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Counting points on the Fricke–Macbeath curve
over finite fields

par Jaap TOP et Carlo VERSCHOOR

Résumé. La courbe de Fricke-Macbeath est une courbe pro-
jective lisse de genre 7 avec groupe d’automorphismes PSL2(F8).
Nous rappelons deux modèles de cette courbe (introduits respec-
tivement par Maxim Hendriks et Bradley Brock) définis sur Q,
et nous établissons un isomorphisme explicite, défini sur Q(

√
−7),

entre ces deux modèles. De plus, nous décomposons à isogénie sur
Q près la jacobienne de l’un des modèles. Comme une conséquence
nous obtenons une formule simple pour le nombre de points sur
Fq de (la réduction de) ce modèle, en termes de la courbe ellip-
tique d’équation y2 = x3 + x2 − 114x− 127. Enfin, des tordus de
cette courbe par des éléments de PSL2(F8) sur des corps finis sont
décrits. La courbe donne un certain nombre de nouveaux records
maintenus par manYPoints de courbes de genre 7 avec beaucoup
de points rationnels sur des corps finis.

Abstract. The Fricke-Macbeath curve is a smooth projective
algebraic curve of genus 7 with automorphism group PSL2(F8).
We recall two models of it (introduced, respectively, by Maxim
Hendriks and by Bradley Brock) defined over Q, and we estab-
lish an explicit isomorphism defined over Q(

√
−7) between these

models. Moreover, we decompose up to isogeny over Q the ja-
cobian of one of these models. As a consequence we obtain a
simple formula for the number of points over Fq on (the reduc-
tion of) this model, in terms of the elliptic curve with equation
y2 = x3 + x2 − 114x − 127. Moreover, twists by elements of
PSL2(F8) of the curve over finite fields are described. The curve
leads to a number of new records as maintained on manYPoints
of curves of genus 7 with many rational points over finite fields.
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1. Introduction
It is well-known that an algebraic curve of genus g > 1 over C has at most

84(g− 1) automorphisms. A curve attaining this bound is called a Hurwitz
curve. The corresponding Riemann surface can in this case be described as
Γ H in which Γ is a normal subgroup of finite index in the triangle group
G2,3,7, acting in the classical way on the complex upper half plane H. See,
e.g., §3.19 of Shimura’s paper [15] and §5.3 of the exposition by Elkies [3]
for details. The plane curve with equation x3y+y3z+z3z = 0, named after
Felix Klein who studied it in 1879 in his paper [10], is the unique example
up to isomorphisms for genus g = 3. The next example occurs for g = 7 and
was introduced as a Riemann surface by Robert Fricke in 1899 [4]. Explicit
equations realizing Fricke’s example as an algebraic curve were presented in
1965 by A.M. Macbeath [11]; see also W.L. Edge’s paper [2] which appeared
two years later. Again, up to isomorphisms over C there is a unique curve
of genus 7 admitting 504 automorphisms; here and elsewhere it is called the
Fricke-Macbeath curve. Whereas Edge derives the equations first presented
by Macbeath by starting from the property that they need to define a curve
in P6 having a given subgroup of order 504 in PGL7(C) as automorphism
group, there is an alternative, very natural way to find the curve, as is
explained in a letter dated 24-vii-1990 of J-P. Serre to S.S. Abhyankar [14].
Namely, Serre observes that G = PSL2(F8) is a transitive subgroup of the
alternating group A9 (which in fact follows from the action of G on the 9
points in P1(F8)). The stabilizer S ⊂ G of any of these 9 points then makes
X → X/G the normal closure of X/S → X/G, where we denote the desired
curve as X. Both X/S and X/G are rational curves, and the ramification
of the resulting degree 9 map P1 → P1 is known and occurs only over three
points. This information suffices to determine the degree 9 map explicitly,
and hence to find the curve X.

