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Ramified extensions of degree p and their
Hopf–Galois module structure

par G. Griffith ELDER

Résumé. Les extensions cycliques ramifiées L/K de degré p
d’un corps local dont la caractéristique résiduelle est p sont plu-
tôt bien comprises. Elles sont définies par une équation d’Artin–
Schreier sauf lorsque char(K) = 0 et L = K( p

√
πK) pour une

certaine uniformisante πK ∈ K. De plus, depuis les travaux de
Bertrandias–Ferton (char(K) = 0) puis Aiba (char(K) = p),
plusieurs résultats sont connus sur la structure galoisienne des
idéaux de telles extensions: on sait par exemple décrire la struc-
ture de chaque idéal Pn

L comme module sur son ordre associé
AK[G](n) = {x ∈ K[G] : xPn

L ⊆ Pn
L}, où G = Gal(L/K). Le but

de cet article est d’étendre ces résultats aux extensions séparables
et ramifiées de degré p qui ne sont pas galoisiennes.

Abstract. Cyclic, ramified extensions L/K of degree p of local
fields with residue characteristic p are fairly well understood. They
are defined by an Artin–Schreier equation, unless char(K) = 0
and L = K( p

√
πK) for some prime element πK ∈ K. Moreover,

through the work of Bertrandias–Ferton (char(K) = 0) and Aiba
(char(K) = p), much is known about the Galois module structure
of the ideals in such extensions: the structure of each ideal Pn

L

as a module over its associated order AK[G](n) = {x ∈ K[G] :
xPn

L ⊆ Pn
L} where G = Gal(L/K). The purpose of this paper is

to extend these results to separable, ramified extensions of degree
p that are not Galois.

1. Introduction
LetK be a local field with valuation vK normalized so that vK(K×) = Z,

and with finite residue field κ of characteristic p > 0. This means that either
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K is a finite extension of the field of p-adic numbers Qp, or K is the field of
Laurent series κ((X)) with X indeterminate. We are interested in ramified
extensions L of degree p over K. Some of these extensions are generated
by a root of a prime element πK ∈ K, namely, L = K(x) with xp = πK .
We call them atypical: If char(K) = p, these are the inseparable totally
ramified extensions. If char(K) = 0 and K contains the pth roots of unity,
these are precisely the degree p Galois extensions whose ramification break
is divisible by p. In this paper, we are interested in the other extensions,
which we call typical: the separable and totally ramified degree p extensions
that cannot be generated by a root of a prime element. Such extensions
include ramified Artin–Schreier extensions, for which a certain uniformity
of approach to Galois module structure, based upon the particularly simple
defining equation, is available. It is this uniformity of approach, based upon
a similar defining equation, that we extend to all typical extensions.

As is well-known, when a typical extension L/K is Galois, it can be
defined by an Artin–Schreier polynomial

(1.1) p(x) = xp − x− β ∈ K[x].

The ramification break b satisfies p - b where vK(β) = −b. Recall that a
ramification break in a Galois extension (variously, also a ramification jump
or ramification number) is an integer i ≥ −1 such that Gi 6= Gi+1 where
Gi = {σ ∈ Gal(L/K) : vL((σ − 1)πL) ≥ i+ 1} is the ramification filtration
of the Galois group [23, Chapter IV]. Our first result, which appears in §2,
proves that every typical extension can be defined by a polynomial of the
form

(1.2) p(x) = xp − αx− β ∈ K[x].

Here again, the ramification break for L/K (defined appropriately) is linked
in a transparent manner to the coefficients. The result is proven by adjust-
ing the argument of [21] for Galois typical extensions, as presented in [12,
Chapter III §2]. Of course, these extensions may also be defined in terms of
Eisenstein polynomials, as in [2]. The value in using equation (1.2) is that
in addition to a transparent description of ramification, other properties
that include Galois module structure can be easily described. In the setting
of global function fields, equation (1.2) is used to determine the Hasse–Witt
invariant [25, 20].

In §3, we turn to Galois module structure, or rather what, for a gen-
eral typical extension, must be called Hopf–Galois module structure. In its
classical setting, when L/K is Galois with G = Gal(L/K), the search is
for an integral version of the Normal Basis Theorem. Based upon results
of Noether and Leopoldt, the quest is for those conditions under which the
ring of integers OL = {x ∈ L : vL(x) ≥ 0} in L is free over its associated
order AK[G] = {y ∈ K[G] : yOL ⊆ OL} in K[G], the largest OK-order in
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K[G] that acts on OL. For general extensions, this and variations of this
question present very difficult problems, and progress, starting in the 1970s,
has been slow.

On the other hand, for one specific class of extensions, cyclic of degree
p, progress has been good [1, 4, 11, 15, 22, 24]. One explanation for the
progress with cyclic ramified extensions of degree p is that these extensions,
unless they are generated by a root of a prime element, naturally possess
a scaffold. This is discussed in [6, Example 2.8]. Since the definition of a
scaffold as presented in [6, §2] is a challenge to quickly digest, we point out
(and explain in §3.2) that a very simple sufficiency condition is available
for extensions of degree p: If there is an element x ∈ L with p - vL(x) and
an element Ψ ∈ K[G] that “acts like” the derivative d/dx on the K-basis
{xi}p−1

i=0 for L over K, there is a scaffold. As we shall see, “acts like” is exact
if char(K) = p, namely Ψ · xi = ixi−1 for 0 ≤ i < p. If char(K) = 0, it is
approximate:

Ψ · xi ≡ ixi−1 mod xi−1Pc
L ,

where PL = {x ∈ L : vL(x) > 0} is the prime ideal and the degree of
approximation is captured by the integer c ≥ 1, the precision of the scaffold.
The shift parameter for this scaffold is −vL(x).

As explained in [6, Example 2.8], a cyclic typical extension L/K possesses
a scaffold of precision

c =
{
∞ if char(K) = p,

vL(p)− (p− 1)b if char(K) = 0,

where the ramification break b of the extension is the shift parameter for
the scaffold. Thus, without further restriction if char(K) = p, but assuming
vL(p) > (p− 1)(b+ 2) if char(K) = 0, we are able to conclude, as explained
in [6, Example 3.3], that letting 0 ≤ b̄ < p be the least nonnegative residue
of b mod p,

OL is free over its associated order if and only if b̄ | p− 1.

This statement follows from [6, Theorem 3.1]. If char(K) = 0, it is due
to [4]. If char(K) = p, it follows from [1].

The purpose of this paper is to extend this classical result (and others
in [11, 15, 22, 24]) that were proven for cyclic typical extensions to all
typical extensions L/K. This is accomplished by first using [7, §2] to identify
the unique K-Hopf algebra H that acts upon L (making L an H-Galois
extension). This Hopf algebra has one generator. We then proceed further
than [7] by explicitly describing the action of this generator on the K-
basis {xi}p−1

i=0 for L with x satisfying (1.2). This generator “acts like” the
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derivative d/dx, which means that we have a H-scaffold on L with a certain
precision and shift parameter. Since a scaffold exists, we can apply the main
results of [6, Theorems 3.1 and 3.6]. In particular, a similar statement with
the associated order of OL in H defined as {y ∈ H : yOL ⊆ OL} holds.
Other structural results hold as well. These are discussed briefly in §3.2.

