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PI CONTROLLERS FOR

THE GENERAL SAINT-VENANT EQUATIONS

by Amaury Hayat

Abstract. —We study the exponential stability in the H2 norm of the nonlinear Saint-Venant
(or shallow water) equations with arbitrary friction and slope using a single proportional-
integral (PI) control at one end of the channel. Using a good but simple Lyapunov function
we find a simple and explicit condition on the gain of the PI control to ensure the exponential
stability of any steady-states. This condition is independent of the slope, the friction coefficient,
the length of the river, the inflow disturbance and, more surprisingly, can be made independent
of the steady-state considered. When the inflow disturbance is time-dependent and no steady-
state exist, we still have the input-to-state stability (ISS) of the system, and we show that
changing slightly the PI control enables to recover the exponential stability of slowly varying
trajectories.

Résumé (Contrôles PI pour les équations de Saint-Venant générales). — Nous étudions la stabi-
lité exponentielle en norme H2 des équations de Saint-Venant non-linéaires avec un frottement
arbitraire et une pente. Le système est régulé avec un unique contrôle proportionnel-intégral
(PI) à une extrémité du canal. En utilisant une fonction de Lyapunov adéquate, nous trouvons
une condition simple et explicite sur le contrôle PI pour assurer la stabilité exponentielle de tous
les états stationnaires. Cette condition est indépendante de la pente, du coefficient de friction,
de la longueur de la rivière, ou encore de la perturbation du débit entrant. Plus surprenant :
elle peut être rendue indépendante de l’état stationnaire considéré. Lorsque la perturbation du
débit entrant dépend du temps et qu’il n’existe pas d’état stationnaire, nous pouvons quand
même montrer l’« input-to-state stability » (ISS) du système. Par ailleurs, une légère modifi-
cation du contrôle PI permet de retrouver la stabilité exponentielle des trajectoires à variation
lente.
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Introduction

Deduced in 1871, the Saint-Venant equations [28] (or 1-D shallow water equations)
are among the most famous equations in fluid dynamics and have been investigated
in hundreds of studies. Although being quite simple, their richness has made them
become a major tool in practice for many industrial goals, the most famous being
probably the regulation of navigable rivers. They are the ground model for such
purpose in France and Belgium. Regulation of rivers is a major issue, for navigation,
freight transport, renewable energy production, but also for safety reasons, especially
as several nuclear plants all around the world are implanted close to rivers. For these
reasons, the stability of the steady-states of the Saint-Venant equations has been, and
is still, a major issue.

Many results were obtained in the last decades. In 1999, the robust stability of
the homogeneous linearized Saint-Venant equations was shown using a Lyapunov
approach and proportional feedback controllers [11]. Later, the stability of the ho-
mogeneous nonlinear Saint-Venant equations was achieved, still using proportional
feedback controllers. In 2008, through a semi-group approach [17], the stability of
the inhomogeneous nonlinear Saint-Venant equation was shown for sufficiently small
friction and slope (or equivalently sufficiently small canal), and these results were suc-
cessfully applied to real data sets from the Sambre river in Belgium. More recently,
in [6] the authors have given sufficient conditions to stabilize the nonlinear Saint-
Venant equations with arbitrary friction for the H2 norm but no slope using again
proportional feedback controllers, and in [21] with both arbitrary friction and slope.
This last result is proved by exhibiting a Lyapunov function that has a simple form
close to a local entropy for the nonlinear inhomogeneous Saint-Venant equations.

It is worth mentioning that other stability results have also been obtained in less
classical cases or with less classical feedback laws. For instance, in [8] was shown
the rapid stabilization of the homogeneous nonlinear Saint-Venant equations when a
shock (e.g. a hydraulic jump) occurs in the target steady-state. Such a shock indu-
ces new difficulties and the presence of shocks can limit in general the controllabil-
ity and the stability in weaker norms of hyperbolic systems with boundary controls
[1, 10]. Also, several results (e.g. [15]) were obtained using a backstepping approach, a
very powerful method based on a Volterra transformation, developed mainly for PDE
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PI controllers for the general Saint-Venant equations 1433

in [24], and generalized recently with a Fredholm transformation for hyperbolic sys-
tems [13, 36, 35]. One may look at [21] for a more detailed survey about this method
and its use for the Saint-Venant equations. However, backstepping gives rise to non-
local and non-static feedback laws that are likely to be harder to implement, and, to
our knowledge, have not been implemented yet.

Most of the previous results were performed with static proportional feedback
controllers. When it comes to industrial applications, however, the proportional inte-
gral (PI) control is by far the most popular regulator. It is used for instance for the
regulation of the Sambre and Meuse river in Belgium [5, Chap. 8]. The reason behind
such preference is the robustness of the PI control with off-set errors [2, Chap. 11.3].
An example can be found in [16] where the authors show the interest of adding an
integral term to a proportional control on a linear and homogeneous system, and
exhibit coherent experimental result.

For these reasons, the PI controller has fed a wide literature, at least when used
on finite dimensional systems. However, despite their indisputable practical interest,
PI controllers for nonlinear infinite dimensional systems have shown hard to han-
dle mathematically and even studying simple systems give sometimes rise to lengthy
proofs with relatively sophisticated tools [12]. While the behaviour and the stability
of linearized equations with PI controller has been well understood in the past, partly
thanks to spectral tools like the spectral mapping theorem (e.g. [26, 25] for hyperbolic
systems), no such tool exists for nonlinear systems, and the stability of the nonlinear
Saint-Venant equations has remained a challenge until today. Among the existing lin-
ear results using a spectral approach, one can refer to [33, 34] where the authors find a
sufficient condition for the stabilization of the linearized inhomogeneous Saint-Venant
equations. Necessary and sufficient conditions for the linearized homogeneous Saint-
Venant equations are given in [5, §§2.2.4.1, 3.4.4]. In [14] the authors find a necessary
and sufficient condition for a linear scalar equation and show the difficulty of finding
good conditions for the nonlinear equation, while in [9] the authors deal with 2×2 sys-
tems. Among the existing nonlinear results one can refer to [30] in the case where the
operator without PI control generates an exponentially stable semi-group, [31] where
the authors find a sufficient condition for the nonlinear homogeneous Saint-Venant
equations, [5, 2.2.4.2] where the authors find a necessary and sufficient condition also
for the nonlinear homogeneous Saint-Venant equations, while [5, §§5.4.4, 5.5] and [4]
give a sufficient condition for the inhomogeneous Saint-Venant equations for a sin-
gle channel or a network, but in the particular case of constant steady-states only,
which simplifies their analysis [19]. Strictly speaking, this last result was derived for
the linearized system but with a Lyapunov approach, which can easily be generalized
to the nonlinear system. More recently, and this is the most advanced result yet, [7]
gave a sufficient condition of stability for the inhomogeneous Saint-Venant equations
with an arbitrary friction and river length but only in the absence of slope, using a
Lyapunov approach.

In this paper, we consider the stabilization of the general nonlinear Saint-Venant
equations with a single boundary PI control. We give a simple and explicit condition on
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the parameters of the PI controller such that any steady-state is exponentially stable
for the H2 norm. While stability results in inhomogeneous and nonlinear systems
often imply a limit length for the domain, depending on the source term, above with
we are unable to guarantee any stability ([19, 20, 3, 17] or [5, Chap. 6]), this result
holds whatever the friction, the slope, and the length of the channel. Besides, our
condition is independent of the slope, the friction coefficient, the river length, and,
more surprisingly, can be made independent of the steady-state considered. Finally,
when there is no slope this condition is less restrictive than the condition obtained
in [7] and when there is no friction or slope this condition coincides with the necessary
and sufficient spectral condition of stability for the linearized system given in [9] and
[5, Th. 2.7].

The case where the inflow disturbances are time dependent and no steady-states
exists was seldom considered in the literature. However, it is in fact unlikely that the
industrial target state is a real steady-state as the inflow disturbance often depends on
time in practice, even though only slowly. Therefore, in the more general framework
of slowly time-varying target states, we show the Input-to-State Stability (ISS) of
the system with respect to the variation of the inflow disturbance. Finally, we show
that if we allow the controller to depend on the target state, by changing slightly
the PI controller, we can ensure the exponential stability of slowly-varying target
trajectories. These trajectories are the natural targets to consider when there is no
steady-state of the system.

This paper is organized as follows: in Section 1 we give a description of the nonlinear
Saint-Venant equations, we introduce the time-varying target trajectories together
with some definitions and existence results, then we state our main results. In Section 2
we prove our main result, Theorem 1.7, that deals with the exponential stability of
time-varying state. In the appendix, we show that Corollary 1.8 dealing with the
exponential stability of steady-states, and Theorem 1.11 showing the ISS of the system
with respect to the variation of the inflow disturbance, are both deduced from the
proof of Theorem 1.7.

Acknowledgments. — The author would like to thank Jean-Michel Coron for his con-
stant support and his advices, and Sebastien Boyaval for many fruitful discussions.
The author also wishes to thank Eric Demay, Peipei Shang, Shengquan Xiang and
Christophe Zhang for fruitful discussions.

1. Model description

We consider the following nonlinear Saint-Venant equations for a rectangular chan-
nel with arbitrary slope and friction.

∂tH + ∂x(HV ) = 0,

∂tV + V ∂xV + g∂xH +
(kV 2

H
− C(x)

)
= 0.

(1.1)

Here, k is an arbitrary nonnegative friction coefficient and C denotes the slope, which
is assumed to be a C2 function, with C(x) := −gdB/dx where B is the bathymetry
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and g the acceleration of gravity. We are interested in systems where the water flow
uphill is a given function, unknown and imposed by external conditions, for instance a
flow coming from another country, while the water flow downhill is controlled through
a hydraulic installation. Therefore, we have the following boundary conditions,

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = U(t),
(1.2)

where U(t) is a control feedback and Q0(t) is the incoming flow, which is a given
(and unknown) function. Here L denotes the length of the water channel. In practical
situations, the formal control U(t) can be expressed by a simple linear model [7]

(1.3) U(t) = vG(H(t, L)− U1(t)),

where U1(t) is the elevation of the gate of the dam, which is the real control input
that can be chosen, while vG is a constant depending on the parameters of the gate
(potentially unknown as well).

1.1. Control goal and target trajectory. — Usually, the industrial goal of such
system is to stabilize the level of the water at the end point H(t, L), called control
point, to a target value Hc > 0. On the other hand, the usual mathematical goal in
such a problem is to stabilize a target steady-state (H∗, V ∗), potentially nonuniform
[5, Preface]. However, in the present problem (1.1)–(1.2), it is clear that, when Q0 is
not constant, it is impossible to aim at stabilizing any steady-state and one needs to
aim at stabilizing other target trajectories. Therefore, we define the following target
trajectory (H1, V1) that we aim to stabilize as the solution of

∂tH1 + ∂x(H1V1) = 0,

∂tV1 + V1∂xV1 + g∂xH1 +
(kV 2

1

H1
− C(x)

)
= 0,

H1(t, 0)V1(t, 0) = Q0(t),

H1(t, L) = Hc,

(1.4)

with the initial condition

(1.5) H1(0, ·) = H∗(·) and V1(0, ·) = V ∗(·),

where (H∗, V ∗) is the (unique) steady-state solution of the system when Q0 is con-
stant, equal to Q0(0). Namely, (H∗, V ∗) is the solution of

∂x(HV ) = 0,

V ∂xV + g∂xH +
(kV 2

H
− C(x)

)
= 0,

H(L) = Hc,

(1.6)

with condition at x = 0

H∗(0)V ∗(0) = Q0(0).(1.7)
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1436 A. Hayat

We are now going to show that the trajectory (H1, V1) exists for any time and satisfies
some bounds.

Existence and bounds of the target trajectory (H1, V1). — Instead of studying directly
our target trajectory (H1, V1) we first construct an intermediary family of functions
(H0, V0) where at each time t, (H0(t, ·), V0(t, ·)) is defined as the space dependent
steady-state that would be associated with the constant flow Q0(t). This is detailed
in the following paragraph.

We defined previously (H∗, V ∗) as the steady-state associated to a constant flux
Q0 ≡ Q0(0), that is (H∗, V ∗) is the solution of the ODE problem (1.6) with initial
condition H∗(0)V ∗(0) = Q0(0). But in fact at each time t∗ ∈ R∗+, we can also define
a steady-state (H∗t∗ , V

∗
t∗) associated to a constant flux Q0 ≡ Q0(t∗). In other words

(H∗t∗ , V
∗
t∗) is the solution of the ODE problem (1.6) with initial condition satisfying

H∗t∗(0)V ∗t∗(0) = Q0(t∗).(1.8)

Although the system (1.6), (1.8) could seem peculiar as it has boundary conditions
imposed both in 0 and in L, we know looking at the first equation of (1.6) that
this system (1.6), (1.8) is in fact equivalent to a single ODE on H∗t∗ with boundary
condition H∗t∗(L) = Hc and the function V ∗t∗ defined by V ∗t∗ = Q0(t∗)/H∗t∗ . Indeed the
first equation of (1.6) is equivalent to saying that H∗t∗V ∗t∗ is a constant function, equal
to Q0(t∗) thanks to (1.8). In other words (1.6), (1.8) is equivalent to

V ∗t∗(x) =
Q0(t∗)

H∗t∗(x)
, ∀x ∈ [0, L],(

g − Q2
0(t∗)

H∗3t∗

)
∂xH

∗
t∗ +

(k2Q0(t∗)2

H∗3t∗
− C(x)

)
= 0,

H(L) = Hc.

Thus for each t∗ ∈ [0,+∞) such function exists on [0, L], is unique and C3 provided
that the state stays in the fluvial regime (or subcritical regime), i.e., gH∗t∗ > V ∗2t∗

on [0, L]. This, for a given Hc, is equivalent to a bound on Q0(t∗) (see [21] for more
details). As we are interested in stabilizing physical trajectories in the fluvial regime,
we assume that this assumption is satisfied in the following and that there exist α > 0

and Hmax > 0 independent of t∗ ∈ [0,∞) such that

H∗t∗ <
1

2
Hmax on [0, L],

gH∗t∗ − V ∗2t∗ > 2α on [0, L].
(1.9)

For a givenHc, this is again equivalent to imposing a boundQ∞ on ‖Q0‖L∞(0,∞), from
(1.6) and (1.8), (which is more logical from an applicative point of view). However,
for convenience, we will still use Hmax and α in the following. This assumption is
quite physical: in practical situation the river is in fluvial regime and Q0(t) is often
periodic or quasi-periodic. This gives a family of one-variable functions indexed by
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a parameter t∗, which can also be seen as the two-variable functions

(H0, V0) : (t, x) −→ (H∗t (x), V ∗t (x)).

