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On the order modulo p of an algebraic number

par Georges GRAS

Résumé. Soit K/Q Galoisienne, et soit η ∈ K× de conjugués
multiplicativement indépendants. Pour un premier p, non ramifié,
étranger à η, soient np le degré résiduel de p et gp le nombre de p|p,
puis op(η) et op(η) les ordres de η modulo p et p respectivement.
En utilisant les automorphismes de Frobenius, nous montrons que
pour tout p� 0, certains diviseurs explicites de pnp−1 ne peuvent
réaliser ni op(η) ni op(η), et nous donnons une borne inférieure de
op(η). Ensuite nous obtenons que Prob(op(η) < p) ≤ 1

pgp (np−1)−ε ,
où ε = O

( 1
log2(p)

)
, pour tout p� 0 tel que np > 1 ; sous l’heuris-

tique de Borel–Cantelli, ceci conduit à op(η) > p pour tout p� 0
tel que gp(np−1) ≥ 2, ce qui couvre les cas “limites” des corps cu-
biques avec np = 3 et des corps quartiques avec np = gp = 2, mais
non celui des corps quadratiques avec np = 2. Dans le cas qua-
dratique, la conjecture naturelle est, au contraire, que op(η) < p
pour une infinité de p inertes. Des calculs sont donnés via des
programmes PARI.

Abstract. Let K/Q be Galois, and let η ∈ K× whose conju-
gates are multiplicatively independent. For a prime p, unramified,
prime to η, let np be the residue degree of p and gp the number
of p|p, then let op(η) and op(η) be the orders of η modulo p and
p, respectively. Using Frobenius automorphisms, we show that for
all p� 0, some explicit divisors of pnp−1 cannot realize op(η) nor
op(η), and we give a lower bound of op(η). Then we obtain that, for
all p� 0 such that np > 1, Prob(op(η) < p) ≤ 1

pgp (np−1)−ε , where
ε = O

( 1
log2(p)

)
; under the Borel–Cantelli heuristic, this leads to

op(η) > p for all p� 0 such that gp(np− 1) ≥ 2, which covers the
“limit” cases of cubic fields with np = 3 and quartic fields with
np = gp = 2, but not the case of quadratic fields with np = 2.
In the quadratic case, the natural conjecture is, on the contrary,
that op(η) < p for infinitely many inert p. Some computations are
given with PARI programs.
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1. Frobenius automorphisms

1.1. Generalities. Let K/Q be Galois of degree n, of Galois group G.
Denote by h a possible residue degree of an unramified prime ideal of K,
that is to say a divisor of n for which there exists a cyclic subgroup H of
G of order h. Indeed, one knows that, for any generator s of H, there exist
infinitely many prime numbers p, unramified in K/Q, such that s is the
Frobenius sp of a prime ideal p | p in K/Q ; H is then the decomposition
group Hp of p. Reciprocally, any unramified p has a cyclic decomposition
group Hp with a canonical generator sp (the Frobenius).

Of course, if s1 and s2 are two distinct generators of H, the sets of
corresponding primes p are disjoint (e.g., take the cyclotomic field K =
Q(ζ5) of fifth roots of unity and H = G (cyclic of order h = 4), with
ζs1

5 = ζ2
5 and ζs2

5 = ζ3
5 ; this characterizes the sets {p : p ≡ 2 (mod 5)} and

{p : p ≡ 3 (mod 5)}, respectively); see, e.g., [5, Section 3 of Chapter 7],
[8, Section 3 of Appendix], or [1, Sections 1.1, 1.2, 4.6, of Chapter II] for
Chebotarev’s density theorem and properties of Frobenius automorphisms.

But we consider such a fixed residue degree h | n since we shall see that
the statement of our main result, on the order of η ∈ K× modulo a prime
ideal p, does not depend on the conjugate of the decomposition group Hp

of p, nor on its Frobenius sp, but only on the residue degree np of the
corresponding prime number p under p (in other words, we shall classify
the set of unramified prime ideals p of K by means of the sole criterion
np = h; so, any of the p, with np = h, would have the common property,
depending on h, given by our main theorem).

Since the h | n are finite in number, everything is effective (e.g., h ∈
{1, 2, 3} for a dihedral group G = D6, but h ∈ {1, 2} for the Galois group
of any compositum of quadratic fields).

1.2. Orders modulo p and modulo p. Let η ∈ K×. In the sequel we
shall assume that the multiplicative Z[G]-module 〈η〉G generated by η is of
Z-rank n (i.e., 〈η〉G ⊗ Q ' Q[G]), but this is not needed for the following
definition.

Definition 1.1. Let p be a prime number, unramified in K/Q, prime to η,
and let p be a prime ideal of K dividing p.

We define the order of η modulo p (denoted op(η)) to be the least nonzero
integer k such that ηk ≡ 1 (mod p).

We define the order of η modulo p (denoted op(η)) to be the least nonzero
integer k such that ηk ≡ 1 (mod p).

Of course, op(η) and op(η) = lcm(op(η), p | p) divide pnp − 1, where np is
the residue degree of p in K/Q, but we intend to prove (see Theorem 2.1
for a more complete and general statement):
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Let h | n be a possible residue degree in K/Q. Let η ∈ K× be such
that the multiplicative Z[G]-module generated by η is of Z-rank n.
Then for all large enough prime p (denoted p� 0 in all the paper)
with residue degree np = h, the orders op(η) for any p | p, and op(η)
do not divide any of the integers

Dh,δ(p) := ph − 1
Φδ(p)

, δ | h

where Φδ(X) is the δth cyclotomic polynomial.
Consider, for any unramified prime p, the characteristic property of the

Frobenius automorphism sp of p | p in K/Q,
ηsp ≡ ηp (mod p) .

Let Hp := 〈sp〉 be the decomposition group of p (denoted H to simplify)
and let σ ∈ G/H (or a representative in G); the Frobenius spσ of pσ is
sσp := σ · sp · σ−1 and we get ηspσ ≡ ηp (mod pσ). So, if sp and σ commute
this leads to sσp = spσ = sp and ηsp ≡ ηp (mod pσ). In other words, we have

ηsp ≡ ηp
(
mod

∏
σ∈G/H
σ.sp=sp.σ

pσ
)
.

In the Abelian case, we get (independently of the choice of p | p)
ηsp ≡ ηp (mod p) .

Lemma 1.2. Let η ∈ K× be such that the multiplicative Z[G]-module 〈η〉G
is of Z-rank n and let µ(K) be the group of roots of unity of K. Let H be
a cyclic subgroup of G and let s be any generator of H; let f(X) ∈ Z[X] be
a given polynomial such that f(s) 6= 0 in Z[H].

Then, for all prime numbers p � 0 such that there exists a prime ideal
p | p for which sp = s, whenever ζ ∈ µ(K) we have

ηf(p) 6≡ ζ (mod p) .

Proof. We have ηf(p) ≡ ηf(s) (mod p); thus, if ηf(p) ≡ ζ (mod p) for some
ζ, this leads to ηf(s) − ζ ≡ 0 (mod p) giving, by the norm in K/Q,

NK/Q(ηf(s) − ζ) ≡ 0 (mod p|H|) .