1.1. Summary of notation. Let p be a prime. The field K is either a
finite extension of the field of p-adic numbers (if char(K) = 0), or a field
of Laurent series (if char(K) = p). Following common conventions, we use
subscripts to denote field of reference. So vK is the valuation normalized
so that vK(K×) = Z, πK is a prime element in K (with vK(πK) = 1),
OK = {x ∈ K : vL(x) ≥ 0} is the ring of integers in K. It has a unique
maximal ideal PK = {x ∈ L : vK(x) ≥ 1}, and a finite residue field
κ = OK/PK . An extension L/K is said to be typical if L is a ramified
extension of K of degree p that is not generated by a pth root of a prime
element πK . As is well-known, Galois typical extensions are Artin–Schreier.

2. Typical extensions & their ramification break
The definition of ramification break for a separable, non-Galois exten-

sion appears in [23, Chapter IV §3 Remark 2], and is developed more fully
in [14]. Ramification breaks occur as the first coordinates of the vertices of
the Herbrand function, an increasing, continuous, piecewise linear function
that maps the real halfline [−1,∞) into itself (see graphs [3, p. 116–117]).
For a typical extension L/K with Galois closure M , the Herbrand func-
tion is defined to be ϕL/K = ϕM/K ◦ ψM/L, where the Herbrand functions
ϕM/K , ϕM/L for the two Galois extensions, M/K and M/L, are defined as
usual, and ψM/L is the inverse of ϕM/L. See [23, Chapter IV §3 Remark 2],
or [14, §1 Proposition 2].

Remark 2.1 (Caution). When comparing the value of the ramification
break in Theorem 2.2 with statements elsewhere in the literature, it is
important to recognize that there are two different conventions regarding
the graphing of the Herbrand function. One may follow [23, Chapter IV
§3], as we have here, and plot the graph over the real interval [−1,∞). In
this case, we shall say that the ramification break has a Serre value. Or
one may shift the graph of the Herbrand function over by one so that it is
plotted over the nonnegative reals, as in [14, p. 2274], [16, §3] and [18, §2].
In this case, we shall say that the ramification break has an Artin value.
To translate the Serre value of a ramification break into an Artin value,
simply add one.



Extensions of degree p 23

2.1. Statement of the main result.

Theorem 2.2. If L/K is a typical extension, there are positive integers
e, f, d, and not necessarily positive integers t, b satisfying:

(1) ef = d and d | (p− 1),
(2) 0 ≤ t < e and gcd(t, e) = 1 (observe e = 1 if and only if t = 0),
(3) 0 < b+ pt/e < pvK(p)/(p− 1) with gcd(b, p) = 1,

as well as two elements α and β ∈ K satisfying:
(1) vK(β) = −b,
(2) α = πftK γ

fµ ∈ OK for some units γ, µ ∈ O×K with µ representing a
coset of order f in the quotient group κ×/(κ×)f ,

so that L = K(x) with
xp − α(p−1)/dx = β .

Conversely, every such equation defines a typical extension over K with
ramification break

` = b+ pt

e
,

and different
DL/K = P

(`+1)(p−1)
L .

Note ` ≡ b mod p in Z(p), the integers localized at p.
The Galois closure for L/K is M = K(x, y) where yd = α; it has inertia

degree f and ramification index e over L. Moreover, there exists an integer
r of order d modulo p such that, setting ρ = r if char(K) = p, or setting
ρ to be the Teichmüller character for r (a primitive dth root of unity in
the ring of p-adic integers Zp such that ρ ≡ r mod p) if char(K) = 0; the
Galois group of M/K is generated by two automorphisms σ and τ :

Gal(M/K) = 〈σ, τ : σp = τd = 1, τστ−1 = σr〉,

with τ(y) = ρy, τ(x) = x, σ(y) = y, and σ(x) = x+ y + yη where η = 0 if
char(K) = p, and η ∈ M with vM (η) = vM (p)− (p− 1)e` if char(K) = 0.
Furthermore, the ramification break of the cyclic extension M/K(y) is e`.

Remark 2.3. If p = 2, then d = 1 and the typical extension is Galois.

Remark 2.4. If a typical extension L/K is Galois, then e = f = d = 1, so
that t = 0. This means that α is some unit in OK , and the element x/α,
which generates L/K, satisfies the Artin–Schreier equationXp−X = β/αp.
The ramification break for L/K is b, the different DL/K = P

(b+1)(p−1)
L ,

and (σ − 1)(x/α) = 1 + η with η = 0 if char(K) = p and η ∈ L with
vL(η) = pvK(p)− (p− 1)b if char(K) = 0.

The rest of this section is concerned with the proof of Theorem 2.2.
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2.2. Proof.

2.2.1. Galois closure of a typical extension. We begin with an ar-
gument from group theory. Since the residue field κ is finite, the group
G = Gal(M/K) for the Galois closure M/K of L/K is solvable [23, Chap-
ter IV §2 Corollary 5]. Any solvable transitive subgroup G of the symmetric
group Sp on p letters contains a unique subgroup 〈σ〉 of order p and is con-
tained in the normalizer of 〈σ〉 in Sp (e.g. [9, p. 638 Exercise 20]). The
quotient group Gal(M/K)/〈σ〉 is thus cyclic of order d for some d | (p− 1),
as it is isomorphic to a subgroup of Aut(〈σ〉). Let Mσ be the fixed field of
〈σ〉, a cyclic extension of K of degree d. Let 〈τ〉 be the subgroup that fixes
L. From this it follows that there is an integer r of order d modulo p such
that G is as in the statement above. At this point, the elements σ, τ ∈ G
along with the integers d, r are fixed.