Besides, from (1.7), as (H∗t , V
∗
t ) is the solution of a system of ODE with a parameter t,

the two variable functions (H0, V0) therefore belongs to C3([0,+∞)× (0, L)) (see [18,
Chap. 5, Cor. 4.1]). From its definition, one can note that

(H0(0, ·), V0(0, ·)) = (H∗, V ∗).

For clarity, we summarize here the different families of functions we introduced.
– (H∗, V ∗), a function of x, the steady-state of the system when Q0 ≡ const.
– (H1, V1), a function of t and x, the target trajectory to reach when Q0 is not

a constant. This trajectory is compatible with the objective H(t, L) = Hc, for any
t ∈ [0, T ].

– (H∗t∗ , V
∗
t∗), a function of x, the steady-state of the system when Q0 is a constant

equal to Q0(t∗) (t∗ is fixed).
– (H0, V0), a function of t and x, the family such that

(H0, V0) : (t, x) −→ (H∗t (x), V ∗t (x)).

Now that we have introduced this intermediary family of functions, we can show the
existence of the target trajectory (H1, V1) and we have the following Input-to-State
Stability (ISS) result (see [29] for a definition of ISS for finite dimensional systems,
[23, Chap. 1, Chap. 3] for a generalization to first-order hyperbolic PDE and [27] for
the use of Lyapunov function to achieve ISS on time-varying hyperbolic systems),

Proposition 1.1. — Assume that ∂tQ0 ∈ C2([0,∞)). There exist positive constants
c1, c2, µ > 0, ν > 0 and δ > 0 such that if ‖∂tQ0‖C2([0,+∞)) 6 δ, then for any
(H0

1 , V
0
1 ) ∈ H2((0, L),R2) such that

‖H0
1 −H∗‖H2(0,L) + ‖V 0

1 − V ∗‖H2(0,L) 6 ν,

the system (1.4) with initial condition (H0
1 , V

0
1 ) has a unique solution (H1, V1) ∈

C0([0,+∞), H2(0, L)) which satisfies the following ISS inequality

(1.10) ‖H1(t, ·)−H0(t, ·)‖H2(0,L) + ‖V1(t, ·)− V0(t, ·)‖H2(0,L)

6 c1(‖H0
1 −H∗‖H2(0,L) + ‖V 0

1 − V ∗‖H2(0,L))e
−µt/2

+ c2

(∫ t

0

(
|∂tQ0(s)|+ |∂2ttQ0(s)|+ |∂3tttQ0(s)|

)
eµs/2ds

)
e−µt/2.

This result is shown in Appendix B, and a definition of the C2 norm is recalled
in Remark 1.2. Note that Q0 is supposed to be bounded, which is quite physical,
but there is no additional requirement on this bound besides the physical assumption
given by Q∞ of remaining in the fluvial regime. This is important as in practical
situations the value of the incoming flow can change a lot, even though slowly.

Here, we choose to stabilize the trajectory (H1, V1) associated to H0
1 = H∗ and

H0
1 = V ∗. As we will see, this target trajectory can be seen as the natural trajectory
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to stabilize as it satisfies the industrial goal H(t, L) = Hc and it coincides with the
steady-state solution when Q0 is a constant. In this last case Q0 and Hc are imposed
and H∗ and V ∗ = Q0/H

∗ are thus fully determined using (1.6). But one can note
from (1.10) that, in fact, the behavior of (H1, V1) at large time does not depend on the
initial condition (H0

1 , V
0
1 ) in (1.5), provided that it is close in H2 norm to (H∗, V ∗).

Remark 1.2. — The same ISS result can be shown replacing the H2 norm in Proposi-
tion 1.1 by the Hp norm where p ∈ N∗ r {1}, with the condition ‖∂tQ0‖Cp([0,+∞)) 6 δ
instead of ‖∂tQ0‖C2([0,+∞)) 6 δ. This is shown in Appendix B. We define here the Cp
norm for a function U ∈ Cp(I), where I is an interval, as

‖U‖Cp(I):= max
i∈[0,p]

(‖∂itU‖L∞(I))

Thus, from Proposition 1.1 and (1.9), there exists a constant δ > 0 such that,
if ‖∂tQ0‖C2([0,∞)) < δ, then (H1, V1) ∈ C0([0,+∞), H2(0, L)) and

H1(t, x) < Hmax, ∀ (t, x) ∈ [0,+∞)× [0, L],(1.11)
gH1(t, x)− V 2

1 (t, x) > α, ∀ (t, x) ∈ [0,+∞)× [0, L].(1.12)

Besides, when Q0 is a constant, it is easy to check that (H0, V0) = (H∗, V ∗) is
also solution of (1.4)–(1.5). Thus, from the uniqueness of the solution of (1.4)–(1.5),
(H1, V1) = (H∗, V ∗) and, therefore, we recover a steady-state. This illustrates that
(H1, V1) can be seen as the natural target state when Q0 is not a constant anymore.
Moreover, from (1.4), stabilizing (H1, V1) also satisfies the industrial goal by stabiliz-
ing H(t, L) on the value Hc.

1.2. Control design and main result. — As mentioned in the introduction, a usual
type of controller used in practice to reach this aim is the proportional-integral (PI)
controller. It has the advantage of eliminating the offset coming from constant load
disturbances, which can usually appear in these systems as the command on the
gate’s level are only known up to some constant uncertainties. A generic PI controller
is given by

(1.13) U1(t) = kp(Hc −H(t, L)) + kIZ,

where kp and kI are coefficients that can be designed and Z accounts for the integral
term, i.e.,

(1.14) Ż = Hc −H(t, L).

With such controller, and using (1.3), the boundary conditions (1.2) become (1.14)
and

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = vG(1 + kp)H(t, L)− vGkpHc − vGkIZ.
(1.15)

In Corollary 1.8 we show that this boundary control can be used to stabilize expo-
nentially a steady-state when Q0 is a constant. In Theorem 1.11 we show that this
control can also provide an Input-to-State Stability property with respect to ∂tQ0.
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However, this control (1.13) cannot be used to stabilize a dynamic target trajectory
(H1, V1), whatever the coefficients, as there is no function Z1 ∈ C1([0,+∞)) such that
(H1, V1, Z1) is a solution of (1.1), (1.14), (1.15) while (H1, V1) is a solution of (1.4).
Therefore, when stabilizing a dynamic target trajectory, one has to add an additional
term and use

(1.16) U1(t) = kp(Hc −H(t, L)) + kIZ − f(t),

where f(t) := H1(t, L)V1(t, L)/vG. The boundary conditions (1.2) become then

H(t, 0)V (t, 0) = Q0(t),

H(t, L)V (t, L) = H1V1(t, L) + vG(1 + kp)(H(t, L)−Hc)− vGkIZ,
(1.17)

where we have actually changed Z and re-define Z := Z − kp/kI , which still satisfies
the equation (1.14). This can be seen as a feedforward control.

This new control (1.16) assumes that V1(t, L) is known at least up to a constant,
as H1(t, L) = Hc and additional constants can be incorporated into Z. When no
knowledge on the target state is available besides Hc, it is impossible to stabilize
exponentially the system, and the best one can get is the Input-to-State Stability
which is given by Theorem 1.11. However, in the following we will keep working with
(1.16) and (1.17) to show Theorem 1.7 and the exponential stability of the system,
as the proof of Theorem 1.11 and Corollary 1.8, which uses only the control (1.13)
and (1.15), are easily deduced from the proof of Theorem 1.7.

We introduce the first-order compatibility conditions associated to the boundary
conditions (1.17) for an initial condition (H0, V 0, Z0):

(1.18)



H0(0)V 0(0) = Q0(0),

H0(L)V 0(L) = H1V1(0, L) + vG(1 + kp)(H
0(L)−Hc)− kIZ0,

−∂x
(
H0(0)V 0(0) + g

gH0(0)2

2

)
− (k(V 0)2(0)− CH0(0)) = Q′0(0),

−∂x
(
H0(L)V 0(L) + g

gH0(L)2

2

)
− (k(V 0)2(L)− CH0(L))

= ∂t(H1V1)(0, L)− vG(1 + kp)∂x(H0(L)V 0(L)) + kI(H
0(L)−Hc).

With such compatibility conditions the system (1.1), (1.14), (1.17) is well-posed and
we have the following theorem due to Wang [32, Th. 2.1]:

Theorem 1.3 (Well-posedness). — Let T > 0, and assume that (H1, V1) is well-
defined and belongs to C0([0, T ], H3(0, L)). There exists ν(T ) > 0 such that for any
(H0, V 0, Z0) ∈ (H2((0, L))))2 × R satisfying

‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0| 6 ν(T ),

and satisfying the compatibility conditions (1.18), the system (1.1), (1.14), (1.17) has
a unique solution (H,V, Z) ∈ (C0([0, T ], H2((0, L))))2 × C1([0, T ]). Moreover there
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exists a positive constant C(T ) such that

(1.19) ‖H(t, ·)−H1(t, ·)‖H2(0,L) + ‖V (t, ·)− V1(t, ·)‖H2(0,L) + |Z|

6 C(T )
(
‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0|

)
.

To apply the result from [32], note that Z can be seen as a third component of the
hyperbolic system with a null propagation speed, a constant initial condition Z0, and
Z(t) being thus its value everywhere on [0, L] including at the boundaries.

Remark 1.4. — If, in addition, (H0, V 0) ∈ H3((0, L);R2), then the unique solution
(H,V, Z) given by Theorem 1.3 belongs to C0([0, T ], H3((0, L);R2))×C2([0, T ]) and
there exists a constant C(T ) such that

(1.20) ‖H(t, ·)−H1(t, ·)‖H3(0,L) + ‖V (t, ·)− V1(t, ·)‖H3(0,L) + |Z|

6 C(T )
(
‖H0(·)−H1(0, ·)‖H3(0,L) + ‖V 0(·)− V1(0, ·)‖H3(0,L) + |Z0|

)
.

We recall the definition of (local) exponential stability.

Definition 1.5. — We say that a trajectory (H1, V1) is locally exponentially stable
for the H2 norm if there exists ν > 0, C > 0 and γ > 0 such that for any T > t0 > 0

and any (H0, V 0, Z0) satisfying

‖H0(·)−H1(t0, ·)‖H2(0,L) + ‖V 0(·)− V1(t0, ·)‖H2(0,L) + |Z0| 6 ν,

and the compatibility conditions (1.18), the system (1.1), (1.14), (1.17) with initial
condition (H0, V 0, Z0) at t0 has a unique solution

(H,V, Z) ∈
(
C0([t0, T ], H2((0, L)))

)2 × C1([t0, T ])

and

‖H(t, ·)−H1(t, ·)‖H2(0,L) + ‖V (t, ·)− V1(t, ·)‖H2(0,L) + |Z|

6 Ce−γt
(
‖H0(·)−H1(t0, ·)‖H2(0,L) + ‖V 0(·)− V1(t0, ·)‖H2(0,L) + |Z0|

)
,

∀ t ∈ [t0, T ].

Remark 1.6. — From (1.4) and Sobolev inequality, this exponential stability implies
in particular the (local) exponential convergence of H(t, L) to Hc.

We can now state the main results of this article.

Theorem 1.7 (Exponential stability). — There exists δ > 0 such that, if

‖∂tQ0‖C3([0,+∞)) 6 δ,

then the trajectory (H1, V1) given by (1.4) of system (1.1), (1.14), (1.17) is exponen-
tially stable for the H2 norm if:

kp > −1 and kI > 0,

or kp < −1− gH1(t, L)− V 2
1 (t, L)

vGV1(t, L)
and kI < 0.

(1.21)
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This result is proved in Section 2. The main idea of the proof consist in finding a
local convex and dissipative entropy for the system (1.1), (1.14), (1.17).

In particular, in the case where Q0 is constant, we can use the static boundary
control (1.13), and we have the following corollary:

Corollary 1.8. — If Q0 is constant, then the steady-state (H∗, V ∗) of the system
(1.1), (1.14), (1.15) given by (1.6)–(1.7) is exponentially stable for the H2 norm if:

kp > −1 and kI > 0,

or kp < −1− gH∗(L)− V ∗2(L)

vGV ∗(L)
and kI < 0.

(1.22)

Proof. — This is a particular case of Theorem 1.7. To see this, note, as mentioned
earlier, that when Q0 is constant, then (H1, V1) = (H∗, V ∗). Then, observe that f(t)

given in (1.16) is a constant that can be added in Z (i.e., we can re-define Z := Z−f(t),
which still satisfies (1.14)). �

1.3. Comparison with existing results and contribution of this paper. — Many
results exist in the literature concerning this stabilization problem (e.g. [17, 33, 4, 34,
31, 9, 7]). To our knowledge the most advanced result for the full non-linear system
is [7] where the authors show that if there is no slope, i.e., C(x) = 0, then the system
can always be stabilized by the PI control (1.13) as long as the steady-state exists,
and they give the sufficient condition

kp > 0 and kI > 0.

Note that this is the first result that allows an arbitrary size of source term and length.
In this paper, using a different type of Lyapunov function, we manage to show a more
general result. Our main contributions are the following:

– The result holds for an arbitrary friction and also an arbitrary slope C(x) ∈
C2([0, L]). Physically this means that the source can be non-dissipative and increase
the energy of the system compared to the case where there is only friction.

– We find a less restrictive stability condition

kp > −1 and kI > 0,

and we also show that another condition is sufficient:

kp < −1− gH∗(L)− V ∗2(L)

vGV ∗(L)
and kI < 0.

This one is counter intuitive as kp < −1 and kI < 0. It means that if the height of
the water is too high at L the control would reduce the aperture of the gate in L and
reduce the flow that we let exit the system, which intuitively should increase even
more the height of the water at L.

– Our result holds also when stabilizing a slowly varying trajectory rather than
a steady-state (that might not exist in practical case). In this case we use a kind of
feedforward term in the boundary control (see (1.16)).
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– In addition to the exponential stability, we show the Input-to-State Stability
with respect to an unknown inflow. In this case the only knowledge required on the
system is the height of the water at x = L.

Note that, just like [7], this approach uses very little knowledge of the state of the
system, as we only measure the height at the boundary x = L.

