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Heights and representations of split tori

par Valerio TALAMANCA

Résumé. Soit Gd
m le tore déployé de dimension d, défini sur un

corps de nombres k. À chaque Gd
m-module E nous associons une

fonction hauteur hE définie en utilisant la hauteur spectrale sur
GL(E). Cela donne lieu à un accouplement de hauteur entre le mo-
noïde desGd

m-modules irréductible deGd
m et le groupeGd

m

(
k
)
. Nos

résultats principaux sont une caractérisation de ces Gd
m-modules

E pour lequel hE satisfait le théorème de finitude de Northcott,
la détermination des noyaux des accouplements de hauteur, ainsi
que, pour quelques classes de Gd

m-modules E, le calcul du groupe
des automorphismes qui préservent hE .

Abstract. Let Gd
m denote the d-dimensional split torus de-

fined over a number field k. To each Gd
m-module E we associate

a height function hE defined by means of the spectral height on
GL(E). This gives rise to a height pairing between the monoid of
irreducible Gd

m-modules of Gd
m and the group Gd

m

(
k
)
. Our main

results are a characterization of those Gd
m-modules E for which hE

satisfeis Northcott’s finiteness theorem, the determination of the
kernels of the height pairing, as well as, for a few special classes
of Gd

m-modules, of the group of automorphisms that preserve hE .

Introduction

Let A be an abelian variety defined over a number field k and Â be its
dual. Let k be a fixed algebraic closure of k. In [7] Néron constructed a
height pairing 〈 · , · 〉N between A

(
k
)
and Â

(
k
)
and used it to define height

functions attached to divisors on A. Moreover, by means of properties of
the height pairing, Néron established the quadraticity of height functions
associated to symmetric ample divisors.

The present work stems from the attempt to construct a height pairing
for algebraic tori. It extends and refines results obtained by the author in
his Ph. D. thesis ([11]) many years ago. In this paper we treat only the case
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of k-split tori, even though part of the construction can be carried over to
affine algebraic groups.

Let Gd
m denote the standard k-split torus. The role of Â is played by

Rep(Gd
m), the monoid of isomorphism classes of Gd

m-modules. The con-
struction of the height pairing is done by attaching to each Gd

m-module E
a height function hE which only depends on the isomorphism class of E.
We define hE as follows: let ρE : Gd

m → GL(E) denote the homomorphism
associated to the Gd

m-module E. We set hE := hs◦ρE where hs denotes the
spectral height on GL(E). For convenience of the reader we recall the defi-
nition and the main properties of the spectral height in Section 1; here we
just want to stress that the spectral height is invariant under conjugation,
and so hE only depends on the isomorphism class of E. We thus obtain
a height pairing between Rep(Gd

m) and Gd
m

(
k
)
, whose main properties are

listed in Proposition 1.4. In particular we explicitly determine the kernels
of the pairing. One main feature that is typically expected to be possessed
by a height function is the finiteness of the set of points of bounded height.
Clearly not all heights associated to Gd

m-modules can enjoy this property,
but in Theorem 1.3 we determine those who do. Let us go back for a mo-
ment to the abelian variety setting. Let L be a symmetric line bundle on
A. Consider the associated isogeny ϕL : A → Â, mapping a to t∗aL ⊗ L−1,
where ta is the translation by a map on A. Then one defines the height
pairing on A

(
k
)
associated to L by setting 〈a, b〉L := 〈a, ϕL(b)〉N . It was

proven in [12, Corollary of §2] that an endomorphism f : A→ A preserves
the height pairing 〈 · , · 〉L if and only if ϕL = f̂ ◦ ϕL ◦ f .

A possibile analogue in the case of k-split tori concerns the determination
of HE , the group of symmetries of hE , which is defined as:

HE :=
{
ϕ ∈ Aut(Gd

m)
∣∣∣hE(ϕ(g)) = hE(g),∀ g ∈ Gd

m(k)
}
.

Ideally one would like to pin down HE for every Gd
m-module E, but at the

present time this does not seem to be achievable. In this paper we com-
pute HE in a few basic examples. Firstly we determine HE for all E such
that ρE(Gd

m) is a maximal torus of GL(E). In particular we prove that
if E = kd endowed with the standard action of Gd

m as diagonal matrices
then HE is the group consisting of twisted permutation matrices, see Sec-
tion 2 for definitions. Next suppose ρE gives the standard realization of
Gd
m as maximal torus of diagonal matrices of one of the following classical

groups SLd+1, Sp2d, SO2d+1, and SO2d (cf. Section 3 for the definitions).
Let NGL(E)(ρE(Gd

m)) (respectively CGL(E)(ρE(Gd
m))) denote the normal-

izer (respectively the centralizer) of ρE(Gd
m) in GL(E). The Weyl group of

GL(E) relative to ρE(Gd
m)) is (cf. [5, 24.1])

W
(
ρE(Gd

m),GL(E)
)

= NGL(E)(ρE(Gd
m))/CGL(E)(ρE(Gd

m))
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and acts on ρE(Gd
m) by conjugation, and so leaves invariant the spectral

height. It follows that the pull back of the relative Weyl group to Aut(Gd
m)

is contained in HE . Set

WE =
{
ϕ ∈ Aut(Gd

m)
∣∣∣ϕ = ρ−1

E ◦ω◦ρE , for some ω ∈ W
(
ρE(Gd

m),GL(E)
)}

Our main result on symmetries can be stated as follows: (cf. Theorem 3.2
for the precise statement)

Theorem. Let E be one of the above Gd
m-modules. Then HE =WE.

