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THE MESOSCOPIC GEOMETRY OF
SPARSE RANDOM MAPS

BY Nicoras Cunrien, lcor Korrcuemskr & CyriL Marzouk

AssTract. — We investigate the structure of large uniform random maps with a given number
of vertices, edges, faces and on a surface of a given genus. We focus on two regimes: the planar
case and the unicellular case, letting the three other parameters tend to infinity in a sparse
regime, in which the ratio between the number of vertices and edges tends to 1. Albeit different
at first sight, these two models can be treated in a unified way, using a probabilistic version
of the classical core—kernel decomposition. In both cases, we identify a mesoscopic scale at
which the scaling limits of these random maps can be obtained by first taking the local limit
of their kernels (or scheme) — which turns out to be the dual of the Uniform Infinite Planar
Triangulation in the planar case and the infinite three-regular tree in the unicellular case —
and then replacing each edge by an independent (mass-biased) Brownian tree with two marked
points.

Résumit (La géométrie mésoscopique des cartes aléatoires clairsemées). — Nous étudions la
structure de grandes cartes aléatoires choisies uniformément au hasard avec un nombre donné
de sommets, d’arétes et de faces et sur une surface de genre donné. Nous nous concentrons sur
deux cas : le cas planaire et le cas unicellulaire, en faisant tendre les trois autres parameétres
vers I'infini dans un régime clairsemé, dans lequel le rapport entre le nombre de sommets et
d’arétes tend vers 1. Si les deux cas semblent différents, ils peuvent étre traités dans un cadre
unifié en utilisant une version probabiliste de la décomposition classique en coeur-noyau. Dans
les deux cas, nous identifions une échelle mésoscopique a laquelle les limites d’échelles de ces
cartes s’obtiennent en prenant la limite locale de leur noyau (ou schéma) — qui est le dual de
la Triangulation Planaire Infinie Uniforme dans le cas planaire et ’arbre infini 3-régulier dans
le cas unicellulaire — et en remplagant chaque aréte par des arbres browniens indépendants
(biaisés par la taille) avec deux points marqués.
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1306 N. Curren, l. Korrcnemskr & C. Marzouk

Figure 1. Simulations of random plane maps with n = 10000 edges
and f,, faces, with respectively f, = [n%3| and f, = [n°5]. Their
core is represented in red.

1. INnTRODUCTION

1.1. Raxpom MAPs WITH PRESCRIBED EULER-PARAMETERS. — Sampling uniform ran-
dom maps with a prescribed number of edges, faces, and genus (by Euler’s formula,
this also fixes the numbers of vertices) is a convenient way to probe different ran-
dom geometries under various topological constraints. After the deep and intensive
works devoted to the study of large random plane maps and the Brownian sphere,
recently much attention has been devoted to the study of (classes of) maps with fixed
“Euler-parameters”. See e.g. [FG14, KM21b] for plane maps and [BL21, BL22, Ray15,
ACCR13, Lou21, JL21] for high genus maps.

We shall denote by 91, (f, g) the set of all (rooted, non necessarily bipartite) maps
with n edges, f faces, and genus g, and by M, (f, g) a map chosen uniformly at random
in this set. In this paper, we propose to study large random maps in the so-called sparse
regime, where the ratio between the number of vertices and edges tends to 1. Precisely,
by Euler’s formula the map M, (f,,g,) has n + 2 — s,, vertices with s,, = f,, + 2g,,
quantity which will be called below the sparsity parameter, and the sparse regime
consists in s, = o(n). Although we shall not treat here this model in full generality,
the big picture we uncover is that such random maps look like uniform almost trivalent
maps with f,, faces in genus g,,, and where each edge is replaced by a bipointed plane
tree of size of order n/s,.

JE.P.— M., 2022, tome g



THE MESOSCOPIC GEOMETRY OF SPARSE RANDOM MAPS 1307

Specifically, in the present work, we shall be interested in the two “extreme” cases
namely the planar case g, = 0 and the unicellular case f,, = 1. We shall fix in the
rest of this paper a sequence of integers s, so that
(1) Sp — 00 and SN 0,

n—o00 n n—oo
and investigate the geometry of My, (sp, 0) and M, (1, (s, — 1)/2), which both have the
same sparsity parameter s,, = f,, + 2g,. Obviously, we implicitly restrict ourselves to
odd integers s,, when considering the second case. Let us first review the literature
about those models.

Planar case [FG14, KM21b]|Unicellular case [JL.21]
Genus 0 (s —1)/2
#Faces Sn 1
#Edges n n
Uniform map M,, (sn, 0) M, (1, (sn, — 1)/2)
Planar case. — Recently, Fusy and Guitter [FG14] were interested in two- and three-

point functions of biconditioned planar maps M, (s,,0) and have predicted that out-
side the so-called “pure gravity” class, typical distances in uniform planar maps with
n edges and n® faces, with a € (0,1), are of order n(2=9)/4 This has been recently
confirmed in [KM21b] in the case of bipartite planar maps. Precisely, it is shown
there that the scaling limit of such maps, after scaling distances by n(2=®)/4 s the
celebrated Brownian sphere, which was first proved to be the limit of large uniform
random quadrangulations [LG13, Miel3], and then of many different discrete mod-
els of planar maps, as in [ABA21, BJM14, NR18, CLG19, Mar22] and many other
papers. Let us mention that [KM21b] actually deals with the more general model of
Boltzmann maps, with face weights. This was proved by combining a classical bijec-
tive encoding of bipartite maps via labelled trees and the criterion from [Mar22] with
new local limit estimates for random walks.

Unicellular case. — Very recently, Janson & Louf [JL21] have been interested in the
geometry of uniform unicellular maps with moderate high genus, i.e., M,,(1, (s,—1)/2)
with s, satisfying (1). Their main result is that, after rescaling by \/n/s,, the dis-
tribution of the sequence of the lengths of the shortest cycles in the map asymptot-
ically matches that of the shortest non-contractible loops in Weil-Peteresson ran-
dom surfaces in high genus, which are both given by an inhomogeneous Poisson
process with explicit intensity, see Section 7. Let us mention that unicellular maps
M,, (1, g,) whose genus is proportional to the number of edges have also been investi-
gated [ACCR13, JL22, Ray15]. They also form a toy model of hyperbolic geometry.

In this work, we investigate the combinatorial structure as well as the geometry
of My, (s, 0) and M, (1, (s, — 1)/2) at the mesoscopic scale y/n/s,. As opposed to
the works cited above, we rely here on a different approach based on the core—kernel
decomposition, diffracted through a probabilistic lens. This casts a new light on the
above results, see Section 7. Let us first review these decompositions.

JIEP. — M., 2022, tome g



1308 N. Curren, l. Korrcnemskr & C. Marzouk

1.2. Core KERNEL DECOMPOSITIONS OF MAPS. Without further notice, all maps con-
sidered in this work will be finite and rooted, i.e., with a distinguished oriented edge.
If m is a map, we write Vertices(m), Edges(m), and Faces(m) for its set of vertices,
edges, and faces respectively. Let us recall the concepts of core and kernel, which
are instrumental in the classical theory of random graphs, see e.g. [JKEP93, Lu9l,
NRR15, NR18, Lou2l, CMS09, Chal(Q]. Starting from m and repeatedly removing
vertices of degree 1, we obtain a map Core(m), called the core of m. We then replace
all maximal paths of vertices of degree 2 in this core by single edges to get another
map Ker(m), called the kernel of m, which only has vertices of degree at least 3.
When m is neither a tree nor a plane map with two faces, the core and its kernel
are nonempty. The root edge is canonically transferred from m to Core(m) and then
to Ker(m), see Figure 2 and Figure 3. Notice that the three maps m, Core(m), and
Ker(m) all have the same number of faces and the same genus.

Ficure 2. Decomposition of a planar map (on the left) into its core
after iteratively removing degree one vertices (on the middle), and
then into its kernel by contracting vertices of degree 2 (on the right).
The root edge € of the map is carried by the thick blue tree on the left
hand side or on the first edge of the core in clockwise order around
the root face. It is transferred to the core and the kernel in a natural
way: the root edge €. of the core is €, = € if it already belongs to
the core, otherwise it is carried by the tree grafted to the right of the
origin of €.

C@@) CC\?)}

Ficure 3. Decomposition of a map of the torus (left) into its core
(middle) and kernel (right). Here also, the root edge is carried by the
thick blue tree and is transferred naturally to its core and kernel.

JE.P.— M., 2022, tome g



THE MESOSCOPIC GEOMETRY OF SPARSE RANDOM MAPS 130()

In the above decomposition, the kernel is a map with only vertices of degree at
least 3. If R is such a map, then we denote by Defect(&) > 0 the number defined by

Defect(R) = Z (deg(v) — 3) = 2#Edges(R) — 3#Vertices(R).
v€E Vertices(R)
We call this number the defect number of K; it quantifies how far £ is from being
trivalent, which corresponds to the case Defect(8) = 0. For f > 1, > 0, and d > 0,
we denote by T4(f, g) the set of all rooted maps with f faces, in genus g, whose vertices
all have degree at least 3, and which have defect number d. Let us note that Euler’s
formula yields for maps in T4(f, g):

(2) #Edges = 3#Faces — Defect +6(Genus — 1),

so controlling the defect number is equivalent to controlling the number of edges (and
thus of vertices). It turns that the laws of the core and kernel of a uniform random
map with fixed number of edges, faces, and genus are explicit, see Proposition 7. This
will be instrumental to all our results. It is interesting to note that the core—kernel
decompositions have been used to study enumerative properties of large maps with
fixed genus [CMS09, Chal0]. Here, we pursue a probabilistic approach in a more
general context.

Volumes of the core and of the kernel. — Recall our standing assumptions (1) and de-
note by Mén either M, (s,,, 0) or M, (1, (s, —1)/2). Our first main results, Theorems 1
and 3, describe the asymptotic behaviour of the size of the core and kernel of M.
In particular, we identify a phase transition according to whether the sparsity param-

1/3

eter s, is at most of the same order as n'/°, or is much larger. A model-dependent

constant A\, appears in these results:

3
(3) Ao =1— N in the planar case and A, = 0 in the unicellular case.

