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Some manifolds of Khinchin type for convergence

par David SIMMONS

Résumé. Récemment, Beresnevich, Vaughan, Velani et Zorin [2]
ont donné des conditions suffisantes pour qu’une variété soit de
type Khinchin pour la convergence. Nous montrons que leurs tech-
niques peuvent être utilisées de manière plus optimale pour obte-
nir des résultats plus solides. Dans le processus, nous améliorons
également un théorème de Dodson, Rynne et Vickers [5].

Abstract. Recently, Beresnevich, Vaughan, Velani, and Zorin
gave in [2] some sufficient conditions for a manifold to be of
Khinchin type for convergence. We show that their techniques
can be used in a more optimal way to yield stronger results. In
the process we also improve a theorem of Dodson, Rynne, and
Vickers [5].

1. Khinchin-type results

Fix n ∈ N. It is an easy consequence of the Borel–Cantelli lemma that if
ψ : N→ [0,∞) is a function such that the series

(1.1)
∞∑
q=1

ψn(q)

converges, then for all θ ∈ Rn, the set

S(ψ,θ) def= {x ∈ Rn : ∃∞q ∈ N ‖qx− θ‖ < ψ(q)}

is of Lebesgue measure zero. Here ‖ · ‖ denotes distance to the nearest
integer vector, measured using the max norm, which we denote by | · |, and
∃∞ means “there exist infinitely many”. The preceding result is known as the
convergence case of Khinchin’s theorem. A manifoldM⊂ Rn is said to be
of Khinchin type for convergence if its typical points behave like the typical
points of Lebesgue measure with respect to this theorem. More precisely,
let us say thatM is of strong (resp. weak) Khinchin type for convergence if
for every function (resp. monotonic function) ψ satisfying (1.1) and for all
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θ ∈ Rn, the set S(ψ,θ)∩M has measure zero with respect to the Lebesgue
measure ofM.(1)

Recently, Beresnevich, Vaughan, Velani, and Zorin proved the following
theorem (which we have taken some liberties in rephrasing):

Theorem 1.1 ([2, Corollaries 3 and 5]). Fix d,m ∈ N, let K ⊂ Rd be a
closed rectangle,(2) let f : K → Rm be a function of class C2, and let
(1.2) M =MK,f = {(α, f(α)) : α ∈ K} ⊂ Rd+m.

If we are in either of the following scenarios:
(1) m < d− 1, and for Lebesgue-a.e. α ∈ K, we have

(1.3) det(f ′′j (α)[e1, ei])1≤i,j≤m 6= 0;
(2) m = 1, d ≥ 2, and for Lebesgue-a.e. α ∈ K, we have

(1.4) det(f ′′1 (α)[ei, ej ])1≤i,j≤d 6= 0;

thenM is of strong Khinchin type for convergence.(3)

Here (ei)1≤i≤d denotes the standard basis of Rd, and fj denotes the
jth component of f . Our notation for double derivatives is as follows: if
f : V →W and α ∈ V , then f ′′(α) : V ×V →W is the bilinear map defined
by the formula f ′′(α)[v,w] = ∇v∇wf(α). We also consider the linear map
f ′′(α) : Sym2(V ) → W defined by the formula f ′′(α)[vw] = f ′′(α)[v,w].
Here Sym2(V ) is the quotient of the tensor product space V ⊗V under the
relations v⊗w ≡ w⊗v (v,w ∈ V ). The image of v⊗w under the quotient
map is denoted vw.

An important fact about this theorem, which indicates that it is “well
phrased”, is that the hypotheses (1.3) and (1.4) are satisfiable in the fol-
lowing sense: For any three numbers d,m, n ∈ N satisfying d + m = n as
well as the appropriate numerical hypothesis/hypotheses (i.e. m < d−1 for
Case (1), and m = 1, d ≥ 2 for Case (2)), there exists a function (and in
fact many functions) f : K → Rm such that the appropriate hypothesis on
f ′′ (i.e. (1.3) for Case (1), and (1.4) for Case (2)) holds. This indicates that
the theorem is non-vacuous in a “uniform” way. Although this observation
is somewhat trivial in the case of Theorem 1.1, it will be less trivial in the
case of the next two theorems.

Theorem 1.1 bears a strong resemblance to a theorem of Dodson, Rynne,
and Vickers, which for convenience we write in a similar format:

(1)The use of the adjectives “strong” and “weak” in this context is new. In the literature, the
phrase “Khinchin type for convergence” usually means “weak Khinchin type for convergence”.

(2)Although the authors of [2] only prove the special case K = [0, 1]d, their arguments work
just as well for the general case.

(3)Although the statements of [2, Corollaries 3 and 5] only yield thatM is of weak Khinchin
type for convergence, the proofs actually show thatM is of strong Khinchin type for convergence,
since the assumption that ψ is monotonic is not used anywhere in the proofs.
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Theorem 1.2 ([6, Theorem 1.3]). Fix d,m ∈ N, let K ⊂ Rd be a closed
rectangle, let f : K → Rm be a function of class C2, and let M ⊂ Rd+m be
as in (1.2). If m ≤

(d
2
)
, and for Lebesgue-a.e. α ∈ K,

(1.5) for all t ∈ Rm \ {0}, the matrix
(
t · f ′′(α)[ei, ej ]

)
1≤i,j≤d

has at least two nonzero eigenvalues that share the same sign,

thenM is of strong Khinchin type for convergence.

