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GLOBAL EXPONENTIAL STABILISATION FOR

THE BURGERS EQUATION WITH LOCALISED CONTROL

by Armen Shirikyan

Abstract. — We consider the 1D viscous Burgers equation with a control localised in a finite
interval. It is proved that, for any ε > 0, one can find a time T of order log ε−1 such that
any initial state can be steered to the ε-neighbourhood of a given trajectory at time T . This
property combined with an earlier result on local exact controllability shows that the Burgers
equation is globally exactly controllable to trajectories in a finite time that does not depend on
the initial conditions.

Résumé (Stabilisation exponentielle globale pour l’équation de Burgers avec contrôle localisé)
Nous considérons l’équation de Burgers visqueuse 1D avec un contrôle localisé dans un

intervalle fini. Nous montrons que, pour tout ε > 0, on peut trouver un temps T d’ordre
log ε−1 tel que tout état initial peut être amené dans un ε-voisinage d’une trajectoire donnée
au temps T . Cette propriété, jointe à un résultat précédent de contrôle local exact, montre que
l’équation de Burgers est globalement exactement contrôlable vers les trajectoires en un temps
fini qui ne dépend pas des conditions initiales.
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614 A. Shirikyan

0. Introduction

Let us consider the controlled Burgers equation on the interval I = (0, 1) with the
Dirichlet boundary condition:

∂tu− ν∂2xu+ u∂xu = h(t, x) + ζ(t, x),(0.1)
u(t, 0) = u(t, 1) = 0.(0.2)

Here u = u(t, x) is an unknown function, ν > 0 is a parameter, h is a fixed function,
and ζ is a control that is assumed to be localised in an interval [a, b] ⊂ I. As is
known, the initial-boundary value problem for (0.1) is well posed; see Proposition 2.1.
Namely, if h ∈ L2

loc(R+, L
2(I)) and ζ ≡ 0, then, for any u0 ∈ L2(I), Problem (0.1),

(0.2) has a unique solution u(t, x) that belongs to the space

X = {u ∈ L2
loc(R+, H

1
0 (I)) : ∂tu ∈ L2

loc(R+, H
−1(I))}

and satisfies the initial condition

(0.3) u(0, x) = u0(x);

see the end of this Introduction for the definition of functional spaces. Let us denote
by Rt(u0, h) the mapping that takes the pair (u0, h) to the solution u(t) (with ζ ≡ 0).
We wish to study the problem of controllability for (0.1). This question received great
deal of attention in the last twenty years, and we now recall some achievements related
to our paper.

One of the first results was obtained by Fursikov and Imanuvilov [FI95, FI96]. They
established the following two properties:

Local exact controllability. — Let û0 ∈ H1
0 (I) and h ∈ L2

loc(R+, L
2(I)) be some

functions, let û = Rt(û0, h) be the corresponding trajectory of Problem (0.1), (0.2)
with ζ ≡ 0, and let T > 0. Then there is ε > 0 such that, for any u0 ∈ H1

0 (I) satisfying
the inequality ‖u0− û0‖H1 6 ε, one can find a control (1) ζ ∈ L2(JT × I) supported in
JT × [a, b] for which RT (u0, h+ ζ) = û(T ). Moreover, when T is fixed, the number ε
can(2) be chosen to be the same for all û0 and h varying in bounded subsets of the
spaces H1

0 (I) and L2(JT × I), respectively.

Absence of approximate controllability. — For any u0 ∈ L2(I) and any positive
numbers T and R, one can find û ∈ L2(I) such that, for any control ζ ∈ L2(JT × I)

supported by JT × [a, b], we have

(0.4) ‖RT (u0, h+ ζ)− û‖ > R.

These results were extended and developed in many works. In particular, Diaz
[Dia96] established some a priori bounds for solutions of Equation (0.1) and used
them to prove the absence of approximate controllability in various functional classes.

(1)We denote by JT the time interval [0, T ].
(2)This property is not explicitly mentioned in [FI95]. However, it is implied by the proof, and

we discuss it in Section 1 when proving our result on exact controllability to trajectories.
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Global exponential stabilisation for the Burgers equation with localised control 615

His results show that the global approximate controllability does not hold, even if
we allow infinite time of control. Glass and Guererro [GG07] and Léautaud [Léa12]
proved global exact boundary controllability to constant states, Coron [Cor07b]
and Fernández-Cara–Guererro [FCG07] established some estimates for the time and
cost of control, and Chapouly [Cha09] (see also Marbach [Mar14]) proved global exact
controllability to trajectories with two boundary and one distributed scalar controls,
provided that h ≡ 0. Horsin [Hor08] proved the local exact controllability in the La-
grangian setting. Some non-controllability results for Equation (0.1) with h ≡ ζ ≡ 0

and boundary controls are established by Guererro–Imanuvilov [GI07], who used the
Cole–Hopf transform and some qualitative properties of solutions for the heat equa-
tion. The problem of stabilisation of the viscous Burgers equations was also studied in
a number of papers. In particular, Thevenet–Buchot–Raymond [TBR10] constructed
a nonlinear feedback law stabilising the 2D problem and Kröner–Rodrigues [KR15]
studied the stabilisation to a non-stationary solution. A large number of works were
devoted to the investigation of similar questions for other, more sophisticated equa-
tions of fluid mechanics; see the books [Fur00, Cor07a] and the review paper [Cor10],
as well as the references therein. We do not discuss them here, because their methods
are not likely to apply to the class of problems we deal with.

In view of the above-mentioned controllability properties for the viscous Burgers
equation, a natural questions arises: does the exact controllability to trajectories hold
for arbitrary initial conditions and nonzero right-hand sides ? It turns out that the
answer to this question is positive, provided that the time of control is sufficiently
large. Namely, the main result of this paper combined with the above-mentioned
property of local exact controllability to trajectories imply the following theorem.(3)

Main Theorem. — Let ν > 0 and [a, b] ⊂ I be fixed. Then, for any K > 0, there is
T > 0 such that the following property holds: given a function h ∈ (H1

ul∩L∞)(R+×I)

whose norm does not exceed K and arbitrary initial conditions u0, û0 ∈ L2(I) one can
find a control ζ ∈ L2(JT × I) supported by JT × [a, b] such that

(0.5) RT (u0, h+ ζ) = RT (û0, h).

We emphasise that the time of control T does not depend on the initial conditions,
so that we have global exact controllability to trajectories at a fixed time, provided
that ν, [a, b], and h are fixed. To the best of my knowledge, the Main Theorem stated
above provides a first global controllability result for Burgers-type equations with no
further conditions on the data. It remains in fact valid for a much larger class of
damped–driven scalar conservation laws in higher dimension, and this question will
be addressed in a subsequent publication.