2.2.2. Kummer generators. A subfield lattice for M/K is developed
over the following paragraphs. We begin with the extension Mσ/K. Since
the residue field κ contains F×p , K contains the dth roots of unity. If
char(K) = p this is clear because κ ⊂ K. If char(K) = 0, this is a con-
sequence of Hensel’s Lemma. Thus Mσ/K is a Kummer extension and
Mσ = K(y) with yd = α for some α ∈ K representing a coset of order
d in the quotient group K×/(K×)d, and τ(y) = ρy where ρ ∈ OK is the
primitive dth root of unity defined in Theorem 2.2. See [17, Chapter VI §6
Theorem 6.2]. Within Mσ there is a maximal unramified extension of K,
which we call K ′. Let e = [Mσ : K ′] and f = [K ′ : K]. Thus d = ef . Let
πK , πK′ denote prime elements in K, K ′, respectively. We can replace y
by yπiK for some integer i, and still have a Kummer generator for Mσ/K,
and so we can assume that 0 < vMσ(y) ≤ e. Since Mσ/K ′ is totally ram-
ified and tame (including the case e = 1 where Mσ = K ′), Mσ = K ′(z)
where ze = πK′ . Since K ′/K is unramified, πK′ = πKu for some u ∈ O×K′ .
Since both y and z are Kummer generators of Mσ/K ′ we have y = ztω for
some 1 ≤ t ≤ e satisfying gcd(t, e) = 1, and ω ∈ O×K′ . Thus ye = πtKu

tωe.
Let ω′ = utωe ∈ O×K′ . Since K ′/K is an unramified Kummer extension,
K ′ = K(v) for some v ∈ K ′ such that vf = µ ∈ O×K where µ represents a
coset of order f in the quotient group κ×/(κ×)f . But ω′ = ye/πtK is also
a Kummer generator for K ′, so ω′ = vsγ for some 1 ≤ s < f satisfying
gcd(s, f) = 1, and γ ∈ O×K . As a result, yd = (ye)f = πtfK γ

fµs. Then, with-
out any loss of generality, we can replace µ by µs and relabel, since the de-
scriptions of these two elements are the same. Now for the converse, observe
that for yd = α with α as above, ye/(πtKγ) satisfies the equation vf = µ
and thus generates an unramified extension of degree f . Furthermore, y
satisfies ye = πtKγv ∈ K ′. Since gcd(t, e) = 1, let t′t ≡ 1 mod e. Then the
e-th power of yt′ belongs to πK′(K ′)e for some prime element πK′ ∈ K ′. In
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L
f

p

L′
e

M

p

K
f

K ′
e
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Figure 2.1.

summary, we have found that Mσ = K(y) where yd = α = πtfK γ
fµs as in

the statement of the theorem. Note that vMσ(y) = t.
A diagram recording the subfield lattice for M/K is provided in Fig-

ure 2.1. As there are various ways that each subfield is described, we note:
L = M τ = K(x), Mσ = K ′(z) = K(y), and K ′ = K(v).

The cyclic extensionM/Mσ is ramified because L/K is ramified of degree
p, and ramification is multiplicative in towers. Assume for a contradiction
that M/Mσ is atypical. So Mσ contains the pth roots of unity, and M =
Mσ(X) for some element X ∈M such that Xp = πMσ . Then the norm z =
NM/L(X) =

∏d−1
i=0 τ

i(X) ∈ L satisfies zp = NM/L(Xp) =
∏d−1
i=0 τ

i(πMσ) ∈
K, since zp is fixed by both σ and τ . Since vMσ(zp) = d, vK(zp) = f . Since
gcd(f, p) = 1, this would imply that we can generate L by a pth root of
a prime element, contradicting our assumption that L/K is typical. We
therefore conclude that M/Mσ is an typical Galois extension, which means
that M = Mσ(X) where Xp −X = β′ for some β′ ∈ Mσ with vMσ(β′) =
−b′, 1 ≤ b′ < vM (p)/(p−1) with p - b′ and (σ−1)X = 1+ε for some ε ∈M
satisfying vM (ε) > 0 [12, Chapter III §2 Propositions (2.4) and (2.5)]. Since
σ(X) = X + 1 + ε satisfies Xp − X = β′, if char(K) = p, ε = 0, and if
char(K) = 0, then one can determine that vM (ε) = vM (p)− (p− 1)b′.

2.2.3. From M/Mσ to L/K. We have shown that M/Mσ is Artin–
Schreier. It seems reasonable to suppose that we might use the Artin–
Schreier generator X for M/Mσ to produce an element in L of some sig-
nificance. In this direction, let X = yX. Observe that vM (X) = pt− b′, and
set

(2.1) x1 = 1
d

(1 + τ + · · ·+ τd−1)X ∈ L.

Define
b = −

⌈
pt− b′

e

⌉
.

Towards a proof that vL(x1) = −b, we first show vL(x1) ≥ −b. Let Gi be the
ramification filtration for Gal(M/K), then Gi ∩ 〈σ〉 yields the ramification
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filtration for Gal(M/L) = 〈τ〉. As a result the maximal unramified exten-
sion of L, called L′, satisfies [M : L′] = e and [L′ : L] = f . The different
for M/L, DM/L, is Pe−1

M . Since the trace for M/L, Tr = 1 + τ + · · ·+ τd−1,
is OL-linear, the trace of an ideal of OM is an ideal of OL. For any in-
tegers n, s, [23, Chapter 3 §3 Proposition 7] shows that Tr(Pn

M ) ⊆ Ps
L if

and only if Pn
M ⊆ πsLD

−1
M/L = Pes−e+1

M (i.e. s ≤ (n + e − 1)/e). Given an
integer n, Tr(Pn

M ) = Ps
L where s = 1 + b(n − 1)/ec = dn/ee. This proves

vL(x1) ≥ d(pt− b′)/ee = −b.
Since b′ = eb+ pt+ s′ for some 0 ≤ s′ < e, we have

vM (x1/y) ≥ −eb− pt = s′ − b′ ≥ −b′ = vM (X) .

If either inequality were strict, then vM (x1/y) > vM (X) = −b′, which
would imply (σ − 1)(x1/y) ∈ PM , since vM ((σ − 1)µ) ≥ vM (µ) + b′ for all
µ ∈M . Since this would contradict Lemma 2.5, it follows that

vL(x1) = −b , b′ = eb+ pt , and thus p - b .

Lemma 2.5. (σ − 1)(x1/y) = 1 + η1 ∈ M where η1 = 0 if char(K) = p
and vM (η1) > b′ − (eb+ pt) ≥ 0 if char(K) = 0.

Proof. Recall that M = Mσ(X) where X satisfies an Artin–Schreier equa-
tion. Since the details if char(K) = p are particularly transparent, we begin
with this case. For 1 ≤ i < d, check that στ i = τ iσr

−i . Since ρ = r, us-
ing (2.1) we have

σx1 = σ

d
(1 + τ + · · · τd−1)X

= 1
d

(σ + τσr
−1 + τ2σr

−2 + · · ·+ τd−1σr
−(d−1))X

= 1
d

((X+ y) + τ(X+ r−1y) + τ2(X+ r−2y) + · · ·+ τd−1(X+ r−(d−1)y))

= x1 + y ,

which means that (σ − 1)x1 = y. So (σ − 1)(x1/y) = 1.
When char(K) = 0, recall from the end of §2.2.2 that (σ − 1)X = 1 + ε

where vM (ε) = vM (p) − (p − 1)b′ > 0. Thus σiX = X + iy + (1 + σ +
· + σi−1)yε ≡ X + iy + iyε mod yεPb′

M for 0 ≤ i < p. We do not have
ρ = r, but we do have ρ ≡ r mod p. So for 0 ≤ j < d, given r−j , we
may define r̄j ≡ r−j mod p with 0 ≤ r̄j < p. This means that τ jσr−jX =
τ jσr̄jX ≡ τ jX + ρj r̄jy + τ j r̄jyε mod yεPb′