Here the assumption m ≤
(d
2
)
does not appear in [6], but we have added

it because the hypothesis (1.5) is not satisfiable when m >
(d
2
)
(Theo-

rem 5.1(v)). It appears to be a difficult problem to determine precisely
for which values m ≤

(d
2
)
the hypothesis is satisfiable; cf. the discussions

in [5, §2] and in Section 5. We have made progress on this problem by
showing that the hypothesis is satisfied generically whenever m ≤

(d−1
2
)

(Theorem 5.1(vii)).
The main goal of this paper is to generalize Theorems 1.1 and 1.2 simul-

taneously, yielding a new theorem more powerful than both of them. In the
following theorem, Case (1) is a generalization of Case (1) of Theorem 1.1,
and Case (2) is a generalization of Case (2) of Theorem 1.1 and also of
Theorem 1.2:

Theorem 1.3. Fix d,m ∈ N, let K ⊂ Rd be a closed rectangle, let f : K →
Rm be a function of class C2, and let the manifold M ⊂ Rd+m be given
by (1.2). If we are in either of the following scenarios:

(1) m < d− 1, and for Lebesgue-a.e. α ∈ K,

(1.6) the map f ′′(α) : Sym2 Rd → Rm is surjective;

(2) m <
(d+1

2
)
, and for Lebesgue-a.e. α ∈ K, we have

(1.7) rank
(
t · f ′′(α)[ei, ej ]

)
1≤i,j≤d ≥ 2 ∀ t ∈ Rm \ {0};

thenM is of strong Khinchin type for convergence.

We now show that this theorem is in fact a generalization of Theorems 1.1
and 1.2:

Proof that Theorem 1.3 implies Theorem 1.1. The linear transformation
f ′′(α) : Sym2 Rd → Rm is surjective if and only if some m×m minor of its
corresponding matrix has a nonzero determinant. Since the matrix on the
left-hand side of (1.3) is such a minor (since it is the matrix corresponding
to the linear transformation f ′′(α) �

∑m
i=1 Re1em), (1.3) implies (1.6), and

thus Case (1) of Theorem 1.1 is a special case of Case (1) of Theorem 1.3.



178 David Simmons

Suppose that m = 1 and d ≥ 2, and that (1.4) holds. Then for all
t ∈ Rm \ {0} we have

rank
(
t · f ′′(α)[ei, ej ]

)
1≤i,j≤d = rank

(
f ′′1 (α)[ei, ej ]

)
1≤i,j≤d (since m = 1)

= d (by (1.4))
≥ 2, (by hypothesis)

i.e. (1.7) holds. Thus, Case (2) of Theorem 1.1 is a special case of Case (2)
of Theorem 1.3. �

Proof that Theorem 1.3 implies Theorem 1.2. The rank of a symmetric ma-
trix is equal to the number of nonzero eigenvalues it has. So if a matrix has
at least two nonzero eigenvalues, then its rank is at least two, regardless of
the sign of the eigenvalues. Thus (1.5) implies (1.7), and so Theorem 1.2 is
a special case of Case 2 of Theorem 1.3. �

Remark 1.4. As in Theorem 1.1, the hypotheses (1.6) and (1.7) are sat-
isfiable whenever their numerical requirements are satisfied. For (1.6), this
is an immediate consequence of the implication (1.3) ⇒ (1.6) (but see the
next remark for an example that satisfies (1.6) but not (1.3)). It is a little
harder to see why (1.7) is satisfiable for all m <

(d+1
2
)
; we refer to Section 5

for details, specifically Theorem 5.1(ii). In Section 5, we also show that to
enforce that “almost all” functions f satisfy (1.7), the stronger inequality
m ≤

(d
2
)
is needed (Theorem 5.1(iii) and (iv)).

Remark 1.5. It should be noted that while the condition (1.3) is not
invariant under affine changes of coordinates, the conditions (1.4), (1.6),
and (1.7) are. Also, there are functions f satisfying (1.6) that do not sat-
isfy (1.3) with respect to any affine coordinate system; for example, ifm = 3
and d = 5, then the function

f(α1, . . . , α5) = (α2
1, α1α2, α

2
2)

has this property.

Remark 1.6. Theorems 1.1, 1.2, and 1.3 appear to be the only known
results regarding manifolds of strong Khinchin type for convergence (for
simultaneous approximation). However, there are some results regarding
manifolds of weak Khinchin type for convergence; for example, it was proven
in [8, Theorem 5] (see also [1]) that nondegenerate planar curves are of weak
Khinchin type for convergence. The results of this paper do not apply to
planar curves, since the parameters d = m = 1 do not satisfy the dimension
constraints. It remains an open question whether nondegenerate planar
curves (e.g. the standard parabola {(x, x2) : x ∈ R}) are of strong Khinchin
type for convergence.
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Outline of the paper. In Sections 2 and 3 we continue to state our main
results, each time reducing the main result of the previous section to the
main result of the current section. Then in Section 4 we prove the main
result of Section 3, and thus by implication all of the main results, using
technical tools from [2]. In Section 5 we discuss the significance of the
hypothesis (1.7), answering the question of how commonly it is satisfied.

In what follows, we do not give an exhaustive comparison of our re-
sults with the corresponding results in [2] and [6]; comparing Theorems 1.1
and 1.2 vs. Theorem 1.3 illustrates the main differences. However, we do
make the observation that [6, (5.1)] can be interpreted as a counting re-
sult similar to our Theorem 3.1 and [2, Theorems 1 and 3], though it is
not phrased in the same language. Standard techniques would then yield
a Jarník-type theorem which could then be compared with Theorem 2.1
and [2, Corollaries 3 and 5]. We leave the details to the interested reader.

Acknowledgements. The author was supported by the EPSRC Program-
me Grant EP/J018260/1. The author thanks Victor Beresnevich, Sanju
Velani, and Evgeniy Zorin for helpful discussions. The author thanks the
anonymous referee for helful comments.