The equations described by Macbeath (and explained in detail by Edge)
define a curve M ⊂ P6, given (with ζ a primitive 7th root of unity) by the
ideal with generators

M :
x2

0 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6,
x2

0 + ζx2
1 + ζ2x2

2 + ζ3x2
3 + ζ4x2

4 + ζ5x2
5 + ζ6x2

6,
x2

0 + ζ6x2
1 + ζ5x2

2 + ζ4x2
3 + ζ3x2

4 + ζ2x2
5 + ζx2

6,(
ζ5 − ζ2)x1x4 +

(
ζ6 − ζ

)
x3x5 +

(
−ζ4 + ζ3)x0x6,(

−ζ4 + ζ3)x0x1 +
(
ζ5 − ζ2)x2x5 +

(
ζ6 − ζ

)
x4x6,(

−ζ4 + ζ3)x1x2 +
(
ζ6 − ζ

)
x0x5 +

(
ζ5 − ζ2)x3x6,(

−ζ4 + ζ3)x2x3 +
(
ζ5 − ζ2)x0x4 +

(
ζ6 − ζ

)
x1x6,(

ζ6 − ζ
)
x0x2 +

(
−ζ4 + ζ3)x3x4 +

(
ζ5 − ζ2)x1x5,(

ζ6 − ζ
)
x1x3 +

(
−ζ4 + ζ3)x4x5 +

(
ζ5 − ζ2)x2x6,(

ζ5 − ζ2)x0x3 +
(
ζ6 − ζ

)
x2x4 +

(
−ζ4 + ζ3)x5x6.
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A consequence of a very general criterion of Girondo, Torres-Teigell, and
Wolfart [6] is that it is possible to define the Fricke-Macbeath curve as an
algebraic curve over Q. As part of his PhD research, Maxim Hendriks in
Eindhoven did exactly this. He presented in his thesis [7, p. 192–194] a
curve H ⊂ P6 given as an intersection of 10 quadrics. Generators of the
ideal defining H are
H :
−x1x2 + x1x0 + x2x6 + x3x4 − x3x5 − x3x0 − x4x6 − x5x6,
x1x3 + x1x6 − x2

2 + 2x2x5 + x2x0 − x2
3 + x4x5 − x4x0 − x2

5,
x2

1 − x1x3 + x2
2 − x2x4 − x2x5 − x2x0 − x2

3 + x3x6 + 2x5x0 − x2
0,

x1x4 − 2x1x5 + 2x1x0 − x2x6 − x3x4 − x3x5 + x5x6 + x6x0,
x2

1 − 2x1x3 − x2
2 − x2x4 − x2x5 + 2x2x0 + x2

3 + x3x6 + x4x5 + x2
5 − x5x0 − x2

6,
x1x2 − x1x5 − 2x1x0 + 2x2x3 − x3x0 − x5x6 + 2x6x0,
−2x1x2 − x1x4 − x1x5 + 2x1x0 + 2x2x3 − 2x3x0 + 2x5x6 − x6x0,
2x2

1 + x1x3 − x1x6 + 3x2x0 + x4x5 − x4x0 − x2
5 + x2

6 − x2
0,

2x2
1 − x1x3 + x1x6 + x2

2 + x2x0 + x2
3 − 2x3x6 + x4x5 − x4x0 + x2

5 − 2x5x0 + x2
6 + x2

0,
x2

1 + x1x3 − x1x6 + 2x2x5 − 3x2x0 + 2x3x6 + x2
4 + x4x5 − x4x0 + x2

6 + 3x2
0.

Moreover Hendriks presents an explicit isomorphism between M and H
(see also Theorem 2.1 below).

In §2.3 of a recent paper by Rubén Hidalgo [8], another model over Q of
the Fricke-Macbeath curve is mentioned. It is attributed to Bradley Brock,
and given by the affine equation in two variables

1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0.
One readily calculates that this curve in A2 has as singularities 14 nodes,
and its closure in P2 has no singular points at infinity. So indeed the equa-
tion defines a curve of genus 7. Using a basis of the regular 1-forms on the
normalization, one obtains an embedding of the curve in P6. The result-
ing curve B ⊂ P6 can be given as follows (here and in other calculations
Magma [1] was used).

B :
x0x2 + 12x2

3 − x4x6,
−x2

1 + x0x3 − 2x5x6,
x0x4 + 16x3x5 + 8x2

6,
−x1x3 + x0x5 + 1

2x2x6,
−x2x3 + 2x2

5 + x0x6,
x1x2 + 12x3x5 + 4x2

6,
−2x2x3 + x1x4 − 8x2

5,
−x2

3 + x1x5 + 1
4x4x6,

−1
2x3x4 − 1

2x2x5 + x1x6,
x2

2 + 2x4x5 + 8x3x6.