M where ρj r̄j ≡ 1 mod p. Since
vM (p) ≥ vM (ε) + b′, we find that τ jσr−jX ≡ τ jX + y + yτ jε mod yεPb′

M .
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Therefore

σx1 = σ

d
(1 + τ + · · · τd−1)X = 1

d
(σ + τσr

−1 + τ2σr
−2 · · · τd−1σr

−(d−1))X

≡ x1 + 1
d

d−1∑
j=0

y + y

d

d−1∑
j=0

τ jε ≡ x1 + y + y

d
Tr(ε) mod yεPb′

M ,

where Tr is the trace for M/L. Recall that Tr(Pn
M ) = P

dn/ee
L . Since e |

vM (p)−(p−1)b′ = vM (ε) and vM (p) > (p−1)b′, this means that vM (Tr(ε)) =
vM (ε) = vM (p)− (p−1)b′ ≥ e. We have proven that (σ−1)x1 = y+yη1 for
some η1 ∈M where vM (η1) = vM (p)−(p−1)b′ ≥ e > s′ = b′−(eb+pt). �

2.2.4. Determination of x and the defining equation for L/K. In
this step, we will identify an element x ∈ L such that L = K(x), vL(x) =
−b, (σ− 1)(x/y) ∈ 1 +PM , and xp−α(p−1)/dx ∈ K. If char(K) = p, it will
be x = x1. If char(K) = 0, x1 provides us with only a first approximation
for x. We will set x0 = 0, and construct a sequence {xn} ⊂ L satisfying
certain properties such that x = lim xn gives us the desired element. Thus
the two arguments diverge. Before they diverge, observe that as soon as
we prove there exists a x as above such that xp − α(p−1)/dx = β for some
β ∈ K, then since 0 < b′ = eb + pt, we have −b < pt/e, which means that
vL(xp) < vL(α(p−1)/dx). This implies vK(β) = −b. Note that p - b. The
bounds on b′ yield

0 < b+ pt/e < pvK(p)/(p− 1) .

Assume char(K) = p. Based upon Lemma 2.5, σix1 = x1 + iy for 0 ≤ i <
d. So the norm of x1, namely NM/Mσ(x1) =

∏p−1
i=0 σ

ix1 is

p−1∏
i=0

(x1 + iy) = yp
p−1∏
i=0

(
x1
y

+ i

)
= yp

(
xp1
yp
− x1

y

)
= xp1 − α

(p−1)/dx1 .

Clearly xp1 − α(p−1)/dx1, because it is a norm, is fixed by σ, but because
α(p−1)/d ∈ K, it is also fixed by τ . As a result, xp1 − α(p−1)/dx1 ∈ K, and
our considerations if char(K) = p are complete.

Assume char(K) = 0. In addition to Lemma 2.5, we require two further
preliminary results before we define the sequence {xn} ⊂ L such that x =
lim xn gives us the desired element. The first result concerns the polynomial

℘α(X) = y((X/y)p −X/y) = 1
yp−1X

p −X = 1
α(p−1)/dX

p −X ∈ K[X] .

Lemma 2.6. vM
(
(σ − 1)℘α(x1)

)
> b′ − eb.
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Proof. Using Lemma 2.5, we have
1
y

(σ − 1)℘α(x1) =
(
x1
y

+ 1 + η1

)p
−
(
x1
y

+ 1 + η1

)
−
((

x1
y

)p
− x1

y

)
=
(
x1
y

+ 1 + η1

)p
−
(
x1
y

)p
− (1 + η1)

=
p−1∑
i=1

(
p

i

)(
x1
y

)i
(1 + η1)p−i +

p−1∑
i=1

(
p

i

)
ηi1 + (ηp1 − η1) .

Multiplying back through by y, it is enough to show that vM (py(x1/y)p−1)≥
b′−eb when vM (x1/y) ≤ 0, and vM (px1) ≥ b′−eb when vM (x1/y) > 0, while
also showing vM (yη1) ≥ b′ − eb. Under vM (x1/y) ≤ 0, vM (py(x1/y)p−1) ≥
b′ − eb is equivalent to vM (p) ≥ b′ + (p − 2)(be + pt), which follows from
vM (p) > (p− 1)b′ and b′ ≥ be+ pt. Under vM (x1/y) > 0, vM (px1) ≥ b′− eb
follows from vM (p) > (p− 1)b′ ≥ b′. This leaves vM (yη1) > b′− eb, which is
equivalent to vM (η1) > b′− (eb+ pt) = s′ and follows from Lemma 2.5. �

The next result is a generalization of [12, Chapter III §2 Lemma (2.2)].

Lemma 2.7. Given Z ∈ L \ K there is some element z ∈ K such that
vM ((σ − 1)Z) = vM (Z − z) + b′.

Proof. Let πL ∈ L be a prime element, and express Z =
∑p−1
i=0 aiπ

i
L for some

ai ∈ K. For 1 ≤ i < p, p - vM (πiL), and thus vM ((σ − 1)πiL) = vM (πiL) + b′.
Let z = a0. Then vM ((σ−1)Z) = vM ((σ−1)(Z−z) = vM ((Z−z)+b′. �

We are now prepared to adapt the argument for [12, Chapter III §2
Proposition (2.4)] and recursively construct a sequence {xn} ⊂ L that
satisfies the following conditions

(2.2)
vL(xn) = −b , vL(xn+1 − xn) ≥ vL(xn − xn−1) + 1 ,

vM (δn+1) ≥ vM (δn) + 1 ,

with δn = (σ − 1)℘α(xn) and ℘α as in Lemma 2.6. Recall that we intend
x = lim xn to be the desired generator for L/K.

Using Lemma 2.6, vM (δ1) > b′− eb, which since b′ = eb+ pt, means that
vM (δ1) > pt = vM (y). So at this point, together with Lemma 2.5, we have
vL(x1) = −b, vM (δ1) > b′− eb = pt = vM (y), and (σ− 1)x1 = y+ yη1 with
vM (η1) > 0.

Assume by induction that vL(xn) = −b, vM (δn) > b′ − eb = pt = vM (y),
and (σ−1)xn = y+yηn where vM (ηn) > 0. To define xn+1, use Lemma 2.7
to see that there is a cn ∈ K such that vM (δn) = vM (℘α(xn) + cn) + b′. Put
µn = ℘α(xn) + cn ∈ L and set

(2.3) xn+1 = xn + µn ∈ L.
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Observe though, that if we ever have δn = 0, then ℘α(x) ∈ K. In this case,
we can simply set x = xn ∈ L, observe that vL(x) = −b, xp−α(p−1)/dx ∈ K,
and because vM (ηn) > 0, (σ−1)(x/y) ∈ 1+PM , as desired. Thus we assume
throughout the remainder of the argument that δn 6= 0.