2. A Jarník-type result

The Hausdorff–Cantelli lemma [3, Lemma 3.10] is a generalization of the
Borel–Cantelli lemma and states that if g is a dimension function (i.e. a non-
decreasing continuous function such that limρ→0 g(ρ) = 0) and (B(xi, ρi))∞1
is a sequence of balls such that the series

∑∞
i=1 g(ρi) converges, then

Hg
(

lim sup
i→∞

B(xi, ρi)
)

= 0,

where Hg denotes Hausdorff measure with respect to the gauge function g
(cf. [7, §4.9]). As a special case, if ψ : N → [0,∞) is a function such that
the series

(2.1)
∞∑
q=1

qng

(
ψ(q)
q

)
converges, then for all θ ∈ Rn, we have Hg(S(ψ,θ)) = 0. As in the previous
section, we will give a name to those manifolds that “inherit” this property
from Rn. Precisely, we will say that a manifoldM⊂ Rn is of strong (resp.
weak) Jarník type for convergence with respect to a dimension function g
if for every function (resp. monotonic function) ψ such that the series (2.1)
converges, we have

Hg(S(ψ,θ) ∩M) = 0,
where

g(ρ) def= g(ρ)
ρm
·
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Here m denotes the codimension ofM. Intuitively, a manifold is of Jarník
type for convergence if the “size of S(ψ,θ)∩M relative toM” is no bigger
than the “size of S(ψ,θ) relative to Rn”, as measured by the dimension
function g. Note that a manifold is of strong (resp. weak) Khinchin type
for convergence if and only if it is of strong (resp. weak) Jarník type for
convergence with respect to the dimension function g(ρ) = ρn.

Theorem 2.1. Fix d,m ∈ N, let n = d + m, let K ⊂ Rd be a closed
rectangle, let f : K → Rm be a function of class C2, and let the manifold
M ⊂ Rn be given by (1.2). Let g be a dimension function such that g is
increasing, and suppose that for some k ∈ N, both of the following hold:

(1) The series

(2.2)
∞∑
q=1

qng

(
q−1

(
q−1 log2(q)

) k
2m+k

)
converges;

(2) For Hg-a.e. α ∈ K, we have
(2.3) rank

(
t · f ′′(α)[ei, ej ]

)
1≤i,j≤d ≥ k ∀ t ∈ Rm \ {0}.

ThenM is of strong Jarník type for convergence with respect to the dimen-
sion function g.

Remark 2.2. If g(ρ) = ρs for some s > 0, then the series (2.2) converges
if and only if

(2.4) s

(
1 + k

2m+ k

)
> n+ 1.

Proof of Theorem 1.3 using Theorem 2.1. First note that the case k = 1
of (2.3) is equivalent to (1.6); indeed,

(2.3) holds with k = 1 ⇔ t · f ′′(α) 6= 0 ∀ t ∈ Rm \ {0}
⇔ (f ′′(α))T is injective
⇔ f ′′(α) is surjective.

Now let g(ρ) = ρn, so that g(ρ) = ρd. Then in Case 1 (resp. Case 2) of
Theorem 1.3, (2.3) is satisfied with k = 1 (resp. k = 2). On the other hand,

(2.2) converges ⇔ (2.4) holds with s = n ⇔ n+ nk

2m+ k
> n+ 1

⇔ 2m < k(n− 1) ⇔
{
m < d− 1 k = 1
d > 1 k = 2.

So the convergence of (2.2) with k = 1 (resp. k = 2) is guaranteed by
the appropriate numerical hypothesis of Case (1) (resp. Case (2)) of Theo-
rem 1.3. �
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3. A counting result

The proof of Theorem 2.1 is based on a counting result that is interesting
in its own right. Throughout this section, we fix d,m ∈ N, a closed rectangle
K ⊂ Rd, and a function f : K → Rm of class C2. Now for each q ∈ N, κ > 0,
and θ ∈ Rn, we write θ = (λ,γ) ∈ Rd × Rm, we consider the set

R(q, κ,θ) = RK,f (q, κ,θ)
def=
{

(a,b) ∈ Zd × Zm : a + λ

q
∈ K,

∣∣∣∣f (a + λ

q

)
− b + γ

q

∣∣∣∣ < κ

q

}
,

and we let A(q, κ,θ) = AK,f (q, κ,θ) = #R(q, κ,θ).

Convention. The notation A . B means that there exists a constant
C ≥ 1 (the implied constant), depending only on universal variables such
as d, m, K, and f (but not on q, κ, and θ), such that A ≤ CB. The notation
A � B means A . B . A. The notation A �+ B means that there exists
an implied constant C ≥ 0 such that A− C ≤ B ≤ A+ C.

Theorem 3.1. Fix k ∈ N, and suppose that (2.3) holds for all α ∈ K.
Then for all q ∈ N, κ > 0, and θ ∈ Rn, we have

(3.1) A(q, κ,θ) . qd max(κ, φ(q))m,

where φ(q) = (q−1 Log2(q))
k

2m+k . Here and hereafter we use the notation

Log(q) def= max(1, log(q)).