The rest of the paper is organised as follows. In Section 1, we formulate a result
on exponential stabilisation to trajectories, outline the scheme of its proof, and derive
the Main Theorem. Section 2 is devoted to some preliminaries about the Burgers

(3)See the Notation below for definition of the spaces used in the statement.
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616 A. Shirikyan

equation. In Section 3, we present the details of the proof of exponential stabilisation.
Finally, the appendix gathers the proofs of some auxiliary results.

Acknowledgements. — I thank the anonymous referees for careful reading of the man-
uscript, for a number of pertinent remarks that helped to improve the presentation,
and for letting me know that [Dia96] proves a non-controllability result included in
the earlier version.

Notation. — Let I = (0, 1), JT = [0, T ], R+ = [0,+∞), and DT = (T, T + 1)× I. We
use the following function spaces.

– Lp(D) and Hs(D) are the usual Lebesgue and Sobolev spaces, endowed with
natural norms ‖ · ‖Lp and ‖ · ‖Hs , respectively. In the case p = 2 (or s = 0), we
write ‖ · ‖ and denote by (·, ·) the corresponding scalar product.

– Cγ(D) denotes the space of Hölder-continuous functions with exponent γ∈(0, 1).
– Hs

loc(D) is the space of functions f : D → R whose restriction to any bounded
open subset D′ ⊂ D belongs to Hs(D′).

– Hs
0 = Hs

0(I) is the closure in Hs(I) of the space of infinitely smooth functions
with compact support, and we write V = H1

0 (I) ∩H2(I).
– Hs

ul(R+ × I) stands for the space of functions u ∈ Hs
loc(R+ × I) satisfying the

condition
‖u‖Hs

ul
:= sup

T>0
‖u‖Hs(DT ) <∞.

Very often, the context implies the domain on which a functional space is defined,
and in this case we omit it from the notation. For instance, we write L2, Hs, etc.

– Lp(J,X) is the space of Borel-measurable functions f : J → X (where J ⊂ R is
a closed interval and X is a separable Banach space) such that

‖f‖Lp(J,X) =

(∫
J

‖f(t)‖pX dt
)1/p

<∞.

In the case p =∞, this condition should be replaced by

‖f‖L∞(J,X) = ess supt∈J ‖f(t)‖X <∞.

– Hk(J,X) stands for the space of functions f ∈ L2(J,X) such that ∂jt f ∈ L2(J,X)

for 1 6 j 6 k, and if J is unbounded, then Hk
loc(J,X) is the space of functions whose

restriction to any bounded interval J ′ ⊂ J belongs to Hk(J ′, X).
– C(J,X) is the space of continuous functions f : J → X.
– BX(a,R) denotes the closed ball in X of radius R > 0 centred at a ∈ X. In the

case a = 0, we write BX(R).

1. Exponential stabilisation to trajectories

1.1. Main result on stabilisation. — Let us consider Problem (0.1), (0.2), in which
ν > 0 is a fixed parameter, h(t, x) is a given function belonging to H1

ul ∩ L∞ on the
domain I×R+, and ζ is a control taking values in the space of functions in L2(I) with
support in a given interval [a, b] ⊂ I. Recall that Rt(u0, h+ ζ) stands for the value of
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Global exponential stabilisation for the Burgers equation with localised control 617

the solution for (0.1)–(0.3) at time t. The following theorem is the main result of this
paper.

Theorem 1.1. — For any K > 0 there exist positive numbers C and γ such that, given
h ∈ H1

ul ∩L∞ with ‖h‖H1
ul∩L∞ 6 K and arbitrary initial data u0, û0 ∈ L2(I), one can

find a piecewise continuous control ζ : R+ → H1(I) supported in R+× [a, b] for which

(1.1) ‖Rt(u0, h+ζ)−Rt(û0, h)‖H1 +‖ζ(t)‖H1 6 Ce−γt min
(
‖u0−û0‖2/5L1 , 1

)
, t > 1.

Moreover, the control ζ regarded as a function of time may have discontinuities only
at positive integers.

Let us emphasise that the above theorem is trivial if h ≡ 0: in this case, all the
solutions go to zero exponentially fast, and inequality (1.1) is valid with ζ ≡ 0. On the
other hand, when h is a time-independent function, and the corresponding stationary
equation has two solutions, then one does need to apply a control to one of them
to make them converge to each other exponentially fast. Furthermore, the fact that
the right-hand side of (1.1) depends on the minimum of the initial distance between
solutions and the number 1 is a manifestation of uniformity of stabilisation with
respect to initial data: if ‖u0 − û0‖L1 is small, then the H1-norm of the difference
between the corresponding solutions remains small and decays exponentially with
time, while for the initial data that are far from each other, the stabilisation takes
place for t > 1 with a rate that is independent of them. This phenomenon is due to
the strong nonlinear dissipation of the viscous Burgers equation.

Taking Theorem 1.1 for granted, let us prove the exact controllability result stated
in the Introduction.

Proof of the Main Theorem. — We shall combine Theorem 1.1 with a version of the
Fursikov–Imanuvilov result on local exact controllability to trajectories. Namely, sup-
pose we know that there are positive functions ε(ρ) and C(ρ) defined for ρ > 0 such
that, for any functions û0 ∈ H1

0 (I) and h ∈ (H1 ∩L∞)([0, 1]× I) whose norms are no
greater than ρ, the following property holds: if u0 ∈ H1

0 (I) and ‖u0 − û0‖H1 6 ε(ρ),
then there is a control η ∈ L2([0, 1]× I) such that

(1.2) R1(u0, h+ η) = R1(û0, h), ‖η‖L2 6 C(ρ)‖u0 − û0‖H1 .

Let us take any û0 ∈ L2(I). In view of Proposition 1.2 and Remark 3.1 (see below),
the corresponding trajectory û(t) = Rt(û0, h) is bounded in H1

0 (I) for t > 1 by a
number depending only on ‖h‖H1

ul∩L∞ and ν. Thus, we can find ρ > 1 such that

‖h‖H1∩L∞ 6 ρ, ‖û(T )‖H1 6 ρ for any T > 1,

where the norms are taken on [T, T + 1]× I and I, respectively. In view of the above-
mentioned local exact controllability result applied to the interval [T, T + 1] (rather
than to [0, 1]), one can find ε > 0 such that, if v0 ∈ H1

0 (I) satisfies the inequality
‖v0− û(T )‖H1 6 ε for some T > 1, then there is a control ηT ∈ L2(DT ) supported in
[T, T + 1]× [a, b] such that v(T + 1) = û(T + 1), where v(t, x) stands for the solution
of Problem (0.1), (0.2) with ζ = ηT such that v(T ) = v0. Due to (1.1), there is a
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618 A. Shirikyan

number(4) Tε > 0 such that, for any u0 ∈ L2(I), one can find a piecewise continuous
control ζ : JTε → H1(I) supported in JTε × [a, b] for which

‖RTε(u0, h+ ζ)− û(Tε)‖H1 6 ε.