As the referee pointed out, our hE is a special case of a height function
on toric varieties introduced by V. Malliot in [6] and later generalized by
J. I. Burgos Gil, P. Philippon, and M. Sombra in [3]. This is evident if one
compares our expression for hE given in formula (1.2), with the formula
computing Malliot’s height [6, Corollary 8.3.2]. Our approach is rather more
elementary than the sophisticated Arakelov geometry techniques employed
by Maillot and later by Burgos Gil, Philippon, and M. Sombra. Also the
questions addressed here are of a different nature than those taken up in [6]
and [3] as we are mostly interested in computing the group HE .

The paper is organized as follows: in Section 1, after recalling some facts
about the spectral height, we set up our notation about representations of
Gd
m and we prove a characterization of the Gd

m-modules whose associated
height satisfies Northcott’s property. The section is ended by the construc-
tion of the height pairing between Rep(Gd

m) andGd
m

(
k
)
. Sections 2 and 3 are

devoted to the computation of HE in the particular cases mention above.

Notations and conventions. Let k be a number field. We denote by
Mk the set of places of k. We normalize absolute values as follows: if
v is archimedean we require that | · |v restricted to Q is the standard
archimedean absolute value, while if v is a finite place, say v|p, then we
require that |p|v = p−1. Let kv be the completion of k with respect to | · |v.
We denote by nv the local degree, i.e. nv = [kv : Qp], and set dv = nv/d,
where d is the degree of k over Q. With this normalization the product
formula reads

∏
v∈M

k
|λ|nvv = 1.

1. Heights and representations

In this section we describe in detail the construction of the height asso-
ciated to a Gd

m-module and prove some basic results about it. Let us start
by recalling the definition of the Northcott–Weil height. Let k be an alge-
braic closure of k which we fix once and for all. The (absolute logarithmic)
Northcott–Weil height on kn, is defined by setting hNW (0, . . . , 0) = 0 and

hNW (x1, . . . , xn) =
∑
v∈M

l

dv log(max{|x1|v, . . . , |xn|v})
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where (0, . . . , 0) 6= (x1, . . . , xn) ∈ k
n and l ⊃ k is any number field con-

taining all the xi’s. Our normalization of absolute values implies that hNW
does not depend on the choice of the field l (see e.g. [10, Chapter VIII,
Proposition 5.4]). By the product formula it descends to a function, which
also is denoted by hNW , on Pn

(
k
)
.

Next we recall the definition of the spectral height of linear operators
on a k-vector space. Let E be a finite dimensional k-vector space. Given
T ∈ GL(E) and v ∈Mk we also denote by T , by an abuse of notation, the
linear transformation induced by T on Ev := E ⊗k kv. The v-adic spectral
radius of T is

ρv(T ) = sup
λ∈sp(T )

|λ|kv(λ) ,

where sp(T ) denotes the set of characteristic roots of T in an algebraic
closure of kv, and | · |kv(λ) is the unique extension of | · |v to kv(λ). The
(logarithmic) spectral height1 of T is defined as

hs(T ) =
∑
v∈M

k

dv log(ρv(T )) ,

for T not nilpotent. If T is nilpotent we set hs(T ) = 0. Let us recall the
properties of spectral height that we need in the following [13, Section 2]:

(S1) hs is invariant under field extensions.
(S2) hs(T ) ≥ 0.
(S3) hs(Tm) = mhs(T ).
(S4) If T and T ′ commute, then hs(TT ′) ≤ hs(T ) + hs(T ′).
(S5) hs is invariant under conjugation.
(S6) If F is a k-vector space and S ∈ GL(F ), then hs(T ⊗ S) = hs(T ) +

hs(S)
(S7) If λ ∈ k, then hs(λT ) = hs(T ).
(S8) Let sp(T ) = {λ1, . . . , λr}, set λ = (λ1, . . . , λr) ∈ k

r, then hs(T ) =
hNW (λ).

By a Gd
m-module we mean a pair (E, ρE), where E is finite dimensional

k-vector space and ρE : Gd
m −→ GL(E) is a homomorphism of algebraic

groups. We often drop ρE and use only E to denote a G-module.

Definition 1.1. Let (E, ρE) be a Gd
m-module. The (logarithmic) height

associated to (E, ρE) is the function hE : Gd
m

(
k
)
→ R, defined by setting

hE = hs◦ρE .