Record that vM (µn) = vM (δn) − b′ and that (σ − 1)µn = δn. Since
vM (δn) > b′ − eb, vM (µn) > −eb ≥ −b, (2.3) gives vL(xn+1) = −b. Fur-
thermore, applying (σ− 1) to (2.3) produces (σ− 1)xn+1 = (σ− 1)xn + δn.
Thus (σ−1)xn+1 = y+yηn+1 where ηn+1 = ηn+δn/y. Thus vM (ηn+1) > 0.
Since vL(xn+1 − xn) = vL(µn) and vM (µn) = vM (δn)− b′, all that remains
of (2.2), is verified in our next lemma.

Lemma 2.8.

δn+1 = (σ − 1)℘α(xn+1) = (σ − 1)℘α(xn + µn) ≡ 0 mod δnPM .

Proof. Using the definition of δn, this is the same as proving that

(σ − 1)
(
℘α(xn + µn)− ℘α(xn)

)
= (σ − 1)y1−p

p−1∑
i=1

(
p

i

)
xinµ

p−i
n + (σ − 1)℘α(µn)

≡ 0 mod δnPM .

There are two summands to consider. Consider the first. Note that

vM

(σ − 1)y1−p
p−1∑
i=1

(
p

i

)
xinµ

p−i
n


≥ b′ − (p− 1)pt+ vM (p)− (p− 1)eb+ vM (µn) .

Since vM (p) > (p − 1)b′ = (p − 1)(eb + pt) and vM (µn) = vM (δn) − b′, it
follows that the first summand is 0 mod δnPM . Consider the second. Note
that

(σ − 1)℘α(µn) = ℘α(µn + δn)− ℘α(µn) = y1−p
p−1∑
i=1

(
p

i

)
µinδ

p−i
n + ℘α(δn) .

For 1 ≤ i ≤ p−1, vM (y1−p(p
i

)
µinδ

p−i
n ) = vM (p)− (p−1)pt+pvM (δn)− ib′ ≥

vM (p) − (p − 1)(pt + eb) + (p − 1 − i)b′ + vM (δn) ≥ vM (p) − (p − 1)(pt +
eb) + vM (δn) ≥ vM (p) − (p − 1)b′ + vM (δn) > vM (δn). Furthermore, since
vM (δn/y) > 0, we also have ℘α(δn) ≡ 0 mod δnPM . �

We have proven that the sequence {xn} is Cauchy, and thus converges in
L. Additionally, lim℘α(xn) = 0. Thus x = lim xn ∈ L satisfies ℘α(x) = 0.
Since vL(xn) = −b for all n, vL(x) = −b. Since ℘α(x) = 0, xp−α(p−1)/dx ∈
K. Since vM (ηn) > 0 for all n, (σ − 1)(x/y)− 1 = η ∈ PM .
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2.2.5. The converse. Assume that e, f, d, t, b, α, β are as in Theorem 2.2.
Then as proven in §2.2.2, K(y)/K with yd = α has ramification index e and
inertia degree f with vK(y)(y) = t. Let x satisfy xp − α(p−1)/dx = β. Then
x/y satisfies the Artin-Schreier equation Xp − X = β/yp over K(y). Us-
ing [12, Chapter III §2 Proposition (2.5)], we see thatM = K(x, y) is Galois
over K, that the ramification break for M/K(y) is b′ = −vK(y)(β/yp) =
ep + pt, and that there is some generator σ ∈ Gal(M/K(y)) such that
(σ − 1)(x/y) = 1 + η ∈ M where η = 0 if char(K) = p, and vM (η) =
vM (p) − (p − 1)b′ if char(K) = 0. Thus we may conclude that there are
generators σ, τ ∈ Gal(M/K) as in Theorem 2.2.

2.2.6. Ramification. We turn now to the ramification break for a typical
extension, adopting the notation of Theorem 2.2. Doing so means that we
need to compute Herbrand functions for the Galois extensions M/L and
M/K. Using [23, Chapter IV §3] or [3, p. 116–117], we see that

ϕM/L(x) =
{
x for − 1 ≤ x ≤ 0,
x/e for 0 ≤ x,

and letting b′ denote the ramification break for M/Mσ, we have

ϕM/K(x) =


x for − 1 ≤ x ≤ 0,
x/e for 0 ≤ x ≤ b′,
x/pe+ (p− 1)b′/pe for b′ ≤ x.

We now compute ϕL/K = ϕM/K ◦ψM/L, where ψM/L is the inverse of ϕM/L,
and find that

ϕL/K(x) =
{
x for − 1 ≤ x ≤ b′/e,
x/p+ (p− 1)b′/pe for 0 ≤ x.

From this it follows that the ramification break for L/K is ` = b′/e. Since
b′ = eb+ pt, this means that

(2.4) ` = b+ pt/e.

Unless e = 1, ` is not an integer.

2.2.7. Different. Using the fact that DM/K = DM/LDL/K [23, Chap-
ter III §4 Proposition 8] along with the formula for the exponent on the
different in the Galois case, namely [23, Chapter IV §1 Proposition 4], we
see that DM/K = P

(ep−1)+(eb+pt)(p−1)
M and DM/L = Pe−1

M . Therefore

DL/K = P
(`+1)(p−1)
L .



Extensions of degree p 31

2.3. Examples of non-Galois typical extensions. There are online
resources that generate lists of extensions of degree p over Qp for primes p
below certain bounds. For instance, there is the resource described by [16],
which has been included in [26]. When using such resources be aware of
the difference between Serre and Artin values. For instance, [16] uses Artin
values.

Example 2.9 (Dihedral example). Let p ≡ 3 mod 4 and 2 - [κ : Fp] where
Fp is the field with p elements (equivalently, assume −1 6∈ K2). Let e =
1, d = f = 2, t = 0, and α = −1. So α(p−1)/d = −1. Choose β ∈ K
with vK(β) = −b where 1 ≤ b < pvK(p)/(p − 1) and gcd(p, b) = 1. Then
L = K(x) with

xp + x = β .

In either characteristic, the Galois closure for L/K is a dihedral extension
of K with inertia f = 2 and ramification index p. The ramification break
for L/K is

` = b .

Example 2.10 (Lubin’s example). The Eisenstein equation xp − px = p
appears in [19, §1.4 Example 2] with K = Qp and πK = p, where the
ramification break is reported as p/(p − 1). This is an Artin value. Let
p > 2, so that L/K is not Galois. For an arbitrary local field K in either
characteristic, let f = 1, e = d = p− 1, t = 1, b = −1, and α = β = πK . So
L = K(x) with

xp − πKx = πK .

The Galois closure is a totally ramified extension with its Galois group, a
semi-direct product CpoCp−1. The Serre value of the ramification break is

` = 1
p− 1 ,

which agrees with the computation in [19, §1.4 Example 2].

Example 2.11. Let p > 2, f = 1, e = d = p− 1, t = p− 2, b = 2− p, and
α = β = πp−2

K . So L = K(x) where

xp − πp−2
K x = πp−2

K .