Extending ζ to [Tε, Tε + 1] by ζ(t) = ηTε
(t), we see that (0.5) holds with T = Tε + 1.

We now discuss briefly the proof of (1.2), which follows from the argument
of [FI95, §5]. Let us set Y = L2(J1, V ) ∩ H1(J1, L

2) and seek u ∈ Y in the form
u = û+ v. Then v ∈ Y must be a solution of the problem

(1.3) ∂tv− ν∂2xv+∂x
(
(û+ 1

2v)v
)

= η, v(t, 0) = v(t, 1) = 0, v(0) = v0 := u0− û0.

Together with (1.3), let us consider the linear problem

(1.4) ∂tv − ν∂2xv + ∂x
(
a(t, x)v

)
= η, v(t, 0) = v(t, 1) = 0, v(0) = v0.

By Theorem 4.3 in [FI95], for any function a ∈ Y there exists a linear operator
Ca : H1

0 (I)→ L2(J1×I) such that the operator norm of Ca is bounded by a number N
depending only on ‖a‖Y , the solution v ∈ Y of (1.4) with η = Cav0 vanishes at t = 1,
and the mapping S : a 7→ v acts continuously in Y and takes bounded subsets to
relatively compact ones.

Let us fix a small number r > 0 and, given v0 ∈ BH1
0
(r), consider a mapping

F : BY (1)→ Y that takes w to v = S (û+ 1
2w). Then v is a solution of Problem (1.4)

with a = û + 1
2w and η = Cav0, and F is a compact mapping that satisfies the

inequality

‖F (v)‖Y 6 C1(‖û‖Y )
(
‖v0‖H1 + ‖η‖L2

)
6 C1(‖û‖Y )

(
1 +N(‖û‖Y )

)
‖v0‖.

It follows that F takes the ball BY (1) into itself, provided that r is sufficiently small.
By the Leray–Schauder theorem, F has a fixed point v ∈ Y . The function η =

Cû+v/2(u0 − û0) is the required control for which (1.2) holds. This completes the
proof of the exact controllability to trajectories. �

1.2. Description of the stabilisation scheme. — We now outline the main steps of
the proof of Theorem 1.1, which is given in Section 3. It is based on a comparison
principle for nonlinear parabolic equations and the Harnack inequality.

Step A. Reduction to bounded regular initial data. — We first prove that it suffices
to consider the case of H2-smooth initial conditions with norm bounded by a fixed
constant. Namely, let V := H1

0 ∩ H2, and given a number T > 0, let us define the
functional space

(1.5) XT = L2(JT , H
1
0 ) ∩H1(JT , H

−1).

We have the following result providing a universal bound for solutions of (0.1), (0.2)
at any positive time; see Section 3.1 for a proof.

(4)It is straightforward to see from (1.1) that Tε 6 C1 log ε−1, where C1 > 0 depends only on ν,
[a, b], and the H1

ul ∩ L
∞ norm of h. This fact does not play any role in the argument.

J.É.P. — M., 2017, tome 4



Global exponential stabilisation for the Burgers equation with localised control 619

Proposition 1.2. — Let h ∈ (H1 ∩L∞)(JT × I) for some T > 0 and let ν > 0. Then
there is number R > 0, depending only on ‖h‖H1∩L∞ and ν, such that any solution
u ∈ XT of (0.1) with ζ ≡ 0 satisfies the inclusion u(t) ∈ V for 0 < t 6 T and the
inequality

(1.6) ‖u(T )‖H2 6 R.

We emphasise that R does not depend on the solution u. Thus, if h ∈ H1
ul ∩L∞ is

fixed, then, for any initial data u0, û0 ∈ L2(I), we have

‖R1(u0, h)‖H2 6 R, ‖R1(û0, h)‖H2 6 R,

where R is the constant in Proposition 1.2 with T = 1. Furthermore, in view of the
contraction of the L1-norm for the difference of two solutions (cf. Proposition 2.5
below), we have

‖R1(u0, h)−R1(û0, h)‖L1 6 ‖u0 − û0‖L1 .

Thus, applying zero control on the interval [0, 1], we bring the solutions to some
states u1 and û1 that belong to the ball in V of radius R centred at zero, and the
L1-distance between them does not exceed the initial distance. Hence, to prove The-
orem 1.1, it suffices to establish the inequality in (1.1) for t > 0 and any initial data
u0, û0 ∈ BV (R).

Step B. Interpolation. — Let us fix two initial conditions u0, û0 ∈ BV (R). Suppose we
have constructed a control ζ(t, x) supported in R+ × [a, b] such that, for all t > 0,

‖Rt(u0, h+ ζ)‖H2 + ‖Rt(û0, h)‖H2 6 C1,(1.7)
‖Rt(u0, h+ ζ)−Rt(û0, h)‖L1 6 C2e

−αt‖u0 − û0‖L1 ,(1.8)

where C1, C2, and α are positive numbers not depending on u0, û0, and t. In this
case, using the interpolation inequality (see Section 15.1 in [BIN79])

(1.9) ‖v‖H1 6 C3‖v‖2/5L1 ‖v‖3/5H2 , v ∈ H2(I),

we can write

(1.10) ‖Rt(u0, h+ ζ)−Rt(û0, h)‖H1 6 C4e
−γt‖u0 − û0‖2/5L1 ,

where γ = 2α/5, and C4 > 0 does not depend on u0, û0, and t. This implies the
required inequality for the first term on the left-hand side of (1.1). An estimate for
the second term will follow from the construction; see relations (1.16) and (1.17)
below.

Step C: Main auxiliary result. — Let us take two initial data v0, û0 ∈ BV (R) and
consider the difference w between the corresponding solutions of Problem (0.1)–(0.3)
with ζ ≡ 0; that is, w = v − û, where v(t) = Rt(v0, h) and û(t) = Rt(û0, h). It is
straightforward to check that w satisfies the linear equation

(1.11) ∂tw − ν∂2xw + ∂x
(
a(t, x)w

)
= 0,

where a = 1
2 (v + û). The following proposition is the key point of our construction.
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620 A. Shirikyan

Proposition 1.3. — Let positive numbers ν, T , ρ, and s < 1 be fixed, and let a(t, x)

be a function such that

(1.12) ‖a‖Cs(JT×I) + ‖∂xa‖L∞(JT×I) 6 ρ.