1The logarithmic spectral height can be regarded as the normalised or minimal height for
all reasonable (logarithmic) height functions on End(E) (i.e. twisted heights [8, Section 1] or
heights defined via adelic vector bundles [4, définition 2.1]). Namely let h be such a height.
Set hop(T ) = supe∈E{h(T (e)) − h(e)}. Then it can be proved that (see [13, Theorem A])
limm→∞

1
m
hop
E

(Tm) = hs(T ) for all T ∈ End(E). See also [2, Section 2.2]
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The following properties of hE follow from the corresponding ones of hs:
(h1) hE is invariant under field extension.
(h2) hE(g) ≥ 0.
(h3) hE(gm) = mhE(g).
(h4) hE(gg′) ≤ hE(g) + hE(g′).
(h5) hE = hF if E and F are isomorphic as Gd

m-modules
(h6) If F is another Gd

m-module, then hE⊗F (g) = hE(g) + hF (g)
The celebrated Northcott’s finiteness theorem (see [9, Section 2.4]) states

that the set{
P ∈ Pn

(
k
) ∣∣∣hNW (P ) ≤ B andP ∈ Pn(k0)with [k0 : k] ≤ C

}
is finite for every B,C > 0. We want to determine for which Gd

m-module
Northcott’s theorem holds. We start with the following:

Definition 1.2. We say that a Gd
m-module E satisfy property (N) if the

set

ΩE(Gd
m, B, C)

=
{
g ∈ Gd

m

(
k
) ∣∣∣hE(g) ≤ B and g ∈ Gd

m(k0) with [k0 : k] ≤ C
}

is finite for every B,C > 0.

By (h5) E satisfy property (N) if and only if every Gd
m-module iso-

morphic to E does. Before characterising which Gd
m-modules do satisfy

property (N) we need to recall a few facts about Rep(Gd
m), the monoid of

isomorphism classes of Gd
m-modules, and at the same time set our nota-

tion. There is a simple description of Rep(Gd
m): let Γd := Ĝd

m ' Zd denote
the group of characters of Gd

m, then Rep(Gd
m) is isomorphic to the group

semiring N[Γd]. The isomorphism is defined as follows: given a Gd
m-module

E we can always decompose it as a direct sum of subspaces on which Gd
m

acts by scalar multiplication via a character. Namely given χ ∈ Γd the set
Eχ := {e ∈ E | ρE(g)e = χ(g)e ∀ g ∈ Gd

m} is called the χ-isotypical compo-
nent of E. Clearly Eχ 6= 0 only for finitely many χ’s. Moreover, since Gd

m

is abelian, we have

(1.1) E '
⊕
χ∈Γd

Eχ .

In the above isomorphism [E] is mapped to fE :=
∑
χ∈Γd f

χ

Eχ, where
f
χ

E = dimk Eχ. It is then natural to say that E is isotypical if Eχ 6= 0
for exactly one χ ∈ Γd. Given f =

∑
χ∈Γd f

χ
χ ∈ N[Γd], set supp(f) =

{χ ∈ Γd | f
χ 6= 0} ⊂ Γd, then from (1.1) we get the following alternative
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description of hE :
(1.2) hE(g) =

∑
v∈M

k

dv max
χ∈supp(fE)

log(|χ(g)|v) .

The isomorphism class of G-modules associated to any given
f =

∑
χ∈Γd

f
χ
χ ∈ N[Γd]

is the one containing
(1.3) Ef :=

⊕
χ∈supp(f)

kfχ

where the action of Gd
m on the direct summand kfχ is given by scalar

multiplication by χ.
Note that the convolution product in N[Γd] corresponds to the operation

induced by the tensor product of Gd
m-modules, while the sum in N[Γd]

corresponds to the operation induced by the direct sum of Gd
m-modules.

Recall that there is a natural action of Γd on N[Γd], given by

fη =

∑
χ∈Γd

f
χ
χ

η =
∑
χ∈Γd

f
χ(ηχ) .

Given f ∈ N[Γd] we denote byOΓd(f) its orbit under Γd. It follows from (1.2)
and the product formula that (isomorphism classes of) Gd

m-modules in the
same orbit under Γd give rise to the same height function. We say that two
Gd
m-modules are in the same orbit under Γd if their isomorphism classes

are. Thus Gd
m-modules in the same orbit either all satisfy property (N) or

none does. A Gd
m-module (E, ρE) is said to have finite kernel if ρE does.

Theorem 1.3. Let E be a Gd
m-module. Then E satisfy property (N) if and

only if there exists f ∈ OΓd(fE) enjoying the following two properties:
(1) supp(f) contains the trivial character ε0
(2) Ef has finite kernel.

Proof. Suppose that f ∈ OΓd(fE) enjoys (1) and (2). Let {ε0, χ1, . . . , χn} =
supp(f). Then the map Gd

m

(
k
)
→ Pn

(
k
)
, given by g 7→ [1 : χ1(g) : · · · :

χn(g)] has finite fibers and it maps the set ΩEf ′ (G
d
m, B,C) to

{P ∈ Pn
(
k
)
| hNW (P ) ≤ B and [k(P ) : k] ≤ C} .