Proof of Theorem 2.1 using Theorem 3.1. First consider the case where
(2.3) holds for all α ∈ K. Then there exist a rectangle L ⊂ Rd whose
interior contains K and an extension of f to L such that (2.3) holds for all
α ∈ L. Let C1 = 1 + maxα∈L |f ′(α)|, and fix ψ such that (2.1) converges.
It is not hard to see that

S(ψ,θ) ∩M ⊂ lim sup
q→∞

⋃
(a,b)∈RL,f (q,C1ψ(q),θ)

B

((a + λ

q
,
b + γ

q

)
,
ψ(q)
q

)
,

where the ball is taken with respect to the max norm. So by the Hausdorff–
Cantelli lemma, if the series

∞∑
q=1

AL,f (q, C1ψ(q),θ) g
(
ψ(q)
q

)
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converges then Hg(S(ψ,θ) ∩M) = 0. And indeed, by Theorem 3.1,

∞∑
q=1

AL,f (q, C1ψ(q),θ) g
(
ψ(q)
q

)

.
∞∑
q=1

qd max(C1ψ(q), φ(q))m g

(
ψ(q)
q

)

.
∞∑
q=1

qn max
(
ψ(q)
q

,
φ(q)
q

)m
g

(
max

(
ψ(q)
q

,
φ(q)
q

))

≤
∞∑
q=1

qn
[
g

(
ψ(q)
q

)
+ g

(
φ(q)
q

)]
�+ (2.1) + (2.2) <∞,

which completes the proof in this case.
For the general case, we proceed to re-use the argument given in [2, Step 2

on p. 17]: Let V be the set of points α ∈ K such that (2.3) holds. Since V
is open, it can be written as the union of countably many rectangles, say
V =

⋃∞
i=1 Li. For each i, the previous argument shows that Hg(S(ψ,θ) ∩

MLi,f ) = 0. On the other hand, by assumption (2) we have Hg(MK\V,f ) =
0. Taking the union gives Hg(S(ψ,θ) ∩MK,f ) = 0. �

4. Proof of Theorem 3.1

The following lemma is a reformulation of the main technical result of [2].
We provide the proof for completeness.

Lemma 4.1 (Cf. [2, (2.27) and (2.28)]). Let the notation be as in Theo-
rem 3.1. Then for δ > 0 sufficiently small, independent of q, κ, and θ, we
have
(4.1)

A(q, κ,θ) . qd 1
Hm

∑
h∈Zm

|h|≤H

∫
K

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
dα if H, r ≥ 1,

where

H
def=
⌊ 1

4κ

⌋
, r

def= b(δqκ)1/2c.
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Proof. In what follows we assume that H, r ≥ 1. Let e denote the 1-periodic
exponential function e(x) = exp(2πix). We will need the following esti-
mates, valid for all x ∈ R and H ∈ N:

H∑
h=−H

(H − |h|)e(hx) =
(sin(Hπx)

sin(πx)

)2
≥
(2H
π

)2 [
‖x‖ ≤ (2H)−1

]
(4.2)

H∑
h=−H

e(hx) =
sin
(
(2H + 1)πx

)
sin(πx) ≤ min

(
2H + 1, 1

2‖x‖

)
.(4.3)

Here, the right-hand side of (4.2) is written using Iverson bracket notation,
i.e. [φ] is 1 if φ is true and 0 if φ is false. Now let A : Rd → Rm be a linear
transformation and fix y ∈ Rm. We have∑

v∈Zd

|v|≤r

[
‖A[v] + y‖ ≤ (2H)−1

]

=
∑

v∈Zd

|v|≤r

m∏
j=1

[
‖ej · (A[v] + y)‖ ≤ (2H)−1

]

.
∑

v∈Zd

|v|≤r

m∏
j=1

1
H

H∑
h=−H

H − |h|
H

e
(
hej · (A[v] + y)

)
(by (4.2))

= 1
Hm

∑
h∈Zm

|h|≤H

 m∏
j=1

H − |hj |
H

 ∑
v∈Zd

|v|≤r

e
(
h · (A[v] + y)

)

≤ 1
Hm

∑
h∈Zm

|h|≤H

∣∣∣∣∣∣∣∣∣
∑

v∈Zd

|v|≤r

e
(
h · (A[v] + y)

)
∣∣∣∣∣∣∣∣∣

= 1
Hm

∑
h∈Zm

|h|≤H

d∏
i=1

r∑
v=−r

e
(
h ·A[vei]

)

≤ 1
Hm

∑
h∈Zm

|h|≤H

d∏
i=1

min
(

2r + 1, 1
2‖h ·A[ei]‖

)
. (by (4.3))

Now consider a point α ∈ K, and let a ∈ Zd be chosen so that

(4.4) a + λ

q
∈ K ∩B◦

(
α,

1
q

)
.
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Here B◦(α, 1/q) denotes the open ball (with respect to the max norm)
around α of radius 1/q. Such an a exists as long as the sides of K all have
length at least 1/q, which happens for all sufficiently large q. (Small values
of q can be dealt with by making δ smaller.)

Let y = qf
(a+λ

q

)
and A = f ′(α). Using elementary calculus, one can

show that for all v ∈ Zd with |v| ≤ r, we have∣∣∣∣qf (a + v + λ

q

)
− (A[v] + y)

∣∣∣∣ . r2

q
≤ δκ,

assuming that a+v+λ
q ∈ K. So if δ is chosen small enough (depending on

f), then ∣∣∣∣qf (a + v + λ

q

)
− (A[v] + y)

∣∣∣∣ ≤ κ,
and thus since 2κ ≤ (2H)−1,

(4.5)
∑

v∈Zd

v≤r

[∥∥∥∥qf (a + v + λ

q

)∥∥∥∥ ≤ κ]

.
1
Hm

∑
h∈Zm

|h|≤H

d∏
i=1

min
(

2r + 1, 1
2‖h · f ′(α)[ei]‖

)
.

Now let
S(q, κ,θ) =

{a + λ

q
: (a,b) ∈ R(q, κ,θ)

}
.