Remark 1.9. — When the system is homogeneous, our conditions (1.22) are optimal
(necessary and sufficient) [9], [5, §2.2.4.1].

Remark 1.10 (Alternative notation in literature). — In the literature, results about
PI control of the Saint-Venant equations sometimes leave the step of modeling the
spillway, and use a generic formulation of the PI control on the outflow rate of the
form

H(t, L)V (t, L) = kp(H(t, L)−Hc)− kIZ,
where Z is the integral term, still given by (1.14). Note that, with these notations,
the sufficient condition of Corollary 1.8 becomes

kp > 0 and kI > 0,

or kp < −
gH∗(L)− V ∗2(L)

V ∗(L)
and kI < 0.

1.4. Case of time-varying input disturbance Q0(t): ISS estimate. — In practical
situations, however, we may also have only little knowledge of the target trajectory
(H1, V1) or the input disturbance Q0(t) and we only know Hc. In this case we cannot
use a controller of the form (1.17), but only a static controller of the form (1.15),
namely

H(t, L)V (t, L) = vG(1 + kp)H(t, L)− vGkpHc − vGkIZ.
In this case, it is impossible to aim at stabilizing the target trajectory (H1, V1), but
we still have the Input-to-State Stability with respect to the input disturbance ∂tQ0,

Theorem 1.11. — There exists ν > 0, δ > 0, γ > 0 and C, such that if
‖∂tQ0‖C2([0,+∞)) 6 δ,

then for any T > 0 and (H0, V 0) ∈ (H2(0, L))2 such that
‖H0 −H∗‖H2(0,L) + ‖V 0 − V ∗‖H2(0,L) 6 ν,

the system (1.1), (1.14), (1.15) with initial condition (H0, V 0) has a unique solution
(H,V ) ∈ C0([0, T ], H2(0, L)) which satisfies the following ISS inequality

(1.23) ‖H(t, ·)−H0(t, ·)‖H2(0,L) + ‖V (t, ·)− V0(t, ·)‖H2(0,L)

6 Ce−γt
(
‖H0 −H∗, V 0 − V ∗‖H2(0,L)

+

∫ t

0

(|∂tQ0(s)|+ |∂2ttQ0(s)|+ |∂3tttQ0(s)|)eγsds
)
.

The proof is given in Appendix C and is a consequence from the proof of Theo-
rem 1.7. In Section 2 we give a few tools to prepare the proof of Theorem 1.7.
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2. Exponential stability for the H2 norm

This section is divided in two parts. First we transform the system through a change
of variables. Then we state two lemma, which simplify the proof of Theorem 1.7.
We will then prove Theorem 1.7 in Section 3.

2.1. A change of variables. — For any solution of (1.1), (1.14), (1.17) we define the
perturbations as

(2.1)
(
h

v

)
=

(
H −H1

V − V1

)
.

Let us assume that there exists ν ∈ (0, ν0) to be selected later on, such that

‖H0(·)−H1(0, ·)‖H2(0,L) + ‖V 0(·)− V1(0, ·)‖H2(0,L) + |Z0| 6 ν.

The boundary conditions (1.17) can be written in the following form

v(t, 0) = B1(h(t, 0), t),

v(t, L) = B2(h(t, L), Z, t),
(2.2)

with

∂1B1(0, t) = − V1(t, 0)

H1(t, 0)
,

∂1B2(0, 0, t) =
vG(1 + kp)− V1(t, L)

H1(t, L)
,

∂2B2(0, 0, t) = − vGkI
H1(t, L)

.

(2.3)

We introduce the following change of variables:

(2.4) u :=

(
u1
u2

)
=

(
v +

√
g/H1 h

v −
√
g/H1 h

)
.

Note that this change of variables is very similar to the change of variables used in
[3, 21] with the only difference that (H1, V1) is not a steady-state anymore. It corre-
sponds to the transformation in Riemann coordinates for the perturbations. Indeed,
denoting S, F and G by

S(x, t) =

( √
g/H1(t, x) 1

−
√
g/H1(t, x) 1

)
,(2.5)

F

(
H

V

)
=

(
V H

g V

)
, G

(
H

V

)
=

(
0

kV 2/H − C(x)

)
,(2.6)

and using (1.1), (1.14), (1.17), (1.4), (2.1)–(2.4), one has

∂tu1 + λ1(u, x, t)∂xu1 + `1(u, x, t)∂xu2 +B1(u, x, t) = 0,

∂tu2 − λ2(u, x, t)∂xu2 + `2(u, x, t)∂xu1 +B2(u, x, t) = 0,
(2.7)
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where

(2.8)
(
λ1(u, x, t) `1(u, x, t)

`2(u, x, t) −λ2(u, x, t)

)
= S(x, t)F

(
S−1(x, t)u +

(
H1(t, x)

V1(t, x)

))
S−1(x, t) =: A(u, x, t),

and
(2.9) B(u, x, t) =

(
B1(u, x, t)

B2(u, x, t)

)
= S(x, t)F

(
S−1(x, t)u +

(
H1(t, x)

V1(t, x)

))((
∂xH1(t, x)

∂xV1(t, x)

)
+ ∂x(S−1)u

)
+ S∂t

(
H1(t, x)

V1(t, x)

)
+ S(x, t)G

(
S−1(x, t)u +

(
H1(t, x)

V1(t, x)

))
− ∂tS(x, t)S−1(x, t)u.

Therefore,
λ1(0, x, t) = V1 +

√
gH1, λ2(0, x, t) =

√
gH1 − V1,

`1(0, x, t) = B1(0, x, t) = 0, `2(0, x, t) = B2(0, x, t) = 0,
(2.10)

∂B1

∂u
(0, x, t) = γ1(t, x)u1(t, x) + γ2(t, x)u2(t, x),

∂B2

∂u
(0, x, t) = δ1(t, x)u1(t, x) + δ2(t, x)u2(t, x),

(2.11)

where
γ1 =

3

4

√
g/H1H1x +

3

4
V1x +

kV1
H1
− kV 2

1

2H2
1

√
H1/g,

γ2 =
1

4

√
g/H1H1x +

1

4
V1x +

kV1
H1

+
kV 2

1

2H2
1

√
H1/g,

δ1 = −1

4

√
g/H1H1x +

1

4
V1x +

kV1
H1
− kV 2

1

2H2
1

√
H1/g,

δ2 = −3

4

√
g/H1H1x +

3

4
V1x +

kV1
H1

+
kV 2

1

2H2
1

√
H1/g.

(2.12)

For the boundary conditions, there exists ν1 ∈ (0, ν0) such that for any ν ∈ (0, ν1),
one has:

u1(t, 0) = D1(u2(t, 0), t),

u2(t, L) = D2(u1(t, L), Z, t),

Ż =
(u1(t, L)− u2(t, L))

2

√
H1(t, L)/g,

(2.13)

where D1 and D2 are C2 functions and
∂1D1(0, t) = −λ2(0)

λ1(0)
,

∂1D2(0, 0, t) = −λ1(L)− vG(1 + kp)

λ2(L) + vG(1 + kp)
,

∂2D2(0, 0, t) = −2
vGkI

√
g/H1(t, L)

vG(1 + kp) + λ2(t, L)
.

(2.14)
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Expression (2.12) is simply a computation, very similar to what is done in [21] for
instance, while the derivation of (2.13) and (2.14) are detailed in the appendix. In the
following we denote for simplicity

k2 := ∂1D1(0, t), k1 := ∂1D2(0, 0, t) and k3 := −∂2D2(0, 0, t),

Remark 2.1. — Obviously, from the change of variables (2.1)–(2.4), the exponential
stability of the system (1.1), (1.14), (1.17) is equivalent to the exponential stability
of the steady-state u∗ = 0 for the system (2.7), (2.13).

As the operator A, given by (2.8), is a C2 function in u, t and x (and in particu-
lar C1) and as, from (2.11) and (1.12), λ1(0, x, t) > 0 > −λ2(0, x, t), there exists ν2 ∈
(0, ν1) depending only on Hmax, α and E ∈ C1(Bν2×(0, L)× [0,+∞); M2(R)), where
Bν2 ⊂ R2 is the disc of radius ν2 and center 0, such that for any ‖u(t, ·)‖H2(0,L) 6 ν2,

E(u(t, x), x, t)A(u(t, x), x, t) = D(u(t, x), x, t)E(u(t, x), x, t),

E(0, x, t) = Id,
(2.15)

where D(u(t, x), x, t) = (Di(u(t, x), x, t))i∈1,2 is a diagonal matrix and Id is the iden-
tity matrix. Before going any further, let us note a few useful properties of these
functions. For simplicity in the following we will denote for any n ∈ N∗ and any
function U ∈ L∞((0, T )× (0, L);Rn) (resp. L∞((0, L);Rn))

‖U‖∞ := ‖U‖L∞((0,T )×(0,L);Rn),

(resp. ‖U‖∞ := ‖U‖L∞((0,L);Rn)).

We may also denote ‖u‖H2(0,L) instead of ‖u(t, ·)‖H2(0,L) to lighten the expressions.
From the definition of A given in (2.8), and from (1.12), for ‖u‖H2(0,L) 6 ν2, there
exists a constant C1 depending only onHmax, α and ν2 such that we have the following
estimates

max
(
‖∂t(A(u(t, x), x, t)−A(0, x, t))‖∞, ‖∂t(D(u(t, x), x, t)−D(0, x, t))‖∞,

‖∂t(E(u(t, x), x, t))‖∞
)

6 C1

(
‖u‖∞(‖∂tH1‖∞ + ‖∂tV1‖∞) + ‖∂tu‖∞

)
,

max
(
‖∂x(A(u(t, x), x, t)−A(0, x, t))‖∞, ‖∂x(D(u(t, x), x, t)−D(0, x, t)),

‖∂x(E(u(t, x), x, t))‖∞
)

6 C1

(
‖u‖∞(‖∂xH1‖∞ + ‖∂xV1‖∞) + ‖∂xu‖∞

)
.

(2.16)

For E and D, this comes from the fact that E and D are C∞ functions with respect
to the coefficients of A (recall that D is the matrix of eigenvalues of A), and that
A ∈ C2(Bη0 ;C1([0,+∞)× [0, L])).

2.2. Two useful lemmas. — We introduce now two lemma, which simplify the proof
of Theorem 1.7. The first one is a classical result about Lyapunov functions.
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Lemma 2.2. — Let V : (H2(0, L))2 × R × R+ → R∗+, η > 0, and c > 0 such that for
any (U, z, t) ∈ (H2(0, L))2 × R× R+, with ‖U‖H2 + |Z| 6 η,

(2.17) c
(
‖U‖2H2(0,L) + |z|2

)
6 V (U , z, t) 6

1

c

(
‖U‖2H2(0,L) + |z|2

)
.

If for any T > t0 > 0 there exists γ > 0 independent of t0 and T , and ν > 0 depending
only on T−t0 such that, for any solution (u, Z) of the system (2.7), (2.13) with initial
conditions satisfying ‖u(t0, ·)‖H2(0,L) + |Z(t0)| 6 ν, the differential inequality

(2.18) d

dt
[V (u(t, ·), t)] < −γV (u(t, ·), t), ∀ t ∈ (t0, T ),

holds in a distribution sense, then the system (2.7), (2.13) is exponentially stable for
the H2 norm and V is called a Lyapunov function for the system (2.7), (2.13).

This first lemma reduces the problem of proving the exponential stability to finding
a Lyapunov function V for the system (2.7), (2.13). A proper definition of a differential
inequality in a distribution sense as in (2.18) can be found in [19]. To lighten this article
we do not give a proof of this classical lemma, although a proof for a very similar
case (Lyapunov function that does not depend explicitly on time and for the C1 norm
instead) can be found for instance in [19, Prop. 2.1], and is easily extended to this case.

Remark 2.3. — Note that ν may depend on t0 and T with this definition, contrarily
to the Definition 1.5 of exponential stability. However, this is not an issue since we
can deduce, thanks to (2.18), the existence of ν independent of t0 and T such that
(2.18) holds with γ/2 instead of γ. Indeed, assume that the assumption of Lemma 2.2
holds and select t0 = 0, and T1 > 0 such that e−γT1/2 < c2/2 where c is the positive
constant involved in (2.17) (note that γ does not depend on t0 and T1). From (2.18)
there exists ν depending on T1 (that we denote ν(T1) in the following) such that if
‖u(0, ·)‖H2(0,L) + |Z(0)| 6 ν(T1), then

V (u(T1, ·)) 6 V (u(0, ·))e−γT1 .

Thus, using (2.17)

(2.19) ‖u(T1, ·)‖H2(0,L) + |Z(T1)| 6 c2e−γT1
(
‖u(0, ·)‖H2(0,L) + |Z(0)|

)
6

1

2
ν(T1).

Since ν only depends on T − t0, (2.19) means that the system with initial condition
(u(T1, ·), Z(T1)) has a solution on [T1, 2T1] and, thanks to (2.17)–(2.18) and the choice
of T1,

‖u(t, ·)‖H2(0,L) + |Z(t)| 6 c2e−γ(t−T1)c2e−γT1
(
‖u(0, ·)‖H2(0,L) + |Z(0)|

)
6 c2e−γ(t−T1)e−γT1/2

(
‖u(0, ·)‖H2(0,L) + |Z(0)|

)
6 c2e−γt/2

(
‖u(0, ·)‖H2(0,L) + |Z(0)|

)
, ∀ t ∈ [T1, 2T1]

and

‖u(2T1, ·)‖H2(0,L) + |Z(2T1)| 6 c4e−2γT1
(
‖u(0, ·)‖H2(0,L) + |Z(0)|

)
6

1

4
ν(T1).
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Hence we can iterate on [2T1, 3T1], . . . , [nT1, (n + 1)T1], and so on, for any n ∈ N
and we obtain the exponential stability estimate on [0,+∞) and in particular on any
[t0, T ] with ν := ν(T1) that does not depend on T or t0.

Our second lemma seems very natural:

Lemma 2.4. — There exists ` > 0 and C > 0 such that if ‖∂tQ0‖C3([0,+∞)) 6 `, then

max
(
‖∂tH1‖C1([0,+∞),C0([0,L])), ‖∂tV1‖C1([0,+∞),C0([0,L]))

)
< C‖∂tQ0‖C3([0,+∞)).

This is a consequence of the ISS property (Proposition 1.1) and Remark 1.2 for
p = 3 and is shown in Appendix E. Thanks to this lemma, we now only need to show
Theorem 1.7 with a bound on ∂tH1 and ∂tV1 rather than a bound on ∂tQ0.

