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A Local-Global Criteria of Affine Varieties
Admitting Points in Rank-One Subgroups of a

Global Function Field

par Chia-Liang SUN

Résumé. Pour toute variété affine sur un corps fini, nous mon-
trons qu’elle admet des points à coordonnées dans un sous-groupe
multiplicatif de rang 1 d’un corps de fonctions global sur ce corps
fini si et seulement si cette variété admet des points à coordon-
nées dans la clôture topologique de ce sous-groupe dans le pro-
duit des groupes multiplicatifs des complétions locales du corps
de fonctions sur toutes les places sauf un nombre fini d’entre elles.
Sous l’hypothèse de Riemann généralisée, nous montrons aussi
que l’énoncé ci-dessus est vrai pour toute réunion finie de variétés
affines linéaires sur tout corps global et pour beaucoup de sous-
groupes multiplicatifs de rang 1. Dans le cas où cette réunion finie
est irréductible et définie sur un corps fini, nous montrons de plus
que les deux ensembles de points coincident.

Abstract. For every affine variety over a finite field, we show
that it admits points with coordinates in an arbitrary rank-one
multiplicative subgroup of a global function field over this finite
field if and only if this variety admits points with coordinates in
the topological closure of this subgroup in the product of the mul-
tiplicative group of those local completion of this global function
field over all but finitely many places. Under the generalized Rie-
mann hypothesis, we also show that the above statement holds
for every finite union of affine linear varieties over any global field
and for many rank-one multiplicative subgroup. In the case where
this finite union is irreducible and defined over a finite field, we
moreover show that the topological closure of the set of all such
former points is exactly the set of all such latter points.

Manuscrit reçu le 7 février 2016, révisé le 13 octobre 2016, accepté le 17 octobre 2016.
2010 Mathematics Subject Classification. 14G05.
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1. Introduction

Let K be a global function field over a finite field k of positive character-
istic p. We denote by kalg the algebraic closure of k inside a fixed algebraic
closure Kalg of K. The definition that K is a global function field over k in
particular forces that kalg ∩K = k. Let ΣK be the set of all places of K.
For each v ∈ ΣK , denote by Kv the completion of K at v; by Ov, mv, and
Fv respectively the valuation ring, the maximal ideal, and the residue field
associated to v. For each finite subset S ⊂ ΣK , we denote by OS the ring of
S-integers in K. For any commutative ring R with unity, denote by R∗ the
group of its units. We fix a subgroup Γ ⊂ O∗S for some finite S ⊂ ΣK . Let
M be a natural number, and AM be the affine M -space, whose coordinate
is denoted by X = (X1, . . . , XM ). For each polynomial f ∈ K[X1, . . . , XM ],
we denote by Hf the hypersurface in AM defined by f . If the total degree of
f is one, we say that Hf is a hyperplane. By a linear K-variety in AM , we
mean an intersection of K-hyperplanes. We say that a closed K-variety W
in AM is homogeneous if W can be defined by homogeneous polynomials.

For any closed K-variety W in AM and any subset Θ of some ring con-
taining K, let W (Θ) denote the set of points on W with each coordinate in
Θ. For each subset S̃ ⊂ ΣK , we endow

∏
v∈S̃K

∗
v with the natural product

topology; via the diagonal embedding, we identify W (Γ) with its image
W (Γ)

S̃
in W (

∏
v∈S̃K

∗
v ) and denote by W (Γ)

S̃
its topological closure. We

naturally identify Γ with A1(Γ), and write Γ
S̃
for A1(Γ)

S̃
. For each place

v ∈ ΣK , we write Γv for Γ{v}. Note that Γ
S̃
⊂
∏
v∈S̃ Γv. We fix a cofi-

nite subset Σ ⊂ ΣK , and drop the lower subscript Σ in the notation of
topological closure; for example, we simply write Γ for ΓΣ.

For any closed K-variety W in AM , we let IW ⊂ K[X1, . . . , XM ] be
its vanishing ideal; for each v ∈ ΣK , denoting by I(v)

W the subset of IW ∩
Ov[X1, . . . , XM ] which consists of polynomials with some coefficients not
in mv, we define

W ((Ov/mnv
v )∗)

=

P ∈ AM (Ov/mnv
v ) :

P = (x1 + mnv
v , . . . , xM + mnv

v )
xi ∈ O∗v for all i
f(x1, . . . , xM ) ∈ mnv

v for all f ∈ I(v)
W


for each integer nv ≥ 1; for each finite subset S ⊂ ΣK and each tuple
(nv)v∈S of natural numbers indexed by S. we declare

W

(∏
v∈S

(Ov/mnv
v )∗

)
=
∏
v∈S

W ((Ov/mnv
v )∗) .
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Remark 1.1. In the case where W is defined over k, the ring Ov/m
nv
v

is a k-algebra; the set W (Ov/mnv
v ) is defined in the usual way, and

the set W ((Ov/mnv
v )∗) we define above consists of exactly those points in

W (Ov/mnv
v ) with each coordinate being an unit.

For any closedK-varietyW in AM , we consider the following conjectures.

Conjecture 1.2. W (Γ
S̃

) = W (Γ)
S̃
for every cofinite subset S̃ ⊂ ΣK .

Conjecture 1.3. For every cofinite subset S̃ ⊂ ΣK , there exists a finite
subset S0 ⊂ S̃ and a tuple (nv)v∈S0 of natural numbers indexed by S0
such that for every v ∈ S0 we have that Γ ⊂ O∗v , and in the following
commutative diagram

W (Γ)

��

// W
(∏

v∈S0(Ov/mnv
v )∗

)
��

AM (Γ) // AM
(∏

v∈S0(Ov/mnv
v )∗

)
we have that W (Γ) = ∅ if and only if the image of the bottom map and
that of the right hand downward map do not meet.

Conjecture 1.4. For every cofinite subset S̃ ⊂ ΣK , we have thatW (Γ) = ∅
if and only if W (Γ

S̃
) = ∅.

Trivially, we have that Conjecture 1.2 implies Conjecture 1.4. Since the
constant field k is finite, Conjecture 1.3 and Conjecture 1.4 are actually
equivalent. (Corollary 2.2 in Section 2)

The author [5] proves Conjecture 1.2 for linear varieties W satisfying
some hypothesis, which particularly rule outs the case where W has any
irreducible component defined over the constant field k with dimension
greater than one. WhenW is a hyperplane passing through (0, . . . , 0) ∈ AM ,
Conjecture 1.3 reformulates the function field analog of an old conjecture
raised by Skolem [4]. (cf. [1, Remark 2.4]). It is predicted by Poonen ([3,
Conjecture 5.1]) that the number-field counterpart of Conjecture 1.3 always
holds with a tuple (nv)v∈S0 being all ones; however, we will see that the
analog of this prediction in the present setting cannot holds in general.

Note that Conjecture 1.2 (hence both Conjecture 1.3 and Conjecture 1.4)
holds trivially if Γ has rank zero. In this paper, we focus on the case where
Γ has rank one. We investigate Conjecture 1.2, Conjecture 1.3 and Conjec-
ture 1.4 in the case where W is defined over the constant field k. In this
situation, we prove that Conjecture 1.4 always holds; more precisely, we
establish the next result saying that Conjecture 1.3 always holds with some
effectively determined finite subset S0 ⊂ Σ and the tuple (nv)v∈S0 being all
ones.
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Theorem 1.5. LetW be a closed k-variety in AM . Suppose that Γ has rank
at most one. Then there exists an effectively determined finite subset S0 ⊂ Σ
such that Γ ⊂ O∗v for every v ∈ S0, and in the following commutative
diagram

W (Γ) //

��

W
(∏

v∈S0 F
∗
v

)
��

AM (Γ) // AM
(∏

v∈S0 F
∗
v

)
we have that W (Γ) = ∅ if and only if the image of the bottom map and that
of the right hand downward map do not meet.