It turns out to be the density of loop-edges in the local limit of the kernel of M~ , see
Section 3.

d
Throughout this work, we use the notation X, Lo X and X, QX to refer to

respectively convergence in probability and in distribution of a sequence of random

variables X,, to a limit X. By abuse of notation, we shall also write X, @) © when p
is a probability measure to refer to the weak convergence of the law of X, to u. We
denote by Poi(c) the Poisson law with mean ¢ > 0, which is interpreted as the Dirac
mass at 0 when ¢ = 0.

Turorem 1 (Defect number of the kernel). Assume that s, satisfies (1) and let Ao
as in (3).

(1) If n='/3s, — a for some a € [0,00), then

Defect(Ker(M:;")) % Poi (3(1 — o)/ 2a3).

JIEP. — M., 2022, tome g



1310 N. Curren, l. Korrcnemskr & C. Marzouk

In particular if n=1/3s,, — 0, then the probability that Ker(Msr) is trivalent tends to 1
as n — 00.
(2) If n=Y/3s,, — oo, then

2 Defect(Ker(M:)) — 3(1 —)\o)\/g.

S n—00

Sw

Revark 2. — Theorem 1 establishes a phase transition in the appearance of vertices
of degree larger than or equal to 4 in the kernel of MS» at order s, ~ n'/3. This is
consistent with [Chal0, Lem. 3], which shows that for fixed g the kernel of M,,(1, g) is
trivalent with probability tending to 1 as n — oco. We suspect similar phase transitions
to occur at orders s, ~ n'~2/(3%) for the appearance of vertices of degree larger than
or equal to 3+ k for &k = 2,3, ... and perhaps similar Poisson statistics for the number
of such vertices when s,, ~ Cst n!'=2/(%)

Since the kernel of a map has the same genus and number of faces as the origi-
nal map, by Euler’s formula (2), Theorem 1 also provides the asymptotic behaviour
of the number of edges (and therefore of vertices) of the kernel of M,(s,,0) or
M, (1, (sp, — 1)/2). The main tool to leverage the explicit laws of the core and kernel
of uniform random maps with fixed number of edges, faces, and genus in order to
obtain these limit theorems is a careful analysis of a so-called contraction operation,
which allows to iteratively create defects from a trivalent map; see Section 3.1.

Turorem 3 (Number of edges in the core). Assume that s, satisfies (1). Then

1 ,
= - #Edges(Core(M;r)) n%))o %

It is interesting to note that for uniform random plane maps with n edges, the

number of edges of the kernel and of the core concentrate around (4 — 4v/6/3)n and
V6 n/3 respectively, with Gaussian fluctuations of order y/n in both cases, see [NR18,
Th.5]. In this direction, we shall establish (Corollary 10) a Central Limit Theorem
for #Edges(Core(Msn)) conditionally given the number of edges of Ker(MSr). This is
sufficient to deduce an unconditioned CLT for the number of edges of the core when
sp = O(y/n), but we believe this is true in general, see precisely Conjecture 14.

As a side result of independent interest, we obtain explicit asymptotic enumeration
estimates when s, = O(n'/3). Let us mention that such estimates for #M,(f,,0)
when f,/n — f € (0,00) and of #M,,(1,g,) when g,/n — g € (0,00) are given
respectively in [BCR93, Th. 1] and [ACCR13, Th. 3]. In the sparse regime, to the best
of our knowledge the following ones are new.

Cororiary 4. — Ifg=0 and f, — oo with n='/3f, — f € [0,00), then
exp(—(2—V3)(3£/2)%?) _5 .. seny 3 /2

JE.P.— M., 2022, tome g



THE MESOSCOPIC GEOMETRY OF SPARSE RANDOM MAPS 13

On the other hand, if f, =1 and g, — oo with n=/3g, — g € [0,00), then

1 end \éen
-1/2 . —3/2 4n
#Mu(1,8,) ~ “8n /20732 ( ) ’
n—oo 27 12¢g,,
1.3. THE INTERMEDIATE SCALES IN BICONDITIONED MAPS. — In another direction, we are

interested in the asymptotic geometry of Mj~. First, in addition to our first results
which describe the size of the core and kernel, it will also become clear that con-
ditionally on these parameters, they are uniformly distributed. In particular, when
S = o(nl/ 3), by Theorem 1 the kernel is with high probability a uniformly chosen
trivalent map, either with s,, faces in the planar case, or with genus (s, — 1)/2 in the
unicellular case. The local limits of those objects are well known:

— In the planar case, by [Stel8] uniform trivalent plane maps converge in distribu-
tion in the local topology to the dual map of the Uniform Infinite Planar Triangulation
(UIPT) of type 1. This result has recently been extended to the case of essentially
trivalent plane maps (i.e., when the defect number is negligible compared to the size
of the map) by Budzinski [Bud21].

— In the unicellular case, we shall prove in Section 3.3 using the configuration model
that an essentially trivalent unicellular map in high genus converges locally towards
the three-regular tree.

Second, let us explain how to reconstruct the original map from its kernel (see
also [Chal0, §3.1]). A chain of vertices with degree two in the core and the trees
grafted on it can be seen as a single plane tree with two distinguished vertices. Note
that some care is needed at the vertices with degree three and higher so that a tree
gets assigned to a unique chain of edges of the core. Our convention is that such a
tree is grafted on the chain immediately to its right when turning around the corner.
Therefore one can directly construct the map from its kernel by replacing each edge
of the kernel by a tree with two distinguished ordered vertices. The bipointed tree
replacing the root edge of the kernel additionally carries an oriented edge on its right
part which is the root of the entire map. See Figure 4 for an illustration.

Since Ker(M?») has roughly K, ~ 3s, edges by Theorem 1 and the collection
of bipointed trees is roughly uniformly distributed amongst those with n edges in
total, we can expect that the bipointed trees have of order n/s, edges each and their
diameter is typically of order \/n/s,. Although there are other interesting scales
to look at, going from the microscopic scale, or local convergence, to the diameter
scale, see precisely Proposition 18 and Conjecture 19, we focus here on the geometric
structure of Mt~ at the mesoscopic scale y/n/sy,.

Let us construct the limits that appear in the next theorem; we refer to Section 6
for more details and explanations and to Figure 5 for an illustration. Similar con-
structions have been encountered for scaling limits of mean-field random graphs at
criticality [ABBG10] or at the discrete level in high-genus unicellular maps [Lou21].
Start either from the dual of the UIPT (type 1) in the planar case, or from the three-
regular tree in the unicellular case; this will play the role of the kernel. Then in order

JIEP. — M., 2022, tome g



1312 N. Curren, l. Korrcnemskr & C. Marzouk

Ficure 4. Reconstructing a map from its kernel by replacing edges
by bipointed trees.

to take into account the root of the full map, let us modify their root edge by insert-
ing a middle vertex and attaching a dangling leaf to it on its right to get a infinite
(and random in the planar case) map denoted by Tpia, or Tunic depending on the
model. We then replace each edge by an independent copy of a Brownian Continuum
Random Tree (CRT) with two marked points, whose volume is exponentially biased,
i.e., we glue these trees by their distinguished points according to the graph struc-
ture. Note that in this construction, the edges of the graph become independent real
segments, and their length is simply distributed according to an exponential law of
mean 1/1/6 (with Brownian CRT’s attached all along). The resulting locally compact
metric space is denoted by §plan in the planar case and by Fuynic in the unicellular
case, and is pointed at the extremity of the CRT grafted on the dangling leaf.

Tueorem 5 (Mesoscopic scaling limit). Under (1) the convergences in distribution
-1
M Ma(50,0) D Foanand M (1,7 ) D o
n n—»00 n 2 n—o00

hold in the local pointed Gromov—Hausdorff topology.

Let us refer the reader to e.g. [BBI0O1, CLG14, BMR19] for details on the local
pointed Gromov—Hausdorff. Thus, roughly speaking, we can say that the geometry of
Me» at the scale \/n/s, is a mixture of two features: a discrete part, coming from the
local limit of the kernel, and a continuous part coming from the faces which collapse
on trees due to the sparse nature of the maps.

It is likely that a similar result holds in the broader context of random maps
M, (., gn) as soon as 1 < f,, + 2g,, < n. In the case f,/g, — a > 0, the kernel of
such maps should be essentially trivalent maps (i.e., whose defect number is negligible
compared to the size) with genus proportional to the number of faces. We conjecture

JE.P.— M., 2022, tome g



THE MESOSCOPIC GEOMETRY OF SPARSE RANDOM MAPS 1313

Ficure 5. Left: a piece of the UTPT. Middle: the corresponding piece
of its dual after performing the root transformation (in green) to get
Tpian. Right: the pointed metric space §pjan build out from Tp,, by
replacing edges with random trees.

that the local limit of such maps is given by the dual of the Planar Stochastic Infi-
nite Triangulation (PSHIT) of [Curl6] with the appropriate parameter, in which the
average vertex degree equals 6 + 12/«, see the work [BL21] for the purely trivalent
case, where ¢ there equals 1/(2 + «). Denote then by §psurr(a) the locally compact
metric space obtained by replacing edges of the dual of these PSHIT’s by the same
bipointed CRT’s as above.

Consecture 6. — Recall that s,, = f,, + 2g,,. We believe the following convergences in
distribution hold in the local pointed Gromov—Hausdorff topology.

(1) Suppose that f, < g, < n and g, — oo, then

[Sn, d
—_ Mn(fnvgn) Q) SPlam
n n—o00

(2) Suppose that g, < f,, < n and f,, = oo, then

/Sn, d
—_ Mn(frmgn) n% %Unic-

(3) Suppose that f, /g, — a € (0,00) and 1 < f,,,g, < n, then

\/ - My, (fn, gn) n—> SPSHIT(a) -

This would require to extend the technical estimates of Section 3. However, besides
this, our proofs are robust enough to handle these regimes and several quantities are
universal, such as the law of the bipointed Brownian CRT’s.

Acknowledgements. We are grateful to Thomas Budzinski for sharing early stages
of his work [Bud21], Eric Fusy for the reference [BCR93], as well as Charles Bordenave
and Bram Petri for the pointer to [Wor99, Th. 2.19]. Thanks also are due to the two
anonymous referees whose remarks helped to improve this paper. Finally, we thank
the CIRM for its hospitality in January 2021 when this work was first triggered.
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2. CoRrRE-KERNEL DECOMPOSITION AND ENUMERATION LEMMAS

In this section, we describe the exact laws of the core and kernel of a uniform
random map M, (f, g) with n edges, f faces, and genus g. We then prove some technical
estimates on the number of such maps that share a given kernel, which will be used
later to prove our main theorems. Let us stress that the results in this section are
valid for all values of f > 1 and g > 0.