By Northcott’s theorem the latter set is finite, and hence Ef satisfies prop-
erty (N), which implies that E also does. Next we prove that if every Gd

m-
module in OΓd(fE) does not enjoy one between (1) and (2) then Ef does
not satisfy property (N). Let {χ1, . . . , χn} = supp(fE). Note that at least
one of the χi is not the trivial character, otherwise we are done. We can
assume without loss of generality that χ1 6= ε0. Let η = (χ1)−1 and set
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F = Efη , so fF = fη. Since ε0 ∈ supp(fF ), the kernel of ρF has to be an
infinite subgroup, otherwise fF would satisfy both (1) and (2). Hence there
exists a non-torsion g ∈ Gd

m(k) belonging to the kernel ρF . This amounts
to say that χi(gm) = χ1(gm) for i = 2, . . . , n and for all m ≥ 1, which in
turn yields hE(gm) = 0 for all m ≥ 1. But gm 6= gn if n 6= m and hence E
does not satisfy property (N). �

We can finally define the height pairing, between Rep(Gd
m) and Gd

m

(
k
)

by setting:

〈 · , · 〉h : Rep(Gd
m)×Gd

m

(
k
)
−→ R+(

[E] , g
)

7−→ hE(g)

where R+ = {x ∈ R | x ≥ 0} is also regarded as monoid under addiction.
Before proving a few properties of the height pairing we need one more

notation. Given ϕ ∈ Aut(Gd
m) we denote by ϕ̂ the automorphism induced

by ϕ on both Γd and N[Γd], the first one being defined by ϕ̂(χ) = χ◦ϕ, the
latter by ϕ̂

(∑
χ∈Γd f

χ
χ
)

=
∑
χ∈Γd f

χ
ϕ̂(χ). The identification of Rep(Gd

m)
with N[Γd] yields an automorphism ϕ̂ : Rep(Gd

m) → Rep(Gd
m). On the

other hand if ϕ ∈ Aut(Gd
m), then Eϕ, the twist of E by ϕ, is defined by

setting ρEϕ = ρE◦ϕ. It is straightforward to verify that [Eϕ] = ϕ̂([E]).

Proposition 1.4. The height pairing enjoys the following properties:
(1) 〈[E ⊗ F ], g〉h = 〈[E], [g]〉h + 〈[F ], g〉h.
(2) 〈[E], gm〉h = m〈[E], g〉h.
(3) 〈[E], gg′〉h ≤ 〈[E], g〉h + 〈[E], g′〉h.
(4) 〈[E], ϕ(g)〉h = 〈ϕ̂([E]), g〉h.
(5) The kernel on the left is the submonoid of isomorphism classes of

isotypical Gd
m-modules.

(6) The kernel on the right is the Tors(Gd
m) the torsion subgroup of

Gd
m

(
k
)
.

Proof. (1), (2), and (3) follow directly from (h6), (h3), and (h4) respectively.
(4) is a straightforward computation. By (1.2) and the product formula, the
height associated to an isotypical Gd

m-module is trivial. On the other hand
if E is not isotypical, then using formula (1.2) it is immediate to verify that
hE is not trivial, proving (5). To prove (6) we first note that (h3) implies
that the torsion subgroups of Gd

m

(
k
)
lies in the right kernel. On the other

hand, if g is not torsion, then there exists a character χ such that χ(g)
is not a root of unity. Let [E] be the isomorphism class of Gd

m-modules
corresponding to f = χ+ ε0 ∈ N[Γd], then hE(g) 6= 0. �
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Remark 1.5. If in our construction of the height pairing we had used

h+
s =

∑
v∈M

k

dv log+(ρv(T ))

where log+(x) = max{log(x), 0} instead of hs, then the resulting height
pairing would have been a non-degenerate pairing between Rep(Gd

m) and
Gd
m

(
k
)
/Tors(Gd

m) (cf. [2, Section 2.2]).

2. Symmetries for Gdm as maximal torus of GLd
We now undertake the study of the group of symmetries for heights

associated to Gd
m-modules. After a few general remarks we concentrate, in

this and the following section, on specific examples.
We start by fixing our notations and conventions about endomorphism

of Gd
m. Given A = (aij) ∈ Matd(Z) let ϕA be the endomorphism of Gd

m

defined by:
ϕA(g) = (ga11

1 . . . ga1d
d , . . . , gad1

1 . . . gaddd ) ,
where g = (g1, . . . , gd) ∈ Gd

m. The assignment A 7→ ϕA gives rise to an
isomorphism of Matd(Z) into End(Gd

m) allowing us to identify GLd(Z) with
Aut(Gd

m) the full group of (algebraic) automorphisms of Gd
m.

Regarding characters we use the following conventions: ε1, . . . , εd always
denote the standard basis for Γd. For χ =

∏d
i=1 ε

mi
i , we set `(χ) :=

∑n
i=1mi.

Note that if we identify Ĝd
m with Zd by means of the standard basis of

characters, then the matrix associated to ϕ̂A := (̂ϕA) is tA, the transpose
of A.

Let E be a Gd
m-module, recall that the group of symmetries of hE is

HE =
{
ϕ ∈ Aut(Gd

m)
∣∣∣hE(ϕ(g)) = hE(g), ∀ g ∈ Gd

m(k)
}
.

Clearly HE depends only on the isomorphism class [E] of E.

Lemma 2.1. Let E be Gd
m-module and ψ ∈ Aut(Gd

m). Then

HEψ = ψ−1HEψ .