3. Proof of Theorem 1.7

From Theorem 1.3, Remark 2.1, and Lemma 2.2, one only needs to find a Lya-
punov function V : (H2(0, L))2 ×R×R+ → R∗+ satisfying (2.17) and (2.18). We will
proceed as follows: first we introduce a Lyapunov function defined up to two positive
functions f1 and f2 and two positive constants µ and q. Second, we show a differen-
tial inequality satisfied by this Lyapunov function candidate with respect to f1, f2, µ
and q (Proposition 3.1). Then we give sufficient conditions such that this differential
inequality simplifies to (2.18). Finally, we show how to choose f1, f2, and then q and µ
such that these sufficient conditions are satisfied, together with (2.17).

Let us define the following functional on H2(0, L)× R× R+:

(3.1) Va(U , z, t) :=

∫ L

0

f1(t, x)e−µx(E(U(x), x, t)U(x))21

+ f2(t, x)eµx(E(U(x), x, t)U(x))22dx+ qz2,

where f1, f2 are positive and bounded functions which will be defined later on, and µ
and q are positives constant which will also be defined later on. Recall that E is given
by (2.15). We introduce the following candidate Lyapunov function defined for H2

trajectories of (2.7):

(3.2) V (u(t, ·), Z(t), t) = Va(u(t, ·), Z(t), t) + Vb(u, t) + Vc(u, t),

where
Vb(u, t) = Va(∂tu(t, ·), Ż(t), t),

Vc(u, t) = Va(∂2tu(t, ·), Z̈(t), t).
(3.3)

This functional is a priori only defined for trajectories of (2.7), however using (2.7)
its definition can be extended to H2(0, L)×R×R+ as well (see Appendix F for more
details). We have the following proposition

Proposition 3.1. — There exists δ > 0 such that if

max
(
‖∂tH1‖C1([t0,∞);C0([0,L])), ‖∂tV1‖C1([t0,∞);C0([0,L]))

)
< δ,
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then for any T > 0 and t0 ∈ [0, T ), there exists ν > 0 depending only on T − t0 such
that for any solution (u, Z) of (2.7) belonging to C0([t0, T ], H3(0, L)) × C2([t0, T ])

with initial condition u0 and Z0 at time t0 satisfying(
‖u0‖H2(0,L) + |Z0|

)
< ν,

one has the following differential inequalities for any t ∈ [t0, T ]

(3.4) dV (u(t, ·), Z, t)
dt

6 −µ min
x∈[0,L]

(λ1, λ2)V (u(t, ·), Z, t)

+
[
f1λ1k

2
2 − λ2f2

] (
u22(t, 0) + (∂tu2(t, 0))2 + (∂2ttu2(t, 0))2

)
− I1(u1(t, L), Z)− I1(∂tu1(t, L), Ż)− I1(∂2ttu1(t, L), Z̈)

−
∫ L

0

I2((Eu)1, (Eu)2) + I2((E∂tu)1, (E∂tu)2) + I2((E∂2ttu)1, (E∂
2
ttu)2)dx

+ C
(
‖u‖∞ + ‖∂xu‖∞

)(
‖u‖2L2(0,L) + ‖∂tu‖2L2(0,L) + ‖∂2ttu‖2L2(0,L)

+
(
‖u‖∞ + ‖∂xu‖∞

)2
+ |u2(t, 0)2|+ (|u1(t, L)|+ |Z|)2

+ |∂tu2(t, 0)2|+ (|∂tu1(t, L)|+ |Ż|)2 + |∂2ttu2(t, 0)2|+ (|∂2ttu1(t, L)|+ |Z̈|)2
)

+ Cδ
(
|u2(t, 0)|2 + (|u1(t, L)|+ |Z|)2 + |∂tu2(t, 0)|2 + (|∂tu1(t, L)|+ |Ż|)2

)
+ CδV,

where C is a constant independent of t0 and T , and I1, I2 denote the quadratic forms
given by

I1(x, y) =
(
λ1f1(L)e−µL − λ2f2(L)eµLk21

)
x2

+
(
q
√
H1/g k3 − λ2f2(L)eµLk23 − µ min

x∈[0,L]
(λ1, λ2)q

)
y2

+
(
2λ2f2(L)eµLk3k1 − q

√
H1/g (k1 − 1)

)
xy,

I2(x, y) =
(
(−λ1f1)x + 2f1γ1(t, x)− ∂tf1

)
e−µxx2

+
(
(λ2f2)x + 2f2δ2(t, x)− ∂tf2

)
eµxy2

+ 2
(
γ2f1e

−µx + δ1f2e
µx
)
xy.

This proposition is showed in Appendix G. We can now use this to derive sufficient
conditions for the Lyapunov function candidate to satisfy (2.17) and (2.18) and prove
Theorem 1.7.

3.1. Sufficient conditions for a Lyapunov function

Let T > t0 > 0 and (u0, Z0) ∈ H2(0, L)×R satisfying the compatibility condition
(1.18) and such that

(3.5)
(
‖u0‖H2(0,L) + |Z0|

)
< ν,

where ν is a constant to be chosen later on but such that ν < min(ν2, ν(T−t0)). Recall
that T → ν(T ) is given by Theorem 1.3 and ν2 is chosen such that (2.15) holds.
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From Theorem 1.3 there exists a unique solution u ∈ C0([t0, T ], H2(0, L)). To ob-
tain this, set

(H̃1(t, ·), Ṽ1(t, ·)) = (H1(t− t0, ·), V1(t− t0, ·)),

(H̃(t, ·), Ṽ (t, ·)) = (H(t− t0, ·), V (t− t0, ·)),

Z̃ = Z(t− t0).

Since (H̃1, Ṽ1) is still in C0([0, T−t0], H3(0, L)) (besides, note that it satisfies the same
upper bound in the H2 norm as (H1, V1)), Theorem 1.3 still applies and there exists
a unique solution (H̃, Ṽ ) in C0([0, T − t0], H2(0, L)) satisfying (1.19) on [0, T − t0]

with (H̃1, Ṽ1) instead of (H1, V1), provided that

‖H̃(0, ·)− H̃1(0, ·)‖H2(0,L) + ‖Ṽ (0, ·)− Ṽ1(0, ·)‖H2(0,L) + |Z(t0)| 6 ν(T − t0),

which is exactly (3.5). Thus (H(t, ·), V (t, ·)) = (H̃(t + t0, ·), Ṽ (t + t0, ·)) belongs to
C0([t0, T ], H2(0, L)). In order to use Proposition 3.1, we suppose in addition that
(u0, Z0) ∈ H3(0, L)×R, and that (3.5) also holds for the H3 norm instead of the H2

norm in u. From Remark 1.4, (u, Z)∈C0([t0, T ]×H3(0, L))×C3([t0, T ]). This assump-
tion will be later relaxed later on by density. From Lemma 2.4, instead of assuming
a bound on ‖∂tQ0‖C3([0,+∞) we can assume that

(3.6) max
(
‖∂tH1‖C1([t0,∞);C0([0,L])), ‖∂tV1‖C1([t0,∞);C0([0,L]))

)
< δ,

where δ is a positive constant independent of T . Let (f1, f2) ∈ C1([0, L]; (0,+∞))

and q > 0, µ > 0 to be defined later on. From Proposition 3.1, there exists ν1
and δ1 such that if δ < δ1, then the differential inequality (3.4) holds. In the expres-
sion of (3.4), one can see that three identical quadratic forms appear in the integral
in ((E∂itu)1, (E∂

i
tu)2), i = 0, 1, 2, as well as three identical quadratic forms at the

boundaries in (∂itu1(t, L), ∂itZ), i = 0, 1, 2, and three identical terms proportional
respectively to (∂itu2(t, 0)), i = 0, 1, 2. Thus a sufficient condition so that there exists
µ > 0 such that V is strictly decreasing would be that the square terms and the forms
that appear at the boundaries are negative-definite and the quadratic form in the
integral is negative-definite, i.e., the three following conditions:

(1) Condition at 0

(3.7) λ2f2(0)

λ1f1(0)
> k22.

(2) Condition at L

λ1f1(L)

λ2f2(L)
> k21,(3.8a) (

λ1f1(L)− λ2f2(L)k21
) (
q
√
H1/g − λ2f2(L)k3

)
k3(3.8b)

−
(
λ2f2(L)k3k1 −

1

2
q
√
H1/g (k1 − 1)

)2
> 0.
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(3) Condition from the integral

(3.9)

(
(−λ1f1)x + 2f1γ1(t, x)− ∂tf1

)
> 0,(

(−λ1f1)x + 2f1γ1(t, x)− ∂tf1
)(

(λ2f2)x + 2f2δ2(t, x)− ∂tf2
)

−
(
γ2f1 + δ1f2

)2
> 0, ∀ (t, x) ∈ [t0, T ]× (0, L).

Let assume for the moment that (3.7)–(3.9) are satisfied for any δ ∈ (0, δ2) where δ2 is
a positive constant. We are going to show that (2.18) hold. Then, as the inequalities
(3.7)–(3.9) are strict, by continuity there exist µ > 0 such that the square terms and
the quadratic forms I1 at the boundaries and the quadratic forms I2 in the integral
are positive definite. Also, there exists ν3 ∈ (0, ν2) and δ4 ∈ (0, δ3) such that, for any
ν ∈ (0, ν3), and any δ ∈ (0, δ4),

V̇ 6 −µ min
[0,L]×[t0,+∞)

(λ1, λ2)V + CδV + C
(
(‖u‖∞ + ‖∂xu‖∞)

3)
,

where C is a positive constant depending only on the system. Note that here,
the cubic boundary terms that appeared in (3.4) and the quadratic boundary
terms proportional to δ have been compensated by the strictly negative quadratic
boundary terms, taking δ and ν sufficiently small and using (1.19). Note also that,
thanks to (1.12), min[0,L]×[t0,+∞)(λ1, λ2) > 0. Thus, choosing δ5 ∈ (0, δ4) such that
δ5 < µmin[0,L]×[t0,+∞)(λ1, λ2)/4C, for any δ ∈ (0, δ5) one has

V̇ 6 −3

4
µ min

[0,L]×[t0,+∞)
(λ1, λ2)V + C

(
(‖u‖∞ + ‖∂xu‖∞)

3)
.

Now, if we assume in addition that (2.17) hold, using (1.19), and Sobolev inequality,
there exists ν4 ∈ (0, ν3] such that, for any ν ∈ (0, ν4),

C
(
(‖u‖∞ + ‖∂xu‖∞)

3) 6 µ

4
min

[0,L]×[t0,+∞)
(λ1, λ2)V,

thus, setting γ = µmin[0,L]×[t0,+∞)(λ1, λ2),

V̇ 6 −γ
2
V , ∀ t ∈ [t0, T ]

which shows the exponential decay of V and (2.18). If in addition (2.17) holds, this
ends the proof of Theorem 1.7.

3.2. Strategy to construct a Lyapunov function. — All that remains to do is to
find f1, f2 and q such that (3.7)–(3.9) are satisfied and such that V satisfies (2.17).
To do so, we first introduce the following function φ defined by

φ1(t, x) = exp

(∫ x

0

γ1
λ1
dx

)
,

φ2(t, x) = exp

(
−
∫ x

0

δ2
λ2
dx

)
,

φ(t, x) =
φ1(t, x)

φ2(t, x)
,

(3.10)
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The functions φ1 and φ2 are defined such that the diagonal change of variables
(y1 = φ1u1, y2 = φ2u2) removes the diagonal source terms of the linearized system
associated to (2.7) (recall that γ1, δ2 are given in (2.11)–(2.12) and are the diagonal
coefficients of the source term of the linearized system). This change of variable is
used for instance in [3, 20] and is inspired from [24, Chap. 9].(1) In the following we
are going to search for functions f1, f2 of the form

(3.11) f1(t, x) =
φ21

λ1ξ(t, x)
, f2(t, x) = φ22

ξ(t, x)

λ2
,

where ξ is a positive C1 function to be defined. The motivation to look for functions
of this form is the following: it was shown in [3], in the autonomous case with a purely
proportional control, that (3.11) is an optimal choice in the following sense: if there
exists a Lyapunov function of the form (3.2), then there exists a positive function
ξ ∈ C1([0, L]) such that (3.11) holds and the converse is true for suitable boundary
conditions. This reduces the problem to finding a function ξ. Then, having f1 and f2
satisfying the differential inequalities (3.9) is shown in this case (still in [3]) to be
equivalent to having ξ to be a supersolution of a given ODE. This is the approach
followed for instance for the Saint-Venant equations in [6, 21] with a proportional
control and in the autonomous case. Of course, the autonomous case with a propor-
tional control is simpler than our current framework and brings some differences: the
functions ξ, f1 and f2 do not depend on time. Also, because of this, we will want ξ
to satisfy

(3.12) ∂xξ >
∣∣∣φγ2
λ1

+
φ−1δ1
λ2

ξ2 +
φ

λ21

√
g/H1 ∂tH1

∣∣∣, ∀x ∈ [0, L], t ∈ [0,+∞),

and not anymore to be a supersolution of the ODE in [3].
In order to find such a function ξ and such functions (f1, f2), we start with the

following lemma, from which we will construct a solution to (3.12). We will see later
on that, if ξ is a solution to (3.12), then (f1, f2) defined as (3.11) satisfy the condi-
tion (3.9), at least under some condition on δ.

Lemma 3.2. — There exists δ0 > 0 such that if ‖∂tH1‖L∞((t0,+∞)×(0,L) 6 δ0, the
function χ = λ2φ/λ1 is solution on [0, L] to the following equation

(3.13) ∂xχ =
∣∣∣φγ2
λ1

+
φ−1δ1
λ2

χ2 +
φ

λ21

√
g/H1 ∂tH1

∣∣∣, ∀x ∈ [0, L], t ∈ [t0,+∞),

and for any x ∈ [0, L] and any t ∈ [t0,+∞),

(3.14)
(φγ2
λ1

+
φ−1δ1
λ2

χ2 +
φ

λ21

√
g/H1 ∂tH1

)
> 0.

(1)Although this is not used here, this change of variable also allows that the semigroup of
the linearized system after change of variables has a compact difference with the semigroup of the
homogeneous system, see [22].
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The proof is given in Appendix D. To understand the link between Lemma 3.2 and
the choice of the coefficients of the Lyapunov function candidate (f1, f2), note that
since [0, L] is a closed interval we are going to be able to construct a solution χε to
(3.12) from χ. Then (f1, f2) will in turn be defined by (3.11). This is what we do now.