2.1. LAW OF THE KERNEL. Let us explain the core-kernel decomposition of a map,
see also the works [CMS09, Chal0]. Fix a (rooted) map K with f faces and genus g,
and whose vertices all have degree at least 3. We let k denote its number of edges.
Then all maps m such that Ker(m) = £ are uniquely constructed as follows. We first
fix ¢ > k, which will correspond to the number of edges of the core.

To construct Core(m), the core of the map, from the kernel, each edge e of &
is split into say n. > 1 consecutive edges by inserting vertices of degree 2, with
ZeeEdges(ﬁ) ne = ¢. To count the number of possible cores, since the edges of & can
unambiguously be indexed by {1,2,...,k}, then the number of ways of performing
this splitting step is equal to the number of ways one can split a discrete cycle of ¢
edges into k parts of length at least 1, see Figure 6. Also, since we are working with
rooted maps, then in order to recover the root edge of the core, we must further
distinguish one of the edges produced when splitting the root edge of & (and we keep
the same orientation). Consequently, the number of ways to get a given core with ¢
edges from the kernel 8 with k£ edges equals

‘L fe—i—1 c

@ ()= ()

where i represents the length of the segment containing the root edge. Another way
of describing this is as follows. First add a new vertex in the middle of the root
edge of the kernel and declare the new root edge to be the one pointing towards this
new vertex, with the same origin as the previous root edge. Then index the edges of
this modified kernel and represent it as a segment (instead of a cycle). Expand now
the £ + 1 edges of this segment into chains with ¢ 4+ 1 edges in total. This amounts
conversely to splitting a segment with ¢ + 1 edges by choosing k vertices amongst
the ¢ inner vertices in total. The expanded kernel is then the core, with the same
modification at the root as the kernel.

Once the core, with ¢ edges, is constructed, in order to recover the entire map m,
it remains to graft a plane rooted tree on each one of its 2¢ corners. Specifically, given
an enumeration of the corners of the core from 1 to 2¢, with 1 being canonically the
corner to the right of the tip of the root edge, we graft on the i’th corner a rooted
plane tree T;, with say t; > 0 edges. Their size must satisfy t; + -+ 4+t = n — c.
As above, we also need to keep track of the root edge of the map; we either keep the
root edge of the core, or we choose one oriented edge in the tree T7. This is equivalent
to distinguishing a number in {0,1,...,2¢1}.

JE.P.— M., 2022, tome g



THE MESOSCOPIC GEOMETRY OF SPARSE RANDOM MAPS 1315

Frgure 6. A combinatorial representation of the repartition of the
edges of the core in the kernel explaining the relation (4): Choosing
k points amongst ¢ possibilities splits a discrete cycle of ¢ edges into
k ordered components, the first one being that containing the root
edge (in blue above).

It is classical to encode an ordered forest by a Dyck path, that follows the contour
of each tree successively, with an extra negative step after each tree. Our forest is
thus encoded by a path with increments either 41 or —1, which ends by hitting —2¢
for the first time at time 2n, with a distinguished time & € {0,1,...,7 — 1} where 7
is the hitting time of —1 (in order to take into account the rooting). By the classical
cycle lemma, this is equivalent to taking a £1 path starting at 0 and ending at —2c¢
at time 2n, and cyclicly shift it at the first time it reaches its overall minimum, see
e.g. [Pit06, Chap. 6] for details and Figure 7 for an illustration. Hence, the number of
maps with n edges that share a given core with ¢ edges is equal to the number of the

2n
n+c)’
Observe that a map, its kernel and its core all have the same number f of faces and

the same genus g, hence the same sparsity parameter s = f 4+ 2g. Let us reformulate
the core—kernel decomposition in probabilistic terms. For integers 1 < k < ¢ < n let

latter paths, which is simply

us set

(5) on(e, k) = (Z) (ij C) and (k) =Y pule, k).

czk

Let us extend them both by 0 to all values of ¢ and k. Then ¢, (c, k) denotes the
number of maps with n edges, with a core with ¢ edges, which have a given kernel &
with k edges. Further, @, (k) is the number of maps with n edges which share such a
given kernel.

Recall from the Introduction that T4(f,g) stands for the set of all rooted maps
with f faces, in genus g, whose vertices all have degree at least 3, and d defects, i.e.,
such that ) vertices(deg(v) —3) = d, or equivalently which have 3(f +2g) —d — 6
edges. We shall let T(f,g) = Ugso Ta(f,g). We infer that the number #9M,(f,g) of
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Ficure 7. A 41 path starting at 0 and ending at —2c at time 2n
(right) is equivalent, after a Vervaat re-rooting at the first hitting
time of the minimum to (left) a first passage bridge starting at 0
and hitting —2c for the first time at 2n together with a distinguished
time k € {0,1,...,7 — 1} where 7 is the hitting time of —1. By a
classical bijection, those objects are in bijection with ordered plane
forests with n edges and 2c trees, together with either an oriented
edge in the first tree, or another mark.

maps with n edges, f faces, and genus g equals
#M,,(f,8) = > #Ta(f,2) D, (3(f+2g) —d —6).
d=0
By Euler’s formula, lower bounding the number of vertices by 1, any map in T(f, g)
has at least f+ 2g — 1 edges so T4(f, g) is empty as soon as d > 2(f + 2g) — 5. Recall
that M,,(f,g) denotes a map in M, (f,g) sampled uniformly at random. The above
discussion can be reformulated as follows.

Provosirion 7. — Fizn>1,f>21,g>0, and 8 € T(f,g); let k denote the number
of edges of R.

(1) We have
_ Du(k)

#M,, ()
Consequently, conditionally given its number of edges, say k, the kernel is uniformly
distributed over T4(f,g) with d = 3(f+2g) — 6 — k.

(2) For any ¢ > k, we have

P (Ker(M,(f,g)) = R)

_ on(c, k)

o Qu(k)
Furthermore, conditionally given the kernel is the map R and the core has ¢ edges,
the core is obtained by replacing each edge of & by a chain of edges, whose lengths
are given by Nog + N1 — 1 for the root edge and Ns, ..., Ny for the other edges, where
(No, ..., Ng) has the uniform distribution on the set of positive integer vectors which
sum up to c+ 1.

P (#Edges(Core(M,(f,g))) = ¢ | Ker(M,(f,g)) = R)
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(3) Finally, conditionally given the core, with say c edges, let us sample uniformly
at random a forest (T7*,...,T3.) with n — ¢ edges together with € being either an
oriented edge in the tree TT' or the mark . Then attach the above trees in the corners
of the core, with T{" in the corner to the right of the tip of the root edge, and root this
map at € if it is different from %, and at the root edge of the core otherwise. Then this
map has the law of M,,(f,g).

2.2, Tecunicar estiMaTes. — In this section we gather a few estimates about ®,,(k) =
> esk Pnlc, k) and locate the values of ¢ which form the main contribution in this sum.
In particular we will prove that when 1 < k,, < n, we have

D, (k, +1) ['n

Combined with the estimates on the number of near-trivalent maps in the next section,
this will provide the basis of the proof of Theorem 1. All these estimates are based
on the exact formulas (5) and rather elementary (but tedious) manipulations using
Stirling’s formula.

Fix 1 < k < n. We start by computing the ratios of consecutive summands ¢,,(C, k)

involved in the definition of ®,,(k):
on(CL k) C(1-C+n)
7 Rat,(C,k) = = 7
@) Gk = el ~ @ rn)(C—h
which we extend to the whole interval [k + 1, n|. Then for every C € [k+1,n] we have
0 k 2n+1
8 — logRat, (C, k) = — — <0.
®) ac 18 Ratn(Ok) = — = e e )
Therefore the function C' — Rat, (C, k) is decreasing on [k, n]. One can check that it
crosses level 1 in the interval [C,, i, Cp i + 1), where C,, i, is defined as

) Cop = E (1+k+ /G r 12 1 8nk) |

Hence the maximal value of ¢, (C, k) is attained at C' = C,, , and it equals

ka 2n
rgggwn(cﬁ k) = on(Crg, k) = < i >(n+0n,k)'

Levwva 8. When k,, — oo with ky,/n — 0, we have

kn  ©n(Chipt1,kn +1) 1 1 D, (kn) T
10 — s — — and — ———————— —> 4/ —.
10) n ‘Pn<cn,knakn) n—oo /2 NG Wn(cn,k,L7kn) n—oo \ 2
Also, there exist two universal constants, say 0 < a < A < oo, such that for every

integers n and k < n/32, it holds

n I 1 (bn
(11) a\/z<<p"(c ok A1) <A\/Z and a\/ﬁ<s0(k)<A\/ﬁ.

Son(cn,kvk) (Cn,kak)
Consequently, in these respective regimes,
Lﬂ\/ﬁ<q>n(k+1)<A?\/ﬁ and ko @n(kn +1) L
A\VEk @, (k) a \Vk n n(kn) nooo /2
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Proof. Assume that k,, — oo with &, /n — 0. By using the explicit expression (9),
we get

nk n
(12) Cn’k" n:oo Tn and Cnvkn"'l - Cn,kn n:CX? \/87

Let us first compare ¢, (Ch i, +1, kn + 1) with ¢, (Cy k.., kn). By definition, we have

@n(cn,k-i-l?k) _ (Cn}:+1) (TL-‘rCz:,kJrl)
(Pn(cn,ka k) (Ci’k) (n+2(?n,k)

Crnk+1—Chn ke

= I (H On,kfj—kxl_ %ﬁﬁiﬂﬁ

Jj=1

(13)

By taking k£ = k, and simply bounding each term by taking either j = 1 or j =
Chkn+1 — Cn., and using the estimates (12) , we get

On(Ch knt1, kn) n \/m 2k, k,
In /2=t 2 o~ —Inf (1 AL Y I QY il ~ g
" @n(Cn,kn,kn) n—o0 Skn n + n n n—oo 277/’

which converges to 0. In addition,

C"v in
©n(Cnkp+1,kn +1) _ ( knk+1+1) _ Chknt+1 — kn N n
@n(cn,k,ﬂLl» kn) (C"’k"+1> kn+1 n—00 2k, ’
Therefore
SD’I’L(Cn,k"Jrla kn + 1) _ (Pn(cn,lc,,ﬁrh kn + 1) Spn(cn,k,,ﬂrla kn) N L
Son(cn,kn v kn) <Pn(0n,kn+1, kn) Sﬁn(cn,kn, kn) n—oo \ 2k, ’

which establishes the first convergence in (10).
In the rest of the proof we assume that n and & are integers with k£ < n/32. First
note that it holds

k 1
% < Cnp<2Vnk  and 6\/Z < Cppgr — Cop <2 %

For the last two bounds, one can use that z/3 < v/1+ 2z —1 < /2 for every z € [0, 1].