Since by assumption H ≥ 1, we have κ ≤ 1/4 and thus A(q, κ,θ) =
#S(q, κ, θ). On the other hand, for all v ∈ Zd such that a+v+λ

q ∈ B(α, r/q),
(4.4) implies that |v| < r + 1 and thus that |v| ≤ r. Thus, (4.5) implies
that

#
(
B(α, r/q) ∩ S(q, κ,θ)

)
. rd

1
Hm

∑
h∈Zm

|h|≤H

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
.

Integrating over all α ∈ K gives∑
β∈S(q,κ,θ)

λ
(
K ∩B(β, r/q)

)

. rd
1
Hm

∑
h∈Zm

|h|≤H

∫
K

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
dα,

where λ denotes Lebesgue measure. Since λ
(
K∩B(β, r/q)

)
� (r/q)d for all

β ∈ S(q, κ,θ), rearranging completes the proof. �
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We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1 using Lemma 4.1. Let Ω = K × ∂[−1, 1]m. For each
(α, t) ∈ Ω and I, J ⊂ {1, . . . , d} such that #(I) = #(J) = k, letMI,J(α, t)
denote the k × k matrix

MI,J(α, t) def=
(
t · f ′′(α)[ei, ej ]

)
i∈I, j∈J ,

i.e.MI,J(α, t) is the k×k minor of the d×d matrix
(
t · f ′′(α)[ei, ej ]

)
1≤i,j≤d

for which I is the set of retained rows and J is the set of retained columns.
Now fix (α0, t0) ∈ Ω. By (2.3), there exist I, J ⊂ {1, . . . , d} with #(I) =

#(J) = k such that det(MI,J(α0, t0)) 6= 0. Let C(α0, t0) be a convex
neighborhood ofMI,J(α0, t0) on which the determinant function is bounded
away from zero. Since MI,J(α, t) depends continuously on (α, t), there
exists a neighborhood U = U(α0, t0) ⊂ Ω of (α0, t0) such that for all
(α, t) ∈ U , we have
(4.6) MI,J(α, t) ∈ C(α0, t0).
Without loss of generality, we may assume that U is of the form U =
V1×· · ·×Vd×W , where Vi = Vi(α, t) ⊂ Ki andW = W (α, t) ⊂ ∂[−1, 1]m.
Here (Ki)d1 denote the factors of K, so that K = K1× · · ·×Kd. We can also
assume that the sets V1, . . . , Vd are intervals. Now since Ω = K×∂[−1, 1]m is
compact, there exists a finite set F ⊂ Ω such that the collection {U(α0, t0) :
(α0, t0) ∈ F} covers Ω.

Now fix (α0, t0) ∈ F , let the notation be as above, and let

Ĵ
def= {1, . . . , d} \ J, V

def=
∏
j∈J

Vj , V̂
def=

∏
j∈Ĵ

Vj .

Fix t ∈W and β̂ ∈ V̂ , and consider the map
Φ

β̂
: V 3 β 7→ (t · f ′(β, β̂)[ei])i∈I ∈ RI ,

where (β, β̂)j
def= βj for j ∈ J and (β, β̂)j

def= β̂j for j ∈ Ĵ . By (4.6) and the
convexity of C(α0, t0), the map Φ

β̂
is invertible and its Jacobian determi-

nant is bounded away from zero. So
(Φ

β̂
)∗[λV ] . λ[−R,R]I ,

where λS denotes Lebesgue measure on a set S, Φ∗[µ] denotes the pushfor-
ward of a measure µ under a function Φ, and R > 0 is sufficiently large. By
integrating with respect to β̂, we get
(4.7) Φ∗[λV×V̂ ] . λ[−R,R]I ,

where Φ(α) = (t · f ′(α)[ei])i∈I .
Now fix q ∈ N, κ > 0, and θ ∈ Rn, let δ > 0 and H, r ∈ N be as in

Lemma 4.1, and assume that H, r ≥ 1. Fix h ∈ Zm such that 0 < |h| ≤ H.



186 David Simmons

Let η = |h| ≥ 1 and t = η−1h, and fix (α0, t0) ∈ F such that t ∈W (α0, t0).
Letting the notation be as above, we have

∫
V×V̂

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
dα

≤
∫
V×V̂

∏
i∈I

min
(

1, 1
r‖ηt · f ′(α)[ei]‖

)
dα

=
∫ ∏

i∈I
min

(
1, 1
r‖ηzi‖

)
dΦ∗[λV×V̂ ](z)

.
∫ ∏

i∈I
min

(
1, 1
r‖ηzi‖

)
dλ[−R,R]I (z) (by (4.7))

=
(∫ R

−R
min

(
1, 1
r‖ηz‖

)
dz
)k

(since #(I) = k)

∫ R

−R
min

(
1, 1
r‖ηz‖

)
dz

= 1
η

∫ ηR

−ηR
min

(
1, 1
r‖z‖

)
dz

≤ 2
η

∫ dηRe
0

min
(

1, 1
r‖z‖

)
dz

= 4dηRe
η

∫ 1/2

0
min

(
1, 1
rz

)
dz

�
∫ 1/2

0
min

(
1, 1
rz

)
dz (since η ≥ 1 and R � 1)

� Log(r)
r
· (since r ≥ 1)

Taking the sum over all (α0, t0) ∈ F such that t ∈W (α0, t0) gives
∫
K

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
dα .

(Log(r)
r

)k
.

Summing over all h ∈ Zm such that 0 < |h| ≤ H and adding 1 to both
sides gives

∑
h∈Zm

|h|≤H

∫
K

d∏
i=1

min
(

1, 1
r‖h · f ′(α)[ei]‖

)
dα . 1 +Hm

(Log(r)
r

)k
,
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and combining with (4.1) gives

A(q, κ,θ) . qd
(

1
Hm

+
(Log(r)

r

)k)
if H, r ≥ 1.