3.3. Construction of χε and its properties. — Let now assume that δ<δ0, where δ0
is given by Lemma 3.2. Recall that δ is the constant such that (3.6) holds, namely

max
(
‖∂tH1‖C1([t0,∞);C0([0,L])), ‖∂tV1‖C1([t0,∞);C0([0,L]))

)
< δ.

As this is the only assumption on (H1, V1), in the following we can assume without
loss of generality that t0 = 0. From Lemma 3.2, we know that there exists a solution
on [0, L] to equation (3.13), which is χ0 :=λ2φ/λ1. Therefore, as [0, L] is a compact
set, there exists ε0 such that for any ε ∈ [0, ε0) there exists a solution χε(t, x) to the
following system

∂xχε(t, x) =
(φγ2
λ1

+
δ1
φλ2

(χε)
2 +

φ

λ21

√
g/H1 ∂tH1

)
+ ε,

χε(0) =
λ2(t, 0)

λ1(t, 0)
+ ε,

(3.15)

and moreover (t, x, ε) 7→ χε(t, x) is of class C0 and ∂xχε(t, x) as well. This is a classical
result on ODEs due to Peano (see e.g. [18, Chap. 5, Th. 3.1]). Note that ε0 > 0 a priori
depends on t and one could wonder whether ε0 → 0 when t→ +∞. We are going to
show that this does not happen and we can choose ε0 > 0 independent of t ∈ [0,+∞)

such that χε exists on [0,+∞) × [0, L] for any ε ∈ [0, ε0). Finally, note that χε is a
solution to (3.12) if we can show that(φγ2

λ1
+

δ1
φλ2

(χε)
2 +

φ

λ21

√
g/H1 ∂tH1

)
> 0.

From (3.15), ∂tχε satisfies the following equation

(3.16) ∂x∂tχε = 2
δ1
φλ2

χε∂tχε +
(φγ2
λ1

)
t

+
( δ1
φλ2

)
t
χ2
ε +

φ

λ21

√
g/H1 ∂

2
ttH1

− φ

λ21

1

2

√
g/H3

1 (∂tH1)2 +
( φ
λ21

)
t

√
g/H1 ∂tH1.

We used here that, from Proposition 1.1 and Remark 1.2,

(H1, V1) ∈ C0([0,+∞);H3(0, L)),

and from (1.4),

∂2ttH1 = −∂tx(H1V1), ∂t∂xH1 = −∂2x(HV )

∂t∂xV1 = ∂x
(
−V1∂xV1 − g∂xH1 − (kV 2

1 /H1 − gC)
)
.and

Thus ∂2ttH1 belongs to C0([0, T ];H1(0, L)) and (γ1, γ2, δ1, δ2) to C1([0, T ];H1(0, L)).
Besides, from (2.10), ( φ

λ21

)
t

=
∂tφ

λ21
− 2φ

λ31

(√g ∂tH1

2
√
H1

+ ∂tV1

)
.
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Using (3.16), we have

(3.17) ∂tχε(t, x) = ∂tχε(t, 0) exp

(∫ x

0

2
δ1
φλ2

χε(t, y)dy

)
+

∫ x

0

exp

(∫ x

y

2
δ1
φλ2

χε(t, ω)dω

)((φγ2
λ1

)
t

+
( δ1
φλ2

)
t
χ2
ε

+
φ

λ21

√
g/H1 ∂

2
ttH1 −

1

2

φ

λ21

√
g/H3

1 (∂tH1)2 +
( φ
λ21

)
t

√
g/H1 ∂tH1

)
dy.

Instead of seeing the function χε as a solution of an ODE (in space) with a parameter t,
one can see it as a solution of an ODE with parameters λ1, λ2, γ2, δ1, ∂tH1, ∂tV1
and ε that we denote χε(t, x) =gε(x, λ1, λ2, γ1, δ1, ∂tH1, ∂tV1). From [18, Th. 2.1] the
function

(x, ε, λ1, λ2, γ2, δ1, ∂tH1, ∂tV1) 7−→ gε(x, λ1, λ2, γ1, δ1, ∂tH1, ∂tV1)

is continuous. But from (1.11), (1.12), and (3.6), the quantities

(λ1(t), λ2(t), γ2(t), δ1(t), ∂tH1(t), ∂tV1)

are bounded from above and below and therefore belong to a compact set when
t ∈ [0,+∞). From this one can obtain that

(3.18) ε 7−→ gε(x, λ1(t), λ2(t), γ1(t), δ1(t), ∂tH1(t), ∂tV1) = χε(t, x)

is uniformly continuous in ε ∈ [0, ε1) for (t, x) ∈ [0,+∞) × [0, L], for some ε1 > 0

(independent of t). One can obtain this uniform continuity and this ε1 by observing
that, from Lemma 3.2 and (3.15),

∂x(χε(t, x)− χ0(t, x)) =
δ1
φλ2

(χ2
ε − χ2

0) + ε =
δ1
φλ2

[
(χε − χ0)2 + 2χ0(χε − χ0)

]
+ ε

6 C
[
(χε − χ0)2 + (χε − χ0)

]
+ ε,

where C is a positive constant that might change between lines but depends only on
Hmax, α and an upper bound of δ and where we used that χ0 = λ2φ/λ1. Let us set h
defined by

∂xh(t, x) = C
[
h2(t, x) + h(t, x)

]
+ ε,

h(t, 0) = χε(t, 0)− χ0(t, 0) = ε,
(3.19)

by comparison χε(t, x)−χ0(t, x) 6 h(t, x) for any (t, x) ∈ [0,+∞)× [0, L], provided h
exist on [0,+∞) × [0, L]. This implies that χε exist on [0,+∞) × [0, L] provided h

does. Besides, from (3.19), h is nondecreasing and therefore h(t, x) > h(t, 0) = ε so

∂xh(t, x) 6 2C
[
h2(t, x) + h(t, x)

]
,

which implies, integrating and using that ln(x/1 + x) is a primitive of 1/(x2 + x),

(3.20) h(t, x)

1 + h(t, x)
6

ε

1 + ε
e2CL,
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From (3.20) we deduce that there exists ε1 depending only onHmax, α, L and an upper
bound of δ such that for any ε ∈ [0, ε1), h (and hence χε) exists on [0,+∞) × [0, L]

and
χε(t, x)− χ0(t, x) 6 h(t, x) 6 C(ε), ∀ (t, x) ∈ [0,+∞)× [0, L],

where C(ε) depends only on Hmax, α, L, ε, and an upper bound of δ, varying contin-
uously with ε with C(0) = 0. By comparison again and (3.15) we have (χε−χ0) > 0,
hence

|χε(t, x)| 6 |χ0(t, x)|+ C(ε), ∀ (t, x) ∈ [0,+∞)× [0, L].

Finally we conclude to the uniform continuity of ε 7→ χε with respect (t, x) ∈ [0,+∞)×
[0, L] for ε ∈ [0, ε1) by using the fact that χ0 = λ2φ/λ1 is uniformly bounded on
[0,+∞)×[0, L]. Indeed, from (1.12) and (1.11) we know that for any (t, x) ∈ [0,+∞)×
[0, L],

(3.21)
√
gHmax > λ2 > α, 2

√
gHmax > λ1 > α.

Besides, from the definition of φ1 and φ2 given by (3.10), (2.12) and the bound (1.12),
(1.11), there exists a constant C8 that only depends on δ, α and Hmax such that

(3.22) 1

C8
6 ‖φ1‖∞ 6 C8,

1

C8
6 ‖φ2‖∞ 6 C8.

This, together with (3.17) implies that there exists C0 depending only on L, Hmax,
α, ε, an upper bound of δ (for instance δ0), and continuous with ε ∈ [0, ε1) such that∣∣∣∣∫ x

0

exp

(∫ x

y

2
δ1
φλ2

χε(t, ω)dω

)
∂t(∂y(H1V1))dy

∣∣∣∣
6 C0 max

(
‖∂tH1‖C1([0,+∞);C0([0,L])), ‖∂tV1‖C1([0,+∞);C0([0,L]))

)
.

Similarly there exists a constant C1 > 0 depending only on L, Hmax, α, and an upper
bound of δ such that

(3.23) ‖∂tφ‖L∞((0,+∞)×(0,L)

6 C1 max
(
‖∂tH1‖C1([0,+∞);C0([0,L])), ‖∂tV1‖C1([0,+∞);C0([0,L]))

)
,

and similarly for φ2. This, together with the definition of λ1 and λ2 given by (2.10),
(3.17), and using the continuity of ε → χε on [0, ε1) (recall that this continuity is
uniform with respect to (t, x) ∈ [0,+∞)× [0, L] from (3.18)), we get that there exists
C > 0 depending only on Hmax, α, an upper bound of δ, ε and continuous with ε on
[0, ε1) such that

|∂tχε(t, x)| 6
(
|∂tχε(t, 0)|

+ max
(
‖∂tH1‖C1([0,+∞);C0([0,L])), ‖∂tV1‖C1([0,+∞);C0([0,L]))

))
C(ε).

But, from (3.15) ∂tχε(t, 0) = (λ2(0)/λ1(0))t, thus using (3.6) we obtain

(3.24) |∂tχε(t, x)| 6 δC2(ε),

where C2 is again a constant that only depends on ε, α, Hmax, an upper bound of δ
and is continuous with ε on [0, ε1). We can now restrict ourselves to ε ∈ [0, ε1/2] and
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then C2 can be chosen independent of ε by simply taking its maximum on [0, ε1/2].
Recall that from Lemma 3.2 we have, χ0 = φλ2/λ1, and(φγ2

λ1
+

δ1
φλ2

χ2
0 +

φ

λ21

√
g/H1 ∂tH1

)
> 0.

Recall also that we did not yet choose the bound δ ∈ (0, δ0) on ‖∂tH1‖C1([0,∞);C0([0,L]))

and ‖∂tV1‖C1([0,∞);C0([0,L])) given in (3.6). From the assumptions on kp and kI , i.e.,
(1.21), and (2.14), and recalling that k1 = ∂1D2(0, 0, t) and k3 = −∂2D2(0, 0, t), one
has

(3.25) k21 <
(λ1(L)

λ2(L)

)2
, k3 > 0.

Thus, using (2.10),

(3.26) η1 := min

(( 1

|k1|
− λ2(L)

λ1(L)

)
, 1− λ2(L)

λ1(L)

)
> 0.

As ε → χε(t, x) is uniformly continuous with ε for (t, x) ∈ [0,+∞) × [0, L], there
exists ε2 ∈ (0, ε1/2) such that for any (t, x) ∈ [0,+∞)× [0, L]

(3.27) |χε2(t, x)− χ0(t, x)| < φ(t, L)η1,

and

(3.28)
(φγ2
λ1

+
δ1
φλ2

χ2
ε2 +

φ

λ21

√
g/H1 ∂tH1

)
> 0.

In particular χε is a solution to (3.12). Note that ε2 depends a priori on δ from (3.28).
However, from Lemma 3.2 we can in fact choose ε2 independent of δ and depending
only on an upper bound of δ (for instance δ0 given by Lemma 3.2). This is important
as, in the following, we will choose a δ that may depends on ε.

3.4. Condition from the integral. — As announced we select f1 and f2 in the fol-
lowing way:

f1(t, x) =
φ21

λ1χε2(t, x)
> 0,

f2(t, x) = φ22
χε2(t, x)

λ2
> 0,

(3.29)

and we can now check that the condition (3.9) is verified for δ small enough. We have

(−λ1f1)x = −2
(φ1)xλ1f1

φ1
+ φ21

∂xχε2(t, x)

χ2
ε2(t, x)

.

Thus from (3.10)

(3.30) − (λ1f1)x + 2γ1f1 = φ21
∂xχε2
χ2
ε2

and similarly
(λ2f2)x + 2δ2f2 = (φ22χε2(t, x))x − (φ22)xχε2(t, x)

= φ22∂xχε2 .
(3.31)
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Therefore, from (3.15), (3.30), and (3.31), one has

(3.32) (−(λ1f1)x + 2γ1f1 − ∂tf1)((λ2f2)x + 2δ2f2 − ∂tf2)

=
(φ1φ2
χε2

)2((φγ2
λ1

+
δ1
φλ2

χ2
ε2 +

φ

λ21

√
g/H1 ∂tH1

)
+ ε2

)2

− ∂xχε2
( φ21
χ2
ε2

∂tf2 + φ22∂tf1

)
+ (∂tf1)(∂tf2).

But we have

(3.33) ∂tf1 = 2
(∂tφ1)φ1
λ1χε2

−
( ∂tλ1
λ21χε2

+
∂tχε2
λ1χ2

ε2

)
φ21,

and besides, from (1.4) and (3.6), there exists C3 > 0 depending only on α and Hmax,
and an upper bound of δ (for instance δ0), such that

max
(
‖H1x‖L∞((0,+∞)×(0,L), ‖V1x‖L∞((0,+∞)×(0,L)

)
6 C3.