The bounds on the left-hand side of (11) are obtained in a similar way as before: by
bounding each term in the product (13) by taking either j =1 or j = Cp k41 — Ch i,
using the bounds on C, i, and C,, y+1 — Cp k, and then using that exp(—z/(1 —z)) <
1—z < exp(—z) for every z € [0, 1], it is straightforward, yet tedious, to show that the
ratios ¢, (Ch k+1,k)/@n(Chi, k) are bounded away from 0 and infinity by universal
constants.

To show the second convergence of (10) and the bounds on the right-hand side
of (11), we start by comparing ®,,(k) with ¢, (Cy, i, k). Recall the quantity Rat,, (C, k)
introduced in (7). Using the bounds on C, ; above, one can crudely upper bound the
derivative in (8) around C, j as follows: For every integers n > k > 1 and for every
real number z such that |z| < Vnk, we have

k 2n +1 < 1

B
— logRat,,(Cp r + z,k) < — — < ——.
BRabn(Cot 0 h) S = e ~ 3V~ bn

oC
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Moreover, if k, — oo with k,, = o(n), then one can check that, uniformly for x such
that |z| < \/ﬁk}/‘l, we have

0
n- o5 logRaty(Co, +2.kn) — —4.

Writing log Rat,, (Cy, , +, k) = flz % log Rat,, (C ik +u, k) du+log Rat, (Cy x +1, k)
and using the fact that logRat, (Cy  + 1,k) < 0 by definition of C), j, this entails
that for any n > k > 1 and any integer j such that |j| < vnk,

j(j—l))’

(14) LPn<cfn,k + j7 k) < (Pn(Cn,kz k) : eXp(_ 1071

and uniformly for all integers j such that |j| < /n =% * we have

2j(j—1)>.

(15) @n(cn,kn + ja kn) nN <pn(Cn,knvk'n) ' exp(— n

—00

Recalling that k, — oo, we infer from (15):
O o - S I
. 1/4 POty kn) - mee . 1/4
i< vk lil<vnkn

Also for any values n > k > 1 it holds

n\Ln '7k
Z Mé 20nm.
i< Pn(Cni k)

Recall next that C' — Rat,(C, k) is decreasing and its value at C), x + j is bounded
above by exp(—j/(bn)) as soon as |j| < vnk. Therefore, for any |j| > v/n, by apply-
ing (14) at £+/n we infer that

’ il —vn
n Cn 7k < n Cn 7k : (_7)
Pn(Crngo + 5 k) < on(Crk, k) - exp NG
Consequently, for any n > k > 1,

n(Cnk + 5,k ’
Z W Lel/? Z exp<—5|\j/|ﬁ> < 10e'° nexp(—k'/4/5).
l>vaky/s  Frimk 91> v/ k14

In particular, if k, — oo with k, = o(n), then we conclude that

(I)n(kn) s m
\/ﬁ(pn (Cn,kn ) kn) n—oo 2
In addition, for every n > k > 1 it holds
@, (k) < Sﬁ’n(cn,k +7,k) on(Cnk + Js k)
\/ﬁ@n(cn,ka k) \/ﬁQOn(Cn,ka k) \/ﬁ@n(cn,k; k) ’

lil<vn li1>vn
the second sum is bounded by 10 as above and the first one by 3 since we have
(Pn(cn,ka k) = maxc gOn(C, k)
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On the other hand we can also lower bound the left hand side of the last display
when k& < n/32. Indeed in this case it holds k < C) /4 and Cp < n/4 so if
|z < \/%/l6 < Cy /4, then

8k 2n+1 64 48

P
 logRat,(Co + 2, k) > — - >~ > -26n.
gc 108 Ratn (G + . ) 3C2Z,  (L+1ln/16)n = 3n  1ln "

Then as above we infer that

@, (k) 0 (Ch + 4, k) i 1352

—_— > E L > E n~Y exp(——),
n Cn ak n Cn ,]{}

Vign(Cnp k) = = VoG k) T = n

and by comparing with an integral, we see that the right hand side is larger than
e.g. 1/20. O

2.3. Two aprrications. — We gather here two applications of the technical estimates
of Lemma 8. The first one gives an asymptotic on the number ®,,(k,) of maps with n
edges which have a given kernel with k, edges, in the regime k,, = O(n'/3). This will
be used in Section 4.2 to establish in turn the asymptotic estimates of Corollary 4.

Cororrary 9. — Assume that k2 /n — v € [0,00). Then
O, (k) ~ e Vi 4. (ﬂ)k"/Q.
nSoo 221k, 2ky,
Proof. — Recall from (9) the explicit expression of Cy, 1, . Note that k2 /C,, x, — /27
and that C3} , /n* = \/7/8. By Lemma 8,

™™ ™ Cn k 2”
D, (K, ~ “On(Crkps kn) = ' o :
(kn) e \/j n(Cn ke, kn) \/: ( kn > (n + Cn,k”>

Using Stirling’s formula, we can write (CZ"“”) as

\/21771 eXp<—Cn,kn ln(l - C]::nkn ) +ky,InCh g, +En ln<1 — Ciln

Using a second order asymptotic expansion of In(l — k,/Cy k, ) and the fact that
knIn(Ch k) = (krn/2) In(nk,/2) + /7v/8 + o(1) yields

kn /2
Crgn) o L kyam (™ _
kn n—00 271-]4;n 2k,

Similarly, by Stirling’s formula, (n +é" . ) equals

) —kyIn I<;n+o(1)).

22n C? k Chk Chk
_ 1 (1 _ n, n) - C, 1 (1 n, n) - 1 (1 _ n, n) 1 )
\/%exp( e n? O, In{1+ n * Cnt, In n +ol)
4n cz .
" V2 eXp(_Tn " 0(1)>'

Using the fact that Cflk/n =k,/2+ /v/8+ o(1), we infer that
2n ~ 1 47L e_k"/z_m.
n+Chyk, n—00 2mn
This completes the proof. O
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The second application, in conjunction with Proposition 7, provides a Central Limit
Theorem for the size of the core conditionally given that of the kernel, as mentioned
in the introduction.

Cororrary 10. — Let (kn)n be a sequence of integers such that both k, — oo and
n~1k, — 0 and let C,, denote a random variable with distribution given by
on(c, kn)
( C) (Dn(kn) ¢
Then e kn + /K2 + Sk
9. n " tn ﬂN(O,l), where ¢, = — " nn,

\/ﬁ n—00 4

and where N(0,1) is the standard Gaussian distribution.

Proof. — Combining Lemma 8 and the estimate (15), which holds uniformly, we get
that for every = € R,

P(C, = |Chk, +xvn]) ~ \/Zexp (—2x2) ,

n—oo

where C,, 1 is defined in (9). One easily checks that C, , = ¢, + o(v/n), and the
convergence in distribution immediately follows from the previous local estimate. [

?) . N EAR-TRIVALENT MAPS

We gather in this section some results on near-trivalent maps, i.e., maps with a
small defect. Specifically, echoing (6), we shall control the growth of the ratio

Tas1(f
(16) # d-‘rl( 7g)

#‘Id (f7 g)
in the planar case g = 0 and d < f < n as well as in the unicellular case f = 1 and
d<g<n.

We shall also prove the local convergence of uniformly distributed near-trivalent
maps in the planar case towards the dual of the UIPT and in the unicellular case
towards the three regular tree. The main technique we develop in order to control the
ratios (16) as a function of d is a contraction operation that, starting from a trivalent
map, builds a map with defects by contracting edges, which we next introduce.

Recall that T4(f,g) denotes the set of all rooted maps with f faces, on a surface
of genus g, whose vertices all have degree at least 3, and d defects, i.e., such that
Y vevertices(deg(v) —3) = d. Also, we denote by Tq(f,g) a uniformly chosen element
in this set. Recall the sparsity parameter s = f + 2g; by (2) maps in T4(f,g) have
3s —d — 6 edges and 2s — d — 4 vertices.

3.1. THE CONTRACTION OPERATION. Fixf>1,g>0,andd > 1, and let tg € Ty(f, g)
be a trivalent map with f faces and genus g. Let (eq, ..., eq) be an ordered list of edges
of tg which are all different from one another and all different from the root edge, and
which form a forest in tp; in particular, they contain no loop nor multiple edges.
We henceforth call such a subset (eg,...,eq) of edges a “good” subset of edges. Let
Contr(tg;eq,...,eq) denote the map obtained from to by contracting these d edges,

JEP. — M., 2022, tome g



1322 N. Curren, l. Korrcnemskr & C. Marzouk

i.e., by removing these edges and merging their endpoints. Observe that this map
has the same number f of faces and the same genus g as to (so the same sparsity
parameter s as well), but it now has defect number d; it is naturally rooted at the
root edge of ty, see Figure 8 for an example.

I, AT

(Uvj\“ { )
X R -
\/\/ \O%\/

Iicure 8. Left: A trivalent map with a “good” subset of d = 7 dis-
tinguished edges in blue. Right: the trivalent map with d defects
obtained by contracting these blue edges; the positive defects are in-
dicated next to vertices with degree at least 3.

s 5 1 5 6 7 8\/9
B Za A VAV
\/\ / \/\/\/

NG
N i

Ficure 9. A vertex with degree 4 or larger (here 9), can be blown up
as a trivalent unrooted plane tree with as many leaves (left), which
is equivalent to a binary tree after planting it at one leaf. Conversely,
in any tree, one contracts the internal edges to recover the original
vertex.