Since 〈η〉G is of multiplicative Z-rank n and f(s) 6= 0, we have ηf(s) /∈ µ(K);
then NK/Q(ηf(s) − ζ) is a nonzero rational constant depending only on η,
f(s), ζ, and whose numerator is in p|H|Z (a contradiction for p� 0). �

The statement of the lemma does not depend on the choice of s gener-
ating H, nor on the choice of the prime ideal p | p such that sp = s (in the
Abelian case, any p | p is suitable since spσ = sp for all σ ∈ G).
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If s ∈ G is of order h ≥ 1, any nonzero element of Z[H] can be writen
f(s) where f(X) is of degree < h; if we take f(X) of degree 0, then we
have f(s) = f ∈ Z \ {0} regardless of h and s, giving the obvious result

ηf 6≡ ζ (mod p) for any p� 0 .
Naturally, an interesting application of this Lemma is when f(X) | Xh−1

in Z[X], f(X) 6= Xh − 1, and when the degree of f(X) is maximal. This
explains why the case h = np = 1 (p totally split in K/Q) is uninteresting
since f(X) | X−1, with f(X) 6= X−1, gives f = 1 and the same conclusion
as above.

2. Consequences for the values of op(η) and op(η)

We have the factorization
ph − 1 =

∏
δ|h

Φδ(p) ,

where Φδ(X) is the δth cyclotomic polynomial (see [8, Chapter 2]). So we
can consider the divisors

∏
δ∈I Φδ(p), where I is any strict subset of the

set of divisors of h. Of course, it will be sufficient to restrict ourselves to
maximal subsets I, which gives the divisors Dh,δ(p) := ph−1

Φδ(p) , δ | h. For
instance, if h = 6, we get the set
{p5+p4+p3+p2+p+1, p5−p4+p3−p2+p−1, p4−p3+p−1, p4+p3−p−1} ,
giving the complete set of “polynomial divisors” of p6 − 1,

{1, p− 1, p+ 1, p2 − 1, p2 − p+ 1, p3 − 2 p2 + 2 p− 1, p3 + 1,
p4 − p3 + p− 1, p2 + p+ 1, p3 − 1, p3 + 2 p2 + 2 p+ 1, p4 + p3 − p− 1,

p4 + p2 + 1, p5 − p4 + p3 − p2 + p− 1, p5 + p4 + p3 + p2 + p+ 1} .

Theorem 2.1. Let K/Q be Galois of degree n, of Galois group G. Let h | n
be a possible residue degree in K/Q. Let µ(K) be the group of roots of unity
contained in K. Let η ∈ K× be such that the multiplicative Z[G]-module
generated by η is of Z-rank n.

Then for all (unramified) prime number p�0, with residue degree np=h,
and for any prime ideal p | p, the least integer k ≥ 1 for which there exists
ζ ∈ µ(K) such that ηk ≡ ζ (mod p) is a divisor of ph − 1 which does not
divide any of the integers

Dh,δ(p) := ph − 1
Φδ(p)

, δ | h,

where Φδ(X) is the δth cyclotomic polynomial.
Hence op(η) and a fortiori op(η) (cf. Definition 1.1), do not divide any

of the Dh,δ(p).
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Proof. Let k′ = gcd(k, ph − 1). Then we have k′ = λ k + µ (ph − 1), λ, µ ∈
Z, and ηk

′ ≡ ηλ k ≡ ζλ =: ζ ′ (mod p); but k′ | k, so k = k′ | ph − 1.
Suppose that k divides some Dh,δ(p) = ph−1

Φδ(p) =
∏
δ′|h, δ′ 6=δ Φδ′(p). Let s be

the Frobenius of p and H = 〈s〉 its decomposition group (of order h). Thus
ηk ≡ ζ (mod p) yields

ηDh,δ(p) ≡ ζ ′ (mod p) , ζ ′ ∈ µ(K) ,

giving
ηDh,δ(p) ≡ ηDh,δ(s) ≡ ζ ′ (mod p) .

From Z[H] ' Z[X]/(Xh − 1)Z[X], we get in Z[H]

Dh,δ(s) =
∏

δ′|h, δ′ 6=δ
Φδ′(s) 6= 0

since Dh,δ(X) /∈ (Xh−1)Z[X]; the polynomial Dh,δ(X) ∈ Z[X] being inde-
pendent of p, Lemma 1.2 applied to f(X) = Dh,δ(X) gives a contradiction
for all p� 0 with residue degree np = h. �

If 〈η〉G is not of Z-rank n, a statement does exist which depends on the
G-representation 〈η〉G; for instance, let K = Q(

√
m) and η ∈ K× \ µ(K):

• If NK/Q(η) = ±1, then op(η) - D2,2(p) = p− 1 for all prime p� 0,
inert in K/Q.
• If η1−s = ±1, then op(η) - D2,1(p) = p+ 1 (e.g., η =

√
m, m 6= −1).

The expression “for all p� 0 of residue degree np = h” in the theorem is
effective and depends, numerically, only on h and the conjugates of η.

The theorem gives the generalization of the particular case h = 2 in [2].
In the above case h = 6 and p � 0 (with np = 6), the orders op(η) are

divisors of p6 − 1 which are not divisors of any of the integers in the set:

{ p5+p4+p3+p2+p+1, p5−p4+p3−p2+p−1, p4−p3+p−1, p4+p3−p−1}.

For p = 7 and h = 6, we have 60 divisors of p6 − 1 = 24 · 32 · 19 · 43, and
the distinct divisors of these 4 polynomials are the 52 integers:

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 24, 36, 38, 43, 48, 57, 72, 76, 86, 114, 129, 144,
152, 171, 172, 228, 258, 304, 342, 344, 387, 456, 516, 684, 688, 774, 817, 912,
1032, 1368, 1634, 2064, 2451, 2736, 3268, 4902, 6536, 7353, 9804,14706,19608.

So the remaining (possible) divisors of p6 − 1 are

1548, 3096, 6192, 13072, 29412, 39216, 58824, 117648.

Of course, in our example, the prime p = 7 is too small regading η,
but the interesting fact (which is similar for larger p and any integer h)
is the great number of impossible divisors of ph − 1 for small numbers η.
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For p = 1093 (resp. 504202701918008951235073), only 76 (resp. 242424)
divisors are possible among the 384 (resp. 518144) divisors of p6 − 1.

The case h = ` (a prime) implies that op(η) is not a divisor of p−1 nor a
divisor of p`−1 + · · ·+p+1 for p� 0 with residue degree np = `; this means
that op(η) = d1d2 with d1 | p − 1, d1 6= 1, d2 | p`−1 + · · · + p + 1, d2 6= 1
(taking care of the fact that when p ≡ 1 (mod `), we have the relation
gcd(p− 1, p`−1 + · · ·+ p+ 1) = `).

Remark 2.2. It is clear that if r ∈ N \ {0} is small, Theorem 2.1 implies
that for all prime p � 0 with residue degree np = h and for any p | p,
the least integer k ≥ 1 for which there exists ζ ∈ µ(K) such that ηk ≡ ζ
(mod p) cannot divide any of the integers r · Dh,δ(p), δ | h (indeed, ηr is
still small in an Archimedean point of view). This makes sense only when
r = rδ is choosen, for each Dh,δ(p), as a small divisor of Φδ(p).

So the probability of op(η) | rδ · Dh,δ(p) increases (from 0 to 1) when
the factor rδ | Φδ(p) increases (from rδ = 1 to rδ = Φδ(p)). In the example
h = `, where op(η) = d1d2, d1 | p − 1, d2 | p`−1 + · · · + p + 1, we have d1
and d2 →∞ for p→∞.