Then the Galois closure in either characteristic is a totally ramified exten-
sion with its Galois group, a semi-direct product CpoCp−1. The ramification
break of L/K is

` = p− 2
p− 1 .

Example 2.12. Let p > 2, and let K/Qp be a finite extension such that
gcd(vK(p), p − 1) = 1. The division algorithm yields vK(p) = q(p − 1) + s
for some integers q, s with 0 ≤ s < p − 1. For each integer 1 ≤ u <
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pmin{1, vK(p)/(p − 1)}, set f = 1, e = d = p − 1, t = s, b = pq − u,
α = πsK , and β = πu−pqK . So L = K(x) where

xp − πsKx = πu−pqK .

Then the Galois closure is a totally ramified extension with its Galois group,
a semi-direct product Cp o Cp−1. The ramification break of L/K is

` = pvK(p)
p− 1 − u.

3. Hopf–Galois module structure
The purpose of this section is to extend Galois module structure results

that are known for cyclic typical extensions to non-Galois typical exten-
sions. Since by Remark 2.3 typical extensions are Galois for p = 2, we
assume throughout the section that p > 2.

Greither and Pareigis classified the finitely many Hopf–Galois structures
that are possible on a given separable extension [13]. Childs then showed
that there is only one such structure on a separable extension L/K of degree
p, and explicitly described the unique K-Hopf algebra H by descent [7, §2].
While the assumption char(K) = 0 is stated in [7, §2], it is never used. So,
to make it clear that Childs’ argument is valid in both characteristics, we
reproduce it in §3.1, relying on [8] to clarify some of the details.

In §3.2, we go further than [7], by using Theorem 2.2 and Childs’ The-
orem 3.1 to explicitly describe the H-action on L/K. This is Theorem 3.5.
With the action explicitly described, we observe that Theorem 3.5 pro-
vides a H-scaffold on L/K, as defined in [6, Definition 2.3]. Thus we are
able to use the results of [6] to show that Galois module structure results
from [4, 11, 1, 24, 22, 15], concerning cyclic typical extensions, hold more
generally.

3.1. Hopf–Galois structure.

Theorem 3.1 (Childs). Let p > 2, and adopt the notation of Theorem 2.2
for a given typical extension L/K. Recall that d | p−1. Let ds = p−1, and
let r0 denote a primitive root modulo p with Teichmüller representative ρ0
such that rs0 ≡ r mod p and ρs0 = ρ. Set

Ψ = −1
y

p−2∑
k=0

ρ−k0 σr
k
0 .

Then the unique K-Hopf algebra H such that L/K is a H-Galois extension
is explicitly H = K[Ψ]. It is contained in the group ring K[y][〈σ〉] and
inherits its counit ε(Ψ) = 0, antipode S(Ψ) = −Ψ and comultiplication ∆
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from K[y][〈σ〉]. For example, if char(K) = p, explicitly

∆(Ψ) = Ψ⊗ 1 + 1⊗Ψ− αs
p−1∑
i=1

1
p

(
p

i

)
Ψi ⊗Ψp−i .

Remark 3.2. If L/K is Galois, the K-Hopf algebra K[Ψ] is K[σ].

Remark 3.3. If p = 2, we necessarily have α = y = 1. Since ∆(σ) =
σ ⊗ σ, thus ∆(Ψ) = −Ψ ⊗ Ψ. So for p = 2, the explicit expression for
comultiplication ∆ in Theorem 3.1 is not correct.

Proof. As Childs explains in [7, §2], the unique Hopf algebra H is described
by descent. Using our notation, the group algebra Mσ[〈σ〉] where Mσ =
K(y) has K-basis {yiσj : 0 ≤ i < d, 0 ≤ j < p}. The action of 〈τ〉 on these
basis elements is given by τk(yiσj) = (ρky)iσjrk = (ρsk0 y)iσjrsk0 with the
Hopf algebra H = Mσ[〈σ〉]〈τ〉 determined to be the sub-algebra of Mσ[〈σ〉]
fixed by τ . The counit ε, antipode S and comultiplication ∆ for H are
determined in Mσ[〈σ〉].

Given a basis element for Mσ[〈σ〉], the sum over its orbit under 〈τ〉
certainly lies in Mσ[〈σ〉]〈τ〉. There is only one element in the orbit of y0σ0,
namely 1. The orbit of yiσ0 for i 6= 0 is a sum of dth roots of unity and thus
is zero. Consider now the orbit generated by yiσj , where j 6= 0 represents
some coset of F×p /〈r〉. A complete set of coset representatives for F×p /〈r〉 is
given by {rt0 : 0 ≤ t < s}. Thus, adopting the notation yiθ(i, t) for the sum
over the orbit of yiσrt0 , we find

yiθ(i, t) = yi
d−1∑
k=0

ρisk0 σr
t+sk
0 .

These orbits biject with {(i, t) : 0 ≤ i < d, 0 ≤ t < s}, a set with ds = p− 1
elements. Together with 1, we have a K-basis of dimension p for H.

We would like now, as in [7, §2], to perform a change in basis. First, we
introduce, mechanically, the basis change from [7, §2]. Second, we motivate
everything based upon [8, Chapter 4 §16]. Observe that θ(i, t) = θ(i+ bd, t)
for all b ∈ Z, and for 0 ≤ i < p, let

Θ(i) =
s−1∑
t=0

ρit0 θ(i, t) =
p−2∑
k=0

ρik0 σ
rk0 .

The idea is to replace, for a fixed i in 0 ≤ i < d, the s elements {yiθ(i, t) :
0 ≤ t < s} in our basis with the alternate s elements {yiΘ(i + bd) : 0 ≤
b < s}. Since yi+bd = αbyi ∈ K×yi, this is the same as replacing them
with {yi+bdΘ(i + bd) : 0 ≤ b < s}. Clearly, {yiΘ(i + bd) : 0 ≤ b < s}
is contained in the K-span of {yiθ(i, t) : 0 ≤ t < s}. Furthermore since∑s−1
b=0 ρ

(t−a)(i+bd)
0 = sδt,a where δt,a is the Kronecker delta function, we have
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syiθ(i, a) =
∑s−1
b=0 ρ

−a(i+bd)
0 yiΘ(i + bd) and thus find that the K-spans are

equal. This means that {1} ∪ {yiΘ(i) : 0 ≤ i ≤ p − 2} is a K-basis for H.
Since

∑p−2
k=0 ρ

ik
0 = 0 unless (p − 1) | i, we see that {yiΘ(i) : 1 ≤ i ≤ p − 2}

lies within the augmentation ideal H+ = {h ∈ H : ε(h) = 0}. Furthermore,
ε(Θ(0)) = (p−1), thus Θ(0)− (p−1) ∈ H+ as well. We now adjust Childs’
basis very slightly to one more amenable to our purposes. Set j = p− i− 1
and for 1 ≤ i < p− 1, set

Ψj = −y
iΘ(i)
αs

= −1
yj

∑
k∈Z/(p−1)Z

ρ−jk0 σr
k
0 ,

and additionally, Ψp−1 = −(Θ(0)−(p−1))/yp−1. Thus {Ψj : 1 ≤ j ≤ p−1}
is a K-basis for H+.