Remark 1.6. Theorem 1.5 would not hold if we did not assume that W
is defined over k. In fact, Conjecture 1.3 cannot hold with a tuple (nv)v∈S0

bounded over all closed K-varieties W in AM . See Example 3.7.

In the case where W is a hypersurface, Pasten and the author [2] show
that Theorem 1.5 holds with some singleton S0, assuming the truth of
the next conjecture involving the following condition, where m ∈ N and
r ∈ N \ pN.
Cond(m, r): For every (a1, . . . , am) ∈ Am(k) and every (e1, . . . , em) ∈

Am(Z) such that
∑m
i=1 ai 6= 0, we have

∑m
i=1 aiξ

ei
r 6= 0,

where ξr ∈ (kalg)∗ is a primitive r-th root of unity.

Conjecture 1.7. For any m ∈ N, the condition Cond(m, r) holds for in-
finitely many r ∈ N \ pN.

Remark 1.8. It is known that there is a set E of rational primes with
|E| ≤ 2 such that Conjecture 1.7 holds if p /∈ E. Under the generalized
Riemann hypothesis, we have that E = ∅, i.e. Conjecture 1.7 holds in
general. If we further assume that the set of Wieferich primes to any given
basis has natural density zero, then for any given m ∈ N we may find a
prime ` ∈ N \ pN such that Cond(m, `j) holds for each j ∈ N. (For details,
see [2].) Having such a prime ` ∈ N \ pN, we will show in conclusion (3)
of Theorem 3.6 in Section 3 that Theorem 1.5 holds with some effectively
determined singleton S0.

As a corollary of Theorem 1.5 and an application of one of the key
intermediate results in [5], we establish the following conditional result
concerning Conjecture 1.4.

Theorem 1.9. Let W be a union of linear K-varieties. Suppose that Γ
has rank one, and that there is a non-torsion element γ ∈ Γ such that for
every c ∈ k∗ the element cγ does not have any n-th root in K∗ for any
n ∈ N\pN \ {1}. Assume that Conjecture 1.7 holds. Then we have that
W (

∏
v∈Σ Γv) 6= ∅ implies W (Γ) 6= ∅; in particular, Conjecture 1.4 holds.
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Theorem 1.9 is the first result showing the truth of Conjecture 1.4 for a
given W of an arbitrary dimension without imposing any hypothesis on its
positive-dimensional subvarieties.

Obtained from the more general Theorem 3.12, the next result shows
that in the case where Γ has rank one, Conjecture 1.2 holds for a large
class of k-varieties W , including any linear k-variety.

Theorem 1.10. Suppose thatW =
⋂J
j=1Hfj , where J is a natural number,

and for each j ∈ {1, . . . , J} we have that

fj(X1, . . . , XM ) = cj,0 +
M∑
i=1

cj,iX
dj
i ∈ k[X1, . . . , XM ]

with dj > 0. Suppose that Γ has rank one. Then we have that W (Γ) =
W (Γ).

2. Preliminaries

For each subset S̃ ⊂ ΣK , we let C
S̃

be the collection of those pairs
(S, (nv)v∈S) where S ⊂ S̃ is a finite subset, and (nv)v∈S is a tuple of natural
numbers indexed by S.

Lemma 2.1. Let S̃ ⊂ ΣK be a subset such that Γ ⊂ O∗v for every v ∈ S̃.
Then we have that W (Γ

S̃
) 6= ∅ if and only if for every (S, (nv)v∈S) ∈ C

S̃
the images of the following two maps meet

W (
∏
v∈S(Ov/mnv

v )∗)

��
AM (Γ) // AM (

∏
v∈S(Ov/mnv

v )∗) .

Proof. To prove the “only if” part, suppose that

(x1, . . . , xM ) ∈W (Γ
S̃

) ⊂ AM (Γ
S̃

) ⊂ AM
∏
v∈S̃

O∗v


and write xi = (xi,v)v∈S̃ for each i. Fix an arbitrary (S, (nv)v∈S) ∈ C

S̃
. Since

the kernel of AM (
∏
v∈S̃ O

∗
v) → AM (

∏
v∈S(Ov/mnv

v )∗) is an open subset,
there is some (γ1, . . . , γM ) ∈ AM (Γ) such that for each i and each v ∈ S we
have γi

xi,v
− 1 ∈ mnv

v ; since xi,v ∈ O∗v , it follows that γi − xi,v ∈ mnv
v . Then

by definition, we have that

((x1,v + mn
v , . . . , xM,v + mn

v ))v∈S

∈W
(∏
v∈S

(Ov/mnv
v )∗

)
⊂ AM

(∏
v∈S

(Ov/mnv
v )∗

)
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and that this point coincides with ((γ1 + mn
v , . . . , γM + mn

v ))v∈S , which is
the image of (γ1, . . . , γM ) under the map AM (Γ)→ AM (

∏
v∈S(Ov/mnv

v )∗).
This establishes the “only if” part.

Now we prove the “if” part. Choose a subcollection {(Si, (ni,v)v∈Si) :
i ∈ N} of C

S̃
such that, as i ranges over N, the collection of kernels of

AM
∏
v∈S̃

O∗v

 // AM
∏
v∈Si

(Ov/m
ni,v
v )∗



forms a system of neighborhood around the neutral element of topological
group AM (

∏
v∈S̃ O

∗
v). For each i ∈ N, we pick an element xi ∈ AM (Γ)

whose image in AM (
∏
v∈Si(Ov/m

ni,v
v )∗) lies in W (

∏
v∈Si(Ov/m

ni,v
v )∗). Since

k is finite, AM (
∏
v∈S̃ O

∗
v) is a compact set containing AM (Γ). Thus by taking

subsequence we may assume that (xi)i≥1 ∈ AM (Γ) converges to some x ∈
AM (

∏
v∈S̃ O

∗
v). By construction we have that x ∈ AM (Γ

S̃
). It remains to

show that x lies in W . Write x = ((x1,v)v∈S̃ , . . . , (xM,v)v∈S̃). Fixing an
arbitrary f ∈ K[X1, . . . , XM ] vanishing on W , and an arbitrary v ∈ S̃,
we only need to show that f(x1,v, . . . , xM,v) = 0. Choose some α ∈ K∗

such that αf ∈ Ov[X1, . . . , XM ] has some coefficients not in mv, and fix an
arbitrary n ∈ N. By construction and taking further subsequence, we may
choose some i0 ∈ N such that for each i ≥ i0 we have v ∈ Si and ni,v ≥ n.
Writing xi = (x1,i, . . . , xM,i) ∈ AM (Γ) ⊂ AM (O∗v), we see that the image
of xi in AM ((Ov/m

ni,v
v )∗) is (x1,i +m

ni,v
v , . . . , xM,i +m

ni,v
v ); since this image

lies in W ((Ov/mnv
v )∗), we have that αf(x1,i, . . . , xM,i) ∈ m

ni,v
v ⊂ mn

v for
any i ≥ i0. Letting i → ∞, it follows that αf(x1,v, . . . , xM,v) ∈ mn

v . Since
n ∈ N is arbitrary and α ∈ K∗, we conclude that f(x1,v, . . . , xM,v) = 0 as
desired. �

Corollary 2.2. Conjecture 1.3 holds if and only if Conjecture 1.4 holds.