This mapping is clearly surjective since every map in T4(f,g) can be obtained
from a trivalent map by contracting d edges. In general, is not injective since several
trivalent maps with a good subset of edges may yield the same map after contraction,
as seen on Figure 9. More precisely, fix a map tq € T4(f,g), consider a vertex v € tq
with degree ¢ 4+ 3 with ¢ > 1 and label the edges around v in a canonical order
given tq. Then the number of ways to locally “blow-up” the vertex v in a trivalent
tree equals the number of rooted plane binary trees (each vertex has either 0 or 2
children) with ¢ 4+ 2 leaves, and the number of such trees is given by the Catalan
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number Cat(¢ + 1) = @%2(2@612)' The previous considerations show that the number
of trivalent maps to with a distinguished ordered good subset of edges e, ..., eq that

give rise to the same map tq with d defects is precisely equal to
d! H Cat(degv — 2).
vELY

This translates into the following relation: For every nonnegative function F on
Ta(f,g), it holds that

(17) Z F(td) = Z Z F(Contr(to;el,...7ed))

T — .
ta€T4(f,g) to€To(f,g) (e1,...,eq) good dl HwEContr(to;el,...,ed) Cat(degv 2)

A few crude estimates. — Let us deduce a few preliminary estimates from the contrac-
tion operation before being more precise in the next sections. The contraction oper-
ation can also be performed on a map with defects: Starting from a map with d — 1
defects and one distinguished edge which is neither its root nor a loop, by contracting
this edge one obtains a map with d defects and two non consecutive distinguished cor-
ners around a vertex. Note that this operation is bijective. Hence, by simply bounding
above the number of edges by 3s on the one hand and bounding below the number of
admissible pairs of corners as ) .. deg(v)(deg(v) —3)/2 > 2d on the other hand,
we infer that for any (f,g) and d,

(18) 3s - #‘Idfl(fa g) = 2d - #‘J‘d(fa g)

If tg is a trivalent map, we set

1
ty) = .
Gd( 0) Z d! HvEContr(tg;el,...,ed) Cat(degv - 2)

(e1,...,eq) good

Note that 2"~1 < Cat(n) < 4"~ ! and that 2 veContr(toer,....eq)(degv — 3) = d by
definition of the defect number. Also, on the one hand, the number of ordered good
subsets of d edges in a trivalent map is certainly smaller than the number of d tuples
of edges. On the other hand, the number of such subsets is greater than the number
of ways to distinguish d edges which are not loops and such that none of them is
incident to another one. Since any loop is adjacent to a non-loop edge, then in the
worst case two loops may share a common neighbouring edge so the proportion of
non loop edges is at least 1/3 and each of them is incident to at most 4 other edges.
We infer the following crude bounds for any trivalent map tq:
oo (W20 g ¢ g #PMSL),
d d

Recall from (2) that #Edges(ty) = 3(s—2) where s = f+ 2g is the sparsity parameter.

Let Tq denote a uniform random map in Tq(f,g). Then the identity (17) applied
twice, once with F' = 1, shows that E[F(Tq)] equals

1 Z Z F(Contr(to;e1,...,€e4))

' — -
Ztoefro(f,g) Ga(to) to€To(f,g) (e1,.--,ea) good d! HveContr(to;eh,,,,ed) Cat(degv —2)
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Using the previous bounds on G4(ty), we infer that there is a constant C' > 0 such

that if conditional on Ty, the vector (Ei,...,E4) has the uniform distribution on
ordered good sets of edges of Ty, then, as long as d < s/100 say,
4—d [(s—2)/4] 9—d 3(s—2)

< <
2-d(3E )~ E[F(Contr(To; By, ..., Ba))]  4-d([G=2/4])

This shows that a uniform random map in T4(f, g) is obtained by contracting d random
edges in a random trivalent map in Ty(f,g) whose Radon—Nikodym derivative with
respect to the uniform law on Ty (f, g) is bounded from below by C'~¢ and above by C4.

3.2. Tue rraNAr caseE. — In the planar case with no defect d = 0, the enumeration
of trivalent plane maps, or by duality, of triangulations, goes back to [MNST70], see
also Krikun [Kri07]. Specifically, trivalent plane maps with f faces are dual to plane
triangulations with f vertices and therefore,

22-3(3f — 6)!! 1 5
(20) #T0(f,0) = (f—(l)'f”) e T (12v/3)F - £75/2,
Furthermore, it is known that the local limit of uniform random plane triangulations
(the dual of trivalent plane maps) is given by the Uniform Infinite Planar Triangula-
tion (of type 1) denoted by UIPT below, see [Stel8, Th.6.1], as well as [AS03] for the
pioneer works in the case of type 2 or 3 triangulations. This result has recently been
extended to the case of essentially trivalent planar maps (i.e., when the defect num-
ber is negligible in front of the size of the planar map) by Budzinski [Bud21, Cor. 2].
Passing to the dual (denoted below with a { symbol), this implies in our context that,
provided that d = o(f), we have

(21) Ta(t,0) % UrPT',

f—oo

for the local topology. The next result is a control on the growth of #T4(f,0).

Lemma 11 (Asymptotic enumeration of plane maps with defects). — Uniformly for
d = of), it holds that

2d  #74(£,0)

— 1— Ao,

3T #T41(1,0) 1o

where Ao =1 — \/§/2

The quantity A, is the asymptotic density of self-loops in large uniform trivalent
plane maps, or more precisely the probability that the root vertex of the UIPT is a
leaf, lying inside a single loop; equivalently, in the dual map, the root edge is itself a
single loop. The value of A, can be calculated by peeling, see e.g. [CLG19, §2].

The proof of Lemma 11 is based on the contraction operation described in Sec-
tion 3.1. For this it will be important to count the number of edges that we can
actually contract. A key input estimate is a large deviation estimate on the number
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of loops in a uniform trivalent plane map due to Budzinski [Bud21, Th. 2], namely for
any € > 0 there is some § > 0 such that for all f > 1,

#{loops in Ty(f,0)}

(
3f

Since d = o(f) (and since the contraction of d edges may create at most 4d loops in a
trivalent map), we deduce from (19) that a similar large deviation holds for T4(f,0).
Equivalently, replacing ¢ by €/(3(1 — Xo)) and up to diminishing ¢, this reads

(22) #{ta€Ta(f,0) : |#{non loop edges in tq} — 3f(1 — X\,)|>ef} < e_éf#ﬂ'd(f, 0).

— X

—&f
>€><e .

Proof of Lemma 11. — Recall that the contraction operation relates maps with defect
d and trivalent maps with an ordered list (eq,...,eq) of “good” (i.e., contractible)
edges and recall precisely the formula (17). Observe that if (e1,...,eq) is good,
then so is (e1,...,eq—1). Let us denote by eq and ej the two extremities of eq in
Contr(to; €1, ...,eq—1) and by vq the vertex of Contr(to;eq,...,eq) obtained by con-
tracting eq. Let us set

Z Cat(dege; — 2) Cat(degel — 2)

H(Contr(tg; e1,...,e4-1)) == 4 Cat(deg vq — 2)

eq such that
(617"'ae(l) good

Then taking F = 1 in (17), the contribution of each given trivalent map tq to the
right-hand side there equals

Z H(COntI'(to;el,...7€d_1))
(d - 1)' HveContr(tO;el,...,ed,l) Cat(degv - 2) .

Note that degvq = degey + deg e:iL — 2. Then each ratio in the definition of H is
uniformly bounded above, say by K < oo, times 1/d; moreover if eq is not incident
to any e; for i < d — 1, then dege; = deg ecT = 3 and degvq = 4, in which case
this ratio equals 1/(2d). The idea is to prove that H(Contr(to;e1,...,eq—1)) actually
concentrates around 3f(1 — A.)/(2d). Indeed, given a trivalent map to and a subset
(e1,...,ea—1) of good edges, letting A denote the set of edges different from the root,
and which are not loops nor are adjacent to any e; for i < d—1, and letting B denote
the set of edges which are incident to at least one e; for ¢ < d — 1, we have that

4A 4A  #B  #A d—1

e e T - -

2d 2d TR S g TR

Notice that the cardinal #A is actually a function #A(Contr(tg;eq,...,eq—1)) of the

map after contractions. Using (17) twice, we then find

#T4(f,0) = Z Z H(Contr(to;e1,...,ea-1))

—_ 1) _
t0€T0(£,0) (e1,...,ea—1) good (d 1)'1_[0600““(‘0%61 ’’’’’ ed_l)Cat(degv 2)

= Y Htn= Y (LA;?‘”+O(1)),

ta—1€Ta-1(f,0) ta—1€Ta-1(f,0)

(e1,..-,ea—1) good

< H(Contr(tg; e1,...,e4-1)) <

uniformly for d < f, in the sense that for any sequence ¢ — 0 as f — oo, the O(1)
holds uniformly in d € [0,e¢f] as f — oco. By the large deviation estimate (22) on
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the number of loops in Tq(f,0) we have that #A is strongly concentrated around
3f(1 — Ao) and in particular

Ta(f,0 A(Tq_1(f,0 3(1— Xo)f
# d( ) ) :E[# ( d 1( ) ))+O(1) ~ ( ) ,
#Td_l(f7 0) 2d f—o0 2d
as desired. 0
3.3. THE UNICELLULAR CASE. Let us now present the analogous results of the last

section in the unicellular case. First, parallel to (20) we have the following exact
formula due to Lehman & Walsh, see [WLT72, Eq. (9)]:

2 (6g—3)! (12)% =22
23 To(lg) = 2 \G8=3) - (12g)Fe

It is well known that the local limit of large uniform trivalent graphs is given by the
three-regular tree Az. We prove below that as soon as d = o(g) we have
(24) Ta(l,8) — As,

g—o00

for the local topology. Finally, we prove the analogue of Lemma 11 where in the
unicellular case we have A\, = 0.

Lemma 12— Uniformly for d = o(g), it holds that

S = VARG
6g #Ta—1(1,g) g—oo

Again, the claim means that the ratio tends to 1 as g — oo uniformly for d € [0, 4 g]
for any sequence 5 — 0.