Thus, using (2.12) and (2.10), there exists C4 > 0 depending only on L, α and Hmax,
and δ0 (but not on δ) such that

(3.34) max
(
‖φ1‖L∞((0,+∞)×(0,L)), ‖φ−11 ‖L∞((0,+∞)×(0,L))

)
< C4,

and similarly for φ2. Observe now that, from χ0 = λ2φ/λ1 and (3.34), |χ0| and 1/|χ0|
can be bounded by a constant depending only on L, α, Hmax, and δ0. Thus from
(3.27) one obtains

(3.35) 1/C5 6 ‖χε2‖L∞((0,+∞)×(0,L) 6 C5,

where C5 only depends on L, α, Hmax and δ0. Therefore, from (2.10), (3.24), (3.23),
(3.33) and (3.35) one has

|∂tf1| 6 C6δ,

and similarly
|∂tf2| 6 C7δ,

where C6 and C7 are constants that only depend on L, α, Hmax (and δ0). We now
select the bound on max

(
‖∂tH1‖C1([t0,∞);C0([0,L])), ‖∂tV1‖C1([t0,∞);C0([0,L]))

)
: we select

δ3 ∈ (0, δ0) such that, for any δ ∈ [0, δ3] and any (t, x) ∈ [0,+∞)× [0, L],

(3.36) C6C
2
5C

2
4δ < ε2,

and

(3.37) ε22 + 2ε2 inf
x∈[0,L]
t∈[0,+∞)
ε∈(0,ε2)

(φγ2
λ1

+
δ1
φλ2

χ2
ε +

φ

λ21

√
g/H1 ∂tH1

)

>
(φγ2
λ1

+
δ1
φλ2

X2 +
φ

λ21

√
g/H1 δ + ε2

)(
C6

φ21
X2

+ C7φ
2
2

)( X

φ1φ2

)2
δ

+ 2
φ

λ21

√
g/H1

(φγ2
λ1

+
φ−1δ1
λ2

X2
)
δ +

(( X

φ1φ2

)2
C7C6+

φ2

λ41

g

H1

)
δ2,
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for any x ∈ [0, L] and any X ∈ [1/C5, C5] (note that having it for X = C5 is enough).
This is possible as ε2 > 0 and, when δ3 = 0, (3.37) is verified and the inequality is
strict. Then, from (3.10), (3.34), (3.32), (3.35)–(3.37),

(−(λ1f1)x + 2γ1f1 − ∂tf1)((λ2f2)x + 2δ2f2 − ∂tf2) >
(φ1φ2
χε2

)2(φγ2
λ1

+
δ1
φλ2

χ2
ε2

)2
= (γ2f1 + δ1f2)

2
,

which is exactly the second inequality of (3.9). Besides, from (3.14) and (3.36),

(−(λ1f1)x + 2γ1f1 − ∂tf1) = φ21
∂xχε2
χ2
ε2

− ∂tf1

=
φ21
χ2
ε2

((φγ2
λ1

+
δ1
φλ2

χ2
ε2 +

φ

λ21

√
g/H1 ∂tH1

)
+ε2 −

∂tf1χ
2
ε2

φ21

)
> 0.

3.5. Conditions at the boundaries. — We can now check that (3.7) and (3.8) are
also verified thanks to the choice of ε2 and η1, and (f1, f2) given by (3.29). Indeed,
using (3.15), (3.10) and (2.14), one has

λ2(0)f2(t, 0)

λ1(0)f1(t, 0)
= χ2

ε2(t, 0) =
(λ2(0)

λ1(0)
+ ε2

)2
>
(λ2(0)

λ1(0)

)2
= k22,

which is exactly (3.7). This explains our choice of initial condition for χε2 . Now, from
(3.27), one has

λ1(t, L)f1(t, L)

λ2(t, L)f2(t, L)
=
φ2(t, L)

χ2
ε2(L)

>
1

(λ2(t, L)/λ1(t, L) + η1)
2 ,

and from the definition of η1 given by (3.26),

η1 +
λ2(L)

λ1(L)
= min(1/|k1|, 1).

Therefore,

(3.38) λ1(t, L)f1(t, L)

λ2(t, L)f2(t, L)
> max(k21, 1),

and in particular the condition (3.8a) is verified. Let us now look at condition (3.8b).
So far we have not selected the positive constant q. We want to show that there exists
q > 0 such that the condition (3.8b) is satisfied. Observe that the left-hand side of
(3.8b) can be seen as a polynomial in q, and the condition (3.8b) can be rewritten as

P (q) := −q
2

4

H1

g
(k1 − 1)

2
+ q
√
H1/g k3

(
λ1f1(L)− λ2f2(L)(k21 − k1(k1 − 1))

)
− (λ1f1(L)) (λ2f2(L)) k23

= −q
2

4

H1

g
(k1 − 1)

2
+ q
√
H1/g k3 (λ1f1(L)− λ2f2(L)k1))

− (λ1f1(L)) (λ2f2(L)) k23

> 0.

J.É.P. — M., 2022, tome 9



1458 A. Hayat

From (3.38) λ1f1(t, L) > λ2f2(t, L)k1 and from (3.25) k3 > 0. Thus the real roots
of P are positive if they exist. This implies that there exists a positive constant q such
that (3.8b) is satisfied if the discriminant of P is positive. Denoting its discriminant
by ∆,

∆ =
H1

g
k23λ

2
2f

2
2 (t, L)

[(λ1f1(L)

λ2f2(L)
− k1

)2
−
(λ1f1(L)

λ2f2(L)

)
(k1 − 1)

2

]
.

Let us introduce h : X → (X − k1)2 −X(k1 − 1)2. The function h is a second order
polynomial with a positive dominant coefficient and observe that its roots are k21
and 1. Thus h is increasing strictly on [max(k21, 1),+∞). Hence, using (3.38),

∆ =
H1

g
k23λ

2
2f

2
2 (t, L)h

(λ1f1(L)

λ2f2(L)

)
>
H1

g
k23λ

2
2f

2
2 (t, L)h(max(k21, 1)) = 0.

This proves that there exists q > 0 such that (3.8b) is satisfied, and we select such q.
All it remains to do now is to show that the function (U , z, t)→ V (U , z, t), which is
now entirely selected, satisfies (2.17).

Thus, using that χ0 = λ2φ/λ1, (3.29), (3.27), (3.22), and (3.21), there exists η > 0,
c1 > 0 constant independent of U and Z such that, for any (U , Z) ∈ H2(0, L) × R
with ‖U‖H2 + |Z| 6 η

c1
(
‖U‖H2(0,L) + |Z|

)
6 V (U , Z, t) 6

1

c1

(
‖U‖H2(0,L) + |Z|

)
∀ t ∈ [0,+∞),

which is exactly (2.17). This concludes the proof of Theorem 1.7.

4. Conclusion

In this paper, we gave simple conditions on the design of a single PI controller to
ensure the exponential stability of the nonlinear Saint-Venant equations with arbitrary
friction and slope in the H2 norm. These conditions apply when the inflow is an
unknown constant. In that case the system has steady-states and any of them is
stable. Additionally these conditions also apply when the inflow is time-dependent
and slowly variable (with potentially a large total variation). In that case, no steady-
state exists and one has to stabilize other target states. When the values of the target
state are known at the end of the river, we have exponential stability of the target
state. In other situations, we have the Input-to-State Stability with respect to the
variation of the inflow disturbance. These sufficient conditions are found using a local
quadratic entropy and, to the best of our knowledge, are less restrictive than any of
the conditions that existed so far, even in the linear case. In [9] it was shown that, in
absence of friction and slope, these conditions are optimal for the linear case. When
there is some slope or friction, however, there is so far no answer. Knowing whether the
conditions of Theorem 1.7 are optimal or not would be a very interesting open question
for a further study. Its possible application to a network of channels would also be
a matter of interest. Finally, many stabilizing devices for finite dimensional systems
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also use a PID control with an additional derivative term. It has been shown in [14]
that this control cannot ensure exponential stability for a homogeneous hyperbolic
equation. It would be an interesting question to know whether a filtering on the
derivative term could enable to recover the stability for infinite dimensional system
and whether this would enable a faster stabilization than the PI control.

Appendix A. Boundary conditions (2.13) and (2.14)

In this appendix we justify the boundary conditions (2.13) with (2.14) after the
change of variables. From the boundary conditions (2.2) in the physical coordinate
(h, v), together with the definition of u1 and u2 given in (2.4), one has at x = L

u1(t, L) = B2(h(t, L), Z(t), t) +
√
g/H1 h(t, L) =: F1(h(t, L), Z(t), x, t),

u2(t, L) = B2(h(t, L), Z(t), t)−
√
g/H1 h(t, L) =: F2(h(t, L), Z(t), x, t).

(A.1)

From its definition, F1 is C1 and, from (2.3), and (1.19), there exists ν1 ∈ (0, ν0)

such that, for any t ∈ [0,∞), ∂1F1(0, Z(t), t) 6= 0. Thus F1 is locally invertible
with respect to its first variable, thus there exists ν2 ∈ (0, ν1) such that h(t, L) =

F−11 (u1(t, L), Z(t), t), where F−11 denotes the inverse with respect to the first vari-
able. Besides, as F1 is of class C2 with respect to the two first variables, F−11 is also
of class C2. Then, using (A.1)

u2(t, L) = F2(F−11 (u1(t, L), Z(t), t), Z(t), t) =: D2(u1(t, L), Z(t), t),

and, using (2.3),
∂1D2(0, 0, t) = ∂1F2(0, 0, t)∂1(F−11 )(0, 0, t)

=
∂1F2(0, 0, t)

∂1F1(0, 0, t)
=
∂1B2(0, 0, t)−

√
g/H1

∂1B2(0, 0, t) +
√
g/H1

= −λ1(L)− vG(1 + kp)

λ2(L) + vG(1 + kp)
.

Now, as ∂2F−11 (0, 0, t) = −∂2F1(0, 0, t)/∂1F1(0, 0, t), using (2.3),
∂2D2(0, 0, t) = ∂1F2(0, 0, t)∂2(F−11 )(0, 0, t) + ∂2F2(0, 0, t)

= −∂1F2(0, 0, t)
∂2F1(0, 0, t)

∂1F1(0, 0, t)
+ ∂2F2(0, 0, t)

= ∂2B2(0, 0, t)
(

1−
∂1B2(0, 0, t)−

√
g/H1

∂1B2(0, 0, t) +
√
g/H1

)
= − vGkI

H1(t, L)

( 2
√
gH1(t, L)

vG(1 + kp) + λ2(t, L)

)
.

The same can be done in x = 0 in a slightly easier way, as B1 does not depends on Z.
This gives (2.13) and (2.14).

Appendix B. Proof of Proposition 1.10

This appendix uses many computations that are very similar to the ones in Sec-
tion 2, but in a simpler way. Thus, in order to avoid writing two times the same thing
and to keep the proof relatively short, some steps might be quicker in this appendix.
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Let T1>0 and to be chosen later on. As (H0(0), V0(0)) satisfies (1.9), there exists νa>0

such that for ν ∈ (0, νa), F ((H0
1 , V

0
1 )T ) has two distinct nonzero eigenvalues. Recall

that F is given by (2.6) and that ν is the bound on ‖H0
1 −H0(0), V 0

1 − V0(0)‖H2(0,L).
Besides, from (1.8), the function (H0(t, ·), V0(t, ·)) is the solution of a system of ODEs
with an initial condition depending on a parameter t. Thus, as ∂tQ0 ∈ C2([0,+∞))

and the slope C satisfies C ∈ C2([0, L]), using (1.6) and [18, Chap. 5, Th. 3.1],
(H0, V0) ∈ C3([0, T1];C2([0, L])) and there exists a constant C depending only on
Hmax, α and an upper bound of δ, such that,

(B.1) ‖∂itH0, ∂
i
tV0‖C2([0,L]) 6 C

i∑
n=1

|∂nt Q0| , ∀ i ∈ [1, 3], ∀ t ∈ [0, T1],

and in particular

(B.2) ‖∂tH0, ∂tV0‖C2([0,T1];C2([0,L])) 6 C‖∂tQ0‖C2([0,+∞)).

Thus [32, Th. 2.1] can still be used on (H1 − H0) and there exist δ0(T1) > 0 and
ν0(T1) ∈ (0, νa) such that, if ν ∈ (0, ν0(T1)) and δ ∈ (0, δ0(T1)), there exists a unique
solution (H1, V1) ∈ C0([0, T1];H2(0, L))2 to the system (1.4)–(1.5). Besides (H1, V1)

satisfies an estimate as (1.19) but with (H1, V1) instead of (H,V ) and (H0, V0) instead
of (H1, V1). We denote by C(T1) the associated constant. Let us define h1 := H1−H0

and v1 := V1 − V0. We transform (h1, v1)T into w = (w1, w2)T using the change of
variables defined by (2.1)–(2.4) with H0 and V0 instead of H1 and V1. Thus we obtain

∂tw +A0(w, x)∂xw +B0(w, x) + S0

(
∂tH0

∂tV0

)
= 0,

w1(t, 0) = H1(w2(t, 0), Q0(t)−Q0(0)),

w2(t, L) = H2(w2(t, L)),

(B.3)

where A0, B0 and S0 have the same expression as A, B and S (given by(2.8), (2.9),
(2.5)) but with (H0, V0) instead of (H1, V1). Similarly we define

λ01 = V0 +
√
gH0, λ02 =

√
gH0 − V0,

and φ0, defined as φ but with (H0, V0) instead of (H1, V1). Similarly as in Appendix A,

H ′
2 (0) = −λ01(L)/λ02(L), H ′

1 (0) = −λ02(0)/λ01(0),

which is of the form (2.13) with vG = 0 and Z = 0. Before going any further, note
that we can perform the same computations as in Section 2 with no problem, as
the proof in Section 2 only used Proposition 1.1 to get that (H1, V1) exists for any
time and that (1.12) and Lemma 2.4 hold, but we will see now that such claims
are true for H0 and V0. The existence of (H0, V0) was already shown in Section 1
and (1.9) is exactly (1.12) with (H0, V0) instead of (H1, V1). Finally, (B.2) is exactly
the equivalent of Lemma 2.4 for (H0, V0). We define now the Lyapunov function
candidate V := Va(w(t, x), t) + Vb(w(t, x), t) + Vc(w(t, x), t) + Vd(w(t, x), t), where
Va, Vb and Vc are defined in (3.1), (F.1), with f1 and f2 chosen as f1 := (φ01)2/(λ01η)
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and f2 := (φ02)2η/(λ02), where η is a function such that there exists a constant ε > 0

independent of w such that

η′ =
∣∣∣γ02
λ01

+
δ01
λ02

η2
∣∣∣+ ε, ∀x ∈ [0, L],

η(0) =
λ02(0)

λ01(0)
φ0(0) + ε.

Note that η exists as, for any t ∈ [0,+∞), (φ(t, ·)0λ02(t·)/λ01(t·)) is a solution of

∂xχ =
∣∣∣γ02
λ01

+
δ01
λ02

χ2
∣∣∣, ∀x ∈ [0, L],

this can be proved as in Lemma 3.2, and this case was actually shown in [21]. Note that
from (1.6), (1.8) and (1.9), (H0)x and (V0)x can be bounded by above and by below
by constants that only depend on Hmax, α and an upper bound of Q0 (which can also
be expressed only with Hmax, α from (1.9)). Therefore, looking at their definition,
the function f1 and f2 can also be bounded by above and below by constants that
only depend on Hmax, α and ε. Thus there exist c1 > 0 and c2 > 0 depending only
on Hmax and α, ε and µ such that

(B.4) c1‖h1(t, ·), v1(t, ·)‖2H2(0,L) 6 V (t) 6 c2‖h1(t, ·), v1(t, ·)‖2H2(0,L), ∀ t ∈ [0, T1].