Proof. Obviously, the “only if” part of this corollary follows from “only if”
part of Lemma 2.1. For the “if” part, we only need to consider the case
where W (Γ) = ∅. Choose a cofinite subset S̃ ⊂ ΣK such that Γ ⊂ O∗v for
every v ∈ S̃. By Conjecture 1.4, we have thatW (Γ

S̃
) = ∅. Then Lemma 2.1

yields the desired conclusion. �

Remark 2.3. From the proofs, we see that the “only if” part of both
Lemma 2.1 and Corollary 2.2 still holds even if our constant field k is
infinite.
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3. The proofs

For any a, b ∈ N with b not divisible by p, consider the polynomial

ga,b(T ) = T ab − 1
T a − 1 ∈ k[T ].

Remark 3.1. For any finite subset S ⊂ k[T ] containing only irreducible
polynomials, there is always an effectively constructed a0 ∈ N \ pN such
that for any a ∈ a0N and b ∈ N \ pN the polynomial ga,b(T ) is not divisible
by any element in S. In fact, we may take a0 = qd − 1, where q = |k|
and d is the least common multiple of degrees of all elements in S. Then
every polynomial in S divides T (T a0 − 1), which divides T (T a− 1) for any
a ∈ a0N; for any b ∈ N \ pN, we see that ga,b(T ) =

∑b−1
i=0 T

ai and T a − 1
are coprime; it follows that ga,b(T ) is not divisible by any element in S as
claimed.

We make the following convention. For a polynomial Q(T ) ∈ k[T ] and a
rational function P (T ) ∈ k(T ), we say that Q(T ) divides P (T ) if any zero
of Q(T ) in kalg is not a pole of P (T )

Q(T ) .

Lemma 3.2. Let f(T ) =
∑
i∈I ciT

ei ∈ k(T ) with each ci ∈ k and ei ∈ Z,
where I is a finite index set. Let a ∈ N and b ∈ N \ pN with b greater than
the cardinality of I. Denote by C the collection of those partitions P on
the set I such that for each set Ω ∈ P we have

∑
i∈Ω ci = 0 and for each

nonempty proper subset Ω′ ⊂ Ω we have
∑
i∈Ω′ ci 6= 0. Suppose that ga,b(T )

divides f(T ). Then there is some P ∈ C such that for each set Ω ∈P and
each i1, i2 ∈ Ω we have that ab divides ei1 − ei2.

Proof. By our convention, the condition that ga,b(T ) divides f(T ) implies
the existence of some e ∈ N such that f(T )T e is in k[T ] and is divisible by
ga,b(T ). Observe that for any nonnegative integer e and positive integer m,
the remainder obtained while performing the long division of T e by Tm−1
is T r, where r is the remainder of e divided by m. Thus, the remainder
obtained while performing the long division of f(T )T e =

∑
i∈I ciT

ei+e by
T ab − 1 is

∑
i∈I ciT

ri , where ri denotes the remainder of ei + e divided by
ab. Since ga,b(T ) divides both f(T ) and T ab − 1, it also divides

∑
i∈I ciT

ri .
Hence there is a polynomial

∑a−1
i=0 αiT

i ∈ k[T ] with degree at most a− 1 =
(ab− 1)− a(b− 1) such that

∑
i∈I

ciT
ri =

(
b−1∑
i=0

T ai
)(

a−1∑
i=0

αiT
i

)
.

Observe that no cancellation occurs during expanding the right hand side.
Thus, if αi 6= 0 for some i, then there are at least b nonzero terms in
the polynomial

∑
i∈I ciT

ri . From the assumption that b greater than the
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cardinality of I, this shows that
∑
i∈I ciT

ri is a zero polynomial. Then by
definition of C , there is some P ∈ C such that for each set Ω ∈ P and
each i1, i2 ∈ Ω we have that ri1 = ri2 , i.e. ab divides ei1 − ei2 . �

Lemma 3.3. Let f(X1, . . . , XM ) ∈ k[X1, . . . , XM ] be a polynomial over
the finite field k of characteristic p. Let S be a finite set of irreducible
polynomials in k[T ]. Then there are effectively constructed a, b ∈ N, neither
divisible by p, such that the following two properties holds:

(1) ga,b(T ) is not divisible by any element in S;
(2) if f(1, . . . , 1) 6= 0, then ga,b(T ) does not divide f(T e1 , . . . , T eM ) for

any tuple (e1, . . . , eM ) of nonnegative integers.

Proof. Write f(X1, . . . , XM ) =
∑
i∈I ciX

e1,i
1 · · ·XeM,i

M with each ci ∈ k
and each tuple (e1,i, · · · , eM,i) of nonnegative integers, where I is a fi-
nite index set. Fix some b ∈ N \ pN greater than the number of nonzero
terms in f(X1, . . . , XM ). By Remark 3.1, there is a effectively constructed
a ∈ N \ pN such that the polynomial ga,b(T ) is not divisible by any el-
ement in S. Suppose that ga,b(T ) divides f(T e1 , . . . , T eM ) for some tuple
(e1, . . . , eM ) of nonnegative integers. Because the number of nonzero terms
in f(T e1 , . . . , T eM ) is not greater than that in f(X1, . . . , XM ), this number
is less than b. Thus, Lemma 3.2 shows that there is some partitions P on
the set I such that for each set Ω ∈ P we have

∑
i∈Ω ci = 0; this means

that
f(1, . . . , 1) =

∑
Ω∈P

∑
i∈Ω

ci = 0,

which is a contradiction finishing the proof. �

Proposition 3.4. Let f ∈ k[X1, . . . , XM ]. Suppose that Γ is infinitely
cyclic. Then there exists an effectively determined finite subset S0 ⊂ Σ such
that Γ ⊂ O∗v for every v ∈ S0, and in the following commutative diagram

Hf (Γ) //

��

Hf

(∏
v∈S0 F

∗
v

)
��

AM (Γ) // AM
(∏

v∈S0 F
∗
v

)
we have that Hf (Γ) = ∅ if and only if the image of the bottom map and
that of the right hand downward map do not meet.

Proof. Let γ ∈ Γ generate Γ. Choose a finite subset S ⊂ ΣK containing the
set ΣK \Σ such that γ ∈ O∗S . Consider the field isomorphism k(T )→ k(γ)
given by T 7→ γ. Through this isomorphism, let S be a finite set of those
irreducible polynomials in k[T ] corresponding any place of k(γ) lying below
some place in S. By Lemma 3.3, there are effectively computable a, b ∈ N,
neither divisible by p, such that ga,b(T ) is not divisible by any element in
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S and that if f(1, . . . , 1) 6= 0, then ga,b(T ) does not divide f(T e1 , . . . , T eM )
for any tuple (e1, . . . , eM ) of nonnegative integers. Since neither a nor b
is divisible by p, it follows that ga,b(T ) is equal to a product of distinct
irreducible polynomials; let S0 be the set of these irreducible polynomials.
Note that the polynomial T does not belong to S0. Let S0 ⊂ ΣK be a finite
subset such that for each irreducible polynomials in S0 there is exactly one
place in S0 lying above the place of k(γ) corresponding to this polynomial.
Now we show that S0 has the desired property. To prove the nontrivial
implication, suppose that Hf (Γ) = ∅, which follows that f(1, . . . , 1) 6= 0.
We need to show that the image of the map AM (Γ) → AM (

∏
v∈S0 F

∗
v) do

not intersect with Hf . Assuming for the contradiction that Hf contains
the image of some element AM (Γ) in AM (

∏
v∈S0 F

∗
v); since Γ is generated

by γ, this element is equal to (γe1 , . . . , γeM ) for some tuple (e1, . . . , eM ) ∈
AM (Z). This says that for each v ∈ S0 we have that f(γe1 , . . . , γeM ) ∈ mv.
Note that f(γe1 , . . . , γeM ) ∈ k[γ, γ−1]; for each v ∈ S0, since γ ∈ O∗v , the
intersection mv ∩ k[γ, γ−1] is still a maximal ideal of k[γ, γ−1]. Now we
have that f(γe1 , . . . , γeM ) ∈

⋂
v∈S0(mv ∩k[γ, γ−1]) =

∏
v∈S0(mv ∩k[γ, γ−1]).