3. A numerical example

Let K = Q(x) be the cyclic cubic field of conductor 7 defined by x =
ζ7+ζ−1

7 from a primitive seventh root of unity ζ7; its irreducible polynomial
is X3 +X2 − 2X − 1.

Let η = 8x+ 5 of norm −203; then for p < 200, inert in K (i.e., p2 6≡ 1
(mod 7)), we obtain the exceptional example o17(η) = 307 = p2 +p+1 and
no other when p increases; we get some illustrations with a small r | p− 1,
r > 1 (e.g., p = 101, r = 2, with op(η) = r · (p2 + p + 1)), according to
the following numerical results; note that when p ≡ 1 (mod 3), we have
op(η) = 1

3 · gcd(op(η), p− 1) · gcd(op(η), p2 + p+ 1):

(1) p ≡ 2 (mod 7):

p gcd(op(η), p− 1) gcd(op(η), p2 + p+ 1)
2 1 1
23 11 553
37 36 201
79 78 6321
107 53 11557
149 37 22351
163 54 26733
191 190 36673
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(2) p ≡ 3 (mod 7):

p gcd(op(η), p− 1) gcd(op(η), p2 + p+ 1)
3 1 13

17 ∗ 1 307
31 15 993
59 58 3541
73 9 5403
101 ∗∗ 2 10303
157 26 8269
199 198 39801

(3) p ≡ 4 (mod 7):

p gcd(op(η), p− 1) gcd(op(η), p2 + p+ 1)
11 10 133
53 26 2863
67 33 4557
109 27 11991
137 136 18907
151 75 22953
179 89 32221
193 192 37443

(4) p ≡ 5 (mod 7):

p gcd(op(η), p− 1) gcd(op(η), p2 + p+ 1)
5 4 31
19 9 381
47 23 2257
61 10 1261
89 11 8011
103 102 10713
131 65 17293
173 172 30103

With the same data, the least values of gcd(op(η), p− 1) are:
• 1 (for p = 2, 3, 17), 2 (for p = 101), 3 (for p = 13669, for wich we
get op(η) = 560565693), 4 (for p = 5, 317), 9 (for p = 19, 73).
• Up to p ≤ 107, we have no other solutions for gcd(op(η), p−1) < 10.
• For gcd(op(η), p2 +p+ 1) < 100 we get 1 (for p = 2), 13 (for p = 3),

31 (for p = 5); for gcd(op(η), p2 + p + 1) < 1000 we only have the
primes p = 2, 3, 5, 11, 17, 19, 23, 31, 37 giving a solution up to 107.
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4. A lower bound for op(η)

When η is fixed in K×, very small orders are impossible as p → ∞
because of the following theorem giving Archimedean constraints; in this
result none hypothesis is done on the rank of the multiplicative Z[G]-module
generated by η (except that this Z-rank is assumed to be 6= 0) nor on the
field K itself. We denote by ZK the ring of integers of K.

Theorem 4.1. Let µ(K) be the group of roots of unity contained in K.
Let η ∈ K× \ µ(K) and ν ∈ N \ {0} be such that ν η ∈ ZK . Then, for
any p prime to η and ν, the congruence ηk ≡ ζ (mod p), ζ ∈ µ(K), k ≥ 1,
implies the inequality

k ≥ log(p)− log(2)
max

(
log(ν · c0(η)), log(ν)

) ,
where c0(η) = maxσ∈G(|ησ|

)
. If η ∈ ZK (i.e., ν = 1), then we get k ≥

log(p−1)
log(c0(η)) . In other words, if ZK,(p) is the ring of p-integers of K, the order
of the image of η in ZK,(p)

/
µ(K)·(1+pZK,(p)), and a fortiori op(η), satisfies

the above inequalities.

Proof. Put η = θ
ν , with θ ∈ ZK . The congruence is equivalent to θk =

ζ νk + Λ p, where Λ ∈ ZK \ {0} (because η /∈ µ(K)). Taking a suitable
conjugate of this equality, we can suppose |Λ| ≥ 1. Thus

|Λ| p = |θk − ζ νk| ≤ |θ|k + νk

giving |θ|k+νk ≥ p; so, using a conjugate θ0 such that |θ0| = maxσ∈G(|θσ|),
we have a fortiori |θ0|k + νk ≥ p, with |θ0| ≥ 1 since θ ∈ ZK .

(1) If ν ≥ 2, then
p ≤ |θ0|k + νk ≤ 2 max(|θ0|k, νk)

giving the result.
(2) The case ν = 1, used in [2, Lemme 6.2], gives |θ0|k ≥ p − 1, hence

the upper bound k ≥ log(p−1)
log(c0(η)) since |θ0| = c0(η) > 1 (because

η /∈ µ(K)). �

Under the assumptions of Theorem 2.1 we have the following result.

Corollary 4.2. Suppose to simplify that η ∈ ZK ; let p be unramified of
residue degree np such that for some δ | np, op(η) = r · d, d | Dnp,δ(p), r =
rδ | Φδ(p) (cf. Remark 2.2). Then r ≥ log(p−1)

log(c0(ηDnp,δ(s)))
, where s generates

any decomposition group of p.

In the previous example of Section 3, for p ≈ 107 and op(η) = r · d,
d | D3,δ(p), we find, from the corollary, r ≥ 3 for δ = 1 (i.e., r | p−1), r ≥ 9
for δ = 3 (i.e., r | p2 + p+ 1).
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5. Densities–Probabilities for op(η) and op(η)

In this section, we examine some probabilistic aspects concerning the
orders modulo p | p of an η ∈ K×. For any p, unramified in K/Q, recall
that gp is the number of prime ideals p | p and np the common residue
degree of these ideals. Let ZK be the ring of integers of K; the residue
fields Fp = ZK/p are isomorphic to Fpnp .

5.1. Densities. It is assumed in this short subsection that p is fixed and
that η ∈ K× is a variable modulo p, prime to the given p; in other words, η
varies in the group (ZK,(p)/pZK,(p))× of invertible elements of the quotient
ZK,(p)/pZK,(p), where ZK,(p) is the ring of p-integers of K, so that we have

(ZK,(p)/pZK,(p))× '
∏
p|p
F×p (p unramified).

For each prime ideal p | p, let ηp ∈ F×p be the residue image of η at p.
The density of numbers η, whose diagonal image is given in

∏
p|p F

×
p , is

1
(pnp − 1)gp

because the map η (mod p) 7→ (ηp)p|p ∈
∏

p|p F
×
p yields an isomorphism

(from chinese remainder theorem) and, in some sense, the gp conditions on
the ηp, p | p, are independent as η varies (the notion of density is purely
algebraic and the previous Archimedean obstructions of Sections 2 and 4
do not exist). Thus the orders op(η) and op(η) have canonical densities
(see §5.4).

5.2. Probabilities and Independence. We shall speak of probabilities
when, on the contrary, η ∈ K× \ µ(K) is fixed and when p → ∞ is the
variable; but to avoid trivial cases giving obvious obstructions (as η ∈ Q×
for which op(η) | p − 1 for any p regardless of the residue degree of p; see
§5.3 for more examples), we must put some assumptions on η so that op(η)
can have any possible value dividing pnp − 1 (by reference to Theorem 2.1,
Remark 2.2, and Theorem 4.1 giving moreover theoretical limitations for
the orders, so that the true probabilities are significantly lower).

Let H be the decomposition group of a prime ideal p0 | p, p unramified
in K/Q. Considering F×p0 as a H-module (H is generated by the global
Frobenius s = sp0 which by definition makes sense in Fp0/Fp),

∏
p|p F

×
p

is the induced representation and we get
∏

p|p F
×
p =

⊕
σ∈G/H σF

×
p0 where

σF×p0 = F×pσ0
for all σ ∈ G/H (using additive notation for convenience).