Consequently, by differentiating V exactly as in (G.1)–(3.4), and from (B.3), we ob-
tain that there exists µ > 0, ν1 ∈ (0, ν0(T1)) and δ3 > 0 such that, for any
‖h1(0, ·), v1(0, ·)‖H2(0,L) 6 ν1, and ‖∂tQ0‖C2([0,∞)) 6 δ, where δ ∈ (0, δ3),

V̇ 6− µV +

∫ L

0

2f1w1

(
S0

(
∂tH0

∂tV0

))
1

+ 2f2w2

(
S0

(
∂tH0

∂tV0

))
2

dx,

+

∫ L

0

2f1∂tw1

(
S0

(
∂2ttH0

∂2ttV0

))
1

+ 2f2∂tw2

(
S0

(
∂2ttH0

∂2ttV0

))
2

dx,

+

∫ L

0

2f1∂
2
ttw1

(
S0

(
∂3tttH0

∂3tttV0

))
1

+ 2f2∂
2
ttw2

(
S0

(
∂3tttH0

∂3tttV0

))
2

dx.

Thus, using Cauchy-Schwarz inequality, (B.4), and (B.1) there exists C1 > 0 depend-
ing only on Hmax, α and an upper bound of µ such that for any t ∈ [0, T1],

(B.5) V̇ (t) 6 −µV (t) + C1

(
|∂tQ0(t)|+ |∂2ttQ0(t)|+ |∂3tttQ0(t)|

)
V 1/2(t),

and in particular

(B.6) V̇ (t) 6 −µV (t) + C1‖∂tQ0‖C2([0,t])V
1/2(t).

Let us define Veq := (C1δ/µ)2. From (B.6), if V (t) > 2Veq, then there exists a constant
k > 0 such that V̇ (t)<−kV 1/2(t). We now choose δ such that

√
2C1δ/(µ

√
c1)<ν1.

Thus, from (B.6) and as c1, c2, C1 and µ do not depend on T1, we can choose T1 large
enough such that

V (T1) 6 2Veq 6 c1ν
2
1 ,

which implies that
‖h1(T1, ·), v1(T1, ·)‖C2(0,L) 6 ν1
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and therefore there exists a unique solution (h1, v1)∈C0([T1, 2T1], H2(0, L)), with ini-
tial condition (h1(T1, ·), v1(T1, ·)) (we use the same existence theorem ([32, Th. 2.1]))
and, noting that V (T1) 6 2Veq implies V (2T1) 6 2Veq, this analysis still holds. We can
do similarly for any [nT1, (n+ 1)T1] with n ∈ N, thus, as

(H0, V0) ∈ C0([0,+∞), H2(0, L)),

there exists a unique solution

(H1, V1) ∈ C0([0,+∞), H2(0, L))

and (B.5) holds for any t ∈ [0,+∞). Therefore, denoting g(t) = V (t)eµt, we deduce
from (B.5) that

(B.7) g′(t) 6 C1

(
|∂tQ0(t)|+ |∂2ttQ0(t)|+ |∂3tttQ0(t)|

)
eµt/2

√
g(t).

Thus

V 1/2(t) 6 V 1/2(0)e−µt/2 +
C1

2

(∫ t

0

(
|∂tQ0(t)|+ |∂2ttQ0(t)|+ |∂3tttQ0(t)|

)
eµs/2ds

)
e−µt/2.

This implies the ISS property

(B.8) ‖h1(t, ·), v1(t, ·)‖H2((0,L);R2) 6
√
c2/c1 ‖h1(0, ·), v1(0, ·)‖H2((0,L);R2)e

−µt/2

+
C1

2
√
c1

(∫ t

0

(
|∂tQ0(t)|+ |∂2ttQ0(t)|+ |∂3tttQ0(t)|

)
eµs/2ds

)
e−µt/2.

This ends the proof of Proposition 1.1. To extend this proof to the Hp norm for
p > 2, note that using the same argument (B.2) holds with the Cp([0, T1];C3([0, L]))

norm in the left-hand side and the Cp norm in the right-hand side. We can can define
V3, . . . , Vp on Hp(0, L)×R×R+ as in (F.1) such that Vk(w(t, x), t) = Va(∂ktw(t, x), t),
for any k ∈ [3, p]. Then (B.4) holds with V := Va + Vb + Vc + V3 + · · · + Vp and the
Hp norm, and the rest can done done identically.

Appendix C. Proof of Theorem 1.11

Theorem 1.11 result from the proof of Theorem 1.7. Note that the boundary con-
ditions (1.15) can be written under the form (1.17) with (H0, V0) instead of (H1, V1)

where the only difference is that Z satisfies now

(C.1) Ż = Hc −H(t, L) +
f(t)

vGkI
,

where f(t) = Hc∂tV0(t, L). The rest of the proof can be conducted as in Appendix B
for (H1, V1), with a priori two differences: (H,V ) satisfies the boundary conditions
of the form (1.17) and not of the form given in (1.4), and Ż satisfies (C.1) instead
of (1.14). However, note that in Appendix B the only assumption used on the bound-
ary conditions of the transformed system is that they are of the form (2.2), which
is still the case here. Thus, the only difference with Appendix B are some addi-
tional terms when Ż is used, which is in the boundary terms in the derivative of
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the Lyapunov function. There exists therefore δ4 > 0 and ν2 > 0 such that, for any
‖h1(0, ·), v1(0, ·)‖H2(0,L) 6 ν2, and ‖∂tQ0‖C2([0,∞)) 6 δ, where δ ∈ (0, δ4),

V̇ (t) 6 −γ
2
V (t)+C1

∣∣∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)
∣∣V 1/2

+ 2qZf(t) + 2qŻf ′(t) + 2qZ̈f ′′(t),

where C1 is a constant only depending on Hmax, α, ν2 and δ4. Using Lemma 2.4,
there exists a constant C > 0 depending only on Hmax, α, ν2 and δ4 such that

V̇ 6 −γ
2
V + CV 1/2

∣∣∂tQ0(t) + ∂2ttQ0(t) + ∂3tttQ0(t)
∣∣.

The same argument as in Appendix B, (B.7)–(B.8), implies directly the ISS prop-
erty (1.23).

Appendix D. Proof of Lemma 3.2

In this appendix we prove Lemma 3.2. The proof is very similar to the one given
in [21] in the special case where (H1, V1) is a steady state. However, it happens that
the proof actually does not need the relation (H1V1)x = 0, which is no longer true
when (H1, V1) is not a steady-state. Let χ = (λ2φ/λ1), we have from (3.10):

∂xχ =
φ

λ21
(λ1∂xλ2 − λ2∂xλ1 + λ2γ1 + λ1δ2)

=
φ

λ21

(
(V1 +

√
gH1)

(
−V1x +

√
gH1

2H1
H1x

)
− (−V1 +

√
gH1)

(
V1x +

√
gH1

2H1
H1x

)
+ (
√
gH1 − V1)

(3

4

√
g/H1H1x +

3

4
V1x +

kV

H1
− kV 2

1

2H2
1

√
H1/g

)
+ (V1 +

√
gH1)

(
−3

4

√
g/H1H1x +

3

4
V1x +

2kV

H1
+
kV 2

1

2H2
1

√
H1/g

))
=

φ

λ21

(√
gH1

(
−2V1x +

3

2
V1x +

2kV

H1

)
− V1

(3

2

√
g/H1H1x −

kV 2
1

H2
1

√
H1/g −

√
g/H1H1x

))
=

φ

λ21

(2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1/g V1 +

1

2

√
g/H1 ∂tH1

)
.

(D.1)

On the other hand:(φγ2
λ1

+
δ1
λ2φ

χ2
)

=
φ

λ21
(λ1γ2 + λ2δ1)

=
φ

λ21

(2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1/g V1 + V1

√
g/H1

H1x

2
+ V1x

√
gH1

2

)
=

φ

λ21

(2kV

H1

√
gH1 +

kV 2
1

H2
1

√
H1/g V1 −

1

2

√
g/H1 ∂tH1

)
.

(D.2)
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Thus from (D.1) and (D.2)

(D.3) ∂xχ =
(φγ2
λ1

+
δ1
λ2φ

χ2 +
φ

λ21

√
g/H1 ∂tH1

)
,

and there exists δ0 such that, if ‖∂tH1‖L∞((0,+∞)×(0,L) 6 δ0,

φ

λ21

(2kV1
H1

√
gH1 +

kV 2
1

H2
1

√
H1/g V1 +

√
g/H1 ∂tH1

)
> 0, ∀x ∈ [0, L], t ∈ [0,+∞),

and, from (D.1) and (D.3),

∂xχ =
∣∣∣φγ2
λ1

+
δ1
λ2φ

χ2 +
φ

λ21

√
g/H1 ∂tH1

∣∣∣,
this ends the proof of Lemma 3.2.

Appendix E. Proof of Lemma 2.4

In this appendix we show that Lemma 2.4 is a consequence of Proposition 1.1 and
Remark 1.2.

Proof. — Indeed using Proposition 1.1 and Remark 1.2 with p = 3, we have

‖H1(t, ·)−H0(t, ·)‖H3(0,L) + ‖V1(t, ·)− V0(t, ·)‖H3(0,L)

6
(
‖H0

1 −H∗‖H3(0,L) + ‖V 0
1 − V ∗‖H3(0,L)

)
e−µt/2

+ c2
2

µ
(1− e−µt/2)‖∂tQ0‖C3([0,+∞)).

Note that we chose H0
1 = H∗ and V 0

1 = V ∗ which means that

(E.1) ‖H1(t, ·)−H0(t, ·)‖H3(0,L) +‖V1(t, ·)−V0(t, ·)‖H3(0,L) 6 c2
2

µ
‖∂tQ0‖C3([0,+∞)).

Note thatH1−H0
1 is the solution of a quasilinear hyperbolic system and is small inH3

norm provided that ∂tQ0 is small in C3 norm. Therefore, there exists a constant C
depending only on the parameters of the system and the bound ν such that

‖H1(t, ·)−H0(t, ·)‖L2(0,L) + ‖V1(t, ·)− V0(t, ·)‖L2(0,L)(E.2)
+ ‖∂tH1(t, ·)− ∂tH0(t, ·)‖L2(0,L) + ‖∂tV1(t, ·)− ∂tV0(t, ·)‖L2(0,L)

+ ‖∂2txH1(t, ·)− ∂2txH0(t, ·)‖L2(0,L) + ‖∂2txV1(t, ·)− ∂2txV0(t, ·)‖L2(0,L)

+ ‖∂2ttH1(t, ·)− ∂2ttH0(t, ·)‖L2(0,L) + ‖∂2ttV1(t, ·)− ∂2ttV0(t, ·)‖L2(0,L)

+ ‖∂3tttH1(t, ·)− ∂3tttH0(t, ·)‖L2(0,L) + ‖∂3tttV1(t, ·)− ∂3tttV0(t, ·)‖L2(0,L)

+ ‖∂3ttxH1(t, ·)− ∂3ttxH0(t, ·)‖L2(0,L) + ‖∂3ttxV1(t, ·)− ∂3ttxV0(t, ·)‖L2(0,L)

6 C‖H1(t, ·)−H0(t, ·)‖H3(0,L) + ‖V1(t, ·)− V0(t, ·)‖H3(0,L).

In what follows, the value of C might change between lines but it still denotes a
constant that only depends on the parameters of the system and the bound ν. Besides,
from Sobolev inequality, for f ∈ H1([0, L]),

(E.3) ‖f‖C0([0,L]) 6 C
(
‖f‖L2([0,L]) + ‖∂xf‖L2([0,L])

)
.
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Combining (E.1), (E.2) and (E.3),

max
(
‖H1(t, ·)−H0(t, ·)‖C0([0,L]), ‖V1(t, ·)− V0(t, ·)‖C0([0,L])

)
+ max

(
‖∂tH1(t, ·)− ∂tH0(t, ·)‖L∞(0,L), ‖∂tV1(t, ·)− ∂tV0(t, ·)‖C0([0,L])

)
+ max

(
‖∂2ttH1(t, ·)− ∂2ttH0(t, ·)‖L∞(0,L), ‖∂2ttV1(t, ·)− ∂2ttV0(t, ·)‖C0([0,L])

)
6 Cc2

2

µ
‖∂tQ0‖C3([0,+∞)).

Therefore, using the reverse triangular inequality and the fact that

max
(
‖H1(t, ·)−H0(t, ·)‖C0([0,L]), ‖V1(t, ·)− V0(t, ·)‖C0([0,L])

)
> 0,

we have
max

(
‖∂tH1(t, ·)‖L∞(0,L), ‖∂tV1(t, ·)‖L∞(0,L)

)
+ max

(
‖∂2ttH1(t, ·)‖L∞(0,L), ‖∂2ttV1(t, ·)‖L∞(0,L)

)
6 max

(
‖∂tH0(t, ·)‖L∞(0,L), ‖∂tV0(t, ·)‖L∞(0,L)

)
+ max

(
‖∂2ttH0(t, ·)‖L∞(0,L), ‖∂2ttV0(t, ·)‖L∞(0,L)

)
+ Cc2

2

µ
‖∂tQ0‖C3([0,+∞)).

Recall that (H0(t, ·), V0(t, ·)) satisfies (B.1), This implies

max
(
‖∂tH1(t, ·)‖L∞(0,L), ‖∂tV1(t, ·)‖L∞(0,L)

)
+ max

(
‖∂2ttH1(t, ·)‖L∞(0,L), ‖∂ttV1(t, ·)‖L∞(0,L)

)
6 C

(
1 + c2

2

µ

)
‖∂tQ0‖C3([0,+∞)).

As this is true for any t ∈ [0,+∞) we have

‖∂tH1, ∂tV1‖C1([0,+∞),C0([0,L])) 6 C
(

1 + c2
2

µ

)
‖∂tQ0‖C3([0,+∞)).