Through the k-isomorphism k[T, T−1]→ k[γ, γ−1] of rings given by T 7→ γ,
it follows that f(T e1 , . . . , T eM ) ∈ k[T, T−1] is divisible by the product of
all irreducible polynomials in S0. By construction, this product is exactly
ga,b(T ). This contradiction finishes our proof. �

Proposition 3.5. Let f ∈ k[X1, . . . , XM ]. Assume that Conjecture 1.7
holds. Suppose that Γ is infinitely cyclic. Then there exists v0 ∈ Σ such that
Γ ⊂ O∗v0 and in the following commutative diagram

Hf (Γ) //

��

Hf (F∗v0)

��
AM (Γ) // AM (F∗v0)

we have that Hf (Γ) = ∅ if and only if the image of the bottom map and
that of the right hand downward map do not meet. If we assume further that
Conjecture 1.7 holds in a constructive way that for any given m ∈ N and
R ∈ N we may explicitly find an r > R such that the condition Cond(m, r)
holds, then the place v0 ∈ Σ may be effectively constructed.

Proof. It suffices to consider only the case where Hf (Γ) = ∅, which follows
that f(1, . . . , 1) 6= 0. By Proposition 5.2 in [2], it follows from Conjecture 1.7
that there exists v0 ∈ Σ such that Γ ⊂ O∗v0 and for every (γ1, . . . , γM ) ∈
AM (Γ) we have that f(γ1, . . . , γM ) /∈ mv0 . Since the coefficients of f lie in
k∗, which is mapped injectively to F∗v0 , it implies that the image of AM (Γ)
in AM (F∗v0) does not meet with Hf as desired. In fact, the statement of
Proposition 5.2 in [2] specifies an m ∈ N (in terms of f) and an R ∈ N
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(in terms of k and Γ) such that the truth of Cond(m, r) for some r > R
ensures the existence of such a place v0 ∈ Σ; the proof of that proposition
shows how to construct such v0 ∈ Σ in terms of r, k, Γ and K. �

Theorem 1.5 follows from conclusion (1) of the following result.

Theorem 3.6. Let W be a closed k-variety in AM . Suppose that Γ has
rank at most one. For every finite subset S0 ⊂ Σ, consider the following
property

(P) Γ ⊂ O∗v for every v ∈ S0, and in the following commutative diagram

W (Γ) //

��

W
(∏

v∈S0 F
∗
v

)
��

AM (Γ) // AM
(∏

v∈S0 F
∗
v

)
we have that W (Γ) = ∅ if and only if the image of the bottom map
and that of the right hand downward map do not meet.

Then we have the following conclusions.
(1) There is an effectively determined finite subset S0 ⊂ Σ such that (P)

holds.
(2) If we assume that Conjecture 1.7 holds, then there exists an one-

element subset S0 ⊂ Σ such that (P) holds.
(3) If we assume further that Conjecture 1.7 holds in a constructive way

that for any given m ∈ N and R ∈ N we may explicitly find some
r > R such that the condition Cond(m, r) holds, then there exists
an effectively determined one-element subset S0 ⊂ Σ such that (P)
holds.

Proof. To prove the desired result, it suffices to consider the case where
W (Γ) = ∅. Choose a free subgroup Φ ⊂ Γ such that Γ =

⋃
τ∈Tor(Γ) τΦ. Write

W =
⋂
i∈I Hfi , where I is some finite index set and fi ∈ k[X1, . . . , XM ] for

each i ∈ I. Since W (Γ) = ∅, it implies that for each t = (τ1, . . . , τM ) ∈
AM (Tor(Γ)) ⊂ AM (k∗) there exists it ∈ I such that t /∈ Hfit

(k∗), i.e.
fit(t) = fit(τ1, . . . , τM ) 6= 0. Writing tX = (τ1X1, . . . , τMXM ), we define

g(X) = g(X1, . . . , XM ) =
∏

t∈AM (Tor(Γ))
fit(tX).

Since each fit(tX) is in k[X1, . . . , XM ], so is the product g(X). We note
that g(1, . . . , 1) 6= 0. Since g(X1, . . . , Xn) ∈ k[X1, . . . , Xn] and each non-
trivialelement of Φ is not algebraic over k, we have that Hg(Φ) = ∅. For
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conclusion (1), Proposition 3.4 shows that there exists a effectively deter-
mined finite subset S0 ⊂ Σ satisfying the following property

(P′) Φ ⊂ O∗v for every v ∈ S0, and in the following diagram

Hg
(∏

v∈S0 F
∗
v

)
��

AM (Φ) // AM
(∏

v∈S0 F
∗
v

)
the image of the bottom map and that of the right hand downward
map do not meet.

For conclusion (2), we apply the first part of Proposition 3.5 and obtain an
one-element subset S0 ⊂ Σ satisfying the property (P′). For conclusion (3),
the second part of Proposition 3.5 offers an effectively constructed one-
element subset S0 ⊂ Σ satisfying the property (P′).

Now it lefts to show that the property (P′) implies the property (P).
Recall that we are treating the case where W (Γ) = ∅. Assume for contra-
diction that there exists some r ∈ AM (Γ) whose image in AM (

∏
v∈S0 F

∗
v) lies

onW . Since Γ =
⋃
τ∈Tor(Γ) τΦ, there exists some t ∈ AM (Tor(Γ)) such that

rt−1 ∈ AM (Φ). Note that the image of r in AM (
∏
v∈S0 F

∗
v) lies on Hfit

. As
Tor(Γ) is contained in k∗, which maps injectively to F∗v for any v ∈ S0, we
have that the image of rt−1 in AM (

∏
v∈S0 F

∗
v) lies on the translation t−1Hfit

of Hfit
by t−1 ∈ AM (Tor(Γ)). This translation is defined by the polyno-

mial fit(tX) ∈ k[X1, . . . , XM ]. Since rt−1 ∈ AM (Φ) and the polynomial
fit(tX) divides g(X), it follows that the image of AM (Φ) in AM (

∏
v∈S0 F

∗
v)

meets the hypersurface Hg. This contradicts the construction of g and S0
as desired. �

Example 3.7. Conjecture 1.3 cannot hold with a tuple (nv)v∈S0 bounded
over all closed K-varieties W in AM . To see this, consider the case where
K = k(T ) and Γ is generated by T . Let n ∈ N and take the simple example
where W1 = Hf1 ⊂ A1 with

f1(X1) = Xpn

1 − T
pn−1 ∈ K[X1].