In the same way, the representation 〈η〉G can be written 〈η〉G =∑
σ∈G/H σ〈η〉H , where 〈η〉H is the multiplicative Z[H]-module generated

by η. So, for natural congruential reasons (that must be valid regardless of
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the prime p) concerning the map η (mod p) 7→ (ηp)p|p, the representation
〈η〉G must be induced by the H-representation 〈η〉H , i.e., we must have

〈η〉G =
⊕

σ∈G/H
σ〈η〉H

(otherwise, any nontrivial Z-relation between the conjugates of η will give
non-independent variables ηp in a probabilistic point of view). Since any
cyclic subgroup H of G is realizable as a decomposition group when p
varies, the above must work for any H; taking H = 1, we obtain that
〈η〉G =

⊕
σ∈G〈ησ〉Z which is equivalent for 〈η〉G to be of Z-rank n, giving

the following heuristic in relation with the properties of the normalized
p-adic regulator of η studied in [2].

Heuristic 5.1. Let K/Q be Galois of degree n, of Galois group G. Consider
η ∈ K× and, for any prime number p � 0, unramified in K/Q and prime
to η, let (ηp)p|p be the diagonal image of η in

∏
p|p F

×
p .

The components ηp are independent, in the meaning that for given
ap ∈ F×p ,

Prob
(
ηp = ap, ∀ p | p

)
=
∏
p|p

Prob
(
ηp = ap

)
,

if and only if η generates a multiplicative Z[G]-module of Z-rank n.

5.3. Remarks and examples. Suppose that η generates a multiplicative
Z[G]-module of Z-rank n, which has obvious consequences (apart the fact
that η /∈ µ(K)):

(1) This implies that η is not in a strict subfield L of K; otherwise,
if H is a non-trivial cyclic subgroup of G (hence of order h > 1)
such that L ⊆ KH , for any unramified prime p such that H is
the decomposition group of p | p with Frobenius s, op(η) is not a
random divisor of ph − 1 but a divisor of p− 1, the residue field of
KH at p being Fp for infinitely many p.

(2) In the same way, η cannot be an element of K× of relative norm 1
in K/KH , H 6= 1, because of the relation NK/KH (η) = 1 giving

ηp
h−1+···+p+1 ≡ 1 (mod p) .

For the unit η = 2
√

2 + 3 and any p inert in Q(
√

2), we obtain
ηp+1 ≡ 1 (mod p) (i.e., op(η) | p+ 1), giving infinitely many p such
that op(η) < p:

(p, op(η)) = (29, 10), (59, 20), (179, 36), (197, 18), (227, 76),
(229, 46), (251, 84), (269, 30), (293, 98), (379, 76),
(389, 78), (419, 140), (443, 148), . . .
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(3) Let K = Q(j, 3√2), where j is a primitive third root of unity, and
let η = 3√2 − 1 (a unit of Q( 3√2)); for the same reason with H =
Gal(K/Q(j)), from ηs

2+s+1 = 1, we get, for any prime p inert in
K/Q(j),

ηp
2+p+1 ≡ 1 (mod p)

(for p = 7, η is of order 19 modulo p and we have infinitely many p
such that op(η) | p2 + p+ 1).

In such a non-Abelian case, some relations of dependence can also occur
in a specific component F×p , p | p. Since η = 3√2 − 1 ∈ Q( 3√2), for any p

inert in K/Q( 3√2) (i.e., KH = Q( 3√2), in which case, p splits in K/Q(j)),
there exists a rational a such that 3√2 ≡ a (mod p), 3√2 ≡ a j2 (mod ps),
3√2 ≡ a j (mod ps

2). So η ≡ a − 1 (mod p) and op(η) | p − 1 which is not
necessary true for op(η): for p = 5 we have 3√2 ≡ 3 (mod p), 3√2 ≡ 3j2

(mod ps), 3√2 ≡ 3j (mod ps
2). Then η ≡ 2 (mod p) is of order 4 modulo

p, but η ≡ 3j2 − 1 (mod ps) is of order 8 modulo ps. So op(η) = 8 but we
have some constraints on the ηp.

5.4. Probabilities for the order of η modulo p. Now we suppose that
the multiplicative Z[G]-module 〈η〉G is of Z-rank n.

Remark 5.2. From Theorem 2.1, we know that op(η) - Dnp,δ(p) for all
δ | np, when p → ∞; in particular, op(η) - p − 1 if we assume np > 1. For
this, the hypothesis on the Z-rank of 〈η〉G is fundamental. In other words,
the probability of some (unbounded) orders is zero. This is strengthened
by Remark 2.2. Moreover, Theorem 4.1 gives obstructions for very small
orders, which decreases the probabilities of small orders; the total defect of
probabilities is less than O(log(p)) and is to be distributed among all orders,
which is negligible. Thus, this favors large orders which are more probable;
this goes in the good direction because we shall study probabilities of orders
op(η) less than p when np > 1.

Although the theoretical values of the probabilities are rather intricate,
in a first approach, we can neglect these aspects and give some results in
an heuristic point of view corresponding to the case where η is considered
as a variable (so that probabilities coincide with known densities) and we
use the heuristic that when η is fixed once for all, probabilities are much
lower than densities as p→∞ as explained in §5.2. Furthermore, we shall
use rough majorations (except in the quadratic case and np = 2, where
densities are exact).
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If D | pnp−1, op(η) | D is equivalent to ηDp = 1 for all p | p. So we obtain

Prob
(
op(η) = D

)
≤ Prob

(
op(η) |D

)
=
∏
p|p

Prob
(
ηDp = 1

)
(cf. Heuristic 5.1) .

Since F×p is cyclic of order pnp − 1, we get

Prob
(
ηDp = 1

)
=
∑
d|D

φ(d)
pnp − 1 = D

pnp − 1 ,

where φ is the Euler function, and we obtain, for any D | pnp − 1,

Prob
(
op(η) = D

)
≤
(

D

pnp − 1

)gp
.

If gp = 1, then np = n, and we can replace this inequality by

Prob
(
op(η) = D

)
≤ Density

(
op(η) = D

)
= φ(D)
pn − 1 .

When gp > 1, the exact expression is more complicate since op(η) = D if
and only if op0(ηp0) = D for at least one p0 | p and op(ηp) | D for all p | p,
p 6= p0, but we shall not need it.

6. Probabilities of orders op(η) < p

Suppose p� 0, non totally split in K/Q. In [2], the number η is a fixed
integer of K× and we have to consider the set

Ip(η) :=
{
1, [η]p, . . . , [ηk]p, , . . . , [ηp−1]p

}
,

where [ · ]p denotes a suitable residue modulo pZK . We need that Ip(η) be
a set with p distinct elements, to obtain valuable statistical results on the
“local regulators ∆θ

p(z)”, z ∈ Ip(η), to strengthen some important heuris-
tics; this condition is equivalent to ηk 6≡ 1 (mod p) for all k = 1, . . . , p− 1,
hence to op(η) > p.