This ends the proof of Lemma 2.4. �

Appendix F. Expression of Vb and Vc for functions of H2(0, L)

Looking at (3.1), Va is indeed a function defined on H2(0, L) × R × R+. How-
ever, V given by (3.2) is a priori only defined for time-dependent functions u ∈
C2([0, T ], L2(0, L)). In fact, we can extend this do define V on H2(0, L)×R×R+ by
defining Vb and Vc as follows:

Vb(U , t) :=

∫ L

0

f1e
−µx(E(U(x), x, t)I(U , x, t))21 + f2e

µx(E(U(x), x, t)I(U , x, t))22dx

+ q
H1(t, L)

4g
(U1(L)− U2(L))2,

(F.1)

Vc(U , t) :=

∫ L

0

f1e
−µx(E(U(x), x, t)J(U , x, t))21 + f2e

µx(E(U(x), x, t)J(U , x, t))22dx

+ q
(√

H1(t, L)/4g (I1(t, L)− I2(t, L))

+
∂tH1(t, L)

4

√
1/gH1(t, L) (U1(L)− U2(L))

)2
,
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where
I(U , x, t) := A(U , x, t)∂xU +B(U , x, t),

J(U , x, t) := A(U , x, t)∂x(−I(U , x, t)) + (∂tA(U , x, t)

+ ∂UA(U , x, t) · (−I(U , x, t)))∂xU + ∂tB(U , x, t)

+ (∂UB(U , x, t))(−I(U , x, t)),

(F.2)

Observe that, for a solution u of (2.7), these quantities reduces to

I(U , x, t) = −∂tu(t, x) and J(U , x, t) = −∂2tu(t, x).

Hence, using the expression of Z given by (1.14), the expressions of Vb(u(t, ·), t) and
Vc(u(t, ·), t) reduces to

Vb(u(t, ·), t) :=

∫ L

0

f1(t, x)e−µx(E∂tu)21(t, x)+f2(t, x)eµx(E∂tu)22(t, x)dx+q(Ż(t))2,

Vc(u(t, ·), t) :=

∫ L

0

f1(t, x)e−µx(E∂2ttu)21(t, x)+f2(t, x)eµx(E∂2ttu)22(t, x)dx+q(Z̈(t))2,

which is exactly the definition (3.3) given earlier and justifies the expression chosen
for (F.1) and (F.2).

Appendix G. Proof of Proposition 3.1

Let T > t0 > 0 and (u0, Z0) ∈ H2(0, L)×R satisfying the compatibility condition
(1.18) and such that (

‖u0‖H2(0,L) + |Z0|
)
< ν,

where ν is a constant to be chosen later on but such that ν < min(ν2, ν(T − t0)). Let
(u, Z) ∈ C0([t0, T ], H3(0, L))×C2([t0, T ]) be a solution with initial condition u0, Z0.
Let δ > 0 to be chosen later on and assume that

max
(
‖∂tH1‖C1([t0,∞);C0([0,L])), ‖∂tV1‖C1([t0,∞);C0([0,L]))

)
< δ.

As this is the only assumption on H1 and V1, we can assume from now on that t0 = 0

without loss of generality.
We start now by dealing with Va. Differentiating t → Va(t) with respect to time,

using (2.7), (2.15) and integrating by parts, one has

V̇a = −2

∫ L

0

f1(t, x)e−µx(Eu)1 [(EA(u, x, t)∂xu)1 + (EB)1(u, x, t)](G.1)

+ f2(t, x)eµx(Eu)2 [(EA(u, x, t)∂xu)2 + (EB)2(u, x, t)] dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx

+ 2

∫ L

0

f1e
−µx(Eu)1

(
(∂tE + ∂uE · ∂tu)u

)
1

+ f2e
µx
(
(∂tE + ∂uE · ∂tu)u

)
2
dx

+ 2qZ(t)Ż(t)
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= −2

∫ L

0

f1(t, x)e−µx(Eu)1 [D1(u, x, t) (∂x(Eu)− (∂xE + ∂UE · ∂xu)u)1]

+ f2(t, x)eµx(Eu)2 [D2(u, x, t) (∂x(Eu)− (∂xE + ∂UE · ∂xu)u)2] dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

+ 2

∫ L

0

f1e
−µx(Eu)1

(
(∂tE + ∂uE · ∂tu)u

)
1

+ f2e
µx
(
(∂tE + ∂uE · ∂tu)u

)
2
dx

+ 2qZ(t)Ż(t),

V̇a = −
[
f1e
−µxD1(Eu)21 +D2f2e

µx(Eu)22
]L
0

(G.2)

−
∫ L

0

(Eu)1e
−µx

((
−∂x(D1f1)− f1∂u(D1) · ∂xu

)
(Eu)1

− 2f1D1

(
(∂xE + ∂UE · ∂xu)u

)
1

)
+ (Eu)2e

µx
((
−∂x(D2f2)− f2∂u(D2) · ∂xu)(Eu

)
2

− 2f2D2

(
(∂xE + ∂UE · ∂xu)u

)
2

)
dx

+

∫ L

0

∂t(f1)e−µx(Eu)21 + ∂t(f2)eµx(Eu)22dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)

+ 2

∫ L

0

f1e
−µx(Eu)1

(
(∂tE + ∂uE · ∂tu)u

)
1

+ f2e
µx
(
(∂tE + ∂uE · ∂tu)u

)
2
dx

− µ
∫ L

0

D1f1e
−µx(Eu)21 −D2f2e

µx(Eu)22dx+ 2qZ(t)Ż(t).

In order to simplify this expression, observe that from (2.8), (2.15) and (2.10),
D1(0, x, t) = λ1(t, x) and D2(0, x, t) = −λ2(t, x). Recall that H1 is bounded by Hmax

from (1.11) and that gH1−V 2
1 is bounded by below by α from (1.12). Using this, the

fact that D is C1 in u, and using also (2.16) and (3.6), there exists C > 0 depending
only on Hmax and α, ν and δ such that

‖Di − sgn(Di)λi‖∞ 6 ‖Cu‖∞,
‖∂xDi + ∂uDi.∂xu− sgn(Di)∂xλi‖∞ 6 C(‖∂xu‖∞ + ‖u‖∞), i ∈ {1, 2},
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and

‖∂xE‖∞ 6 C(‖u‖∞),

‖∂tE + ∂uE∂tu‖∞ 6 C(‖u‖∞ + ‖∂tu‖∞).

Thus, using this together with (G.2)

V̇a 6−
[
f1e
−µxD1(Eu)21 +D2f2e

µx(Eu)22
]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)

)
+ (Eu)22e

µx
(
∂x(λ2f2)− ∂t(f2)

)
dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

− µ
∫ L

0

λ1f1e
−µx(Eu)21 + λ2f2e

µx(Eu)22dx+ 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞)

∫ L

0

(Eu)21 + (Eu)22dx

+ C (‖u‖∞ + ‖∂xu‖∞)
2
∫ L

0

|(Eu)1|+ |(Eu)2|dx,

where C is a constant that may change between lines but only depends on ν, an upper
bound of δ (for instance δ0), µ, Hmax and α. Note that C is continuous in µ ∈ [0,∞),
thus it can be made independent of µ by imposing an upper bound on µ, for instance
µ ∈ (0, 1]. Finally, from the second equation of (2.15), and the fact that E is C1 in u,
there exists a continuous function E1 defined on Bν2 × [0, L] × [0, T ] such that, for
any vector v ∈ R2 and any (t, x) ∈ [0, T ]× [0, L],

(G.3) E(u(t, x), x, t)v − v = (u(t, x) · E1(u(t, x), x, t))v.

As E(u(t, x), x, t) is a C∞ function of the coefficients of A, E1 is bounded on Bν2 ×
[0, L] × [0, T ] by a bound that only depends on ν2, Hmax and α. Thus there exists a
constant C depending only on ν2, Hmax and α such that

(G.4) 1

C
‖v‖L2((0,L);R2) 6 ‖Ev‖L2((0,L);R2) 6 C ‖v‖L2((0,L);R2).

Thus, using this together with the fact that D1 and D2 are C1 with u, (3.1), and
Young’s inequality and then Cauchy-Schwarz inequality on the last integral term,

V̇a 6−
[
f1e
−µxλ1(Eu)21 − λ2f2eµx(Eu)22

]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)

)
+ (Eu)22e

µx
(
∂x(λ2f2)− ∂t(f2)

)
dx

− 2

∫ L

0

f1e
−µx(Eu)1(EB)1(u, x, t) + f2e

µx(Eu)2(EB)2(u, x, t)dx

− µ min
x∈[0,L]

(λ1, λ2)Va+µ min
x∈[0,L]

(λ1, λ2)qZ2(t) + 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞) ‖u‖2L2(0,L)

+ C (‖u‖∞ + ‖∂xu‖∞)
3

+ C‖u‖∞(|u(t, 0)2|+ |u(t, L)2|).
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Now, as E and B are C2 with u and continuous with x and t, and as B(0, x, t) = 0,
there exists a continuous function E2 ∈ C0(Bν2 × [0, T ]× [0, L];R2×2×2) such that for
any (t, x) ∈ [0, T ]× [0, L]

(G.5) (EB)(u(t, x), x, t) = ∂u(EB)(0, x, t) · u(t, x) + (E2(u, x, t) · u(t, x))u(t, x).

Note that from (2.9), E2 is bounded on Bν2 × [0, L] × [0, T ] by a constant that only
depends on ν2, δ, Hmax and α. From (2.9) and (2.15) ∂u(EB)(0, x, t) = ∂uB(0, x, t).
Besides, from (2.15), E is invertible and C1, thus an inequality similar to (G.4) holds
for E−1, and u = E−1(Eu). Therefore, using (G.5) together with (G.3), the fact
that E1 and E2 are bounded, and the expression of ∂uB(0, x, t) given in (2.11)–(2.12),
one has

V̇a 6−
[
f1e
−µxλ1u

2
1 − λ2f2eµxu22

]L
0

−
∫ L

0

(Eu)21e
−µx(−∂x(λ1f1)− ∂t(f1)

)
+ (Eu)2eµx(∂x

(
λ2f2)− ∂t(f2)

)
dx

− 2

∫ L

0

f1e
−µxγ1(Eu)21 + f2e

µxδ2(Eu)22 +
(
γ2f1e

−µx + δ1f2e
µx
)

(Eu)1(Eu)2dx

− µ min
x∈[0,L]

(λ1, λ2)Va+µ min
x∈[0,L]

(λ1, λ2)qZ2(t) + 2qZ(t)Ż(t)

+ C (‖u‖∞ + ‖∂xu‖∞) ‖u‖2L2(0,L)

+ C (‖u‖∞ + ‖∂xu‖∞)
3

+ C‖u‖∞(|u(t, 0)2|+ |u(t, L)2|).

As D1 and D2 are of class C2, denoting for simplicity

k2 := ∂1D1(0, t), k1 := ∂1D2(0, 0, t), k3 := −∂2D2(0, 0, t),

and using (2.13)

V̇a 6 −µ min
x∈[0,L]

(λ1, λ2)Va +
[
f1λ1k

2
2 − λ2f2

]
u22(t, 0)

− I1(u1(t, L), Z(t))−
∫ L

0

I2((Eu)1, (Eu)2)dx+ C(‖u‖∞ + ‖∂xu‖∞)

·
(
‖u‖2L2(0,L) + (‖u‖∞ + ‖∂xu‖∞)

2
+ (|u(t, 0)2|+ |u(t, L)2|)

)
,

where I1 and I2 denote the following quadratic forms

I1(x, y) =
(
λ1f1(L)e−µL − λ2f2(L)eµLk21

)
x2

+
(
q
√
H1/g k3 − λ2f2(L)eµLk23 − µ min

x∈[0,L]
(λ1, λ2)q

)
y2

+
(
2λ2f2(L)eµLk3k1 − q

√
H1/g (k1 − 1)

)
xy,

I2(x, y) =
(
(−λ1f1)x + 2f1γ1(t, x)− ∂tf1

)
e−µxx2

+
(
(λ2f2)x + 2f2δ2(t, x)− ∂tf2

)
eµxy2

+ 2
(
γ2f1e

−µx + δ1f2e
µx
)
xy.
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We can perform similarly with Vb and Vc, to do this observe that ∂tu and ∂2ttu are
respectively solutions of

(G.6) ∂t(∂tu) +A(u, x, t)∂x(∂tu) + (∂uB(u, x, t))(∂tu)

+ (∂tA(u, x, t) + ∂uA(u, x, t).∂tu)∂xu + ∂tB (u, x, t) = 0,

and

∂t(∂
2
ttu) +A(u, x, t)∂x(∂2ttu) + (∂uA(u, x) · ∂2ttu)∂xu + (∂uB(u, x))(∂2ttu)(G.7)

+ 2∂u(∂tA(u, x, t)) · ∂tu)∂xu + ∂2ttA(u, x, t)∂xu

+ 2∂uA(u, x) · ∂tu∂x(∂tu) + ∂tA(u, x, t)∂x(∂tu)

+ ((∂2uA(u, x) · ∂tu) · ∂tu)∂xu + ∂2ttB(u, x)

+ ∂u(∂tB(u, x)) · ∂tu + (∂2uB(u, x) · ∂tu)(∂tu) = 0,

which are very similar to (2.7), as they only differ by quadratic perturbations or terms
involving a time derivative of (H1, V1). We get then

V̇ = V̇a + V̇b + V̇c 6 −µ min
x∈[0,L]

(λ1, λ2)V

+
[
f1λ1k

2
2 − λ2f2

] (
u22(t, 0) + (∂tu2(t, 0))2 + (∂2ttu2(t, 0))2

)
− I1(u1(t, L), Z)− I1(∂tu1(t, L), Ż)− I1(∂2ttu1(t, L), Z̈)

−
∫ L

0

I2((Eu)1, (Eu)2) + I2((E∂tu)1, (E∂tu)2) + I2((E∂2ttu)1, (E∂
2
ttu)2)dx

+ C(‖u‖∞ + ‖∂xu‖∞)
(
‖u‖2L2(0,L) + ‖∂tu‖2L2(0,L) + ‖∂2ttu‖2L2(0,L)

+ (‖u‖∞ + ‖∂xu‖∞)
2

+ |u2(t, 0)2|+ (|u1(t, L)|+ |Z|)2 + |∂tu2(t, 0)2|

+ (|∂tu1(t, L)|+ |Ż|)2 + |∂2ttu2(t, 0)2|+ (|∂2ttu1(t, L)|+ |Z̈|)2
)

+ Cδ
(
|u2(t, 0)|2 + (|u1(t, L)|+ |Z|)2 + |∂tu2(t, 0)|2

+ (|∂tu1(t, L)|+ |Ż|)2
)

+ CδV.

The two last terms come from the successive differentiations of the boundary con-
ditions (2.13), together with (3.6), or from the terms in (G.6)–(G.7) involving a time
derivative of A or B. This ends the proof of Proposition 3.1.
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