Compared to the planar case (Lemma 11), notice here that the local limit of uniform
essentially trivalent maps is a deterministic object and that the asymptotic density of
loops in the local limit is A, = 0. Note also that the factor 3f is now replaced by 6g;
in both cases, it corresponds (up to 3) to 3s where s = f+ 2g is the sparsity parameter,
which is (up to O(d)) the number of edges of the maps. The proof of Lemma 12 is
mutatis mutandis the same as in the planar case, we only need to replace appropriately
the large deviation principle (22); this follows from (25) in the proof of (24) below.

3.3.1. Technical estimates via the configuration model. Let us recall the classical con-
struction of random trivalent maps with v vertices using the configuration model. We
let v be of the form v = 4g — 2 for some g > 1, which corresponds to the number of
vertices of a unicellular trivalent map with genus g. Start with v tripods, i.e., vertices
having each three half-edges, hereafter called “legs”, which are cyclically ordered, and
list these legs from 1 to 3v. Note that 3v is even since v = 4g — 2 is, hence we can pair
the legs using a uniform pairing over {1,2,...,3v}. Let us denote by P the random
labelled multi-graph obtained: it may have loops, multiple edges and may be discon-
nected. Furthermore, this graph has a cyclic orientation of the edges around each
vertex coming from the tripods and so can be seen as a map (when it is connected)
and we can speak of its faces. Moreover it is classical that conditionally on the event
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where P, is connected, it forms a uniform trivalent map with v vertices, with its half
edges ordered from 1 to 3v, the first one being canonically the root. Note that this
does not induce any bias since there are 3V~1(v — 1)! ways to label such a map whilst
keeping the same cyclic ordering around each vertex.

We shall use the following large deviations result for the number of edges on
small cycles in P, which follows by an application of the “switching method” from
Wormald [Wor99, Th. 2.19].

Lemma 13 (Large deviations for the small cycles). — For any A > 0, Let X, (A) be
the number of edges of Py that belong to a non-backtracking cycle of length < A. For
any € > 0, there exists a constant 6 > 0 such that for any v large enough we have

P(X,(A) > ev) < exp(—dv).

Proof. Recall that the graph is trivalent so the number of cycles of length < A pass-
ing through a given edge is bounded by 24. Then the variations of X (A) are bounded
by some constant depending on A if we switch two edges. By [Wor99, Th. 2.19] this
implies the tail bounds of the claim for the deviations | X, (A4) — E[X,(A)]|. On the
other hand, the expectation of X (A) is converging (see [Wor99, Eq. (8) in §2.3]), so
it is bounded; the claim then follows. O

3.3.2. Proofof the local convergence and the ratios. — Let us start by proving that the
local limit of T4(1,g) is the infinite three-regular tree Aj.

Proofof (24). — Recalling that v = 4g — 2, as well as the exact formula (23), the
probability that the random graph P, is connected and unicellular is

(3v)! -1 2
(3v/2)!23"/2> goo0 3V

Consequently the large deviation estimates from Lemma 13 for the number of edges
belonging to small cycles also hold for Ty(1,g) for v = 4g — 2 up to changing § > 0.
Now fix A > 0 and observe that any vertex at distance more than A from a cycle of
length < A has the same A-neighbourhood as the origin in the three-regular tree. Since
we are dealing with trivalent graphs, there are at most 24C vertices within distance A
of a given subset of C vertices. In particular, we deduce the following concentration
inequality in Tg(1,g). Let N4(G) be the number of vertices in the graph G whose
A-neighbourhood is tree-like, then for any € > 0, there exists § > 0 such that for all g
large enough

3 (v = DT (1g) - (

P(INa(To(1,g)) — 4g| > eg) < e 8.

We aim for the same bound for T4(1, g) when d = o(g) and argue as in the last section.
Recall T4(1,g) is obtained by contracting d edges from a (non-uniform) random map
in T9(1,g) whose law has a Radon-Nikodym derivative bounded above by C? with
respect to the uniform law. Since d = o(g) and since there are fewer than 24 edges
within distance A of the contracted edges, the above display still holds for Tq4(1,g),
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with possibly a smaller ¢, which does not depend on d, namely: for any ¢ > 0, there
exists 0 > 0 such that for all g large enough, for d/g small enough,

(25) P(|Na(Ta(1,8)) — 4g| > eg) < e™%.
By invariance by re-rooting, the local limit (24) follows. O

We may finally prove Lemma 12.

Proofof Lemma 12. — Taking A = 1 in (25) shows a large deviation principle for
the number of non loop edges in Tq4(1,g), whose proportion concentrates around
1 — Ao = 1. The proof of Lemma 12 is now mutatis mutandis the same as in the
planar case, replacing (22) by this estimate. O

4. ()N THE SIZE OF THE CORE AND KERNEL

With the enumerations lemmas in place, we can proceed to the proofs of Theorem 1
and 3.

4.1. NUMBER OF DEFECTS OF THE KERNEL. — Let us begin with the proof of Theorem 1;
recall the notation from the statement.

Proofof Theorem 1. — Let s,, = £, + 2g,. Recall from Proposition 7 that,

T fn’n'(bn n—d—
P(Ker(Mn(fmgn)) has defect d) - # d( ii))ﬁ (f (Sgs ) 6)

for any d € {0, ...,2s,, — 5}, whereas it equals 0 otherwise since in this case Tq4(f,, g,)
is empty. The idea is to consider the ratios of the numerator evaluated at d+1 and at d
to find the optimal value d which maximise this quantity, and control the deviations
for other values of d. Since 1 < s,, < n, then, using Lemmas 8, 11, and 12 at the
second line, uniformly for d < s,

P (Ker(M;r) has defect d +1)  ®,(3s, — (d+ 1) —6) y HTa1(fn, gn)
P (Ker(My7) has defect d) - ®,(3s, —d—6) #Ta(tn, 8n)
\/2(3sn —([d+1)-6) 3s.(1— o)
n—o0o n 2((21 + 1)

6sp 38, (1 — Ao) D,
2 ~ 4/ _
(26) n—oo V' n 2(d+1) d+1’

where we have set D,, = 3(1 — X\;)+/3s3 /(2n). It is therefore natural to expect that
the defect number concentrates around D,, and we now make this precise in the two
regimes.

We now turn to the first statement, when n~='/3s, — a € [0,00). Note that this
implies that D,, — 3(1—X\,)+/3a3/2; let us write this limit as ¢ > 0. By induction (26)
implies that for any fixed d > 0, it holds

P(Ker(Ms~) has defect d) N f
P(Ker(M5") has defect 0) n—oco d!”
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In order to conclude, it remains to show that
P(Ker(Msr) has defect > D)
P(Ker(Ms3") has defect 0)
can be made arbitrarily small (uniformly in n and s,,) provided that D is large enough.

To see that, note that from (18) we have #T4(f,g) < %#%(f,g). On the other
hand by Lemma 8 there exists a constant K > 0 such that for every n large enough

(so e.g. 3s, < n/32),
[n ®,(3sp, — (d+1) —6)
- < K/2.
dgsggf—(a Sn, ®,,(3s, —d —6) /

Therefore for every n large enough, for every d < 3s,, — 6 it holds
- _ < d
®,(3s,, —d —6) < (K L") .
®,,(3s, — 6) n
Combining the two bounds yields for every n large enough, for every d < 3s,, — 6,
P(Ker(M?r) has defect d) _ #Ta(fn, gn) - ©n(3s, —d —6) < 1 (g %)d
P(Ker(M5") has defect 0) #To(fn,8n) - ®n(3s, —6) ~dI\ 2 V o/~

Recall that we assume that s? /n has a finite limit, so this sequence is uniformly

(27)

bounded. We easily deduce that (27) can be made arbitrary small provided that D is
large enough and this concludes the convergence to a Poisson distribution.

Let us now turn to the second regime, where n='/3s,, — oo (but still n='s,, — 0)
and let us replace for convenience D,, by its integer part; note that D,, = o(s,). Recall
the asymptotic behaviour (26) valid uniformly for d < s,,. Fix £ > 0 small and let n
be large enough, then for any k € [6eD,,,e 1 D,], by bounding above the fractions
by 1 for j < k/2 and by 1/(1+k/(2D,,)) < 1/(1 + 3¢) for j > k/2, we get
k

P(Ker(M?r) has defect D,, + k)
j:l( +e) 5

P(Ker(M3") has defect D,,)

D, (1+e)2\*/2 L
< = 1_6 )
n+J (1+35) ( )

for some 6 > 0.
In addition, by (18) and Lemma 8 there exists a constant K > 0 such that for

every n large enough (so e.g. 3s, < n/32) and any d,

P(Ker(Mtn) has defect d + 1) D,

P(Ker(M;) has defect d) — ~ d+1°
Thus, similarly, for k > e~ 1D,
P(Ker(Ms~) has defect D,, + k) o ( K )k
P(Ker(M;) has defect D,,) — \1+4¢~!

Taking € > 0 small enough, we infer that there exists > 0 such that for every n

large enough,
P(Ker(Ms») has defect > (1 + 2¢)D,,) < Z (10

— 511 = 5)2¢Dn
P(Ker(M;;) has defect Dy,) 5711 —9)

k>2eD,,

The negative deviations are treated similarly and are left to the reader. O
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4.2. ASYMPTOTIC ENUMERATION. In return the probabilistic estimates obtained in
the preceding proof can be turned into enumeration estimates on the number of
trivalent maps with defects. In the regime s,, = O(nl/ 3) we obtain actual asymptotics.