To show that there is no obvious condition (other than that W is defined
over k) under which this stronger version of Conjecture 1.3 holds, consider
a more elaborate example where W2 = Hf2 ⊂ A2 with

f2(X1, X2) = X1X2 − 1 + cX2
1X

pn+1
2 − cT pn−1

X1 ∈ K[X1, X2],

where c ∈ k∗ \ {1}. For every e1 ∈ Z, we have

f1(T e1) = T p
n−1 (

T p
n−1(e1p−1) − 1

)
,
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from which we see that if f1(T e1) = 0, then e1p−1 = 0, which is impossible.
Similarly, for every (e1, e2) ∈ A2(Z) we have

f2(T e1 , T e2) = T e1+e2 + cT 2e1+e2pn+e2 − cT e1+pn−1 − 1

=
(
T e1+e2 − 1

)
+ cT e1+pn−1 (

T e1+e2(pn+1)−pn−1 − 1
)

= T e1+e2
(
1 + cT e1+e2pn

)
−
(
cT e1+pn−1 + 1

)
,

thus the condition c ∈ k∗ \ {1} implies that if f2(T e1 , T e2) = 0 then it

implies either that
{
e1 + e2 = 0
e1 + e2(pn + 1) = pn−1 or that

{
e1 + e2p

n = 0
e1 = −pn−1 ;

however, there is no (e1, e2) ∈ A2(Z) for which either system of equalities
holds. Thus we have W1(Γ) = ∅ = W2(Γ). On the other hand, for any finite
subset S0 ⊂ ΣK and any tuple (nv)v∈S0 of natural numbers indexed by S0
such that Γ ⊂ O∗v and nv ≤ pn−1 for each v ∈ S0 , we claim that in the case
where (W,M) ∈ {(W1, 1), (W2, 2)} the image of the bottom map and that
of the right hand downward map in the following commutative diagram
always meet

W (Γ) //

��

W
(∏

v∈S0(Ov/mnv
v )∗

)
��

AM (Γ) // AM
(∏

v∈S0(Ov/mnv
v )∗

)
.

To see this, first note that there is some a ∈ N \ pN such that T a − 1 ∈⋂
v∈S0(mv ∩ K). Thus we have T apn−1 − 1 ∈

⋂
v∈S0(mnv

v ∩ K). Because
a ∈ N\pN, we may choose some b ∈ N\aN such that bp ∈ 1 +aN. We have

f1(T b) = T p
n−1 (

T p
n−1(bp−1) − 1

)
∈
(
T ap

n−1 − 1
)
k[T ] ⊂

⋂
v∈S0

(mnv
v ∩K)

and

f2(T−b, T b) = cT−b+p
n−1 (

T bp−1 − 1
)pn−1

∈
(
T ap

n−1 − 1
)
k[T ] ⊂

⋂
v∈S0

(mnv
v ∩K) .

This proves our claim.

Let ρ(Γ) =
⋂
m≥0(Kpm)∗Γ, which is still a subgroup of K∗.

Lemma 3.8. We have that

{x ∈ K∗ : xn ∈ Γ for some n ∈ N \ pN}
⊂ ρ(Γ) ⊂ {x ∈ K∗ : xn ∈ Γ for some n ∈ N}.
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Moreover, if Γ has rank one, then

ρ(Γ) = {x ∈ K∗ : xn ∈ Γ for some n ∈ N \ pN}.

Proof. For any x ∈ K∗ with xn ∈ Γ for some n ∈ N \ pN, we have that for
every m ≥ 0 there are a, b ∈ Z with an+ bpm = 1, thus x = (xpm)b(xn)a ∈
(Kpm)∗Γ. This shows that {x ∈ K∗ : xn ∈ Γ for some n ∈ N \ pN} ⊂
ρ(Γ). Lemma 3 of [6] (which uses the fact that k is finite and Γ is finitely
generated) shows that ρ(Γ) ⊂ {x ∈ K∗ : xn ∈ Γ for some n ∈ N}. Now
suppose that Γ has rank one and let γ ∈ Γ generate a maximal free subgroup
of Γ. To show that

ρ(Γ) ⊂ {x ∈ K∗ : xn ∈ Γ for some n ∈ N \ pN},

we first choose a largest m0 ∈ N such that Γ ⊂ (Kpm0 )∗. Let x ∈ ρ(Γ).
Since ρ(Γ) ⊂ {x ∈ K∗ : xn ∈ Γ for some n ∈ N}, we may choose a smallest
n0 ∈ N such that xn0 ∈ Γ. Then there exists some s ∈ Z and τ ∈ Tor(Γ)
such that xn0 = τγs. We shall show that n0 is not divisible by p as desired.
Assume that n0 is divisible by p. Then since τ ∈ k∗ ⊂ (Kpm0+1)∗, we have
γs ∈ (Kpm0+1)∗, which implies that s is divisible by p, for otherwise it
would follows that γ ∈ (Kpm0+1)∗ and then Γ ⊂ (Kpm0+1)∗, contradicting
the choice of m0. Having that both n0 and s are divisible by p, we see that
x
n0
p γ
− s
p is the p-th root of τ , thus is some power of τ , hence lies in Tor(Γ).

It follows that x
n0
p ∈ Γ, contradicting the choice of n0. �

Lemma 3.9. Suppose that Γ has rank one. Then we have that ρ(Γ) = k∗Γ
if and only if there is a non-torsion element γ ∈ Γ such that for every c ∈ k∗
the element cγ does not have any n-th root in K∗ for any n ∈ N\pN \ {1}.

Proof. To prove the “only if” part, suppose that ρ(Γ) = k∗Γ and let γ ∈ Γ
generate a maximal free subgroup of Γ. If for some c ∈ k∗ and some n ∈
N\pN\{1} the element cγ has some n-th root x in K∗, then by Lemma 3.8,
we have that x ∈ ρ(k∗Γ) = ρ(Γ) = k∗Γ and thus that x = c1γ for some
c1 ∈ k∗; hence we obtain cn1γ

n = xn = cγ, which implies a contradiction
that γ ∈ kalg since n 6= 1.

It remains to prove the “if” part. Suppose that there is a non-torsion
element γ ∈ Γ such that for every c ∈ k∗ the element cγ does not have
any n-th root in K∗ for any n ∈ N\pN \ {1}. Note that γ is contained in
some maximal free subgroup of Γ, and that if γ = γm0 for some γ0 ∈ Γ
and m ∈ Z, then for every c ∈ k∗ the element cγ0 does not have any n-th
root in K∗ for any n ∈ N\pN \ {1} either. Hence we may assume that γ
generates a maximal free subgroup of Γ. To prove that ρ(Γ) = k∗Γ, since
we have ρ(Γ) = ρ(k∗Γ) = {x ∈ K∗ : xn ∈ k∗Γ for some n ∈ N \ pN} by
Lemma 3.8, it suffices to consider a non-torsion x ∈ K∗ such that xn ∈ k∗Γ
with a minimal n ∈ N \ pN, and show that n = 1. Let c ∈ k∗ satisfy
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that xn = cγs. If d = gcd(n, s), then (x
n
d γ−

s
d )d = c and thus x

n
d γ−

s
d ∈

(kalg)∗ ∩K∗ = k∗; noting that x
n
d = (x

n
d γ−

s
d )γ

s
d ∈ k∗Γ, the minimality of

n shows that d = 1. Since 1 = gcd(n, s) = an + bs for some a, b ∈ Z, we
see that cbγ = (cγs)bγan = (xbγa)n. As xbγa ∈ K∗ and n ∈ N \ pN, the
hypothesis on cbγ implies n = 1 as desired. �

Proposition 3.10. Let W be a union of homogeneous linear K-varieties.
Suppose that Γ has rank one, and that there is a non-torsion element γ ∈ Γ
such that for every c ∈ k∗ the element cγ does not have any n-th root in K∗
for any natural number n 6∈ pN ∪ {1}. Assume that Conjecture 1.7 holds.
Then W (

∏
v∈Σ Γv) 6= ∅ implies W (Γ) 6= ∅.