We learned from Brock that in fact he found the above model already
in 2004. He discussed it with various colleagues including Macbeath and
Elkies; however, he never published it.
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Several, but not all computational results mentioned in this paper were
obtained using Sage or Magma. The actual code is not presented here; in a
number of cases it can be found in Appendix A of the master’s thesis [17].
The interested reader should be aware that this code was written for partic-
ular versions of Sage (and Magma). Specific details and requests for parts
of the code may be addressed to the authors.

2. Results
This section states the main results of this paper; proofs are presented

in Section 3 below.
First, we present explicit isomorphisms between the curvesM,H, and B.

Theorem 2.1 (Hendriks, [7]). With notations as in the previous section
and α := ζ + ζ−1, an isomorphism M → H is given by m 7→ Am, with
7A =

0 0 α2 − α− 2 −α2 − α− 1 0 2α2 − 1 0
α2 − 2α 0 0 0 3α+ 1 0 −α2 − 2α+ 1

0 0 −α2 − α− 1 −2α2 + 1 0 α2 − α− 2 0
0 7α 0 0 0 0 0

−α2 − 2α+ 1 0 0 0 −α2 + 2α 0 −3α− 1
0 0 −3α− 1 −α2 + 2α 0 α2 + 2α− 1 0

−3α− 1 0 0 0 α2 + 2α− 1 0 α2 − 2α

 .

Remark. In fact, the matrix A given above does not appear in the thesis
of Hendriks. He presents a different one called U on page 193 of [7].
Theorem 2.2. With notations as in the previous section, an isomorphism
B → H is given by b 7→ A′b, with

A′ = 1
2



2 −8 4 −24 1 24 0
2
√
−7 −4

√
−7 −2

√
−7 0 −

√
−7 0 −8

√
−7

6 4 −2 −16 3 16 0
2
√
−7 −4

√
−7 −2

√
−7 −8

√
−7 −

√
−7 −8

√
−7 16

√
−7

0 −4
√
−7 −2

√
−7 −8

√
−7 0 −8

√
−7 −8

√
−7

−2 8 −4 −32 −1 32 0
2
√
−7 0 0 −8

√
−7 −

√
−7 −8

√
−7 −8

√
−7


.

Note that Theorems 2.1 and 2.2 imply that the three curves M,H, and
B are isomorphic over Q(ζ). Although both H and B are defined over Q,
they are not isomorphic over Q. This follows, e.g., from the fact that both
have good reduction modulo 3, and #H(F3) = 3 6= 5 = #B(F3).

From now on we focus on the model H presented by Hendriks. Our aim
is to describe the jacobian Jac(H) up to isogenies defined over Q, in terms
of jacobians of certain quotients of H. To this end, let X ⊂ P2 be the plane
quartic of genus 3 defined by

X : 5x4 + 12x3y + 6x2y2 − 4xy3 + 4y4 − 28x3z + 16x2yz − 24xy2z

+ 16y3z + 24x2z2 − 10y2z2 − 12xz3 + 8yz3 + 3z4.
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Furthermore let E be the elliptic curve with equation

y2 = x3 + x2 − 114x− 127.

The curve X turns out to be birational to the quotient of H by the invo-
lution defined by Diag(1,−1, 1,−1,−1, 1,−1). It is the image of H under
(x0 : x1 : x2 : x3 : x4 : x5 : x6) 7→ (x0 : x2 : x5). The elliptic curve E is
obtained as a quotient of H by a group of order 7. Such a quotient was also
described by Klaus Wohlfahrt in the corrigendum to his paper [18]. His ellip-
tic curve is in fact the quadratic twist by

√
−7 of E. The reader may verify

that a very simple way to find the same elliptic curve as Wohlfahrt did, is
by starting from the affine plane model of the Fricke-Macbeath curve given
by Brock. Taking the quotient by (x, y) 7→ (ζx, ζ−1y) yields Wohlfahrt’s
elliptic curve.

Theorem 2.3. Jac(H) is isogenous over Q to Jac(X)× Jac(X)× E.

The next goal will be to analyse Jac(X). It turns out that Aut(X) con-
tains a group Z/2Z×Z/2Z, with involutions defined over Q(α). Moreover,
these involutions are permuted by Gal(Q(α)/Q). Let σ be a generator of
this (cyclic) Galois group of order 3. The quotient of X by one of the in-
volutions turns out to be a genus one curve C over Q(α), with jacobian
E′ isogenous, again over Q(α), to E. The action of σ yields the jacobians
of the three quotients of X by the involutions. The restriction of scalars
ResQ(α)/Q(E′), which is over Q(α) isomorphic to E′×σ(E′)×σ2(E′), is the
abelian threefold over Q we look for.