We now refer to [8, Chapter 4 §16] to explain this choice of basis and
determine that H = K[Ψ1]. There, in [8, Chapter 4 Proposition (16.1)], a
ring homomorphism [ ] is defined from Z to the R-Hopf endomorphisms
of H, a ring under convolution and composition. For the sake of brevity,
we omit its definition and the development of its properties. We simply
note that since H has rank p, this induces a homomorphism, also called
[ ], from F×p to the group of Hopf algebra automorphisms of H. Given
m ∈ F×p , the automorphism is denoted by [m]. The kernel of the counit
H+ is shown to be a Zp[F×p ]-submodule of H if char(K) = 0 or an Fp[F×p ]-
submodule if char(K) = p [8, Chapter 4 Lemma (16.2)]. Let χ be the
identity map if char(K) = p. Let χ be the Teichmüller character such that
the primitive root r0 ∈ F×p maps to ρ0 ∈ Zp if char(K) = 0. In either
case, the idempotent elements of the group ring decompose H+ ∼= ⊕p−1

j=1Hj
into one-dimensional K-spaces Hj = {h ∈ H+ : [m](h) = χj(m)h}, an
eigenspace decomposition. Since [m](σ) = σm, one can check that Hj =
KΨj , which explains the significance of the basis that we have chosen.
Let xi = yiΨi so that xi agrees with notation in [8, Chapter 4 §16]. The
argument leading to [8, Chapter 4 Proposition (16.5)] proves that K[x1]
equals the K-span on {1, x1, . . . , xp−1}. This implies K[Ψ1] = H as well.
Now for the statement in the theorem, set Ψ = Ψ1.

If char(K) = p, it is easy to show that xi1 = i!xi for 1 ≤ i < p. Thus,
using the formula for comultiplication in [8, Chapter 4 (16.7)], the formula
for comultiplication ∆(Ψ) in the statement in the theorem follows from
Lemma 3.4. If char(K) = 0, there are units wi ∈ Zp such that xi1 = wixi.
These units do not have a simple description. So we leave the formula for
∆(Ψ) implicit in this case. �
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Lemma 3.4. Let Z(p) be the integers localized at p. Then for 1 ≤ i ≤ p−1,− p−1∑
k=1

1
k
xk

i ≡ −i! p−1∑
k=1

1
ki
xk mod (p, xp − 1)

in the polynomial ring Z(p)[x].

Proof. Since r0 is a primitive root modulo p,
∑p−1
k=1 r

ek
0 ≡ 0 mod p, for any

exponent 1 ≤ e ≤ p− 2. This means that
∑p−1
t=2

1
te =

∑p−2
k=1 r

−ek
0 ≡ −1 mod

p. It is easy to see that 1
ti(1−t) = 1

1−t +
∑i
e=1

1
te . Thus

∑p−1
t=2

1
ti(1−t) =∑p−1

t=2 ( 1
1−t +

∑i
e=1

1
te ) =

∑p−1
t=2 ( 1

1−t + 1
t ) +

∑i
e=2

∑p−1
t=2

1
te = ( 1

p−1 − 1) +∑i
e=2−1 ≡ −(i + 1) mod p. Let t ≡ k/m mod p. This identity becomes∑ mi

ki
m

m−k ≡ −(i + 1) mod p, where the left-hand-sum is over all 1 ≤ k ≤
p − 1 except k = m. This means that

∑ 1
ki

1
m−k ≡

−(i+1)
mi+1 mod p, which

allows us to prove by induction that for 1 ≤ i ≤ p− 2,p−1∑
k=1

1
ki
xk

p−1∑
k=1

1
k
xk

 ≡ −(i+ 1)
p−1∑
k=1

1
ki+1x

k mod (p, xp − 1) .

From this the result follows. �

3.2. Hopf–Galois module structure. Let p > 2, and let L/K be a typ-
ical extension. Following Theorem 3.1, let H = K[Ψ] be the unique Hopf
algebra that makes L/K Hopf–Galois. The following result explicitly de-
scribes the action of H on L. Thanks to this simple description, we are able
to generalize classical Galois module structure results for ramified degree p
extensions to all typical extensions.

Theorem 3.5. Let L = K(x) be a typical extension of K, with x as in
Theorem 2.2 and ramification break `. Then Ψ ·1 = 0 and for 1 ≤ i ≤ p−1,
Ψ · xi ∈ L. In particular,

Ψ · xi
{

= ixi−1 if char(K) = p,

≡ ixi−1 mod xi−1P
vL(p)−(p−1)`
L if char(K) = 0.

Proof. Recall that σ is an automorphism of M/K. Since
∑p−2
k=0 ρ

−k
0 = 0,

Ψ · 1 = 0. Because the argument is much simpler for char(K) = p, we treat
it first. Note σix = x+ iy and ρ0 = r0. Thus

Ψ · xi = −1
y

p−2∑
k=0

r−k0 (x+ rk0y)i = −1
y

p−2∑
k=0

i∑
t=0

(
i

t

)
xi−tr

(t−1)k
0 yt

= −
i∑
t=0

(
i

t

)
xi−tyt−1

p−2∑
k=0

r
(t−1)k
0 =

i∑
t=0

(
i

t

)
xi−tyt−1δt,1 = ixi−1 ,
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where δi,j is the Kronecker delta function. If char(K) = 0, σx = x+ y+ yη
where η ∈M with vM (η) = vM (p)− (p− 1)(be+ pt), we need to introduce
further notation. Let 1 ≤ rk < p satisfy rk ≡ rk0 mod p and set ηk =
(1+σ+ · · ·+σrk−1)η, we have σrk0 = σrk = x+y(rk+ηk) for 1 ≤ k ≤ p−2.
[Note: This ηk is not the same element as ηn defined before (2.3) in §2.2.4.]
As a result,

Ψ · xi = −1
y

p−2∑
k=0

ρ−k0 (x+ y(rk + ηk))i

= −1
y

p−2∑
k=0

ρ−k0

i∑
s=0

(
i

s

)
xi−sys(rk + ηk)s

= −1
y

i∑
s=0

(
i

s

)
xi−sys

p−2∑
k=0

ρ−k0 (rk + ηk)s .