Now suppose that φ(q) ≤ κ ≤ 1/4. Then, assuming that q is sufficiently
large, we have δqκ ≥ 1. So H, r ≥ 1, H � 1/κ, r � (qκ)1/2, and Log(r) �
Log(q), and thus

(4.8) A(q, κ,θ) . qd
(
κm +

(Log(q)
(qκ)1/2

)k)
.

The inequality κ ≥ φ(q) allows us to compare the two terms on the right-
hand side of (4.8):

1
κm

(Log(q)
(qκ)1/2

)k
≤ 1
φm(q)

( Log(q)
(qφ(q))1/2

)k
= (q−1 Log2(q))k/2

φm+k/2(q)
= 1,

which shows that the right-hand term of (4.8) is smaller than the left-hand
term. Thus A(q, κ,θ) . qdκm, and we have completed the proof in the case
φ(q) ≤ κ ≤ 1/4, q sufficiently large.

If κ ≥ 1/4, then trivially A(q, κ,θ) ≤ (q + 1)d . qdκm. On the other
hand, if κ ≤ φ(q), then A(q, κ,θ) ≤ A(q, φ(q),θ) . qdφm(q), assuming q is
large enough so that φ(q) ≤ 1/4. Thus, (3.1) holds in these cases as well.
Finally, if q is bounded, then the right hand side of (3.1) is bounded from
below while the right hand side is bounded from above, so (3.1) holds in
this case as well. �

5. Typicality of the condition (1.7)

The reader may notice that we did not use the hypothesis m <
(d+1

2
)

in the proof of Theorem 1.3, Case (2) (except for the trivial application to
deduce that d > 1), but we have still written it into the theorem. Why?
Because, as we show below, if m ≥

(d+1
2
)
, then it is impossible for the

hypothesis (1.7) to be satisfied, so adding the hypothesis m <
(d+1

2
)
does

not restrict the generality of our theorem. Conversely, if m <
(d+1

2
)
, then

the set of linear operators A ∈ L(Sym2 Rd,Rm) that satisfy

(5.1) rank
(
t ·A[ei, ej ]

)
1≤i,j≤d ≥ 2 ∀ t ∈ Rm \ {0}

(i.e. the analogue of (1.7) with f ′′(α) replaced by A) is a nonempty open
subset of L(Sym2 Rd,Rm), meaning that Theorem 1.3 is non-vacuous in
this case. Here L(Sym2 Rd,Rm) denotes the space of linear transformations
from Sym2 Rd to Rm.

Similar logic applies to the hypothesis m ≤
(d
2
)
of Theorem 1.2. If it is

not satisfied, then it is impossible for the main hypothesis of Theorem 1.2



188 David Simmons

to be satisfied; precisely, there are no linear operators A ∈ L(Sym2 Rd,Rm)
such that

(5.2) for all t ∈ Rm \ {0}, the matrix
(
t ·A[ei, ej ]

)
1≤i,j≤d has

at least two nonzero eigenvalues that share the same sign

(i.e. the analogue of (1.5) with f ′(α) replaced by A). However, in this case
the converse is not quite true; cf. Remark 5.5. A partial converse that is
true is that if m ≤

(d−1
2
)
, then there exist operators A satisfying (5.2).

Beyond merely verifying that Theorem 1.3 is non-vacuous, we may also
ask whether its hypotheses are satisfied for “typical” manifolds. If d > 1
and m =

(d+1
2
)
−1, then we will show that the set of linear operators A that

do not satisfy (5.1) contains a nonempty open set, meaning that (5.1) both
holds and fails on sets of positive measure. This is not a desirable property
for a “nondegeneracy” condition, which should hold almost everywhere. It
turns out that for (5.1) to hold almost everywhere, the stronger inequality
m ≤

(d
2
)
is required. For (5.2), the appropriate inequality is m ≤

(d−1
2
)
.

We summarize the above remarks in the following theorem:

Theorem 5.1. Fix d,m ∈ N, and let U (resp. Ũ) be the set of all linear
transformations A ∈ L def= L(Sym2 Rd,Rm) satisfying (5.1) (resp. (5.2)).
Then U and Ũ are open subsets of L, and:

(i) If m ≥
(d+1

2
)
, then U is empty.

(ii) If m <
(d+1

2
)
, then U is nonempty.

(iii) If m >
(d
2
)
, then U is not dense in L.

(iv) If m ≤
(d
2
)
, then U is dense in L; furthermore, its complement is

contained in a proper algebraic subset of L.
(v) If m >

(d
2
)
, then Ũ is empty.

(vi) If m >
(d−1

2
)
, then Ũ is not dense in L.

(vii) If m ≤
(d−1

2
)
, then Ũ is dense in L; furthermore, its complement is

contained in a proper algebraic subset of L.

Remark 5.2. The proof below depends crucially on the right-hand side
of (5.1) being 2; it would be interesting to ask what happens if 2 is replaced
by a larger integer.

Remark 5.3. One might wonder whether knowing that (5.1) or (5.2) holds
on a full measure set justifies one in thinking that “most” C2 functions
f : Rd → Rm satisfy (1.7) or (1.5), respectively. If we required the hypothesis
to hold for all α ∈ K, then we could run into a problem: perhaps the
set of counterexamples to (5.1) or (5.2) has positive codimension, but is
intersected transversally by some set of the form {f ′′(α) : α ∈ K}. Then
perturbations of this f would fail to satisfy (1.7) or (1.5) on a nonempty
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(but positive codimension) set of α ∈ K. But since the conditions are only
required to hold on a set of full Lebesgue measure, this does not cause any
problem.