Then, for any closed interval I ′ ⊂ I, there are positive numbers ε and q < 1, depending
only on ν, T , ρ, s, and I ′, such that any solution w ∈XT of Equation (1.11) satisfies
one of the inequalities

(1.13) ‖w(T )‖L1 6 q ‖w(0)‖L1 or ‖w(T )‖L1(I′) > ε ‖w(0)‖L1 .

This result can be described informally as follows. Let us consider the difference
w = v − û between two solutions of (0.1), (0.2). Then two cases are possible: either
the L1-norm of w at time t = T is at least q−1 times smaller than at t = 0, so that the
distance between the two solutions decreases without any control, or the L1-norm of
the restriction of w(T ) to the subinterval I ′ is minorised by ‖w(0)‖L1 . In both cases,
we can modify w in the neighbourhood of I ′ so that the function u = v + w is a
solution to Problem (0.1), (0.2) with a control ζ supported by [a, b], and the L1-norm
of the difference at t = T is at least θ−1 times smaller than the initial norm, where
θ < 1 is a number. We now describe this idea in more detail.

Step D: Description of the controlled solution. — Let us fix a closed interval I ′ ⊂ (a, b)

and choose two functions χ0 ∈ C∞(I) and β ∈ C∞(R) such that

0 6 χ0(x) 6 1 for x ∈ I, χ0(x) = 0 for x ∈ I ′, χ0(x) = 1 for x ∈ I r [a, b],(1.14)
0 6 β(t) 6 1 for t ∈ R, β(t) = 0 for t 6 1

2 , β(t) = 1 for t > 1.(1.15)

Let us set χ(t, x) = 1 − β(t)(1 − χ0(x)); see Figure 1.1. Given u0, û0 ∈ BV (R),
we denote by û(t, x) the reference trajectory and define a controlled solution u(t, x)

of (0.1) consecutively on intervals [k, k + 1] with k ∈ Z+ by the following rules:
(a) if u(t) is constructed on [0, k], then we denote by v(t, x) the solution issued

from u(k) for Problem (0.1), (0.2) on [k, k + 1] with ζ ≡ 0;

t

x0 a b

χ = 1

χ = 0

I ′

0.5

1

1

Figure 1.1. The function χ decreases to zero in I ′
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(b) for any odd integer k ∈ Z+, we set

(1.16) u(t, x) = v(t, x) for (t, x) ∈ [k, k + 1]× I;

(c) for any even integer k ∈ Z+, we set

(1.17) u(t, x) = û(t, x) + χ(t− k, x)
(
v(t, x)− û(t, x)

)
for (t, x) ∈ [k, k + 1]× I.

It is not difficult to check that u(t, x) is a solution of Problem (0.1), (0.2), in which ζ
is supported by R+× [a, b]. Moreover, it will follow from Proposition 1.3 that, for any
even integer k > 0, we have

(1.18) ‖u(k + 1)− û(k + 1)‖L1 6 θ ‖u(k)− û(k)‖L1 ,

where θ < 1 does not depend on û0, u0, and k. On the other hand, the contraction of
the L1-norm between solutions of (0.1) implies that

(1.19) ‖u(t)− û(t)‖L1 6 ‖u([t])− û([t])‖L1 for any t > 0,

where [t] stands for the largest integer not exceeding t. These two inequalities
give (1.8). The uniform bound (1.7) for the H2-norm will follow from regularity of
solutions for Problem (0.1), (0.2).

2. Preliminaries on the Burgers equation

In this section, we establish some properties of the Burgers equation. They are
well known, and their proofs can be found in the literature in more complicated
situations. However, for the reader’s convenience, we outline some of those proofs in
the appendix to make the presentation self-contained. In this section, when talking
about Equation (0.1), we always assume that ζ ≡ 0.

2.1. Maximum principle and regularity of solutions. — In this subsection, we dis-
cuss the well-posedness of the initial-boundary value problem for the Burgers equa-
tion. This type of results are very well known, and we only outline their proofs in the
appendix. Recall that V = H1

0∩H2, and the space X was defined in the Introduction.

Proposition 2.1. — Let u0 ∈ L2(I) and h ∈ L1
loc(R+, L

2(I)). Then Problem (0.1)–
(0.3) has a unique solution u ∈X . Moreover, the following two properties hold.

– L∞ bound. If h ∈ L∞loc(R+ × I) and u0 ∈ L∞(I), then u ∈ L∞loc(R+ × I).
– Regularity. If, in addition, u0 ∈ V and h ∈ H1

loc(R+ × I), then

(2.1) u ∈ L2
loc(R+, H

3) ∩H1
loc(R+, H

1
0 ) ∩H2

loc(R+, H
−1).

Let us note that, if u0 is only in the space L2(I), then the conclusions about the L∞
bound and the regularity remain valid on the half-line Rτ := [τ,+∞) for any τ > 0.
To see this, it suffices to remark that any solution u ∈ X of (0.1), (0.2) satisfies the
inclusion u(τ) ∈ H1

0 ∩H2 for almost every τ > 0. For any such τ > 0, one can apply
Proposition 2.1 to the half-line Rτ and conclude that the inclusions mentioned there
are true with R+ replaced by Rτ .
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2.2. Comparison principle. — The Burgers equation possesses a very strong dissipa-
tion property due to the nonlinear term. To state and prove the corresponding result,
we need the concept of sub- and super-solution for Equation (0.1) with ζ ≡ 0. Let us
fix T > 0 and, given an interval I ′ ⊂ I, define(5)

XT (I ′) = L2(JT , H
1(I ′)) ∩H1(JT , H

−1(I ′)).

Definition 2.2. — A function u ∈XT (I ′) is called a super-solution for (0.1) if

(2.2)
∫ T

0

(
(∂tu, ϕ) + (ν∂xu− 1

2u
2, ∂xϕ)

)
dt >

∫ T

0

(h, ϕ)dt,

where ϕ ∈ L∞(JT , L
2(I ′)) ∩ L2(JT , H

1
0 (I ′)) is an arbitrary non-negative function,

and (· , ·) denotes the scalar product in L2(I ′). The concept of a sub-solution is defined
similarly, replacing > by 6.

A proof of the following result can be found in Section 2.2 of [AL83] for a more
general problem; for the reader’s convenience, we outline it in the appendix.