Proof. By Proposition 6 in [5], there exists a finite union V of homogeneous
linear K-subvarieties of W such that each irreducible component of V is
ρ(Γ)-isotrivial and that W (Γv) = V (Γv) for every v ∈ Σ. Since Γ ⊂ Γv
for any v ∈ Σ, we also have that W (Γ) = V (Γ). Writing V =

⋃
i∈I Vi as a

finite union of its irreducible components, since we have that ρ(Γ) = k∗Γ
by Lemma 3.9, the definition of k∗Γ-isotriviality means that for each i ∈ I
there exists some ciri ∈ AM (k∗Γ), with ci ∈ AM (k∗) and ri ∈ AM (Γ), such
that the translate ciriVi is a closed k-variety in AM . Since ci ∈ AM (k∗),
we see that riVi is still a closed k-variety in AM . For every v ∈ Σ, since
Γv is contained in a field and ri ∈ AM (Γ) ⊂ AM (Γv), we have V (Γv) =⋃
i∈I Vi(Γv) =

⋃
i∈I(riVi)(Γv) = (

⋃
i∈I riVi)(Γv). Similarly we have V (Γ) =

(
⋃
i∈I riVi)(Γ).
Now suppose that W (Γ) = ∅. Then (

⋃
i∈I riVi)(Γ) = V (Γ) = ∅. Since

we are assuming that Conjecture 1.7 holds, by the facts that
⋃
i∈I riVi is

a closed k-variety in AM and that Γ has rank one, it follows from conclu-
sion (2) of Theorem 3.6 that there exists a place v0 ∈ Σ such that Γ ⊂ O∗v0

and that the image of AM (Γ) in AM (F∗v0) does not meet
⋃
i∈I riVi. Applying

Lemma 2.1 with S̃ = {v0}, we see that (
⋃
i∈I riVi)(Γv0) = ∅ and hence that

W (Γv0) = V (Γv0) = ∅. It follows that W (
∏
v∈Σ Γv) = ∅ as desired. �

Consider the rational map φ : AM+1 → AM given by

(X1, . . . , XM+1) 7→
(

X1
XM+1

, . . . ,
XM

XM+1

)
.

For any closed K-variety W ⊂ AM and any subgroup ∆ ⊂ K∗, we have
that the K-variety φ−1(W ) is homogeneous, that W (∆) 6= ∅ if and only if
φ−1(W )(∆) 6= ∅; for any v ∈ Σ, since ∆v ⊂ K∗v is also subgroup, we have
also that W (∆v) 6= ∅ if and only if φ−1(W )(∆v) 6= ∅.

Proof of Theorem 1.9. Replacing W by φ−1(W ), the preceding remark
shows that we may assume thatW is homogeneous. Then the desired result
follows from Proposition 3.10. �
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Proposition 3.11. Let J be a natural number; for each j ∈ {1, . . . , J}, let

fj(X1, . . . , XM ) = cj,0 +
M∑
i=1

cj,iX
dj,i
i ∈ k[X1, . . . , XM ]

with dj,i > 0 for each i; denote by Cj the collection of those partitions P
of the set {0, 1, . . . ,M} such that for each I ∈P we have

∑
i∈I cj,i = 0 and

for each nonempty proper I ′ ⊂ I we have
∑
i∈I′ cj,i 6= 0. Suppose that for

every j ∈ {1, . . . , J} and every P ∈ Cj we have dj,i = dj,i′ for any i, i′ ∈ I
and any I ∈P such that 0 /∈ I.

Assume that there exists a sequence {(e1,n, . . . , eM,n)}n≥1 in AM (Z) sat-
isfying the following: for every Q(T ) ∈ k[T ] not divisible by any element in
S, there is an NQ ∈ N such that for any n′ ≥ n ≥ NQ we have that Q(T )
divides both fj(T e1,n , . . . , T eM,n) and T ei,n−T ei,n′ for all j ∈ {1, . . . , J} and
all i ∈ {1, . . . ,M}.

Then there exists a sequence {(e′1,n, . . . , e′M,n)}n∈N in AM (Z) indexed
by an infinite subset N ⊂ N satisfying the following conditions: for each
n ∈ N we have fj(T e

′
1,n , . . . , T e

′
M,n) = 0 for all j ∈ {1, . . . , J}, and for

every Q̃(T ) ∈ k[T ] not divisible by any element in S ∩ {T}, there is some
Ñ
Q̃
∈ N such that for any n ∈ N with n ≥ Ñ

Q̃
we have that Q̃(T ) divides

T ei,n − T e
′
i,n for all i.

Proof. Fix D ∈ N be divisible by dj,i for each i ∈ {1, . . . ,M} and j ∈
{1, . . . , J}. We have the following observation for each fixed j ∈ {1, . . . , J},
where we put dj,0 = e0 = 0 for convenience. Suppose that gaD,b(T ) divides

fj(T e1 , . . . , T eM ) =
M∑
i=0

cj,iT
dj,iei

for some a ∈ N, b ∈ N \ pN with b > M + 1, and for some (e1, . . . , eM ) ∈
AM (Z). Then Lemma 3.2 shows that there is some P ∈ Cj such that for
any i, i′ ∈ I and any I ∈ P we have that abD divides dj,iei − dj,i′ei′ . In
case where 0 /∈ I, it follows that that ab divides ei − ei′ since dj,i = dj,i′
divides D; in the other case, i.e. where 0 ∈ I, because abD divides both
dj,iei = dj,iei − dj,0e0 and dj,i′ei′ = dj,i′ei′ − dj,0e0, we still have that ab
divides ei − ei′ . We conclude for any i, i′ ∈ I and any I ∈ P that T ab − 1
divides T ei − T ei′ .

We construct the sequence {(e′1,n, . . . , e′M,n)}n≥1 as follows. Fix a ∈ N\pN
and b ∈ N \ pN such that every polynomial in S divides T (T a − 1), and
that b > M+1. For each m ∈ N, consider the polynomial gaDpm,b(pm−1)(T ),
which is not divisible by any polynomial in S. By assumption, there is an
Nm ∈ N such that the following two conditions holds:

(1) gaDpm,b(pm−1)(T ) divides fj(T e1,n , . . . , T eM,n) =
∑M
i=0 cj,iT

dj,iei for
any n ≥ Nm and any j ∈ {1, . . . , J};
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(2) gaDpm,b(pm−1)(T ) divides that T ei,n − T ei,n′ for any n′ ≥ n ≥ Nm

and all i ∈ {1, . . . ,M}.
We may assume that the sequence {Nm}m≥1 is strictly increasing. Since we
have b(pm−1) > M+1 ≥ 2, the observation in the last paragraph shows that
Condition (1) implies that for any n ≥ Nm there is some Pj,m,n ∈ Cj such
that T abpm(pm−1)−1 divides T ei,n−T ei′,n for any i, i′ ∈ I and any I ∈Pj,m,n,
while Condition (2) implies that T abpm(pm−1) − 1 divides T ei,n − T ei,n′ for
any n′ ≥ n ≥ Nm and all i ∈ {1, . . . ,M}. Thus, for any n ≥ n′ ≥ Nm,
any i, i′ ∈ I and any I ∈ Pj,m,n, the polynomial T abpm(pm−1) − 1 divides
T ei,n′−T ei′,n . Taking n′ = Nm, we obtain that for any n ≥ Nm, any i, i′ ∈ I
and any I ∈Pj,m, the polynomial T abpm(pm−1) − 1 divides T ei,n − T ei′,Nm ,
where we put Pj,m = Pj,m,Nm .

For each j ∈ {1, . . . , J} the collection Cj is finite while {m! : m ∈ N} is
infinite, where m! =

∏m
`=1 `. Thus there is an infinite subset M ⊂ N such

that for each j ∈ {1, . . . , J} the collection {Pj,m! : m ∈M} consists of only
one partition, denoted by Pj ; let Rj ⊂ {0, 1, . . . ,M}×{0, 1, . . . ,M} be the
subset representing the equivalence relation on {0, 1, . . . ,M} corresponding
to the partition Pj . Let P be the partition of {0, 1, . . . ,M} corresponding
to the minimal equivalence relation R ⊂ {0, 1, . . . ,M}×{0, 1, . . . ,M} con-
taining

⋃
j∈{1,...,J}Rj . For each i ∈ {1, . . . ,M}, we denote by î the smallest

element in {0, . . . ,M} such that i and î lie in the same element of P, or
equivalently (̂i, i) ∈ R. Let N ={Nm! : m ∈ M} ⊂ N, which is an infinite
subset. For each i ∈ {1, . . . ,M} and each n = Nm! ∈ N with m ∈ M, we
put e′i,n = ê

i,n
, where again we define e0,n = 0 for convenience.