Proof of Corollary 4. Suppose that 7~ /3s, —a >0 and that either (f,, g,)=(sn,0)
or (fn,8n)=(1, (s, — 1)/2). Then the convergence of P(Ker(Msr) has zero defect) to-
wards the probability that a Poisson law is equal to 0 can be written by Proposi-

#To(fﬂvgn) : q)n(?)Sn — 6)
#mn(fn,gn) n:Zo eXp(—(l o )\O)\/W)v

where we recall that A\, equals 1 — \/§/2 when g, = 0 and 0 when f,, = 1. The
asymptotic behaviour of #7(f,,g,) when g, = 0 has been recalled in (20), whereas
when f, = 1 it is given by (23). Also the behaviour of ®,(3s, — 6) follows from
Corollary 9, namely, with v = (3a)3,

e~ V/2 . en (35, —6)/2
WS 3 an (e 0] (2(38n - 6))

tion 7 as

®,,(3s, — 6)

NGRS (2m)™ g2,
n— oo 2\/5 GSn
Combined with (20) we derive the asymptotic formula for the number of plane maps
with n edges, f, faces, and a trivalent kernel: when both g, = 0 and n~/3f, — f,
~1/35, — f, so taking v = (3f)> we get

n

then n

—V/2 3, /2
#T0(£0,0) - Bp(36, —6) ~ ° e (RS

n—o0 41 f,
Similarly, using (23) instead, we obtain the asymptotic formula for the number
of unicellular maps with n edges, genus g, faces, and a trivalent kernel: when both

f, =1and n=1/3 ~1/3s,, — 2g, so taking v = (69)* we get

e~ V/2

Jn — ¢, then n

3

. —6) ~ Lg—1/2 . -3/ n.(e” )g"

#T0(1,8n) - Pn(6gn — 6) e om gn n 4 12g,, .
Our claim then follows from the convergence in the beginning of this proof. O
4.3. VOLUME OF THE CORE. Theorem 3 now easily follows from our previous results.

Proofof Theorem 3. — Since #Edges(Ker(Msr)) = 3s,, — Defect(Ker(Msr)) — 6, we
infer from Theorem 1 that as n — oo, the number of edges of Ker(Ms") concentrates
around K, defined by

3 s
Kn —3Sn—3(1 _)\O) ig n:oo 3Sn.
Recall from Proposition 7 the conditional law of the number of edges of the core given

the kernel; then Corollary 10 implies that

Sn 2
#Edges(Core(MEn))  p 1. where C, — Kn+ VKR + 80K, ?msn7
from which our claim follows. U
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Let us define C/, as C,, in the preceding display but using the random number of
edges of the kernel instead of the deterministic quantity K,,. Then one can check that
4(C — C,) is asymptotically equivalent to #Edges(Ker(Ms)) — K,,. By Theorem 1
this is much smaller than K, and thus much smaller than s,,, therefore, when s,, =
O(y/n), we can deduce an unconditioned CLT from Corollary 10, namely

% - (#Edges(Core(M;)) — C,,) n%o N(0,1).

When s,, > y/n however, one would need a tighter control on the fluctuations of the
size of the kernel. Although our estimates are not precise enough, we believe that the
following extensions hold.

Consecture 14. — Assume that n=/3s, — co and n~'s, — 0 and let Ao as in (3).
Define
T Ky + /K25 80K,
Dn:3(1—)\o)1/§s—", Ky =3sn—D,,  and Cp= -2t 4"+ n8n,
n

Then

Defect(Ker(Msr)) — D, @, N (O, 1),
A /Dn n—o00
where N(0,1) is the standard Gaussian distribution. Consequently,

2 (#Edges(Core(ME)) — C) D N (0,1),.

n—roo

B

5. SCALING LIMITS FOR THE ATTACHED TREES

In this section we establish the scaling limits for the trees attached to the core of
the random map M, (f,, g,). We show that this forest converges after normalisation
by the factor \/n/s, towards a forest coded in the usual way by a Brownian motion
with negative drift for which we review the excursion theory. The results are used in
the next section when proving Theorem 5.

5.1. EXCURSIONS THEORY FOR LINEAR BROWNIAN MOTION WiTh DRIFT. — Let B denote a
standard Brownian motion started from 0. Fix £ > 0 (in our application below we
shall take k = 1/3/2) and let us consider the Brownian motion with linear drift —x
and its running infimum process defined respectively for any ¢ > 0 by
K K : K
By = By — Kt and B; :ogifgtgs'
Let us now recall the excursion theory of B* above its minimum. First, when x = 0,
it is well know that the excursions of a Brownian motion form a Poisson process
with local time given by B° and with intensity given by the It6 excursion measure n,
see e.g. [LG10] or [RY99, Chap. XII]. With our normalisation, the measure n can be

disintegrated as
> da
ni- = na . —_—,
0= [ mb=

where n, denotes the law of the Brownian excursion with duration a.

JIEP. — M., 2022, tome g



1332 N. Curren, l. Korrcnemskr & C. Marzouk

When k>0, by Girsanov’s formula, the process B" is absolutely continuous with re-
spect to B, with density given by the exponential martingale (exp(—xB; —k2t/2);t>0).
Using this and the exponential formula for Poisson random measures, we deduce that
the excursions of B above its running infimum B* (still using B as local time) are
again distributed as a Poisson process with excursion intensity given by

ne() = /Ooo () exp(;\/%ﬂ) da

Finally, let us describe the so-called Bismut decomposition for the excursion mea-

sure n”. For this, we introduce the size-biased excursion measure 1" on excursions e
of duration ¢(e) together with a distinguished time u € [0, ((e)] by

*  exp(—kr3a
(28) 7" (de, du) = / dw

Contrary to n”, the above measure has finite total mass, so it can be used to define

ng(de)ljg,q)(u) du.

a probability distribution after normalisation; precisely,
e —k%a/2 1
/ﬁﬁ(de7du) - / daw ——
0 2ma K
For an excursion e = (e4;0 < t < {(e)) and a time v € (0,¢(e)), let
e" = (e, ;0<t<u) and e"t = (eus+;0 <t < ((e) —u);

let also B~ and B™ be two independent Brownian motions both started from z > 0
under P, and both stopped when hitting 0, at time T~ and T'* respectively. Let F

be a continuous and bounded function, the so-called Bismut decomposition [RY99,
Th.4.7, Chap. XII, p. 502] reads

o0
/ﬁo(de,ds)F(es’_,es’+) = 2/ E, [F(B~,B")] dz.
0
In the case k > 0 we can write with obvious notation

/Hﬁ”(d&du)F(e”’_,us"“) = /K’/ﬁo(de’du) e r7¢(e)/2 F(e™ ,e"")du
- 2T~ 4+T%)/2
:/ 2k - E; [e_"( +T)/ F(B_,B"‘)} dz
0

= / 2ke 2T |, [F(B“’f,‘B”#)} dz.
0

In words, if one first samples an excursion e and a time u from the law k7", then the
random variable e, follows an exponential law with rate 2« and conditionally given
this value, the time-reversed past and the future of the excursion are two indepen-
dent Brownian motions with drift —x started from e, and killed upon hitting 0, see
Figure 10 for a pictorial representation.

Let us now make a connection with another appearance of the exponential law
with rate 2x. Indeed, recall that (exp(2.Bf);t > 0) is a martingale, so a classical
application of the optional stopping theorem shows that sup,-, B} follows this very
exponential law. The link can be done via Bismut’s decomposition. Indeed, let us
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Ificure 10. The Bismut decomposition of 7",

extend B” to the negative half-line letting (—B"*,);>0 be an independent copy of B*.
Then —infy<o B” follows this exponential law. Let J~ < 0 denote the (a.s. unique)
time such that B%_ = inf;<o B" and let J* = inf{t > 0 : B} = inf,<o B*}. It follows
from Bismut’s decomposition that the pair ((Bf):cs-,s+], —J ) has the law xn".

Also, notice that conditional on B, , the path after time .J T is then an independent
copy of B* starting from this value, so its excursions are described by the infinite
measure n”. Finally, we define the path W* = (W} );>¢ by

(20) Wi =B, By

which therefore starts with a size-biased excursion before evolving like B*.
Let us mention [Pit06, §7.7.7] and [Jan05] for related discussions with similar ob-

jects.

5.2. SCALING LIMIT OF THE RANDOM FOREST. — We now aim at showing that W* just
defined in (29) is the scaling limit of the contour of the random forest attached to the
core in order to recover the random map M, (f,, g, ). Let us argue conditionally given
the core and its number of edges, say c,, which, in the framework of Theorem 3, is
typically of order \/ns,, which is both much larger than y/n and much smaller than n.

Recall from Section 2.1 and especially Figure 7 that we actually consider a forest
with a mark which is either an oriented edge in the first tree, or an extra symbol to
mean that we keep the root edge of the core. We let W™ denote the contour of this
forest, A™ its first hitting time of —1, which codes the size of the first tree, and let R"™
have the uniform distribution on {0, ..., A™ — 1}, which codes for the position of the
root edge of the map. Then the pair (W™, R™) has the uniform distribution on the
first-passage paths with £1 increments, which end at time 2n by hitting —2c¢,, for the
first time, together with an instant smaller than their first hitting time of —1. The
main result of this section is the following.

Provosirion 15. — If \/n < ¢, < n, then for any k > 0, the convergence in distri-
bution

Cn n (d) K
( W(nn/c,,,)%) — (Wt )t20 )

% t>0 n—0o0
holds in the uniform topology on compact intervals, where W* is defined in (29).
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Let B™ denote a uniform random =£1 path starting from 0 at time 0 and ending
at —2¢, at time 2n and recall that W™ is obtained from B™ by a cyclic shift at the
first time the latter reaches its overall minimum. The path B™ is quite simple and
well-known and when ¢, = o(n) a global convergence of B™ to the Brownian bridge
has been established, see e.g. [Ald85, Th. 20.7]. However here, we are interested in the
behaviour of this path viewed in a smaller time scale, around both the starting point
and the endpoint. To this end, let us set El” = —2¢,—Bj,_, forevery i € {0,...,2n}.
Note that B™ has the same law as B™. On a time-scale which is small compared to
n, the recentred paths do not feel the bridge conditioning and the fluctuations simply
converge to Brownian motions.

Lemma 16. Suppose that ¢, = o(n). Let N,, — oo be such that N,, = o(n). Let B
and B be two independent Brownian motions. The convergence in distribution

1 cn Ny, cn Ny (d)
(\/Nn (BN t + ))t>o n—00 (Bt’Bt)t>0’

holds in the uniform topology on compact intervals.

Proof. Fix T > 0 and suppose that n is large enough so N, T < n. Let S™ denote
the asymmetric random walk with step distribution

PSP = —1) = 1 — B(ST = 1) = %(1 + cn/n).

Note that B™ has the law of S™ conditioned to S%, = —2¢,, and further that E[SZ | =
—2¢,. Let us denote by S and independent copy of S™. Let pp(j) = P(Sy = j),
then the Markov property yields the following absolute continuity relation: For any
continuous and bounded function F, we have

(g (e 20 B+ 22)) ]
:E[F((\/]lvn<SNt+ NtSNt-l- iv ))O«T)

Pnon, (SR, 7 + Swr + 2Cn)}
p5,(—2cn) .