So we are mainely interested by the computation of Prob
(
op(η) < p

)
when np > 1 and we intend to give an upper bound for this probability.
As we know from Theorem 2.1, taking the example of quadratic fields we
have, for 〈η〉G of Z-rank 2,

op(η) - p− 1 and op(η) - p+ 1, for p→∞;
but op(η) < p remains possible for small divisors D of p2 − 1 (e.g., η =
5 +
√
−1 for which p = 19 is inert in Q(

√
−1) and o19(η) = 3 · 5 whereas

p− 1 = 18 and p+ 1 = 20).
Suppose that K 6= Q and that the residue degree of p is np > 1. Let

Dp := {D : D | pnp − 1, D < p, D - Dnp,δ(p) ∀ δ | np}.
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Then we consider that we have, for all p � 0 of residue degree np, the
following heuristic inequality (from Theorems 2.1, 4.1 and §5.4):

(6.1)
Prob

(
op(η) < p

)
≤ Prob

(
op(η) ∈ Dp

)
≤

∑
D∈Dp

( D

pnp − 1
)gp

= 1
(pnp − 1)gp

∑
D∈Dp

Dgp .

A trivial upper bound for
∑
D∈Dp D

gp is
∑p−1
k=1 k

gp = O(1) pgp+1, giving

Prob
(
op(η) < p

)
≤ O(1)
pgp(np−1)−1

for which the application of the Borel–Cantelli heuristic supposes the in-
equality gp(np − 1) ≥ 3, giving possible obstructions for quadratic or cubic
fields with p inert, and quartic fields with np = 2. Of course, if gp(np−1) in-
creases, the heuristic becomes trivial and we can replace Prob

(
op(η) < p

)
by Prob

(
op(η) < pκ

)
, for some κ > 1 (see Remark 6.2 (i)). But we can

remove the obstructions concerning the cubic and quartic cases using an
analytic argument suggested by G. Tenenbaum:

Theorem 6.1. Let K/Q be Galois of degree n ≥ 2, of Galois group G, and
let η ∈ K× be such that the multiplicative Z[G]-module generated by η is
of Z-rank n. For any prime number p, let gp be the number of prime ideals
p | p and let np be the residue degree of p in K/Q.

Then, under the above heuristic inequality (6.1), for all unramified p� 0
such that np > 1, we have (where log2 = log ◦ log)

Prob
(
op(η) < p

)
≤ 1
pgp (np−1)−ε , with ε = O

( 1
log2(p)

)
.

Proof. Let Sp :=
∑
D∈Dp D

gp ; under the two conditions D | pnp − 1, D < p,
we get Sp <

∑
D|pnp−1

(
p
D

)gp
Dgp = pgp ·τ(pnp−1), where τ(m) denotes the

number of divisors of the integer m. From [6, Theorem I.5.4], we have, for
all c > log(2) and for all m� 0,

τ(m) ≤ m
c

log2(m) .

Taking c = 1 and m = pnp − 1 < pnp , this leads to Sp < p
gp+ np

log2(pnp−1) for
all p� 0. Thus

Prob(op(η) < p) ≤ Sp
(pnp − 1)gp ≤

1

(pnp − 1)gp · p−gp−
np

log2(pnp−1)

= 1

p
gp (np−1)−O

(
1

log2(p)

) . �
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To apply the Borel–Cantelli heuristic giving the finiteness of primes p
such that op(η) < p, we must have the inequality gp (np− 1) ≥ ε+ 1, hence
gp (np − 1) ≥ 2. Otherwise, we get gp = 1 and np = 2, not sufficient to
conclude for quadratic fields with p inert since, in this case,

Prob(op(η) < p) ≤ 1
p1−ε with ε = O

( 1
log2(p)

)
.

Remarks 6.2. (1) Still when gp (np − 1) ≥ 2, we can replace the pre-
vious inequality Prob

(
op(η) < p

)
≤ 1

pgp (np−1)−ε by

Prob
(
op(η) < pκ

)
≤ 1
pgp (np−1)−ε

which is true for any real κ such that 1 ≤ κ ≤ np − 1+ε
gp

, in which
case the Borel–Cantelli heuristic applies and may have some interest
for large np; for instance, if K = Qr is the subfield of degree `r (` a
prime, r ≥ 1), of the cyclotomic Z`-extension of Q, and if we take
primes p totally inert in K/Q, one can take κ = `r − 2 (if `r 6= 2)
for any η as usual.

(2) Note that the proof of the theorem does not take into account the
conditions op(η) - Dnp,δ(p) and it should be interesting to improve
this aspect. But this theorem is a first step, and in the next sections,
we intend to use explicitely the set Dp for numerical computations
and for a detailed study of the more ambiguous quadratic fields
case. Indeed, in this case, we have to estimate the more precise
upper bound 1

p2−1
∑
D∈Dp φ(D) and a numerical experiment with

the following PARI program (from [7]) shows a great dispersion of
the number N of such divisors:
{b=10^5; B=b+10^3; forprime(p=b, B, N=0; my(e=kronecker(-4,p));
F1=factor(2*(p-e)); F2=factor((p+e)/2); P=concat(F1[,1],F2[,1]);
E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(# E,i,[0,E[i]]), my(d=factorback(P,v));
if(d>=p-1, next); if((p-1)%d!=0 && (p+1)%d!=0, N=N+1)); print(p," ", N))}

giving for instance (depending on the factorizations of p − 1 and
p+ 1):
• p = 100237, N = 3, where (p − 1) · (p + 1) = (22 · 3 · 8353) ·

(2 · 50119),
• p = 100673, N = 489, where (p− 1) · (p+ 1) = (26 · 112 · 13) ·

(2 · 32 · 7 · 17 · 47).

We shall return more precisely to the quadratic case in §8.4.
We can state to conclude this section:

Conjecture 6.3. Let K/Q be Galois of degree n ≥ 3, of Galois group G.
Let η ∈ K× be such that the multiplicative Z[G]-module generated by η is
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of Z-rank n. For any unramified prime p, prime to η, let op(η) be the order
of η modulo p.

Then op(η) > p, for all p non totally split in K/Q, except a finite number.
More generaly, op(η) > p(np−1)+1−np

n
·(1+ε), for all p such that np > 1, except

a finite number.

7. Numerical evidences for the above conjecture

This section is independent of any η ∈ K× and any number field K
but depends only on given and fixed integer parameters denoted by abuse
(np, gp). For np > 1, we explicitely compute, for any p, Sp :=

∑
D∈Dp D

gp

and the upper bound Sp
(pnp−1)gp of Prob

(
op(η) < p

)
, using the program

described below. Recall that

Dp := {D : D | pnp − 1, D < p, D - Dnp,δ(p) ∀ δ | np} .

7.1. General program about the divisors D ∈ Dp. It is sufficient to
precise the integers np > 1, gp ≥ 1, and the interval [b, B] of primes p. The
program gives the least value CBb of C(p), p ∈ [b, B], where

Sp
(pnp − 1)gp =: 1

pC(p) .

The favourable cases for the Borel–Cantelli principle are those with CBb > 1,
but the inequalities CBb ≥ C∞b := Infp∈[b,∞]C(p) do not mean that the
Borel–Cantelli principle applies since we ignore if C∞b > 1 or not for b� 0,
because C∞b is an increasing function of b.

In the applications given below, np is a prime number, for which Dnp,δ(p)
is in {p − 1, pnp−1 + · · · + p + 1}; for more general values of np, one must
first compute the set Dp as defined in Theorem 2.1.