Proof. Since in (5.1) and (5.2), the quantifier “∀ t ∈ Rm \ {0}” can be
replaced by “∀ t ∈ Sm−1” without affecting the truth values, a standard
compactness argument shows that U and Ũ are open. We proceed to re-
duce (i)–(vii) to a series of statements about quadratic forms. For each
A ∈ L, let

VA = {
(
t ·A[ei, ej ]

)
1≤i,j≤d : t ∈ Rm} ⊂ Sym2 Rd.

Then A ∈ U if and only if
(I) The map Rm 3 t 7→

(
t ·A[ei, ej ]

)
1≤i,j≤d ∈ VA is injective, and

(II) For all B ∈ VA \ {0}, rank(B) ≥ 2.
Similarly, A ∈ Ũ if and only if (I) holds as well as
(III) For all B ∈ VA \ {0}, B has at least two nonzero eigenvalues that

share the same sign.
Now, a nonzero element of Sym2 Rd is of rank one if and only if it can be
written in the form ±v2, where v ∈ Rd \ {0}. Similarly, a nonzero element
of Sym2 Rd fails to have two nonzero eigenvalues sharing the same sign if
and only if it can be written in the form v2 − w2, where v,w ∈ Rd and
v 6= ±w. Thus, (II) and (III) are respectively equivalent to:

(II′) For all v ∈ Rd \ {0}, v2 /∈ VA.
(III′) For all v,w ∈ Rd such that v 6= ±w, v2 −w2 /∈ VA.

Now if m >
(d+1

2
)
, then (I) is not satisfied for any A ∈ L, so U = Ũ = ∅

and we are done. Otherwise, let GL be the set of all A ∈ L such that (I) is
satisfied, i.e. the set of all surjective transformations from Sym2 Rd to Rm.
Note that the complement of GL is a proper algebraic subset of L.

Now let ` =
(d+1

2
)
−m ≥ 0, and consider the spaces Ω = L(Sym2 Rd,R`)

and GΩ = {surjective elements of Ω}. For each ω ∈ Ω, let Wω = {B ∈
Sym2 Rd : ω[B] = 0}. Then the maps GL 3 A 7→ VA and GΩ 3 ω 7→ Wω

are both algebraic surjections onto the Grassmanian space Gm(Sym2 Rd) =
{m-dimensional subspaces of Sym2 Rd}. Letting

U2 = {V ∈ Gm(Sym2 Rd) : ∀ v ∈ Rd \ {0} v2 /∈ V }

Ũ2 = {V ∈ Gm(Sym2 Rd) : ∀ v,w ∈ Rd if v 6= ±w then v2 −w2 /∈ V }

U3 = {ω ∈ Ω : ω[v2] 6= 0 ∀ v ∈ Rd \ {0}}

=
{(Q1, . . . , Q`)
quadratic forms on Rd

: ∀ v ∈ Rd \ {0} ∃i = 1, . . . , ` Qi(v) 6= 0
}
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Ũ3 = {ω ∈ Ω : ω[v2] 6= ω[w2] ∀ v,w ∈ Rd such that v 6= ±w}

=
{(Q1, . . . , Q`)
quadratic forms on Rd

:
∀ v,w ∈ Rd if v 6= ±w
then ∃i = 1, . . . , ` Qi(v) 6= Qi(w)

}
,

we have

U = {A ∈ GL : VA ∈ U2}, U3 ∩GΩ = {ω ∈ GΩ : Wω ∈ U2},

Ũ = {A ∈ GL : VA ∈ Ũ2}, Ũ3 ∩GΩ = {ω ∈ GΩ : Wω ∈ Ũ2}.

So to complete the proof, we need to show:

(i′) If ` = 0, then U3 is empty.
(ii′) If ` > 0, then U3 is nonempty.
(iii′) If ` < d, then U3 is not dense in Ω.
(iv′) If ` ≥ d, then U3 is dense in Ω; furthermore, its complement is

contained in a proper algebraic subset of Ω.
(v′) If ` < d, then Ũ3 is empty.
(vi′) If ` < 2d− 1, then Ũ2 is not dense in Gm(Sym2 Rd).
(vii′) If ` ≥ 2d−1, then Ũ2 is dense in Gm(Sym2 Rd); furthermore, its com-

plement is contained in a proper algebraic subset of Gm(Sym2 Rd).

Now (i′) is obvious, and (ii′) follows from the observation that if Q1 is
positive-definite, then (Q1, 0, . . . , 0) ∈ U3. Intuitively, (iii′) and (iv′) are
true because of “number of variables” considerations; the intersection of
the zero sets of ` quadratic forms on Rd should have dimension d− `, and
so generically, the intersection should be zero-dimensional (i.e. equal to
{0}) if and only if ` ≥ d. We proceed to verify this intuitive idea.

When ` = 1, (iii′) can be verified by considering any quadratic form
which is neither positive semidefinite nor negative semidefinite, but for the
general case a different argument is needed. Suppose that ` < d, and for
each i = 1, . . . , ` let Qi(x) = xixd. For each (Q̃1, . . . , Q̃`) ∈ Ω, consider the
map

Φ
Q̃1,...,Q̃`

: R` 3 x 7→ (Q̃1, . . . , Q̃`)(x1, . . . , x`, 0, . . . , 0, 1),

and observe that ΦQ1,...,Q`
is the identity map. It follows that small pertur-

bations of this map will contain 0 in their range. Thus, if (Q̃1, . . . , Q̃`) is
sufficiently close to (Q1, . . . , Q`), then 0 is in the range of Φ

Q̃1,...,Q̃`
, which

implies that (Q̃1, . . . , Q̃`) /∈ U3. So (Q1, . . . , Q`) is in the interior of the
complement of U3. This completes the proof of (iii′).