Proposition 2.3. — Let h ∈ L1(JT , L
2), and let functions u+ and u− belonging

to XT (I ′) be, respectively, super- and sub-solutions for (0.1) such that (6)

(2.3) u+(t, x) > u−(t, x) for t = 0, x ∈ I ′ and t ∈ [0, T ], x ∈ ∂I ′,

where the inequality holds almost everywhere. Then, for any t ∈ JT , we have

(2.4) u+(t, x) > u−(t, x) for a.e. x ∈ I ′.

We now derive an a priori estimate for solutions of (0.1), (0.2).

Corollary 2.4. — Let u0 ∈ L∞ and h ∈ L∞(JT × I) for some T > 0. Then the
solution of Problem (0.1)–(0.3) with ζ ≡ 0 satisfies the inequality

(2.5) ‖u(T, ·)‖L∞ 6 C,

where C > 0 is a number continuously depending only on ‖h‖L∞ and T .

Proof. — We follow the argument used in the proof of Lemma 9 in [Cor07b, §2.1].
Given ε > 0 and u0 ∈ L∞(I), we set

Bε = 1 + ‖h‖1/3L∞(T + ε)2/3, L = ‖u0‖L∞ .

It is a matter of a simple calculation to check that the functions

u+ε (t, x) =
Bε(Bε + x) + Lε

t+ ε
, u−ε (t, x) = −Bε(Bε − x) + Lε

t+ ε

are, respectively, super- and sub-solutions for (0.1) on JT × I such that

u+ε (t, x) > u(t, x) > u−ε (t, x) for t = 0, x ∈ I and t ∈ [0, T ], x = 0 or 1.

(5)Note that, in contrast to XT , we do not require the elements of XT (I′) to vanish on ∂I′.
(6)It is not difficult to see that the restrictions of the elements of XT (I′) to the straight lines

t = t0 and x = x0 are well defined.
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Applying Proposition 2.3 with I ′ = I, we conclude that

u+ε (T, x) > u(T, x) > u−ε (T, x) for a.e. x ∈ I.

Passing to the limit as ε→ 0+, we arrive at (2.5) with C = T−1B0(B0 + 1). �

2.3. Contraction of the L1-norm of the difference of solutions. — It is a well
known fact that the resolving operator for (0.1), (0.2) regarded as a nonlinear map-
ping in the space L2(I) is locally Lipschitz. The following result shows that it is a
contraction for the norm of L1(I).

Proposition 2.5. — Let u, v ∈X be two solutions of Equation (0.1), in which ζ ≡ 0

and h ∈ L1
loc(R+, L

2). Then

(2.6) ‖u(t)− v(t)‖L1 6 ‖u(s)− v(s)‖L1 for any t > s > 0.

Inequality (2.6) follows from the maximum principle for linear parabolic PDE’s,
and more general results can be found in Sections 3.2 and 3.3 of [Hör97]. A simple
proof of Proposition 2.5 is given in Section 4.3.

2.4. Harnack inequality. — Let us consider the linear homogeneous equation (1.11).
The following result is a particular case of the Harnack inequality established in [KS80,
Th. 1.1] (see also Section IV.2 in [Kry87]).

Proposition 2.6. — Let a closed interval K ⊂ I and positive numbers ν and T be
fixed. Then, for any ρ > 0 and T ′ ∈ (0, T ), one can find C > 0 such that the following
property holds: if a(t, x) satisfies the inequality

(2.7) ‖a‖L∞(JT×I) + ‖∂xa‖L∞(JT×I) 6 ρ,

then for any non-negative solution w ∈ L2(JT , H
3 ∩H1

0 ) ∩H1(JT , H
1
0 ) of (1.11) we

have

(2.8) sup
x∈K

w(T ′, x) 6 C inf
x∈K

w(T, x).

3. Proof of the main result

In this section, we prove Theorem 1.1. Its scheme, together with some details, was
presented in Section 1, and we now establish the claims that were not proved there.

3.1. Reduction to smooth initial data. — Let us prove Proposition 1.2. Fix arbi-
trary numbers T1 < T2 in the interval (0, T ). By Proposition 2.1 and the remark
following it, for any τ > 0 we have

(3.1) u ∈ L∞(Jτ,T × I) ∩ L2(Jτ,T , H
3) ∩H1(Jτ,T , H

1
0 ) ∩H2(Jτ,T , H

−1),

where Jτ,T = [τ, T ]. Applying Corollary 2.4, we see that

(3.2) ‖u(t, ·)‖L∞ 6 C for T1 6 t 6 T .

Furthermore, it follows from (3.1) that u(t) is a continuous function of t ∈ (0, T ] with
range in V . Thus, it remains to establish inequality (1.6) with a universal constant R.
The proof of this fact can be carried out by a standard argument based on multipliers

J.É.P. — M., 2017, tome 4



624 A. Shirikyan

technique (e.g., see the proof of Theorem 2 in [BV92, §I.6] dealing with the 2D Navier–
Stokes system). Therefore, we confine ourselves to outlining the main steps. Until the
end of this subsection, we deal with Equation (0.1) in which ζ ≡ 0 and denote by Ci
unessential positive numbers not depending u.

Step 1: MeanH1-norm. — Taking the scalar product of (0.1) with 2u and performing
usual transformations, we derive

∂t‖u‖2 + 2ν‖∂xu‖2 = 2(h, u) 6 ν‖∂xu‖2 + ν−1‖h‖2.

Integrating in time and using (3.2) with t = T1, we obtain

(3.3)
∫ T

T1

‖∂xu‖2 dt 6 ν−1‖u(T1)‖2 + ν−2
∫ T

T1

‖h‖2 dt 6 C1.

Step 2: H1-norm and mean H2-norm. — Let us take the scalar product of (0.1) with
−2(t− T1)∂2xu:

∂t
(
(t− T1)‖∂xu‖2

)
− ‖∂xu‖2 + 2ν(t− T1)‖∂2xu‖2 = 2(t− T1)(u∂xu− h, ∂2xu)

6 2(t− T1)
(
‖u‖L∞‖∂xu‖+ ‖h‖

)
‖∂2xu‖.

Integrating in time and using (3.2) and (3.3), we obtain

(3.4) ‖u(t)‖H1 +

∫ t

T2

‖u(r)‖2H2dr 6 C2 for T2 6 t 6 T .

Using (0.1), we also derive the following estimate for ∂tu:

(3.5)
∫ T

T2

‖∂tu‖2 dt 6 C3.

Step 3:L2-norm of the time derivative. — Taking the time derivative of (0.1), we obtain
the following equation for v = ∂tu:

∂tv − ν∂2xv + v∂xu+ u∂xv = ∂th.