Now we show that the sequence {(e′1,n, . . . , e′M,n)}n∈N indeed satisfies the
desired properties. To verify the first property, we fix some j ∈ {1, . . . , J}
and some n = Nm ∈ N with m ∈M. From construction, we have

fj(T e
′
1,n , . . . , T e

′
M,n) = cj,0 +

M∑
i=1

cj,iT
e′i,ndj,i

=
M∑
i=0

cj,iT
e
î,Nm

dj,i

=
∑
I∈Pj

∑
i∈I

cj,iT
e
î,Nm

dj,i
.

Since Rj ⊂ R, each element I ∈Pj , viewed as a subset of {0, 1, . . . ,M}, is
contained in some element of P; thus for any i, i′ ∈ I we have î = î′. For
each I ∈Pj , choose some fixed iI ∈ I. Then from the definition e0,Nm = 0
and the assumption that dj,i = dj,iI for any i ∈ I and any I ∈ Pj such
that 0 /∈ I. we see that ê

i,Nm
dj,i = e

îI ,Nm
dj,iI for any i ∈ I and any I ∈Pj .
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This shows that fj(T e
′
1,n , . . . , T e

′
M,n) =

∑
I∈Pj

T
e
îI ,Nm

dj,iI ∑
i∈I cj,i = 0 as

desired.
To verify the second property, we fix some Q̃(T ) = Q̃+(T )Q̃0(T ) ∈ k[T ]

not divisible by any element in S ∩ {T}, with Q̃+(T ) = T r for some r ≥ 0
such that Q̃0(T ) is not divisible by T . If r > 0, then we must have T 6∈ S,
and hence by assumption, there is an N

Q̃+
∈ N such that for any n ≥ N

Q̃+

we have that TDr divides fj(T e1,n , . . . , T eM,n) =
∑M
i=0 cj,iT

dj,iei,n for all
j ∈ {1, . . . , J}; if r = 0, then we put N

Q̃+
= 1. By our convention, this

means that

min{dj,iei,n : i ∈ {1, . . . ,M} and j ∈ {1, . . . , J} and n ≥ N
Q̃+
} ≥ Dr.

Since D is divisible by dj,i for each i ∈ {1, . . . ,M} and j ∈ {1, . . . , J}, it
follows that

min{ei,n : i ∈ {1, . . . ,M} and n ≥ N
Q̃+
} ≥ r.

Choosing some m0 ∈ N with Q̃0(T ) dividing T abpm0 (pm0−1) − 1 as well as
some natural number m ∈M with m ≥ m0, we have that T abp

m!(pm!−1)− 1
is divisible by T abpm0 (pm0−1) − 1, and thus is divisible by Q̃0(T ). Let Ñ

Q̃
=

max{N
Q̃+
, Nm!}.

Fix an arbitrary i ∈ {1, . . . ,M} and n ∈ N with n ≥ Ñ
Q̃
. We need

to show that Q̃(T ) divides T ei,n − T e
′
i,n . By the definition that e′i,n = ê

i,n

and the fact that Q̃0(T ) divides T abpm!(pm!−1) − 1, it suffices to show that
T r(T abpm!(pm!−1) − 1) divides T ei,n − T eî,n . First, since n ≥ N

Q̃+
, we have

that min{ei,n, êi,n} ≥ r, i.e., T r divides T ei,n − T
e
î,n . Furthermore, by

the fact that (̂i, i) ∈ R and that R ⊂ {0, 1, . . . ,M} × {0, 1, . . . ,M} is
the minimal equivalence relation containing

⋃
j∈{1,...,J}Rj with each Rj ⊂

{0, 1, . . . ,M} × {0, 1, . . . ,M} being an equivalence relation, there exists
(i0, . . . , iL) ∈ {0, 1, . . . ,M}L+1 and (j1, . . . , jL) ∈ {1, . . . , J}L with L ∈ N
such that (i0, iL) = (̂i, i) and (i`−1, i`) ∈ Rj` for each ` ∈ {1, . . . , L}. Equiv-
alently, for each ` ∈ {1, . . . , L} we have an I` ∈ Pj` with i`−1, i` ∈ I`.
Since n ≥ Nm! with m ∈ M, we have for each ` ∈ {1, . . . , L} that Pj` =
Pj`,m! and thus the polynomial T abpm!(pm!−1)−1 divides T ei`−1,Nm−T ei`,Nm ;
also, we have that T abpm!(pm!−1) − 1 divides both T ei0,n − T ei0,Nm and
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T eiL,n − T eiL,Nm . Hence, we see that
T
e
î,n − T ei,n

= T ei0,n − T eiL,n

= (T ei0,n − T ei0,Nm )− (T eiL,n − T eiL,Nm ) +
L∑
`=1

(T ei`−1,Nm − T ei`,Nm )

is divisible by T abp
m!(pm!−1) − 1. Since T r and T abp

m!(pm!−1) − 1 are rela-
tively prime, it follows that T r(T abpm!(pm!−1)−1) divides T ei,n −T eî,n . This
completes the proof. �

Theorem 3.12. Suppose that W =
⋂J
j=1Hfi, where J is a natural number,

and for each j ∈ {1, . . . , J} we have that

fj(X1, . . . , XM ) = cj,0 +
M∑
i=1

cj,iX
dj,i
i ∈ k[X1, . . . , XM ]

with dj,i > 0 for each i. For each j ∈ {1, . . . , J}, denote by Cj the collection
of those partitions P of the set {0, 1, . . . ,M} such that for each I ∈ P
we have

∑
i∈I cj,i = 0 and for each nonempty proper I ′ ⊂ I we have∑

i∈I′ cj,i 6= 0. Suppose that for every j ∈ {1, . . . , J} and every P ∈ Cj
we have dj,i = dj,i′ for any i, i′ ∈ I and any I ∈ P such that 0 /∈ I.
Suppose that Γ is cyclic. Then we have that W (Γ) = W (Γ).

Proof. To avoid trivial cases, we assume that Γ is infinite cyclic, say, gen-
erated by γ ∈ Γ. Let {(γe1,n , . . . , γeM,n)}n≥1 be a sequence in AM (Γ) which
converges to a point (x1, . . . , xM ) ∈W (Γ) ⊂W (

∏
v∈ΣK

∗
v ), where ei,n ∈ Z.

In particular, for each i ∈ {1, . . . ,M} and each v ∈ Σ, the sequence
{|γei,n |v}n≥1 = {|γ|ei,nv }n≥1 must converge in R∗. If |γ|v 6= 1 for some v ∈ Σ,
then the sequence {(γe1,n , . . . , γeM,n)}n≥1 must be eventually stationary,
and it follows that (x1, . . . , xM ) ∈W (Γ). Therefore it suffices to treat only
the case where |γ|v = 1, i.e. γ ∈ O∗v , for every v ∈ Σ.

Let Σ|k(γ) ⊂ Σ be the subset satisfying the following property that for
each v ∈ Σ there exists a unique w ∈ Σ|k(γ) such that both v and w restrict
to the same place of k(γ). Consider the k-isomorphism between fields
(3.1) k(T )→ k(γ), T 7→ γ.