Theorem 2.4. Jac(X) is over Q isogenous to ResQ(α)/Q(E′), and the el-
liptic curves E and E′ are isogenous over Q(α).

A straightforward consequence of Theorem 2.4 is a formula for #X(Fq),
for q = pn and p a prime 6= 2, 7:

Corollary 2.5. The curve X has good reduction modulo every prime num-
ber p 6= 2, 7. If q = pn is a positive power of such a prime p, then

#X(Fq) =
{
q + 1 if q 6≡ ±1 mod 7;
3#E(Fq)− 2q − 2 if q ≡ ±1 mod 7.

Combining Theorem 2.3 and Corollary 2.5 leads to the main result of
this paper:

Theorem 2.6. The curve H has good reduction modulo every prime num-
ber p 6= 2, 7. If q = pn is a positive power of such a prime p, then

#H(Fq) =
{

#E(Fq) if q 6≡ ±1 mod 7;
7#E(Fq)− 6q − 6 if q ≡ ±1 mod 7.



122 Jaap Top, Carlo Verschoor

Somewhat similar results to the ones presented in Corollary 2.5 and
Theorem 2.6, but for curves of smaller genus, are presented in Chapter 4
of the PhD thesis [16]. In the next section the results described above
are proven. In Section 4 we apply Theorem 2.6 to some particular prime
powers q, resulting in various new records in the tables [5] maintained
on manYPoints of curves with many points over finite fields. In the same
section we describe twists of H/Fq and we show examples where these lead
to new records as well.

Most results of this paper were obtained during the master’s project of
the second author [17], supervised by the first author.

3. Proofs
The statements in Theorem 2.1 and in Theorem 2.2 can be easily verified,

so we omit this here. Instead, some comments are presented explaining how
the isomorphisms were found. By construction, the curvesM,H, and B are
canonically embedded curves in P6. Hence an isomorphism between two of
these curves is necessarily given by an element of PGL7(Q). Conjugation
by this element then yields an isomorphism from the automorphism group
of one curve to that of the other. By first determining such a conjugation,
i.e., an A ∈ PGL7(Q) satisfying Aα1 = α2A with α1 running over the
generators of some subgroup of the automorphisms of one curve, and the
α2 analogous generators of an isomorphic subgroup coming from the other
curve, the isomorphisms were determined.

To make this explicit, consider the generators T , W of Aut(M) ⊂
PGL7(Q), defined as

T =



−1 0 0 1 1 −1 0
0 0 −1 −1 1 0 −1
0 1 −1 1 0 1 0
−1 −1 −1 0 −1 0 0
−1 1 0 −1 0 0 1

1 0 −1 0 0 −1 1
0 1 0 0 −1 −1 −1


,

W =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0


.

Then T 3 = W 7 = (TW )2 = id. Corresponding generators R,S of Aut(H)
satisfying R3 = S7 = (SR)2 = id one finds using p. 192-193 of the thesis of

http://manypoints.org
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Hendriks [7]. With α = ζ + ζ−1 as before, they are R :=



2α2 + 3α− 7 3α2 + 4α+ 1 4α2 + 2α− 6 −α2 + α+ 2
4α2 + 8α− 4 4α2 + α− 11 −9α2 − 3α+ 14 2α2 + α− 3
2α2 + 4α− 2 6α2 + 3α− 9 α2 + α− 6 −2α2 − α+ 3

14α2 + 7α− 21 7α+ 7 −7α2 + 7α+ 14 0
6α2 + 9α− 7 5α2 − α− 4 −11α2 − 7α+ 16 −α2 − 2α+ 1

6α2 − 10 3α2 − 5 4α2 + 8α− 4 −α2 − 3
4α2 + 11α− 3 5α2 − 13 −8α2 − 4α+ 12 −α2 + α+ 2

· · ·

· · ·

−4α2 − 3α+ 1 −7α2 − 5α+ 10 3α2 − 3α− 6
−5α2 − 5α+ 2 −2α2 − α+ 3 α2 + 6α+ 5
−α2 + 3α− 2 −2α2 − 7α+ 1 −α2 − 4α+ 5

7α2 − 7 0 −7α2 − 7α+ 14
−3α2 − 4α− 1 α2 + 2α− 1 5α− 3
−4α2 + 2 −3α2 − 4α− 1 3α2 − 5