{b=10^6; B=10^7; gp=1; np=2; CC= gp*(np-1)+1; C=CC; V=vector(B,i,i^gp);
forprime(p=b, B, my(S=0, M=p^np-1, m=p-1, mm=M/m, i);
fordiv(M,d,if(d>p, break); if(m%d!=0 && mm%d!=0, S+=V[d]));
if(S!=0, C=(gp*log(M)-log(S))/log(p)); if(C<CC, CC=C)); print(CC)}

The initial CC := gp (np − 1) + 1 ≥ 2 is an obvious upper bound for CBb .

7.2. Application to quadratic fields with np = 2. We have gp = 1.
We obtain C ≈ 0.56402 . . . for 106 ≤ p ≤ 107, then C ≈ 0.58341 . . . for
107 ≤ p ≤ 108, and C ≈ 0.58326 . . . for 108 ≤ p ≤ 109. For larger primes p
it seems that the constant C stabilizes. If we replace D by φ(D) the result is
a bit better (e.g., C ≈ 0.64766 . . . instead of 0.56402 . . . for 106 ≤ p ≤ 107).

The local extremum of C are obtained by primes p, like 166676399,
604929599, 1368987049, 1758415231, for which p2 − 1 is “friable” (prod-
uct of small primes; see the computations that we shall give in §8.4).
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7.3. Application to cyclic cubic fields with np = 3. We use the
program with gp = 1, np = 3. For instance, for 106 ≤ p ≤ 107, we get
C ≈ 1.5652 · · · > 1 as expected from Theorem 6.1; for 107 ≤ p ≤ 108 the
value of C is 1.5399325 . . . and for 108 ≤ p ≤ 3.65717251 · 108, we get
C ≈ 1.5809 . . . .

7.4. Application to quartic fields with np = 2 and for np = 4.
For gp = 2, np = 2, and 106 ≤ p ≤ 107, we get C = 1.6103 . . . ; for
108 ≤ p ≤ 109, the result for C is 1.6186 . . . .

Naturally, for np = 4 we obtain a larger constant C = 2.4596 . . . . But in
the case np = 4 we can test the similar stronger condition Prob

(
op(η) < p2)

for which one finds C = 1.28442 . . . , giving the conjectural finiteness of
totally inert primes p in a Galois quartic field such that op(η) < p2.

8. Numerical examples with fixed η and p → ∞

The above computations are of a density nature and the upper bound
1
pC

is much higher than the true probability. So we intend to take a fixed
η ∈ K×, restrict ourselves to primes p with suitable residue degree np, and
compute the order of η modulo p to find the solutions p of the inequality
op(η) < p.

The programs verify that η generates a multiplicative Z[G]-module of
rank n. In the studied cases, K/Q is Abelian (G = C2, C3, C4) and the
condition on the rank is equivalent to ηe 6= 1 in 〈η〉G ⊗ Q, for all rational
idempotents e of Q[G].

8.1. Cubic cyclic fields. We then consider the following program with
the polynomial P = X3 + X2 − 2X − 1 (see data in Section 3). Put η =
ax2 + bx + c; then a is fixed and to expect more solutions, b, c vary in
[−10, 10] and p in [3, 105]:

{P=x^3+x^2-2*x-1; x0=Mod(x,P); x1=-x0^2-x0+1; x2= x0^2-2;
Borne=10^5; a=1; for(b=-10, 10, for(c=-10, 10,
Eta0=a*x0^2+b*x0+c; Eta1=a*x1^2+b*x1+c; Eta2=a*x2^2+b*x2+c;
N=norm(Eta0); R1=Eta0*Eta1*Eta2; R2=Eta0^2*Eta1^-1*Eta2^-1;
if(R1!=1 & R2 !=1 & R1!=-1 & R2 !=-1,
forprime(p=1, Borne, if(p%N!=0, T=Mod(p,7)^2; if(T!=1,
A=Mod(a,p); B=Mod(b,p); C=Mod(c,p); Y=Mod(A*x^2+B*x+C, P);
my(m=p-1, mm=p^2+p+1); fordiv(m*mm, d, if(d>p, break);
Z=Y^d; if(Z==1, print(a," ",b," ",c," ",p," ",d)))))))))}

No solution is obtained except the following triples (the eventual multiples
of op(η) are not written):

(a, b, c, p, op(η))
= (1,−7, 7,137,56), (1,−3, 3,37,28), (1, 4, 8,47,37), (1, 6,−10,31,18).
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We have here an example (η = x2 + 4x + 8, p = 47) where op(η) = 37
divides p2 + p + 1 = 37 · 61; this can be possible because p is too small
regarding ηs2+s+1 = 1 + 8 p = 377 (see Lemma 1.2).

8.2. Quartic cyclic fields. We consider the quartic cyclic field K defined
by the polynomial P = X4 −X3 − 6X2 + X + 1 of discriminant 342. The
quadratic subfield of K is k = Q(

√
17) and K = k

(√
(17 +

√
17)/2

)
. The

program is analogous to the previous one with the parameters np = gp = 2.
Put η = ax3 + bx2 + cx+ d; then b, c, d vary in [−10, 10], and p in [3, 105]:
{P=x^4-x^3-6*x^2+x+1; x0=Mod(x,P); x1=-1/2*x0^3+3*x0+3/2;
x2=x0^3-x0^2-6*x0+1; x3=-1/2*x0^3+x0^2+2*x0-3/2;
Borne=10^5; a=1; for(b=-10, 10, for(c=-10, 10, for(d=-10, 10,
Eta0=a*x0^3+b*x0^2+c*x0+d; Eta1=a*x1^3+b*x1^2+c*x1+d;
Eta2=a*x2^3+b*x2^2+c*x2+d; Eta3=a*x3^3+b*x3^2+c*x3+d; N=norm(Eta0);
R1=Eta0*Eta1*Eta2*Eta3; R2=Eta0*Eta2^-1; R3=Eta0*Eta1^-1*Eta2*Eta3^-1;
if(R1!=1 & R2 !=1 & R3!=1 & R1!=-1 & R2 !=-1 & R3!=-1,
forprime(p=3, Borne, if(p%N!=0, if(issquare(Mod(p,17))==1,
u=sqrt(Mod(17, p)); v=(17+u)/2; if(issquare(v)==0,
A=Mod(a,p); B=Mod(b,p); C=Mod(c,p); D=Mod(d,p);
Y=Mod(A*x^3+B*x^2+C*x+D,P);
my(m=p-1, mm=p+1); fordiv(m*mm, dd, if(dd>p, break); Z=Y^dd;
if(Z==1, print(a," ",b," ",c," ",d," ",p," ", dd)))))))))))}

No solution is obtained except the following ones, where we consider at
most a solution (p, op(η)) for a given p (other solutions may be given by
conjugates of η and/or by η′ ≡ η (mod p); many solutions with p = 19 and
the orders 12 and 15); we eliminate also the solutions (p, λ op(η)), λ > 1):
(a, b, c, d, p, op(η))

= (1,−10, 2,−10,19,12), (1,−10, 5,−9,19,15), (1,−9, 6, 9,43,33),
(1,−7,−2,−6,19,8), (1,−7, 2,−8,19,10), (1,−8, 7, 7,461,276),
(1,−4, 1, 8,1549,1395), (1,−3, 0,−6,223,64),
(1,−1,−6,−10,229,184), (1,−1, 3,−2,59,40), (1, 3,−8, 6,53,9),
(1, 3,−5, 10,83,21), (1, 9,−7, 5,43,22).

For the last three cases, the order divides p + 1 for the same reason
as above. We have the more exceptional solution (1,−4, 1, 8,1549,1395)
where 1395 = 9 · 5 · 31 with 9 | p− 1 and 5 · 31 | p+ 1.