Proof. Let ϕ belong to HE , then

hEψ(ψ−1◦ϕ◦ψ)(g) = hE (ϕ (ψ(g))) = hE (ψ(g)) = hEψ(g)

and so HEψ ⊃ ψ−1HEψ. Conversely if η ∈ HEψ , set ϕ = ψ ◦ η ◦ ψ−1, then

hE(ϕ(g)) = hE(ψ(η(ψ−1(g)))) = hEψ(η(ψ−1(g)))
= hEψ(ψ−1(g)) = hE(ψ(ψ−1(g))) = hE(g) .

Therefore ϕ belongs to HE , and the lemma follows. �
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Let e=
∑n
i=1 εi ∈ Z[Γd]. For ease of notation set he := hEe , He :=

HEe , and ρe := ρEe . As mentioned before, ρe gives the standard realiza-
tion of Gd

m as diagonal matrices of GLd. As in the introduction we let
W
(
ρe(Gd

m),GL(Ee)
)
denote the Weyl group of GLd relative to ρe(Gd

m) and
we set
We =

{
ϕ ∈ Aut(Gd

m)
∣∣∣ϕ = ρ−1

e ◦ω◦ρe , for some ω ∈ W
(
ρe(Gd

m),GL(E)
)}

The main result of this section is the explicit determination of He. Since
the spectral height is invariant under scalar multiplication we have that
he is invariant under the action of Gm

(
k
)
on Gd

m

(
k
)
by diagonal multipli-

cation2. Using this action we can define an action of Ĝd
m on End(Gd

m) as
follows: given a character χ and endomorphism ϕ we let ϕχ be the endo-
morphism of Gd

m given by ϕχ(g) = χ(g)ϕ(g); ϕχ is called the twist of ϕ by
χ. Suppose that χ =

∏d
i=1 ε

mi
i . Let Jχ be the matrix whose rows are all

equal to (m1, . . . ,md), it is straightforward to verify that (ϕA)χ = ϕ(Jχ+A).
Unfortunately this implies that the above action does not restrict to an
action on Aut(Gd

m). The next lemma gives a criterion for detecting when
(ϕA)χ is an automorphism. Before stating it we need the following defi-
nition. Let 〈 · , · 〉 denote the standard pairing that Ĝd

m inherits under its
identification with Zd, (i.e. 〈

∏d
i=1 ε

mi
i ,

∏d
i=1 ε

ni
i 〉 =

∑d
i=1mini).

Lemma 2.2. Let χ be a character of Gd
m and ϕA ∈ Aut(Gd

m). Then (ϕA)χ
belongs to Aut(Gd

m) if and only if 〈χ, ϕ̂−1
A (
∏d
i=1 εi)〉 ∈ {0,−2}.

Proof. We start by noting that det(A + Jχ) = det(tA + tJχ). Therefore it
suffices to prove that det(tA + tJχ) = ±1 if and only if 〈χ, ϕ̂−1

A (
∏d
i=1 εi)〉

equals 0 or −2. Next note that tJχ can be viewed as the product of the
m×1 matrix t(1, . . . , 1) with the 1×mmatrix (m1, . . . ,md). Using Sylvester
determinant identity

(
det(I +BC) = det(I + CB)

)
we find that

det(tA+ t(1, . . . , 1)(m1, . . . ,md)) = 1 + (m1, . . . ,md)(tA)−1 t(1, . . . , 1)) .
But (

m1, . . . ,md)(tA)−1 t(1, . . . , 1)
)

=
〈
χ, ϕ̂−1

A

(
d∏
i=1

εi

)〉
,

proving the lemma. �

Let Sd denote the group of permutations on d elements. Let Aσ be the
permutation matrix associated to σ ∈ Sd, we set ϕσ := ϕAσ ∈ Aut(Gd

m), so
ϕσ(g1, . . . , gd) = (gσ−1(1), . . . , gσ−1(d)). We set

Pd :=
{
ϕσ ∈ Aut(Gd

m)
∣∣∣σ ∈ Sd}

2Which we recall is defined by setting λg = (λg1, . . . , λgd) for λ ∈ Gm
(
k
)

and g =
(g1, . . . , gd) ∈ Gdm

(
k
)
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and
P̃d :=

{
ϕχσ ∈ Aut(Gd

m)
∣∣∣ϕσ ∈ Pd and χ ∈ Γd

}
.

Since W
(
ρe(Gd

m),GL(Ee)
)
acts on ρe(Gd

m) by permutations, it follows that
We = Pd. Note that given ϕσ ∈ Pd and χ =

∏d
i=1 ε

mi
i , we have:〈

χ, ϕ̂−1
σ

(
d∏
i=1

εi

)〉
= `(χ) .

Therefore by Lemma 2.2, ϕχσ belongs to GLd(Z), and hence to P̃d, if and
only if `(χ) = 0 or −2.

Lemma 2.3. P̃d is a subgroup of Aut(Gd
m).

Proof. Let ψ1 = ϕχ1
σ1 and ψ2 = ϕχ2

σ2 . Since ϕσ1 and ϕσ2 are just permutations
of the coordinates we have

(ψ1 ◦ ψ2)(g) = χ2(g)`(χ1)+1ϕ̂2(χ1)(g)(ϕ1(ϕ2(g)) ,

and
`(ϕ̂2(χ1)) = `(χ1) .