−6α2 − 5α+ 13 α2 − α− 2 −α2 + 3α− 2


and S :=

−α2 + 4 −α− 5 2α2 + 2α− 5 0
3α+ 1 −α2 − 2α+ 1 −2α2 − 3α α− 2
2α+ 3 α2 − 4 2α2 + α− 3 0
−7α2 + 14 0 −7α 0
−α2 + 2α −3α− 1 −2α2 − α+ 3 α2 − 4
2α2 + 3α 5α2 + 2α− 10 −α2 + α+ 2 0
α2 + 2α− 1 α2 − 2α −3α2 − 3α+ 4 −α2 − α− 1

· · ·

· · ·

−α+ 2 −2α2 − α+ 3 −α+ 2
−3α2 − α+ 7 α2 + α+ 1 3α2 + 3α− 4

α2 + 3 −α2 − 2α+ 1 α2 − 4
0 −7 0

−α2 + α+ 2 −α+ 2 2α2 + 3α
−2α2 − 5α+ 4 −α2 − α− 1 −2α2 + 2α+ 4
−3α2 + 5 −α2 + 4 2α2 + α− 3


Solving for the matrix A in the linear equations RA = AT, SA = AW then
results in the desired isomorphism.

In the case of the curves B and H, the only obvious automorphisms of
B form a dihedral group of order 14. On the plane model, this group is
generated by (x, y) 7→ (y, x) and (x, y) 7→ (ζx, ζ−1y). On B this yields the
matrices

D := Diag(ζ5, ζ3, ζ4, ζ, ζ2, ζ6, 1)
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and

F :=



0 0 0 0 −2 0 0
0 0 2 0 0 0 0
0 1

2 0 0 0 0 0
0 0 0 0 0 1 0
−1

2 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


,

as can be found by considering the action of the two given automorphisms
on a basis of the regular differentials of the curve. A corresponding dihedral
group in Aut(H) is the one with generators

τ := (S−1RS−1)2RS = Diag(−1, 1,−1, 1, 1,−1, 1)
and L := (S−2R)2S−1, given by 14L :=

−4α2 − α+ 4 3α2 − 12 4α2 + 2α− 6 −α2 + α+ 2
−2α2 − 6α+ 6 −3α− 1 7α2 + 7α− 7 −α− 5
2α2 + 4α− 2 −2α2 − 5α− 3 5α2 − α− 11 −2α2 − α+ 3
−7α −7α− 7 7α2 + 7α− 7 7
−7α −3α2 − 7α+ 5 α2 + 3α− 3 −α2 − 3

4α2 + 8α− 4 5α2 − 4α− 12 −4α2 − 2α+ 6 −α2 + 4
2α2 − α− 6 3α2 − 4α− 4 6α2 + 4α− 4 α2 + α− 6

· · ·

· · ·

−4α25α+ 4 α2 + 5α −5α2 − 3α+ 12
−7α2 − 3α+ 13 −2α2 + α− 1 7α2 + 4α− 8

3α2 + 3α+ 3 −4α2 + α+ 7 −5α2 + 6
−7α2 + 7 −7 7α2 + 7α− 14
−3α2 + 5 3α2 + 2α− 9 4α2 + 7α− 2

−6α2 − 2α+ 14 −α2 + 2α −α2 + 6α+ 6
−4α2 + 3α+ 10 −α2 − 3α− 4 3α2 + 3α− 4


.

Solving the system τA′ = A′F , LA′ = A′D for the matrix A′ yields the
map given in Theorem 2.2.

We will now prove Theorem 2.3. Let π denote the projection (x0 : . . . :
x6) 7→ (x0 : x2 : x5), with π(H) = X. Let ω1, ω2, ω3 be a basis for the space
of regular differentials H0(X,Ω1). A calculation (compare [17, p. 27–28])
shows that π∗ω1, π

∗ω2, π
∗ω3, τ

∗π∗ω1, τ
∗π∗ω2, τ

∗π∗ω3 are linearly indepen-
dent in H0(H,Ω1). Hence

(π, πτ) : H → X ×X

induces a homomorphism Jac(X) × Jac(X) → Jac(H) with finite kernel
(see [12, Section 3.3] for more information). Consequenctly, the cokernel is
an abelian variety of dimension 1 defined over Q, i.e., it is an elliptic curve
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over Q. We briefly sketch two methods to find an equation for this elliptic
curve (in the first case, up to isogeny over Q).