Taking the scalar product with 2(t− T2)v, we derive

∂t
(
(t− T2)‖v‖2

)
− ‖v‖2 + 2ν(t− T2)‖∂xv‖2 = 2(t− T2)(∂th− u∂xv − v∂xu, v)

6 2(t− T2)
(
‖∂th‖+ 3‖u‖L∞‖∂xv‖

)
‖v‖.

Integrating in time and using (3.2) and (3.5), we obtain

(3.6) ‖v(T )‖ 6 C4.

Step 4: H2-norm. — We now rewrite (0.1) in the form

(3.7) ν∂2xu = f(t) := v + u∂xu− h.

In view of (3.4) and (3.6), we have ‖f(T )‖ 6 C5. Combining this with (3.7), we arrive
at the required inequality (1.6).
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Remark 3.1. — The argument given above shows that, under the hypotheses of
Proposition 1.2, if u0 ∈ BV (ρ), then ‖Rt(u0, h)‖H2 6 R for all t > 0, where R > 0 de-
pends only on h, ν, and ρ. Moreover, similar calculations enable one to prove that, for
any t > 0, the resolving operator Rt(u0, h) regarded as a function of u0 is uniformly
Lipschitz continuous from any ball of L2 to H2, and the corresponding Lipschitz con-
stant can be chosen to be the same for T−1 6 t 6 T , where T > 1 is an arbitrary
number.

3.2. Proof of the main auxiliary result. — In this subsection, we prove Proposi-
tion 1.3. In doing so, we fix parameter ν > 0 and do not follow the dependence of
various quantities on it.

Step 1. — We begin with the case of non-negative solutions. Namely, we prove that,
given q ∈ (0, 1), one can find δ = δ(I ′, T, q, ρ) > 0 such that, if w ∈ XT is a non-
negative solution of (1.11), then either the first inequality in (1.13) holds, or

(3.8) inf
x∈I′

w(T, x) > δ‖w(0)‖L1 .

To this end, we shall need the following lemma, established at the end of this subsec-
tion.

Lemma 3.2. — For any 0 < τ < T and ρ > 0, there is M > 0 such that, if w ∈ XT

is a solution of Equation (1.11) with a function a(t, x) satisfying (1.12), then

(3.9) sup
(t,x)∈[τ,T ]×I

|w(t, x)| 6M‖w(0)‖L1 .

In view of linearity, we can assume without loss of generality that ‖w(0)‖L1 = 1.
Let us choose a closed interval K ⊂ I containing I ′ such that

(3.10) |I rK| 6 q

2M
,

where |Γ| denotes the Lebesgue measure of a set Γ ⊂ R, and M > 0 is the constant
in (3.9) with τ = 2T/3. By Proposition 2.1 and the remark following it, the function w
satisfies the hypotheses of Proposition 2.6. Therefore, by the Harnack inequality (2.8),
we have

(3.11) sup
x∈K

w(2T/3, x) 6 C inf
x∈K

w(T, x),

where C > 0 depends only on T , K, and ρ. Let us set δ = q/2C|K| and suppose
that (3.8) is not satisfied. In this case, using (3.9)–(3.11) and the contraction of the
L1-norm of solutions for (1.11) (see Remark 4.2), we derive

‖w(T )‖L1 6 ‖w(2T/3)‖L1 =

∫
IrK

w(2T/3, x)dx+

∫
K

w(2T/3, x)dx

6M |I rK|+ Cδ|K| 6 q.

This is the first inequality in (1.13) with ‖w(0)‖L1 = 1.
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Step 2. — We now consider the case of arbitrary solutions w ∈ XT , assuming again
that ‖w(0)‖L1 = 1. Let us denote by w+

0 and w−0 the positive and negative parts of
w0 := w(0), and let w+ and w− be the solutions of (1.11) issued from w+

0 and w−0 ,
respectively. Thus, we have

w0 = w+
0 − w

−
0 , ‖w+

0 ‖L1 + ‖w−0 ‖L1 = 1, w = w+ − w−.

Let us set r := ‖w+
0 ‖L1 and assume without loss of generality that r > 1/2. In view

of the maximum principle for linear parabolic equations (see Section 2 in [Lan98,
Chap. 3]), the functions w+ and w− are non-negative, and therefore the property
established in Step 1 is true for them. If ‖w+(T )‖L1 6 r/2, then the contraction of
the L1-norm of solutions of (1.11) implies that

‖w(T )‖L1 6 ‖w+(T )‖L1 + ‖w−(T )‖L1 6 r/2 + (1− r) 6 3/4.

This coincides with the first inequality in (1.13) with ‖w(0)‖L1 = 1.
Suppose now that ‖w+(T )‖L1 > r/2. Using the property of Step 1 with q = 1/2,

we find δ1 > 0 such that

(3.12) inf
x∈Q

w+(T, x) > δ1r.

Set ε = 1
4δ1|I

′| and assume that ‖w(T )‖L1(I′) < ε (in the opposite case, the second
inequality in (1.13) holds), so that

‖w+(T )‖L1(I′) − ‖w−(T )‖L1(I′) < ε.

It follows that

‖w−(T )‖L1 > ‖w−(T )‖L1(I′) > ‖w+(T )‖L1(I′) − ε > δ1r|I ′| −
δ1
4
|I ′| > ε.

By the L1-contraction for w−, we see that ‖w−0 ‖L1 = 1 − r > ε. Repeating the
argument applied above to w+, we can prove that if

(3.13) ‖w−(T )‖L1 6
1

2
(1− r),

then ‖w(T )‖L1 6 1− ε/2, so that the first inequality in (1.13) holds with q = 1− ε/2.
Thus, it remains to consider the case when (3.13) does not hold. Applying the property
of Step 1 to w−, we find δ2 > 0 such that

(3.14) inf
x∈I′

w−(T, x) > δ2(1− r).

Since 1/2 6 r 6 1 − ε, the right-hand sides in (3.12) and (3.14) are minorised by
θ = min{ 12δ1, εδ2}. Denoting by χI′ the indicator function of I ′, we write

‖w(T )‖L1 =

∫
I

|w+(T, x)− w−(T, x)|dx

=

∫
I

∣∣(w+(T, x)− θχI′(x))− (w−(T, x)− θχI′(x))
∣∣dx

6
∫
I

(
w+(T, x)− θχI′(x)

)
dx+

∫
I

(
w−(T, x)− θχI′(x))

)
dx

= ‖w+(T )‖L1 + ‖w−(T )‖L1 − 2θ|I ′|.
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In view of the L1-contraction for w+ and w−, the right-hand side of this inequality
does not exceed

‖w+
0 ‖L1 + ‖w−0 ‖L1 − 2θ|I ′| = 1− 2θ|I ′|.