Now we have two cases:
(a) `(χ1) = −2,
(b) `(χ1) = 0.
(a). We have (ψ1 ◦ ψ2)(g) = η(g)(ϕ1(ϕ2(g)), where η = χ−1

2 ϕ̂2(χ1) and

`(η) = −`(χ2) + `(ϕ̂2(χ1)) = −`(χ2)− 2 ∈ {0,−2} .

(b). We have (ψ1 ◦ ψ2)(g) = η(g)(ϕ1(ϕ2(g)), where η = χ2ϕ̂2(χ1) and
`(η) = `(χ2). Thus (ψ1 ◦ψ2) ∈ P̃d. Furthermore the inverse of ψ = ϕχσ ∈ P̃d
is ϕησ−1 , where

η =
{
ϕ̂σ−1(χ) if `(χ) = −2(
ϕ̂σ−1(χ)

)−1 if `(χ) = 0

and so ψ−1 ∈ P̃d, completing the proof of the lemma. �

The following notation will be used throughout the rest of the paper.
Given a character χ we let Gd

m[χ] denote the kernel of χ. Furthermore
we set

(Gd
m)j :=

d⋂
i=1
i 6=j

Gd
m[εi] .
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Proposition 2.4. He = P̃d.

Proof. We assume that d > 2, for the case d = 1 is trivial and the case
d = 2 can be dealt by computations similar, but simpler, to the one we
carry out below. It is straightforward to check that He ⊃ P̃d. Next suppose
that ϕA belongs to He, where A = (aij). Set

Tj = min
1≤i≤n

aij and Rj = max
1≤i≤n

aij .

Suppose g ∈ (Gd
m)j , Then he(g) = hNW

(
1, εj(g)

)
. Thus

hNW
(
1, εj(g)

)
= he(g) = he

(
ϕA(g)

)
= hNW

(
1, εj(g)Rj−Tj

)
,

yielding Rj − Tj = 1. Suppose that ahj = Rj and Rk = ahk with k 6= j.
Let g1 ∈ (Gd

m)j and g2 ∈ (Gd
m)k, and set g = g1g2. Then he

(
ϕA(g)

)
≥

hNW (1, εj(g)εh(g)), which for appropriate choice of g1 and g2 is strictly
bigger than he(g) = hNW (1, εj(g), εk(g)). Thus it cannot happen ahj = Rj
and Rk = ahk with k 6= j, hence for each j there exists a unique hj ∈
{1, . . . , n} such that ahjj = Rj . Let σ denote the permutation j 7→ hj .
Then ϕA is the twist of ϕσ by χ =

∏d
i=1 β

Tj
j . �

As a consequence of Proposition 2.4 we have that He contains prop-
erly We.

Corollary 2.5. Let E be Gd
m-module such that ρE(Gd

m) is a maximal torus
of GL(E). Then HE and P̃d are conjugate subgroups.

Proof. Since ρE(Gd
m) is a maximal torus of GL(E) then [E] = χ1 + · · ·+χd

and χ1, . . . , χd generate Γd by [1, Theorem 3.2.19]. Therefore there exists
ϕ ∈ Aut(Gd

m) such that χi = εi◦ϕ, for all i = 1, . . . , d . It follows that
[E] = [eϕ] and the corollary follows from Lemma 2.1 and the fact that the
group of symmetries of hE depends only on [E]. �

3. Symmetries for Gdm-module of classical type

In this section we consider the realizations of Gd
m as the maximal torus of

some classical groups and determine their group of symmetries. We briefly
recall that the definiton of the groups under consideration, the reader is
advised to consult [5] for details. The special linear group SLd+1(k) consists
of the matrices of determinant 1 in GLd+1(k). The symplectic group Sp2d(k),
consists of all A ∈ GL2d(k) such that

tA

(
0 J
−J 0

)
A =

(
0 J
−J 0

)
where J =

 1
...

1

.
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Next we want to define the orthogonal groups SO2d+1(k) and SO2d(k), to
do this we need two additional matrices:

S2d+1 =

1 0 0
0 0 J
0 J 0

 and S2d =
(

0 J
J 0

)
.

Then:
SO2d+1(k)=

{
A ∈ SL2d+1(k)

∣∣∣ tAS2d+1A = S2d+1
}
,

and
SO2d(k)=

{
A ∈ SL2d(k)

∣∣∣ tAS2dA = S2d
}
.

In Tables 3.1 and 3.2 we list the Gd
m-modules that we are going to inves-

tigate. In the first column of each table we list the Gd
m-module in question,

then in Table 3.1 we list the vector space underlying the Gd
m-module, the

element of Z[Γd] corresponding to the Gd
m-module and the classical group of

which ρE(Gd
m) is a maximal torus. In the second table we list the action and

theWeyl groupW
(
ρE(Gd

m),GL(E)
)

= NGL(E)(ρE(Gd
m))/CGL(E)(ρE(Gd

m)).

Table 3.1.

Gd
m-module u.v. Z[Γd] Classical group
Ea kd+1 a=ε1+···+εd+(ε1...εd)−1 SLd+1(k)
Eb k2d+1 b=ε0+ε1+···+εd+ε−1

1 +···+ε−1
d

SO2d+1(k)
Ec k2d c=ε1+...εd+ε−1

1 +...ε−1
d

Sp2d(k)
Ed k2d d=ε1+...εd+ε−1

1 +···+ε−1
d

SO2d(k)

Table 3.2.