8.3. Quadratic fields. We consider the fieldK defined by the polynomial
P = X2−3 and the following program with η = a

√
3+b, a = 1, b ∈ [−10, 0].

{m=3; P=x^2-m; x0=Mod(x,P); x1=-x0; a=1; Borne=10^5;
for(b=-10, 10, Eta0=a*x0+b; Eta1=a*x1+b; N=norm(Eta0);
R1=Eta0*Eta1; R2=Eta0*Eta1^-1; if(R1!=1 & R2 !=1 & R1!=-1 & R2 !=-1,
forprime(p=1, Borne, if(p%N!=0,
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if(kronecker(m, p)==-1, A=Mod(a,p); B=Mod(b,p); Y=Mod(A*x+B,P);
my(m=p-1, mm=p+1); fordiv(m*mm, d, if(d>p, break);
Z=Y^d; if(Z==1, print(a," ",b," ",p," ", d))))))))}

For small primes p there are solutions op(η) | p− 1 or op(η) | p+ 1:

(a, b, p, op(η))
= (1,−10,79,65), (1,−10,101,75), (1,−10,967,847),

(1,−10,20359,13234), (1,−10,90149,72700), (1,−9,89,55),
(1,−9,6163,4623), (1,−9,29501,6705), (1,−8,10711,2210),
(1,−6,1123,843), (1,−5,86969,81172), (1,−4,30941,25785),
(1,−9,41,15), (1,−9,1301,403), (1,−8,5,3), (1,−7,29,24),
(1,−7,103,39), (1,−7,727,143), (1,−4,701,675), (1,−3,43,33).

If Conjecture 6.3 is likely for degrees n ≥ 3, the question arises for
quadratic fields with np = 2. We give here supplementary computations
with the following simplified program which can be used changing m, a, b:

{m=3; a=5; b=2; Borne=10^9; forprime(p=1, Borne, if(kronecker(m, p)==-1,
A=Mod(a,p); B=Mod(b,p); P=x^2-m; Y=Mod(A*x+B, P); my(e=kronecker(-4,p));
F1=factor(2*(p-e)); F2=factor((p+e)/2);
P=concat(F1[,1],F2[,1]); E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(# E,i,[0,E[i]]), my(d=factorback(P,v)); if(d>p, next);
Z=Y^d; if(Z==1, print(p," ",d)))))}

(1) For instance, if we fix η = 5
√

3 + 2 and take larger primes inert in
Q(
√

3), this gives the few solutions (up to p ≤ 109):

(p, op(η)) = (5, 4), (29, 21), (1063, 944), (32707, 23384), (90401, 68930).

(2) For η = 7
√

3 + 3 we obtain the solutions (up to p ≤ 109):

(p, op(η)) = (7, 6), (29, 21), (137, 92), (7498769, 5927335),
(39208553, 31070928).

The large solution (p = 39208553, op(η) = 31070928) (where p2 − 1
is friable) is a bad indication for finiteness.

(3) Consider K = Q(
√
−1) with p ≡ 3 (mod 4) up to p ≤ 109.

• For η =
√
−1 + 4 (N(η) = 17), we obtain the solutions:

(p, op(η)) = (49139, 19593), (25646167, 22440397).

• For η =
√
−1 + 2 (N(η) = 5), we obtain the solution:

(p, op(η)) = (9384251, 6173850).
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• For η = 3
√
−1 + 11 (N(η) = 130), we obtain the solutions:

(p, op(η)) = (3, 2), (43, 11), (131, 24), (811, 174), (911, 133),
(5743, 3168), (2378711, 1486695).

Although this kind of repartition of the solutions looks like the case of
Fermat quotients, for which a specific heuristic can be used (see [3]), it
seems that we observe more systematic large solutions in the quadratic
case with p inert, and we have possibly infinitely many solutions. This
should be because the problem is of a different nature and is connected
with generalizations of primitive roots problem in number fields (see the
extensive survey by P. Moree [4]).

So we shall try in the next subsection to give some insights in the opposite
direction for quadratic fields (infiniteness of inert primes p with op(η) < p).

8.4. Analysis of the quadratic case. Starting from the formula

Prob
(
op(η) < p

)
≤ Density

(
op(η) < p

)
= 1
p2 − 1

∑
D∈Dp

φ(D)

of Remark 6.2(2), we study the right member of the normalized equality
(p+ 1) ·Density(op(η) < p) = 1

p−1
∑
D∈Dp φ(D), remembering that it is an

upperbound of the probability. From numerical experiments, we can state:

Conjecture 8.1. Let Dp be the set of divisors D of p2−1 such that D < p,
D - p− 1, D - p+ 1 (see Theorem 2.1). We have the inequalities:

1
3 ≤

1
p− 1

∑
D∈Dp

φ(D) < c(p) log2(p), p→∞ ,

where c(p) is probably around O(log2(p)).

The majoration 1
p2−1

∑
D∈Dp φ(D) < c(p) · log2(p)

p+1 ∼ c(p) · 1
p1−2·log2(p)/ log(p)

is to be compared with the upper bound 1
p1−ε

(
with ε = O

( 1
log2(p)

))
of

Theorem 6.1, but the sets of divisors D | p2 − 1 are not the same and this
information is only experimental. On the contrary, the minoration

1
p− 1

∑
D∈Dp

φ(D) ≥ 1
3

seems exact (except very few cases), and although the density (≥ proba-
bility) is O(1)

p , this suggests the possible infiniteness of inert p such that
op(η) < p for fixed η ∈ K× such that η1+s and η1−s are distinct from roots
of unity. Indeed, for p ∈ {2, 3, 5, 7, 17}, we get the strict inverse inequality

1
p− 1

∑
D∈Dp

φ(D) < 1
3
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and we have no other examples up to 109. The equality
1

p− 1
∑
D∈Dp

φ(D) = 1
3

is doubtless equivalent to p− 1 = 2u+2· 3v and p+ 1 = 2 · `, for some u ≥ 0,
v ≥ 0 and ` prime. To study this, one can use the following programs:

(1) Program testing the equality for any prime p.
{b=1; B=10^9; forprime(p=b, B, my(S=0, e=kronecker(-4,p));
F1=factor(2*(p-e)); F2=factor((p+e)/2);
P=concat(F1[,1],F2[,1]); E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(# E,i,[0,E[i]]), my(d=factorback(P,v));
if (d>p, next); if((p-1)%d!=0 && (p+1)%d!=0,
S+= prod(i=1,# v, if(v[i],(P[i]-1)*P[i]^(v[i]-1),1))));
if(3*S==p-1, print(p)))}

(2) Program giving the primes p such that p = 1 + 2u+2 · 3v and p =
−1 + 2 · ` (which are trivialy solutions). We use the fact that it is
easier to test in first the primality of (p+ 1)/2 for large p.
{X=1; Y=1; T=1; J2=0; J3=0; K=0; L=listcreate(10^6);
while(T<10^1000, K=K+1; listput(L,T,K);
if(T==X, J2=J2+1; X=2*component(L,J2));
if(T==Y, J3=J3+1; Y=3*component(L,J3));
T=min(X,Y); p=1+T; if(isprime(p)==1,
my(S=0, e=kronecker(-4,p)); if(isprime((p+1)/2)==1,
F1=factor(2*(p-e)); F2=factor((p+e)/2);
P=concat(F1[,1],F2[,1]); E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(# E,i,[0,E[i]]), my(d=factorback(P,v));
if (d>p, next); if((p-1)%d!=0 && (p+1)%d!=0,
S+= prod(i=1,# v, if(v[i],(P[i]-1)*P[i]^(v[i]-1),1))));
if(3*S==p-1, print(factor(p-1)," ",factor(p+1)," ",p)))))}