Since ρ0 is a primitive (p− 1)th root of unity,
∑p−2
k=0 ρ

−k
0 (rk0 + ηrk0

)s = 0 for
s = 0. Since ρ−k0 rk ≡ 1 mod p and p ≡ 0 mod η, we have

∑p−2
k=0 ρ

−k
0 (rk0 +

ηrk0
)s ≡ −δs,1 mod η for 1 ≤ s ≤ i. Since vM (y/x) = pt + eb > 0, we have

xi−sys ≡ 0 mod xi−1y for 1 ≤ s ≤ i. Therefore Ψ · xi ≡ ixi−1 mod xi−1η.
Since Ψ ∈ H, Ψ · L ⊂ L. The result follows by considering the value of
vL(η). �

To explain why, based upon Theorem 3.5, L/K has a H-scaffold as
defined in [6, Definition 2.3], we set up the following notation: We set
b1 = b to be the lone shift parameter. Let b : {0, 1, . . . , p − 1} → Z be
defined by b(s) = sb, and let a : Z → {0, 1, . . . , p − 1} be defined by
a(t) ≡ −tb−1 mod p. The definition of a means that for each t ∈ Z, there
is an ft ∈ Z such that t = −a(t)b + ftp. Using this, set λt = xa(t)πftK ∈ L.
Observe that vL(λt) = t, and λt1λ

−1
t2 ∈ K when t1 ≡ t2 mod p. Now set

Ψ1 = Ψ ∈ H, and observe that Theorem 3.5 yields the following congruence
modulo λt+bPc

L

Ψ1 · λt ≡
{
a(t)λt+b if a(t) ≥ 1,
0 if a(t) ≥ 0,

where

c =
{
∞ if char(K) = p,

vL(p)− (p− 1)` if char(K) = 0.
Comparing this with [6, Definition 2.3], we see that L/K has a H-scaffold of
precision c with shift parameter b. Furthermore since ` = b for cyclic typical
extensions, there is agreement between this statement and [6, Example 2.8].

Thus we are able to extend classical Galois module structure results
to non-Galois typical extensions. To do so, we will have to assume that
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vL(p) is large enough for the precision c of the scaffold to satisfy lower
bounds required by [6, Theorems 3.1 and 3.6]. This is a restriction only
when char(K) = 0. But then given an ideal Pn

L, and assuming vL(p) is
large enough for the desired result, these theorems

(i) determine a basis for its associated order
AH(n) = {h ∈ H : hPn

L ⊆ Pn
L};

(ii) determine that AH(n) is a local ring, with maximal ideal M and
residue field AH(n)/M ∼= κ = OL/PL;

(iii) determine whether Pn
L is free over AH(n), namely whether Pn

L is
generated by one element over AH(n);

(iv) determine the minimal number of generators for Pn
L over AH(n), if

it is not free;
(v) and determine the embedding dimension dimκ(M/M2).
For example, as a result of Theorem 3.5 and [6, Theorem 3.1], we have:

Corollary 3.6. Let L/K be a typical extension with b and ` as in Theo-
rem 2.2. Set b̄ ≡ b ≡ ` mod p with 0 ≤ b̄ < p. Then

(1) For n ≡ b̄ mod p, Pn
L is free over AH(n).

For the next two statements, assume the lower bound on vK(p), or alterna-
tively, the upper bound on `,

` <
pvK(p)
p− 1 − 2 .

(2) For n ≡ 0 mod p, Pn
L is free over AH(n) if and only if b̄ | (p − 1).

This includes the ring of integers OL.
(3) For n ≡ b̄+1 mod p, Pn

L is free over AH(n) if and only if b̄ = p−1.
This includes the inverse different D−1

L/K .

Proof. The point of [6] is that once there is a scaffold of high enough preci-
sion with respect to the ideal being considered, all that matters is whether
a condition w(s) = d(s) holds for all s. The w(s) and d(s) are as in [6, The-
orem 3.1]. Note that the difference w(s)−d(s) is completely determined by
the residue classes of the exponent n of the ideal and the shift parameter
b. This means that any statement that holds for a Galois extension with
a scaffold of sufficiently high precision and shift parameter b will also hold
for a non-Galois typical extension with sufficiently high precision and the
same shift parameter b.

Therefore we first address the conditions on c required for the conclusions
of [6, Theorem 3.1] to hold, then we reference the relevant statements for
cyclic extensions. Recall that [6, Example 2.8] provides a scaffold for cyclic
typical extensions of precision c = vL(p) − (p − 1)b and shift parameter
b. Since ` = b for cyclic typical extensions, this agrees with the scaffold
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exhibited in this paper for non-Galois typical extensions of precision c =
vL(p)− (p− 1)` and shift parameter b.

For n ≡ b̄ mod p, we use [6, Theorem 3.1(i)]. The restriction on the
precision for this statement can be seen to be c = vL(p) − (p − 1)` ≥ 1,
which holds as a result of the upper bound on ` in Theorem 2.2. In the
other two cases, we use [6, Theorem 3.1(ii)]. Based upon [6, Remark 3.2],
we require c ≥ 2p − 1, which is equivalent to c > 2p − 2. Therefore c =
vL(p)− (p− 1)` > 2p− 2, which yields the stated condition on `.

Thus the first statement, for n ≡ b̄ mod p, follows from [11]. Ferton’s
condition in terms of continued fractions is easily checked. The second
statement, for n ≡ 0 mod p, follows from [4]. It is easiest to verify the
third statement, for n ≡ b̄ + 1 mod p, by using [5, Theorem 3.10] for the
necessity of b̄ = p − 1. Use [11], as discussed in [5, p. 210 Remark (i)], for
its sufficiency. �

For the sake of completeness, we briefly turn to the topic of Hopf–Galois
module structure outside of the bounds on ` imposed by Corollary 3.6, a
topic that is only relevant if char(K) = 0. Such extensions can be con-
structed using Example 2.12. If we restrict our discussion to Galois exten-
sions of degree p when char(K) = 0, we may reference the complete result
for OL that is available in [4]. Under the bound on ` imposed by Corol-
lary 3.6, which can be expressed as b < vL(p)/(p− 1)− 2, scaffold methods
can be used to see that OL is free over its associated order if and only
if b̄ | (p − 1). Previous to the development of scaffolds, the authors of [4]
proved the stronger result that if b < vL(p)/(p− 1)− 1, OL is free over its
associated order if and only if b̄ | (p− 1). They furthermore proved that if
b ≥ vL(p)/(p− 1)− 1, and the continue fraction expansion for b/p is

b

p
= q0 +

1

q1 +
1

. . . +
1
qn

,

then OL is free over its associated order if and only if n ≤ 4. Since our
focus in this paper is on scaffold methods, we do not pursue the analogous
extensions of Corollary 3.6 here.

4. Concluding remarks
The definition of a scaffold, as presented in [6], was still evolving when

the term, Galois scaffold, was coined in [10]. At that time, the underlying
intuition, articulated in [10, §1], was that extensions with Galois scaffolds
should “somehow” be no more complicated than ramified cyclic extensions
of degree p. A more mature intuition is now available and appears in [6, §1].
Still, the first intuition is useful, and now that the definition of a scaffold
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has been generalized beyond Galois extensions and classical Galois module
theory, the question arose whether all ramified extensions of degree p are,
in this way, no more complicated than ramified cyclic extensions of degree
p. This paper addresses separable extensions with an affirmative answer.
Elsewhere, evidence is provided regarding inseparable extensions [6, §5].
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