Gd
m-module Action Weyl Group
Ea g.x=(g1x1,...,gdxd,(g1...gd)−1xd+1) Sd+1

Eb g.x=(x1,g1x2,...,gdxd+1,g
−1
1 xd+2...g

−1
d
x2d+1) (Z/2Z)d o Sd

Ec g.x=(g1x1,...,gdxd,g
−1
1 xd+1,...g

−1
d
x2d) (Z/2Z)d o Sd

Ed g.x=(g1x1,...,gdxd,g
−1
1 xd+1,...g

−1
d
x2d) (Z/2Z)d o Sd

Definition 3.1. If E is a Gd
m-module such that [E] is one of the isomor-

phism class of Table 1, we then say that E is of cmt-type. If E is of cmt-type,
we then set
WE =

{
ϕ∈Aut(Gd

m)
∣∣∣ϕ= ρ−1

E ◦ ω ◦ ρE , for some ω ∈W(ρE(Gd
m),GL(E))

}
.

Theorem 3.2. Let E be of cmt-type. Then HE =WE.
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The rest of this section is devoted to the proof of Theorem 3.2. Since
both HE and WE actually depend only on the isomorphism class E, it
suffices to prove Theorem 3.2 for the Gd

m-modules listed in Table 3.1.

3.1. Special linear group. Let Ea denote the Gd
m-module associated to

a and set ha := hEa , Wa := WEa , Ha := HEa and ρa := ρEa . The height
ha is given by:

(3.1)

ha(g) = hNW
(
ε1(g), . . . , εd(g), (ε1(g) . . . εd(g))−1

)
= hNW (ε1(g)

d∏
j=1

εj(g), . . . , εd(g)
d∏
j=1

εj(g), 1) .

We start by giving an explicit description of Wa. Firstly we ecall that
W
(
ρa(Gd

m),GLd+1
)
' Sd+1. Next the elements ofW

(
ρa(Gd

m),GLd+1
)
come

in two guises: those who leave the last coordinate fixed and those who do
not.

Those who leave the last coordinate fixed correspond to permutations
of the coordinates on Gd

m. Of those who do not fix the last coordinate it
is enough to consider, in order to generate Sd+1, the transpositions of the
form (`, d+ 1). We denote by γ` ∈ Wa the automorphism corresponding to
the transposition (`, d+ 1), its action on Gd

m is given by:

(g1, . . . , gd)
γ`7−→ (g1, . . . , g`−1, (g1 . . . gd)−1, g`+1, . . . , gd) .

ThusWa is the subgroup of Aut(Gd
m) generated by Pd and the γ`’s. In order

to be able to prove that actually Ha = Wa we need the following explicit
characterization for the elements of Wa ⊂ Aut(Gd

m).

Lemma 3.3. Let A = (aij) ∈ GLd(Z). Then ϕA ∈ Wa if and only if A
satisfies one of the following conditions:

(1) A is a permutation matrix
(2) There exist h, k ∈ {1, . . . , d} such that the following conditions hold

(a) ahj = −1 for all j = 1, . . . , d .
(b) aik = 0 for all i = 1, . . . , d, i 6= h.
(c) If we delete the h-th row and the k-th column the (d−1)×(d−1)

the resulting matrix is a permutation matrix.

Proof. A straightforward computation shows that the set of matrices sat-
isfying either (1) or (2) forms a group. Moreover let C = (cij), where

cij =


1 if i 6= d and j = i

−1 if i = d

0 otherwise.

then γ` = ϕC and so every γ` satisfies condition (2). Thus every element
of Wa satisfies either (1) or (2). It remains to show that any ϕA, with A
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satisfying either (1) or (2) belongs to Wa. We only have to worry about
the matrices that satisfy (2). Suppose we have an automorphism ϕA with
A = (aij) satisfying condition (2) for h, k ∈ {1, . . . , d}. Let B = (bij) be
the matrix obtained by replacing the k-th column of A with the column
(0, . . . , 0, 1, 0, . . . , 0) the 1 occurring at the h-th spot. Then ϕB belongs to
Pd, and γhϕB = ϕA, yielding ϕA ∈ Wa. �

Lemma 3.4. Ha =Wa.

Proof. Since Ha ⊇ Wa we only have to show that if ϕA ∈ Ha, with A =
(aij), the A satisfies either (1) or (2) of the previous lemma. Set sj =∑d
i=1 aij and mj = −min{a1j , . . . , adj ,−sj} > 0. If g ∈ (Gd

m)j , then

ha (ϕA(g)) = hNW
(
εj(g)a1j , . . . , εj(g)adj , εk(g)−sk

)
.

Therefore

(3.2)
2hNW (1, εj(g)) = ha(g) = ha

(
ϕA(g)

)
= hNW (εj(g)a1k+mj , . . . , εj(g)adj+mj , εj(g)−sj+mj ) .