For the first method, observe that the curve B (and hence also H) has
good reduction except at the primes 2 and 7. A convenient way to verify
this, is by using the plane model of B: one needs to verify that the 14
nodes that appear as singularities of B in characteristic zero, reduce to
nodes in positive characteristic 6= 2, 6= 7 and that no new singularities
appear. A consequence of this is, that the desired elliptic curve has good
reduction away from 2 and 7. So its conductor divides 28 · 72. Moreover, by
construction the number of rational points on this elliptic curve over Fp for
a prime p 6= 2, 7 equals

#H(Fp)− 2#X(Fp) + 2p+ 2.

This information suffices to determine the correct isogeny class among the
finitely many possible ones.

Alternatively, and more geometrically, take ρ := (SR−1S)3 which is
an automorphism defined over the ground field, of order 3. A calcula-
tion (for details, compare [17, p. 13–15]) reveals that H/〈ρ〉 is a curve
of genus 1, given by y2 = −7t4 − 28t3 − 56t2 − 28. The jacobian of this
curve is our curve E. Since ρ∗ fixes no differentials in the subspace of
H0(X,Ω1) spanned by π∗ω1, π

∗ω2, π
∗ω3, τ

∗π∗ω1, τ
∗π∗ω2, τ

∗π∗ω3, it follows
that Jac(H) ∼ Jac(X)× Jac(X)× E.

Next we prove Theorem 2.4. For this, one observes that X admits over
Q(α) the involution given by

A := 1
7

 −4α2 − 4α+ 3 −2α2 + 2α+ 4 4α2 + 2α− 6
−4α2 − 2α+ 6 2α2 + 2α− 5 2α2 + 4α− 2
2α2 − 2α− 4 6α+ 2 2α2 + 2α− 5

 .
Moreover, A and its conjugates σ(A) and σ2(A) generate a group of auto-
morphisms of X isomorphic to Z/2Z × Z/2Z. The quotient of X by any
nontrivial element of this group turns out to be an elliptic curve over Q(α),
and the three elliptic curves obtained in this way are obviously conjugate.
There are no nontrivial regular differentials on X fixed by all three invo-
lutions. This suffices to conclude that Jac(X) is isogenous over Q to the
restriction of scalars of any of the three elliptic curves. The elliptic curve E
has its three points of order 2 defined over Q(α). The 2-isogenies resulting
from this, turn out to have as image curves exactly the three elliptic curves
we found as quotients of X. This proves Theorem 2.4.

Corollary 2.5 is an immediate consequence of Theorem 2.4. The state-
ment concerning good reduction is easily verified. In the case q ≡ ±1 mod 7,
all 7th roots of unity exist in Fq2 and hence Fq contains the residue class
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field at the primes dividing q of Q(α). As a consequence, Jac(X) is isoge-
nous over Fq to E × E × E, from which the formula for the number of
points in this case is immediate. For q 6≡ ±1 mod 7, the residue class field
of Q(α) at primes dividing q is not contained in Fq but in its cubic exten-
sion. Hence the qth power Frobenius permutes the reductions of the three
curves E′, σ(E′), and σ2(E′). This implies that the trace of Frobenius on
ResQ(α)/Q(E′) is zero, implying the remaining formula.

E′

σ(E′)

σ2(E′)

T`E
′

T`σ(E′)

T`σ
2(E′)

Frobq

Frobq

Frobq

This completes the proof of the results presented in Section 2.

4. Examples and twists
The website manYPoints [5] lists, for small genera g and small cardinal-

ities q of a finite field, an upper bound up for the cardinality #C(Fq) of
any smooth, complete and absolutely irreducible curve C of genus g defined
over Fq. In many instances this is the Hasse–Weil–Serre bound q+ 1 + gm,
in whichm is the largest integer ≤

√
4q. In case a curve reaching this bound

is known to exist, this means the number Nq(g), denoting the maximum
over all such cardinalities #C(Fq) for fixed g, q is determined. If no curve
reaching the upper bound is known then the tables aim to list an example
with at least up/

√
2 rational points. For instance, using Corollary 2.5 one

readily verifies that for q = 712, the genus 3 curve X reaches the Hasse–
Weil–Serre bound, so N712(3) = 5468. We now list the cases in which the
curve H provides an example with at least up/

