ⊂ OK . An argument similar to the proof of Proposition 1.2
shows that

OK · Epj (PrL) = Pbp
j(dj+r)/nc

K .
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This generalizes Proposition 1.2, which is equivalent to the case j = 0 of
this formula. By Proposition 3.18 of [4], the valuation of the different of
L/K is d0 = i0 + n − 1. Using Theorems 5.1 and 5.2 we find that, if K
is sufficiently large, dj is the largest integer such that d(ij − djpj)/ne ≥ 0.
Hence dj = b(ij + n− 1)/pjc for 0 ≤ j ≤ ν.

Example 5.5. Let K = F2((t)) and let L be an extension of K generated
by a root πL of the Eisenstein polynomial f(X) = X8 + tX3 + tX2 + t.
Then the indices of inseparability of L/K are i0 = 3, i1 = i2 = 2, and
i3 = 0. Since d(i2 +22 ·1)/23e = 1, the formula in Theorem 5.2 would imply
OK · E4(P1

L) = P1
K . We claim that E4(PL) ⊂ P2

K .
Let α ∈ PL and write α = a1πL + a2π

2
L + · · · , with ai ∈ F2. It follows

from Propositions 4.4 and 4.5 that E4(α) is a sum of terms of the form
aµdλµcλ, where λ is a partition whose parts are ≤ 8 and µ is a partition
with 4 parts such that Σ(λ) = Σ(µ). We are interested only in those terms
with K-valuation 1. We have vK(cλ) ≥ 2 unless λ is one of {5}, {6}, or
{8}. If λ = {8} then 2 | dλµ for any µ by Corollary 3.4. If λ = {6}
and µ = {1, 1, 1, 3} then dλµ = 6 by Proposition 2.4. If λ = {6} and
µ = {1, 1, 2, 2} then a computation based on (2.2) shows that dλµ = 9. If
λ = {5} and µ = {1, 1, 1, 2} then dλµ = −5 by Proposition 2.4. Combining
these facts we get

E4(α) ≡ a3
1a2t+ a2

1a
2
2t (mod P2

K).
Since a1, a2 ∈ F2 we have a3

1a2+a2
1a

2
2 = 0. Therefore E4(α) ∈ P2

K . Since this
holds for every α ∈ PL we get E4(PL) ⊂ P2

K . This shows that Theorem 5.2
does not hold without the assumption about the size of K.

The following result shows that gh(r) = d(ij + hr)/ne does not hold
in general, even if we assume that the residue field of K is large. It also
suggests that there may not be a simple criterion for determining when
gh(r) = d(ij + hr)/ne does hold.

Proposition 5.6. Let L/K be a totally ramified extension of degree n,
with p - n. Let r ∈ Z and 1 ≤ h ≤ n be such that n | hr. Set s = hr/n,
u = gcd(r, n), and v = gcd(h, s). Then gh(r) = d(i0 + hr)/ne = s if and
only if p does not divide the binomial coefficient

(u
v

)
. In particular, if u < v

then gh(r) > s.

Proof. Since L/K is tamely ramified we have ν = 0, i0 = 0, and⌈
i0 + hr

n

⌉
=
⌈
hr

n

⌉
= s.

It follows from Theorem 4.6 that gh(r) ≥ s. If r′ = nt+r then s′ = hr′/n =
ht+s, u′ = gcd(r′, n) = u, and v′ = gcd(h, s′) = v. Hence by (4.1) it suffices
to prove the proposition in the cases with 1 ≤ r ≤ n.
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Suppose p does not divide
(u
v

)
. To prove gh(r) = s it suffices to show that

vK(Eh(πrL)) = s. Let µ be the partition of hr consisting of h copies of r.
Then Eh(πrL) = Mµ(πL), so it follows from Proposition 4.5 that

(5.9) Eh(πrL) =
∑
λ

dλµcλ,

where the sum is over all partitions λ = {λ1, . . . , λk} of hr such that λi ≤ n
for 1 ≤ i ≤ k. Let κ be the partition of hr = sn consisting of s copies of
n and let λ be a partition of hr whose parts are ≤ n. Then by Proposi-
tion 4.3(1) we have vL(dκµcλ) ≥ hr = sn. Furthermore, if vL(dκµcλ) = hr
then by Proposition 4.3(2) we have λ = κ. Hence by (5.9) we get

Eh(πrL) ≡ dκµcκ (mod Ps+1
K ).

By Proposition 2.6 we have dκµ = ±
(u
v

)
. Since p -

(u
v

)
and vK(cκ) = s it

follows that vK(Eh(πrL)) = s. Therefore gh(r) = s.
Suppose p divides

(u
v

)
. By Proposition 4.4, each element of Eh(PrL) is an

OK-linear combination of terms of the form Mν(πL) where ν is a partition
with h parts, all ≥ r. Fix one such partition ν and set w = Σ(ν); then
w ≥ hr = sn. By Proposition 4.5 we can express Mν(πL) as a sum of
terms of the form dλνcλ, where λ = {λ1, λ2, . . . , λk} is a partition of w into
parts which are ≤ n. By Proposition 4.3(1) we have vL(dλνcλ) ≥ w ≥ sn.
Suppose vL(dλνcλ) = sn. Then w = sn, and by Proposition 4.3(2) we see
that λ consists of k copies of n. It follows that kn = w = sn, and hence
that k = s. Therefore λ = κ. Since Σ(ν) = w = sn = hr we get ν = µ.
Since dκµ = ±

(u
v

)
and p divides

(u
v

)
we have vL(dκµcκ) > vL(cκ) = sn, a

contradiction. Hence vL(dλνcλ) > sn holds in all cases. Since dλνcλ ∈ K
we get vK(dλνcλ) ≥ s+ 1. It follows that Eh(PrL) ⊂ Ps+1

K , and hence that
gh(r) ≥ s+ 1. �
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