Through the isomorphism (3.1), the set Σ|k(γ) is, by construction, injec-
tively mapped onto a subset of the set of places of k(T ). For each v ∈ Σ|k(γ),
we have that γ ∈ O∗v ; let Pv(T ) ∈ k[T ] be the irreducible polynomial corre-
sponding the image of v under this map. Let S be the complement of the
subset {Pv(T ) : v ∈ Σ|k(γ)} of the set of all irreducible polynomials in k[T ].
Note that S is a finite set containing the polynomial T , and that k[Γ] ⊂ Ov
for each v ∈ Σ, where k[Γ] is the smallest subring of K containing both k
and Γ.
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The sequence {(γe1,n , . . . , γeM,n)}n≥1 lies in the image of

AM
 ∏
v∈Σ|k(γ)

k(γ)∗v

→ AM
∏
v∈Σ

K∗v


under the natural map, where k(γ)v denotes the topological closure
of the subfield k(γ) in Kv. Note that this image is a closed subset.
The topology on Γ is induced from the usual product topology on∏
v∈Σ k(γ)∗v, and the latter topology is the same as the subspace topology

restricted from the usual product topology on
∏
v∈Σ k(γ)v. Thus for each

i ∈ {1, . . . ,M} the sequence (γei,n)n≥1 converges to xi in
∏
v∈Σ k(γ)v There-

fore, from the continuity of each fj at (x1, . . . , xM ) ∈ AM (
∏
v∈Σ k(γ)v),

we see that for each j ∈ {1, . . . , J} the sequence (fj(γe1,n , . . . , γeM,n))n≥1
converges to fj(x1, . . . , xM ) = 0 in

∏
v∈Σ k(γ)v. Consider the sequence

{(e1,n, . . . , eM,n)}n≥1 in AM (Z). Fix an arbitrary polynomial Q(T ) ∈ k[T ]
not divisible by any element in S. Thus we have the prime decomposi-
tion Q(T ) =

∏
v∈Σ|k(γ)

Pv(T )nv in k[T ], where there are only finitely many
v ∈ Σ|k(γ) with nv > 0. In particular,

UQ =
∏

v∈Σ|k(γ)
nv=0

k(γ)v ×
∏

v∈Σ|k(γ)
nv>0

(mv ∩ k(γ)v)nv

is an open subset in
∏
v∈Σ|k(γ)

k(γ)v endowed with the the product topology.
Note that fj(γe1,n , . . . , γeM,n) ∈ k[γ, γ−1] for each j ∈ {1, . . . , J} and n ∈ N.
The intersection of UQ with the image of k[γ, γ−1] in

∏
v∈Σ|k(γ)

k(γ)v is the
image of Q(γ)k[γ, γ−1], which is thus an open subset of k[γ, γ−1] containing
zero with respect to the subspace topology restricted from

∏
v∈Σ|k(γ)

k(γ)v.
Therefore, from the fact each sequence (fj(γe1,n , . . . , γeM,n))n≥1 converges
to zero in

∏
v∈Σ k(γ)v, it follows that there is an NQ ∈ N such that for

any n ≥ NQ we have that fj(γe1,n , . . . , γeM,n) ∈ Q(γ)k[γ, γ−1] for each
j ∈ {1, . . . , J}; thus by the isomorphism (3.1) we have that Q(T ) divides
fj(T e1,n , . . . , T eM,n), because 0 is not a zero of Q(T ). Therefore the as-
sumption of Proposition 3.11 is verified. Applying the isomorphism (3.1)
to the conclusion of Proposition 3.11, we see that there exists a sequence
{(e′1,n, . . . , e′M,n)}n∈N in AM (Z) indexed by an infinite subset N ⊂ N satis-
fying the following properties: for each n ∈ N we have fj(γe

′
1,n , . . . , γe

′
M,n) =

0 for all j ∈ {1, . . . , J}, and for every Q̃(T ) ∈ k[T ] not divisible by T ,
there is an Ñ

Q̃
∈ N such that for any n ∈ N with n ≥ Ñ

Q̃
we have that

γei,n − γe
′
i,n ∈ Q̃(γ)k[γ, γ−1] for all i ∈ {1, . . . ,M}. The first property says

that (γe
′
1,n , . . . , γe

′
M,n) ∈ W (Γ) for each n ∈ N . On the other hand, be-

cause the image of k[γ, γ−1] in
∏
v∈Σ|k(γ)

k(γ)v lies in
∏
v∈Σ|k(γ)

(Ov ∩k(γ)v),
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one may argue similarly as above that the topology on k[γ, γ−1], which is
induced from the usual product topology on

∏
v∈Σ k(γ)v, is generated by

those subset Q̃(γ)k[γ, γ−1] with Q̃(T ) ∈ k[T ] not divisible by any element
in the set S. Since S contains the polynomial T , the second property im-
plies that for each i ∈ {1, . . . ,M} the sequence (γei,n − γe

′
i,n)n∈N converges

to zero in
∏
v∈Σ k(γ)v; this shows that the two sequences (γei,n)n∈N and

(γe
′
i,n)n∈N converge to the same element in

∏
v∈Σ k(γ)v. Hence, for each

i ∈ {1, . . . ,M}, the sequence (γe
′
i,n)n∈N converges to xi in

∏
v∈Σ k(γ)v;

since xi ∈
∏
v∈Σ k(γ)∗v, it follows from what is explained above that the same

convergence also happens in
∏
v∈Σ k(γ)∗v. This shows that (x1, . . . , xM ) ∈

{(γe
′
1,n , . . . , γe

′
M,n)}n∈N ⊂W (Γ), which completes the proof. �

Proof of Theorem 1.10. Choose a free subgroup Φ ⊂ Γ such that Γ =⋃
τ∈Tor(Γ) τΦ. Let {(γ1,n, . . . , γM,n)}n≥1 be a sequence in AM (Γ) which con-

verges to a point (x1, . . . , xM ) ∈ W (Γ). For each i and n, choose τi,n ∈
Tor(Γ) such that γi,n ∈ τi,nΦ. Since Tor(Γ) is finite, by taking subsequence
we may assume that there is some (τ1, . . . , τM ) ∈ AM (Tor(Γ)) such that the
sequence {(γ1,n

τ1
, . . . ,

γM,n
τM

)}n≥1 lies in AM (Φ) and converges to (x1
τ1
, . . . , xMτM ),

which lies in the set

(τ−1
1 , . . . , τ−1

M )
(
W (Φ)

)
=
(
(τ−1

1 , . . . , τ−1
M )W

)
(Φ),

where the translation (τ−1
1 , . . . , τ−1

M )W of W =
⋂J
j=1Hfj by the tuple

(τ−1
1 , . . . , τ−1

M ) ∈ AM (Tor(Γ)) ⊂ AM (k∗)

is equal to the intersection
J⋂
j=1

(
(τ−1

1 , . . . , τ−1
M )Hfj

)
=

J⋂
j=1

Hgj ,

where for each j ∈ {1, . . . , J} we have that

gj(X1, . . . , XM ) = fj(τ1X1, . . . , τMXM )

= cj,0 +
M∑
i=1

cj,i(τiXi)dj ∈ k[X1, . . . , XM ]

with dj > 0. By Theorem 3.12, we have that(
(τ−1

1 , . . . , τ−1
M )W

)
(Φ) =

(
(τ−1

1 , . . . , τ−1
M )W

)
(Φ),

which shows that

(x1
τ1
, . . . ,

xM
τM

) ∈
(
(τ−1

1 , . . . , τ−1
M )W

)
(Φ) = (τ−1

1 , . . . , τ−1
M )

(
W (Φ)

)
.
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It follows that (x1, . . . , xM ) = (τ1 · x1
τ1
, . . . , τM · xMτM ) ∈ W (Φ) ⊂ W (Γ) as

desired. �
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