On the other hand either aij +mj = 0 for some i or −sj +mj = 0, which,
when put together with (3.2), gives 0 ≤ aij+mj ≤ 2 and 0 ≤ −sj+mj ≤ 2.
Combining these inequalities with the definition of sj yields:

−1 ≤ sj ≤ 1 ∀ j = 1, . . . , d ,
mj = 1 ∀ j = 1, . . . , d ,

−1 ≤ aij ≤ 1 ∀ i, j = 1, . . . , d .

In particular if aik ≥ 0 for all i = 1, . . . , d then there exists ik such that
aik = δiki where δ is the Kronecker’s delta. Now choose g ∈ Gd

m so that
εi(g) is a positive integer for i = 1, . . . , d. Then

(3.3) ha(g) = log

max
1≤i≤n

εi(g)
d∏
j=1

εj(g)}




and

(3.4) ha
(
ϕA(g)

)
=hNW

 d∏
j=1

εj(g)a1j+1, . . . ,
d∏
j=1

εj(g)adj+1,
d∏
j=1

εj(g)−sj+1

.
For each k we can choose a suitable gk ∈ Gd

m in such a way that

(3.5) max
1≤i≤d

εi(gk)
d∏
j=1

εj(gk)

 = ε1(gk) . . . εk(gk)2 . . . εd(gk) .
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Set ad+1j = −sj . It follows from (3.3), (3.4) and (3.5) that for each k ∈{
1, . . . , d

}
it must exist ik ∈ {1, . . . , d+ 1} such that

(3.6)
d∏
j=1

εj(gk)aikj+1 = ε1(gk) . . . εk(gk)2 . . . εd(gk) .

But then (3.6) implies that aikj = 1 if j = k and is otherwise zero. A
being invertible implies that ik 6= i` for h 6= k. Therefore there exists only
one h ∈ {1, . . . , n + 1} such that h 6= ik for all k = 1, . . . , d . It follows
that ahj = −1 for all j = 1, . . . , d . If h = d + 1 then A consists only of
non-negative elements and as we already remarked this implies that A is
a permutation matrix. If h ≤ n, then there exists k ∈

{
1, . . . , d

}
such that

ik = d + 1. Then aik = 0 for i < d + 1. Deleting the h-th row and k-th
column from A we get a permutation matrix proving that ϕA ∈ Wa. �

3.2. Symplectic and Orthogonal Groups. Let Ec denote the Gd
m-

module associated to c and set hc := hEc , Wc := WEc , Hc := HEc and
ρc := ρEc

Since ρc embeds Gd
m as the subgroup of diagonal matrices of Sp2d, we

have that

hc(g) = hNW (ε1(g), . . . , εd(g), ε−1
1 (g), . . . , ε−1

d (g)) .

Also in this case the relative Weyl group W
(
ρc(Gd

m(k)),GL2d(k)
)
is equal

to the Weyl group of Sp2d and thus is isomorphic to (Z/2Z)d o Sd (with
Sd acting on (Z/2Z)d by permutations). The action of (Z/2Z)d o Sd on
ρc(Gd

m(k)) is as follows:

((b1, . . . , bd), σ).
(
t1, . . . , td, t

−1
1 , . . . , t−1

d

)
=
(
tb1
σ−1(1), . . . , t

bd
σ−1(d), t

−b1
σ−1(1), . . . , t

−bd
σ−1(d)

)
.

Therefore, if we denote by S±d the subgroup of GL(d,Z) formed by the
monomial matrices with entries ±1, it follows that

Wc =
{
ϕA ∈ Aut(Gd

m)
∣∣∣A ∈ {S±d },

and Wc ⊂ Hc.

Lemma 3.5. Hc =Wc,

Proof. Suppose that ϕA ∈ Hc, with A = (aij) ∈ GLd(Z). Let g ∈ (Gd
m)k.

As before we have hc(g) = 2hNW (1, εk(g)), and so

2hNW (1, εk(g)) = hc
(
ϕA(g)

)
= hNW (εk(g)a1k , . . . , εk(g)adk , εk(g)−a1k , . . . , εk(g)−adk) .
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which immediately yields aij ∈ {1, 0,−1} for i, j = 1, . . . , d . It remains
to prove that α = (aij) is a monomial matrix. Suppose that aik 6= 0 and
aih 6= 0 for k 6= h. By symmetry we reduce to examine the following two
cases:

(a) aik = 1 and aih = 1,
(b) aik = 1 and aih = −1.
(a). Chose g ∈ Gd

m such that εi(g) = 1 if i 6= h, k and εh(g) = εk(g) = λ
a positive integer. Then hc(g) = 2hNW (1, εk(g)). On the other hand the
usual computation shows that hc

(
ϕA(g)

)
is equal to

hNW (λa1k+a1h , . . . , λ2, . . . λadk+adk , λ−a1k−a1h , . . . , λ−2, . . . λ−adk−adk).

Since −2 ≤ ajk +ajh ≤ 2 we find hc
(
ϕA(g)

)
= λ4, which is a contradiction.

(b). Select g ∈ Gd
m such that εi(g) = 1 if i 6= h, k and εh(g) = εk(g)−1 = λ

is a positive integer. The same computation done in (a) yields a contradic-
tion, completing the proof of the theorem. �

The proof of the similar result for the orthogonal groups is identical to
that of Lemma 3.5, thus the proof of Theorem 3.2 is completed.
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