√
2 points. Instances where

an example with at least as many points is known, will be ignored. Some-
what surprisingly, even with q 6≡ ±1 mod 7, in which case Theorem 2.6
shows that H has (only) as many rational points as the elliptic curve E,
some new entries were found. While new lower bounds for several larger
field sizes q were found, there is no reason to think that they are anywhere

http://manypoints.org
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near the best possible lower bounds.

q 33 53 55 115 132 133 134 135

up 95 277 3903 166666 352 2849 30928 379820
dup/
√

2e 68 196 2760 117851 249 2015 21870 268574
#H(Fq) 84 252 3183 161625 324 2688 27540(∗) 362880(∗)

q 173 175 194 195 29 97
up 5892 1436539 135376 2498129 100 231

dup/
√

2e 4167 1015787 95726 1766444 71 164
#H(Fq) 5796 1417575 129675(∗) 2477811 72 168

In a sense the “smallest” example here is #H(F27) = 84. The previous
record for q = 27 and g = 7 was obtained by Sémirat [13] in 2000, who
found an example having 82 rational points. The three marked (∗) entries
show examples which we will improve now, as follows.

A natural attempt to obtain more examples with many points from the
curve H, is to consider twists of it over Fq, i.e., curves over the same field
which are isomorphic to H over some extension field. We refer to [12], in
particular Sections 2-3 for some general theory concerning twists. The twists
over Fq are in 1− 1 correspondence with H1(Gal(Fq/Fq),Aut(H)), and the
latter set allows a natural bijection to the set of “Frobenius conjugacy
classes” in Aut(H).

In our case, we consider H1(Gal(Fq/Fq), G), with G ⊂ PGL7(Fq) the
simple group of order 504 acting as automorphisms on H. These automor-
phisms are defined over Fq(ζ + ζ−1) with ζ a primitive 7th root of unity.
Hence the Galois action on G is trivial precisely when q ≡ ±1 mod 7. In this
case, Frobenius conjugacy classes coincide with ordinary conjugacy classes,
and there are 9 of these. For q 6≡ ±1 mod 7 a calculation with Magma shows
that there exist only 3 Frobenius conjugacy classes.

If an automorphism β defines some Frobenius conjugacy class, then
the corresponding cocycle class is represented by the cocycle defined by
Frobq 7→ β. It defines a twist Htw, and by construction rational points on
this twist correspond to points P ∈ H(Fq) such that β(Frobq(P )) = P .
This allows one to calculate effectively, for given q and β, the number of
rational points #Htw(Fq). Namely, as the proof of Proposition 9 in [12]
explains, one has an a priori bound on the degree over Fq of the field of
definition of any point P with β(Frobq(P )) = P .

Ignoring the trivial twist which results in the curve H itself, we can
improve 3 of the records presented in the earlier table. They are given
below.

(1) q = 134 ≡ 1 mod 7. The (cubic) twist corresponding to Frobq 7→ R
has 28854 rational points. This exceeds #H(F134) = 27540.
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(2) q = 135 ≡ −1 mod 7. The quadratic twist corresponding to the
cocycle Frobq 7→ τ = (S−1RS−1)2RS has 372496 rational points,
while #H(F135) = 362880.

(3) (Again) q = 135 ≡ −1 mod 7. The cubic twist corresponding to the
cocycle Frobq 7→ R has 373698 rational points, improving what was
found in (2) above.

(4) q = 194 ≡ 2 mod 7. Here, the quadratic twist corresponding to the
cocycle Frobq 7→ τ = (S−1RS−1)2RS has 130969 rational points,
whereas #H(F194) = 129675.

Using the Sage code from Appendix A.2.3 of [17] one can calculate explicit
models for the desired twists. As an example, the quadratic twist corre-
sponding to the cocycle Frobq 7→ the automorphism (x, y) 7→ (y, x) of the
affine curve 1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0 is given
by:

7d4x8 + 2d4x7 − 28d3x6y2 + 35d4x6 + 42d3x5y2 + 42d2x4y4

− 105d3x4y2 + 70d2x3y4 − 28dx2y6 + 84d4x4 + 105d2x2y4 + 14dxy6

+ 7y8 − 168d3x2y2 − 35dy6 + 112d4x2 + 84d2y4 − 112d3y2 + 64d4 = 0.

After our work was completed, many but not all of the new records
described above have been improved by Everett Howe [9]. It is interesting
to note that his results were partly inspired by the Fricke–Macbeath curve.
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