We obtain the following solutions:
p-1 p+1
[2, 2; 3, 1] [2, 1; 7, 1] p=13
[2, 2; 3, 2] [2, 1; 19, 1] p=37
[2, 3; 3, 2] [2, 1; 37, 1] p=73
[2, 6; 3, 1] [2, 1; 97, 1] p=193
[2, 7; 3, 2] [2, 1; 577, 1] p=1153
[2, 5; 3, 4] [2, 1; 1297, 1] p=2593
[2, 2; 3, 6] [2, 1; 1459, 1] p=2917
[2, 11; 3, 6] [2, 1; 746497, 1] p=1492993
[2, 13; 3, 5] [2, 1; 995329, 1] p=1990657
[2, 16; 3, 4] [2, 1; 2654209, 1] p=5308417
[2, 20; 3, 3] [2, 1; 14155777, 1] p=28311553
[2, 20; 3, 8] [2, 1; 3439853569, 1] p=6879707137
[2, 28; 3, 8] [2, 1; 880602513409, 1] p=1761205026817
[2, 36; 3, 4] [2, 1; 2783138807809, 1] p=5566277615617
[2, 43; 3, 2] [2, 1; 39582418599937, 1] p=79164837199873
[2, 47; 3, 3] [2, 1; 1899956092796929, 1] p=3799912185593857
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[2, 44; 3, 8] [2, 1; 57711166318706689, 1] p=115422332637413377
[2, 19; 3, 26] [2, 1; 666334875701477377, 1] p=1332669751402954753
[2, 5; 3, 36] [2, 1; 2401514164751985937, 1] p=4803028329503971873
[2, 9; 3, 44] [2, 1; 252101350959004475617537, 1] p=504202701918008951235073
(......)
[2, 347; 3, 210] [2, 1; 2248236482316792976786964665292968461331995642040323695103
2046780867585152457721177889198712315934156013280843634240215226808653634390879379
03441584820738187206171506901838003018676481262351763229728833537, 1]
p=44964729646335859535739293305859369226639912840806473902064093561735170304915442
3557783974246318683120265616872684804304536173072687817587580688316964147637441234
3013803676006037352962524703526459457667073

It seems clear that the number of solutions may be infinite (with an
exponential growth).

Consider the following program:

{b=10^60+floor(Pi*10^35); forprime(p=b, b+10^3, my(S=0, e=kronecker(-4,p));
F1=factor(2*(p-e)); F2=factor((p+e)/2);
P=concat(F1[,1],F2[,1]); E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(# E,i,[0,E[i]]), my(d=factorback(P,v));
if(d>p, next); if((p-1)%d!=0 && (p+1)%d!=0,
S+= prod(i=1,# v, if(v[i], (P[i]-1)*P[i]^(v[i]-1),1))));
Density=S/(p^2-1.0); Delta=S/(p-1.0)-1/3; C= Density*p/log(p);
print(p," ", Density," ", Delta," ",C))}

Then we obtain, for the inequalities 1
3 ≤

1
p−1

∑
D∈Dp φ(D) < c(p)·log2(p),

the following data, showing their great dispersion, first for some small prime
numbers, then for some larger ones, where

• Density := 1
p2−1

∑
D∈Dp φ(D),

• ∆ := (p+ 1) ·Density−1
3 = 1

p−1
∑
D∈Dp φ(D)− 1

3 ,
• C := p

log(p) ·Density� c(p) · log(p):

prime number p Density ∆ C

112771 1.35× 10−4 14.9499 1.3137
112787 3.43× 10−6 0.0538 0.0332
112799 1.03× 10−4 11.2873 0.9989
112807 2.31× 10−5 2.2715 0.2239
112831 3.48× 10−5 3.5941 0.3376
112843 9.35× 10−6 0.7225 0.0907

1000000012345678910111213141516172457 3.39× 10−37 0.0054 0.0040
1000000012345678910111213141516172551 1.13× 10−34 112.7791 1.3645
1000000012345678910111213141516172631 2.02× 10−35 19.9470 0.2446
1000000012345678910111213141516172643 9.88× 10−37 0.6552 0.0119
1000000012345678910111213141516172661 1.69× 10−35 16.5501 0.2036
1000000012345678910111213141516172719 6.83× 10−35 67.9646 0.8239

1060 + 314159265358979323846264338327950343 1.92× 10−58 192.1709 1.3934
1060 + 314159265358979323846264338327950499 1.43× 10−59 13.9993 0.1037
1060 + 314159265358979323846264338327950541 5.64× 10−59 56.0710 0.4082
1060 + 314159265358979323846264338327950569 7.50× 10−59 74.6795 0.5429
1060 + 314159265358979323846264338327950989 2.63× 10−59 26.0318 0.1908
1060 + 314159265358979323846264338327951201 5.26× 10−59 52.2864 0.3808
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(1) For p = 1000000012345678910111213141516172457 above, we have:
C ≈ 0.004086, C/ log(p) ≈ 4.930 · 10−5,

p− 1 = 23 · 32 · 389 · 62528362319 · 571006238831466292903,
p+ 1 = 2 · 8131511 · 61489187701134445376216864339.

(2) For p = 10123456789123456789125887, we obtain ∆ ≈ 5.0641 ·
10−23,

C ≈ 0.005789, C/ log(p) ≈ 10.054 · 10−5,

p− 1 = 2 · 5061728394561728394562943,
p+ 1 = 28 · 3 · 13181584360837834360841.

(3) Large values of C are, on the contrary, obtained when p2 − 1 is the
product of small primes (friable numbers). This may help to precise
the upper bound of C since the local maxima increase slowly. For
instance:

1666763992 − 1 = 25 · 33 · 52 · 7 · 11 · 17 · 19 · 23 · 29 · 31 · 41 · 61
with C ≈ 41.91845 and C/ log(p) ≈ 2.21421.

17584152312 − 1 = 28 · 34 · 5 · 7 · 11 · 13 · 17 · 19 · 29 · 31 · 37 · 47 · 59
with C ≈ 81.51733 and C/ log(p) ≈ 3.82932.

The following program computes these successive local maxima:
{B=10^20; CC=0.0; forprime(p=3, B, my(S=0, e=kronecker(-4,p)); F1=factor(2*(p-e));
F2=factor((p+e)/2); P=concat(F1[,1],F2[,1]); E=concat(F1[,2],F2[,2]);
forvec(v=vectorv(#E,i,[0,E[i]]), my(d=factorback(P,v)); if(d>p, next);
if((p-1)%d!=0 && (p+1)%d!=0, S+= prod(i=1,#v,if(v[i],(P[i]-1)*P[i]^(v[i]-1),1))));
Pr=S/(p^2-1.0); C=Pr*p/log(p); if(C>CC, CC=C; print(p," ",CC," ",CC/log(p))))}

p CC CC/log(p)
11 0.1529118768 0.0637692056
19 0.2867929851 0.0974015719
29 0.3690965111 0.1096121427
(......)
604929599 51.9605419985 2.5696806133
1368987049 61.6784084466 2.9318543821
1758415231 81.5173320978 3.8293199014

For p > 1758415231 the running time becomes prohibitive although we may
conjecture the infiniteness of these numbers.
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