Setting q = max{3/4, 1−ε/2, 1−2θ|I ′|}, we conclude that one of the inequalities (1.13)
holds for w. Thus, to complete the proof of Proposition 1.3, it only remains to establish
Lemma 3.2.

Proof of Lemma 3.2. — By the maximum principle and regularity of solutions for lin-
ear parabolic equations, it suffices to prove that

(3.15) ‖w(τ)‖L∞(I) 6 C1‖w(0)‖L1(I),

where C1 > 0 does not depend on w. To this end, along with (1.11), let us consider
the dual equation

(3.16) ∂tz + ν∂2xz + a(t, x)∂xz = 0,

supplemented with the initial condition

(3.17) z(T, x) = z0(x).

Let us denote by G(t, x, y) the Green function of the Dirichlet problem for (3.16),
(3.17). By Theorem 16.3 in [LSU68, Chap. IV], one can find positive numbers C2

and C3 depending only on ρ, s, and T such that

|G(t, x, y)| 6 C2(T − t)−1/2 exp
(
−C3(x− y)2/(T − t)

)
for x, y ∈ I, t ∈ [0, T ).

It follows that, for z0 ∈ L2(I), the solution z ∈XT of Problem (3.16), (3.17) satisfies
the inequality

(3.18) ‖z(0)‖L∞ 6 C4‖z0‖L1 ,

where C4 > 0 does not depend on z0.
Now let w ∈ XT be a solution of (1.11). Taking any z0 ∈ L2(I) and denoting

by z ∈XT the solution of (3.16), (3.17), we write

(3.19) d
dt
(
w(t), z(t)

)
= (∂tw, z) + (w, ∂tz) = 0.

Integrating in time and using (3.18), we obtain∫
I

w(τ)z0 dx =

∫
I

w(0)z(0) dx 6 ‖w(0)‖L1‖z(0)‖L∞ 6 C4‖w(0)‖L1‖z0‖L1 .

Taking the supremum over all z0 ∈ L2 with ‖z0‖L1 6 1, we arrive at the required
inequality (3.15). �

3.3. Completion of the proof. — We need to prove inequalities (1.7) and (1.8), as
well as the piecewise continuity of ζ : R+ → H1(I) and the estimate

(3.20) ‖ζ(t)‖H1 6 C1e
−γt min

(
‖u0 − û0‖2/5L1 , 1

)
, t > 0.
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Proof of (1.7). — The estimate for û(t) = Rt(û0, h) follows from Remark 3.1. Setting
tk = 2k, we now use induction on k > 0 to prove that u(t) = Rt(u0, h + ζ) is
bounded on [tk, tk+1] by a universal constant and that u(tk+1) ∈ BV (R), provided
that u(tk) ∈ BV (R). Indeed, it follows from (1.17) that

sup
tk6t6sk

‖u(t)‖H2 6 C2 sup
tk6t6sk

(
‖û(t)‖H2 + ‖v(t)‖H2

)
,

where sk = 2k+ 1. In view of Remark 3.1, the right-hand side of this inequality does
not exceed a constant C3(R). Furthermore, recalling (1.16) and using Remark 3.1 and
inequality (1.6) with T = 1, we see that

sup
sk6t6tk+1

‖u(t)‖H2 6 C3(R), ‖u(tk+1)‖H2 6 R.

This completes the induction step.

Proof of (1.8). — In view of (1.19), it suffices to establish (1.18) for any even integer
k > 0. It follows from (1.17), (1.15), and the definition of χ that

(3.21) ‖u(k + 1)− û(k + 1)‖L1 =

∫
I

χ0(x)|v(k + 1)− û(k + 1)|dx.

We know that the norms of the functions v and û are bounded in L∞([k, k + 1], H2)

by a constant depending only on R. Since they satisfy Equation (0.1) with ζ ≡ 0, we
see that ∂tv and ∂tû are bounded in L∞([k, k+ 1], L2) by a number depending on R.
By interpolation and the continuous embedding H1(I) ⊂ C1/2(I), we see that

‖v‖C1/2([k,k+1]×I) + ‖û‖C1/2([k,k+1]×I) 6 C4(R).

Since the difference w = v−û satisfies Equation (1.11) with a = 1
2 (v + û), we conclude

that Proposition 1.3 is applicable to w. Thus, we have one of the inequalities (1.13).
If the first of them is true, then it follows from (3.21) that (1.18) holds with θ = q. If
the second inequality is true, then using (3.21), the contraction of the L1-norm for w,
and relations (1.14), we derive

‖u(k + 1)− û(k + 1)‖L1 6 ‖w(k + 1)‖L1 − ‖w(k + 1)‖L1(I′) 6 (1− ε)‖w(0)‖L1 ,

and, hence, we obtain (1.18) with θ = 1− ε.

Proof of the properties of ζ. — In view of (1.16), on any interval [k, k + 1] with
odd k > 0, the function u satisfies (0.1) with ζ ≡ 0, and the required properties
of ζ are trivial. Let us consider the case of an even k > 0. A direct calculation show
that

ζ(t, x) = ∂tu− ν∂2xu+ u∂xu− h

= −
(
χk(1− χk)w + 2ν∂xχk

)
∂xw +

(
∂tχk − ν∂2xχk + û∂xχk + χkw∂xχk

)
w,

where χk(t, x) = χ(t − k, x). Since χ(t, x) = 1 for x /∈ [a, b] and for t 6 1
2 , we have

supp ζ ⊂ [k + 1
2 , k + 1]× [a, b]. By Proposition 2.1, v and û are V -valued continuous
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functions, whence we conclude that ζ is continuous in time with range in H1
0 . More-

over, since the H2-norms of v and û are bounded by a number depending only on R,
for t ∈ [k, k + 1] we have

(3.22) ‖ζ(t)‖H1 6 C5(R)I[k+1/2,k](t)‖w(t)‖H2 6 C6(R)‖v(k)− û(k)‖H1 ,

where I[k+1/2,k](t) is the indicator function of the interval [k + 1/2, k], and we used
the fact that the resolving operator for the Burgers equation is uniformly Lipschitz
continuous from any ball of H1

0 to H2 for positive times; see Remark 3.1. Since
v(k) − û(k) = u(k) − û(k), it follows from (1.8) and (3.22) that (3.20) holds. This
completes the proof of Theorem 1.1.