Next, let UC
3 ⊂ U3 be the set of all ω ∈ Ω such that ω[v2] 6= 0 for all v ∈

Cd\{0}. It follows from standard considerations in algebraic geometry that
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the set FC
3

def= Ω\UC
3 is an algebraic set.(4) Now suppose that ` ≥ d, and for

each i = 1, . . . , d let Qi(x) = x2
i . Then for all v ∈ Cd\{0}, we have vi 6= 0 for

some i = 1, . . . , d and thus Qi(v) = v2
i 6= 0. So (Q1, . . . , Qd, 0, . . . , 0) ∈ UC

3
and in particular UC

3 6= ∅. Thus FC
3 is a proper algebraic subset of Ω. Since

such a set has dimension strictly less than that of the ambient space, it is
nowhere dense and thus UC

3 (and similarly U) is dense. This completes the
proof of (iv′).

Let W ⊂ Rd be a nonempty open set such that W ∩ −W = ∅. Suppose
that Ũ3 6= ∅, and fix (Q1, . . . , Q`) ∈ Ũ3. Then (Q1, . . . , Q`) : W → R`
is an injective continuous map. Since such a map cannot be dimension-
decreasing, we have ` ≥ d. This completes the proof of (v′).

Let S = {v2 − w2 : v,w ∈ Rd}, so that Ũ2 = {V ∈ Gm(Sym2 Rd) :
V ∩ S = {0}}. Note that S is an irreducible closed semi-algebraic set. To
compute the dimension of S, we note that for all v,w ∈ Rd and t ∈ R, we
have

(cosh(t)v + sinh(t)w)2 − (sinh(t)v + cosh(t)w)2 = v2 −w2,

so the map g : R2d 3 (v,w) 7→ v2 −w2 ∈ S has level sets of dimension at
least 1 and thus dim(S) ≤ 2d − 1. Conversely, direct computation shows
that the kernel of g′(e1, e2) is R(e2, e1), a subspace of dimension 1. So the
image of g′(e1, e2) has dimension 2d − 1, and thus dim(S) ≥ 2d − 1. So
dim(S) = 2d− 1.

Let B be a smooth point of S, and let TBS denote the tangent space
of S at B. Suppose that ` < 2d − 1. Then there exists a subspace V0 ∈
Gm(Sym2 Rd) intersecting S transversely at B. Here by “transversely” we
mean that V0 +TBS = Sym2 Rd; we allow V0∩TBS to be nontrivial, and in
fact necessarily dim(V0∩TBS) ≥ 1 since B ∈ V0∩TBS. If V ∈ Gm(Sym2 Rd)
is sufficiently close to V0, then V ∩ S 6= {0}, so V /∈ Ũ2. So there is a
neighborhood of V0 disjoint from Ũ2, proving (vi′).

Finally, suppose that ` ≥ 2d−1. For each B ∈ S\{0}, the set IB
def= {V ∈

Gm(Sym2 Rd) : B ∈ V } has codimension ` in Gm(Sym2 Rd). On the other
hand, if ∼ denotes the projective equivalence relation (i.e. B ∼ tB for all
B ∈ Sym2 Rd \ {0} and t ∈ R \ {0}), then IB1 = IB2 whenever B1 ∼ B2.
So if

F̃2 = Gm(Sym2 Rd) \ Ũ2 =
⋃

B∈S\{0}
IB,

then
codim(F̃2) ≥ `− dim(S/ ∼) = `− (2d− 2) > 0.

(4)For example, if R(Q1, . . . , Q`) denotes the multipolynomial resultant of the homogeneous
polynomials Q1, . . . , Q`, then FC

3 = {ω ∈ Ω : R(ω) = 0} [4, Theorem 3.(2.3)], and in particular
FC

3 is algebraic.
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Since F̃2 is semi-algebraic, it has the same dimension as its Zariski closure.
Thus the Zariski closure of F̃2 is a proper algebraic subset of Gm(Sym2 Rd)
containing the complement of Ũ2, completing the proof of (vii′). �

Remark 5.4. Following the logic of the proof of (ii) using the identity
matrix as an example of a positive-definite matrix shows that ifm =

(d+1
2
)
−

1, then the function

f(α1, . . . , αd) =
(
α2

1 − α2
2, α

2
2 − α2

3, . . . , α
2
d−1 − α2

d, α1α2, α1α3, . . . , αd−1αd
)

(or more generally any function such that the matrices
(
f ′′k [ei, ej ]

)
1≤i,j≤d

(k = 1, . . . ,m) are a basis for the space of trace-free symmetric matrices)
satisfies (1.7).

Remark 5.5. Let m = 2 and d = 3, and let γ : Sym2 R3 → R be the map
that sends a matrix to its middle eigenvalue (i.e. the eigenvalue which is
both second-highest and second-lowest). Then γ is continuous, γ(−A) =
−γ(A), and γ(A) = 0 if and only if A ∈ S. So Sym2 R3 \ S is split into
two disjoint connected components {γ > 0} and {γ < 0}, symmetric to
each other via reflection through the origin. A set split in this way cannot
contain any subset of the form V \ {0}, V ∈ G2(Sym2 R3). So Ũ2 is empty
in this case, and thus there are no linear operators A satisfying (5.2). Since
2 ≤

(3
2
)
, this shows that the inequality m ≤

(d
2
)
is not a sufficient condition

for the existence of A satisfying (5.2). (It is not hard to check that this
counterexample has the smallest possible dimensions.) Thus it appears to
be a difficult problem to determine necessary and sufficient conditions for
the existence of such an A.
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