4. Appendix: proofs of some auxiliary assertions

4.1. Proof of Proposition 2.1. — The existence and uniqueness of a solution u ∈X

is well known in more complicated situations; see Chapter 15 in [Tay97]. We thus
confine ourselves to outlining the proofs of the L∞ bound and regularity.

The solution u(t, x) of (0.1), (0.2) can be regarded as the solution of the linear
parabolic equation

(4.1) ∂tu− ν∂2xu+ b(t, x)∂xu = h(t, x),

where b ∈ L2
loc(R+, H

1
0 ) coincides with u. If b, h, and u0 were regular functions, then

the classical maximum principle would imply that (see Section 2 in [Lan98, Chap. 3])

(4.2) |u(t, x)| 6 ‖u0‖L∞ + t ‖h‖L∞(Jt×I) for all (t, x) ∈ R+ × I.

To deal with the general case, it suffices to approximate u0 and h by smooth functions
and to pass to the (weak) limit in inequality (4.2) written for approximate solutions.
This argument shows that the inequality in (4.2) is valid almost everywhere for any
solution u.

We now turn to the regularity of solutions. The function u ∈X is the solution of
the linear equation

∂tu− ν∂2xu = f(t, x),

where the right-hand side f = h−u∂xu belongs to L2
loc(R+, L

2). By standard estimates
for the heat equation, we see that

(4.3) u ∈ L2
loc(R+, H

2) ∩H1
loc(R+, L

2).

Differentiating (0.1) with respect to time and setting v = ∂tu, we see that v satisfies
the equations

(4.4) ∂tv − ν∂2xv + v∂xu+ u∂xv = ∂th, v(0) = v0,

where v0 = h(0) − u0∂xu0 + ν∂2xu0 ∈ L2. Taking the scalar product of the first
equation in (4.4) with v and carrying out some simple transformations, we conclude
that v ∈X . On the other hand, it follows from (0.1) that

∂2xu = v + u∂xu− h ∈ L2
loc(R+, H

1),
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whence we see that u ∈ L2
loc(R+, H

3). Combining this with the inclusion ∂tu ∈ X ,
we obtain (2.1).

4.2. Proof of Proposition 2.3. — Without loss of generality, we can assume that
t = T . Define

u = u− − u+, ψδ(z) = 1 ∧
(
(z/δ) ∨ 0

)
,

where δ > 0 is a small parameter, and a∧b (a∨b) denotes the minimum (respectively,
maximum) of the real numbers a and b. In view of inequality (2.2) and its analogue
for sub-solutions (in which (·, ·) denotes the scalar product in L2(I ′)), the function u
is non-positive almost everywhere for t = 0 and satisfies the inequality

(4.5)
∫ T

0

(∂tu, ϕ)dt+ ν

∫ T

0

(∂xu, ∂xϕ)dt− 1

2

∫ T

0

(w, ∂xϕ)dt 6 0,

where w = (u−)2 − (u+)2, and ϕ ∈ L∞(JT , L
2(I ′)) ∩ L2(JT , H

1
0 (I ′)) is an arbitrary

non-negative function. Let us take ϕ(t, x) = ψδ(u(t, x)) in (4.5). It is easy to check
that ∫ T

0

(∂tu, ϕ)dt =

∫
I′

Ψδ(u(T ))dx,∫ T

0

(∂xu, ∂xϕ)dt =

∫ T

0

∫
I′
|∂xu|2ψ′δ(u)dxdt > 0,∣∣∣∣∫ T

0

(w, ∂xϕ)dt
∣∣∣∣ 6 ∫ T

0

∫
I′
|u| |u+ + u−| |∂xu|ψ′δ(u)dxdt

6
∫ T

0

∫
I′

(
ν|∂xu|2 +

1

4ν
|u|2 |u+ + u−|2

)
ψ′δ(u)dxdt,

where Ψδ(z) =
∫ z
0
ψδ(r)dr. Substituting these relations into (4.5), we derive∫

I′
Ψδ(u(T ))dx 6 1

8ν

∫ T

0

∫
I′
|u|2 |u+ + u−|2ψ′δ(u)dx dt

6
δ

8ν

∫ T

0

∫
I′
|u+ + u−|2 dxdt 6 δ

8ν

∥∥u+ + u−
∥∥2
L2(JT×I)

,

where we used the fact that 0 6 u 6 δ on the support of ψ′δ(u). Passing to the limit
as δ → 0+ and using the Fatou lemma, we derive∫

I′

(
u(T ) ∨ 0

)
dx = 0.

This inequality implies that the Lebesgue measure of the set of points x ∈ I ′ for which
u(T, x) > 0 is equal to zero. We thus obtain (2.4).

4.3. Proof of Proposition 2.5. — We apply an argument similar to that used in the
proof of Lemma 3.2; see Section 3.2. Let us note that the difference w = u− v ∈ X

satisfies the linear equation (1.11), in which a = 1
2 (u + v). Along with (1.11), let

us consider the dual equation (3.16). The following result is a particular case of the
classical maximum principle. Its proof is given in Section III.2 of [Lan98] for regular
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functions a(t, x) and can be obtained by a simple approximation argument in the
general case.

Lemma 4.1. — Let a ∈ L2(JT , H
1) for some T > 0. Then, for any z0 ∈ L2(I),

Problem (3.16), (3.17) has a unique solution z ∈ XT . Moreover, if z0 ∈ L∞(I),
then z(t) belongs to L∞(I) for any t ∈ JT and satisfies the inequality

(4.6) ‖z(t)‖L∞ 6 ‖z0‖L∞ for t ∈ JT .

To prove (2.6), we fix t = T and assume without loss of generality that s = 0. By
duality, it suffices to show that, for any z0 ∈ L∞(I) with norm ‖z0‖L∞ 6 1, we have

(4.7)
∫
I

w(T )z0 dx 6 ‖w(0)‖L1 .

Let z ∈XT be the solution of (3.16), (3.17). Such solution exists in view of Lemma 4.1
and the inclusion a ∈ L2(JT , H

1
0 ), which is ensured by the regularity hypothesis for u

and v. It follows from (1.11) and (3.16) that relation (3.19) holds. Integrating it in
time, we see that∫

I

w(T )z0 dx =

∫
I

w(0)z(0) dx 6 ‖w(0)‖L1‖z(0)‖L∞ .

Using (4.6) with t = 0, we arrive at the required inequality (4.7).

Remark 4.2. — We have proved in fact that if w ∈ XT is a solution of the linear
equation (1.11), in which the coefficient a belongs L2(JT , H

1) , then ‖w(t)‖L1 6
‖w(s)‖L1 for 0 6 s 6 t 6 T .
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