We first claim that (N, 1/2(51\, . + (en Ny /n)t, SN : + (enNp/n)t);0 <t < T)
converges in distribution to the pair ((3t,3t), 0<t<T). By e.g. [Kal02, Th.16.14]

it suffices to prove the convergence at time ¢ = 1 and the latter easily follows by
considering the characteristic function. By Skorokhod’s representation, let us assume

that this convergence holds almost surely. We next control the ratio of probabilities
in the absolute continuity relation. By Stirling’s formula, as n — oo, using also that
¢n, = o(n) in the last line, we obtain after straightforward calculations:

n+cy\"Ten rn— e\ Cn (2n)!
e = (50) ()
P2n(2en) 2n 2n (n—c)!(n+cp)!

1

1 n
h M%n—cn)(nw) v
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Simﬂarly, since both Nn, Cp = o(n), then
DPon —+ + 2¢ ~ ~ .
2n—2N, T\¥ N, T N,T n /—(n NnT) S

We conclude by the above absolute continuity relation, together with the convergence
of the unconditioned pair. O

Proposition 15 now easily follows.

Proof'of Proposition 15. — In this regime, Lemma 16 reads in the particular case N,, ~
(kn/cy)?:

(30) (

The claim is then a consequence of the construction of W™ and W* which is continuous
in B-. O

¢ n nn () R
- ( (kn/cpn)?t> B(ﬁn/cn)%)) — (Bt — kit, By — Ht)t}O'

Kn >0 n—oo

Note that Proposition 15 implies in particular the convergence of (A™, R™) after
rescaling towards the length of the first excursion of W* together with a random time,
and this pair has the law k" from (28). Let us give a proof by direct calculations for
the reader uncomfortable with excursion theory.

Prorosition 17 (Size of the distinguished tree). — If /n < ¢, < n, then for any
k>0,
2

N2, i sny (@) . K“a
(—) (A", R") — (A,R), which has law exp(——)lo<r<a dadr.
KN n— o0 2ral 2 SR

Proof. — Let Wy i denote the set of +1 paths of length IV that end by hitting —K
for the first time at time N, where N and K must have the same parity; by the cycle

#Wanc = Izi(uv +NK>/2>‘

lemma, its cardinal equals

Then for every k € {0,...,n—¢,}, under our biased probability measure on Way, 2, ,

2k + D)#Wapg11 - #Won—2k—1,2¢, -1

(n3%,)

Then straightforward calculations involving Stirling’s formula lead to the limit for

P(A™ =2k + 1) = (

every a > 0:

(5) Bar = 2Aatonfen) +1) 3 o

which implies the convergence in distribution of A™. The joint convergence of R™ fol-
lows since the latter is conditionally given A™ uniformly distributed on {0,..., A™—1}.
(|

exp(—+’a),
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6. THE MESOSCOPIC SCALING LIMIT

In this section we finally prove Theorem 5 involving the continuum tree-decorated
trivalent map Funic Or Fplan for which we first describe two equivalent constructions.
The starting block is the local limit of trivalent maps. In the planar case, this is
the dual of the well-known UIPT of type 1, denoted by UIPT' in Section 3.2. In the
unicellular case, the local limit is the deterministic infinite three-regular tree A3 which
appeared in Section 3.3. In each case, we shall consider a slight modification of those
maps obtained by splitting its root edge in two by inserting a vertex in the middle
and grafting a dangling edge onto this new vertex in the face adjacent on the right of
the root edge. Let us denote by Tpiay and Typic the resulting maps which thus have
a unique vertex of degree 1, and whose root edge is the oriented edge emanating from
this vertex.

Throughout this section, to simplify notation we put

3
/@:\/g, so that 2k = V6.

Itcure 11. The discrete skeleton underlying the construction of
Fplan- From left to right: a piece of the Uniform Infinite Planar Tri-
angulation (type 1), its dual UIPT!, the version Tpiay, obtained after

the root-transformation and finally the metric graph obtained after
dilating each edge independently by an exponential variable of mean

1//6.

6.1. ConstrucTION OF THE LiMiT. — Let M, denote an infinite, locally finite, map.
Let us construct in two equivalent ways a certain metric space § from M,. These
constructions applied to My, = Tpiay and to My, = Typic respectively produce the
limits Fplan and Funic in Theorem 5. We assume that the reader is familiar with the
background on continuum random trees (CRT’s). We shall denote by e a continuous
excursion with duration {(e); it is known (see e.g. Duquesne & Le Gall [DLGO05]) that
it encodes a CRT %, by identifying all the pairs of times, say 0 < a < b < {(e), which
satisfy e, = e, = min, ;) e. We let . denote the canonical projection [0, ((e)] — Te.
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6.1.1. Via bipointed trees surgery. Recall from Section 5.1 the renormalised law k12"
on pairs (e, u) where e is a size-biased excursion of a Brownian motion with drift —x
and then w is an independent uniform random instant between 0 and its duration
¢(e). Consider next the law P* on bipointed CRT’s obtained as the push forward
of km™ by the projection 7, or more precisely the map

(e,u) — (Te,me(0), me(w)).

By the rerooting property of Brownian CRT’s (or more precisely, of Brownian excur-
sions), the two triplets (Te, me(u), 7e(0)) and (Te, me(0), me(w)) have the same law.
We then consider an i.i.d. sample from P* of bipointed CRT’s indexed by the edges
of M, and we glue these CRT’s using their distinguished points according to the
adjacency relations of M, to get a random locally compact metric space §, see Fig-
ure 12. Formally, this random compact metric space is obtained by taking the disjoint
union of the bipointed CRT’s indexed by the edges of M, and identifying their dis-
tinguished points according to the adjacency relations of the graph M, the resulting
quotient § is endowed with the quotient metric, see e.g. [BBIO1, Def. 3.1.12] or the
recent paper [Mugl9].

Ficure 12. The two equivalent constructions of § from the random

metric graph M.

6.1.2. Via Poissonian theory. — Let us give an equivalent construction of § which
highlights the connections with the core—kernel decomposition. First, consider the
metric (or cable) graph M, obtained by replacing independently each edge of M,
by a compact segment of length distributed according to an exponential law of rate 2k
(formally defined in the same way as above). This space has a natural Lebesgue mea-
sure £. We shall now graft random CRT’s on this structure to get our desired space 5.
To do this, consider the infinite measure n" on the space of pointed compact real trees
equipped with the Gromov—Hausdorff topology, obtained by the push forward of the
measure n" by the application e — (Te, e (0)). Although this is an infinite measure,
the total mass of trees of diameter larger than € > 0 is finite. We then consider a
Poisson cloud on M, with intensity

2d4 @ n”

and “graft” the trees on M, according to the atoms of the measure.
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The fact that the two above constructions are equivalent follows from Bismut’s
description of the law m" recalled in Section 5.1. Indeed, once translated in the terms
of random trees, this decomposition precisely entails that a random bipointed tree
(%,2,y) under P* can be obtained by first sampling a real segment with a random
length with the exponential law with parameter 2x whose endpoints will be the dis-
tinguished points of the bipointed tree and then grafting on it a Poisson cloud of trees
with intensity 2d¢ ® n”; the factor 2 is here to take into account both sides of the
segment.

6.2. Proor or Taeorem 5. — We are now ready to prove Theorem 5. This takes three
main steps: first, since the kernel of the maps are almost trivalent, then as discussed in
Section 3 it converges locally to the corresponding infinite trivalent map M. Next,
the core is roughly obtained by expanding uniformly at random the edges of the
kernel, which translates into i.i.d exponential random lengths in the limit. Finally,
the full map is obtained from the core by grafting trees on the corners, and this forest
converges by the results in Section 5.

Proof'of Theorem 5. Step 1: convergence of the kernel. — By Theorem 1 the kernel of
both maps are almost trivalent, in the sense that their defect number are small com-
pared to s, with high probability. On this event, the local limits (21) and (24) apply.
By e.g. Skorokhod’s representation theorem, we shall assume that they hold almost
surely and we denote by Ms» either the random plane map M, (s, 0) or the unicel-
lular one M,, (1, (s, — 1)/2), and by M the limit of its kernel, which is UIPT" or As
respectively. In particular, the kernel is asymptotically locally trivalent. Fix r > 1,
then the ball of radius r (centred at the root vertex) in Ker(M?) converges almost
surely towards that of M. Since the set of possible such balls is finite, then for
every n large enough, the balls coincide and we henceforth assume it is the case. As in
Section 2.1 we henceforth modify the kernel and M, by adding a vertex in the middle
of its root edge, the corner on the right of the middle vertex is called hereafter the
root corner. Note that this is not quite the root transform presented in the beginning
of Section 6: here we do not graft a dangling leaf on this new vertex. We let Ker,,
denote the number of edges of the modified kernel.

Proof of Theorem 5. Step 2: convergence of the core. Let now Core(M?) denote the
core of the map, with the same modification at the root as in STEP 1 and let Core,,
denote its number of edges. Recall from Proposition 7 that, conditionally on the kernel
and the size Core,,, this core is obtained from the kernel by expanding the Ker,, edges
using a uniform random vector of positive integers that sum up to Core,,. Note that
the root corner of the kernel is transferred to the core. Using the representation of
such a random vector as i.i.d geometric random variables conditioned by their sum,
where the parameter is arbitrary and can conveniently chosen so the mean matches
the average value Core,, / Ker,, it is easy to check that for any finite subset of edges of
the kernel, Ker,, / Core,, times their lengths in the core jointly converge in distribution
towards i.i.d. exponential random variables with unit mean. Alternatively, in the spirit
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of Section 2.1, for any positive integers ¢1, ..., {, the conditional probability that k
given edges of the kernel have these lengths equals

(Coren —(Zl-‘r--»-&-fk)—l)
Ker, —k—1

(%)

Stirling’s approximation then yields a multivariate local form of the convergence to

i.i.d. exponential random variables. Fix » > 1 and let &k, + 1 denote the number of
edges in the ball of radius r of M, which we assume equals that in Ker(M$») for
n large enough. Let further L, o,..., L, k. denote the lengths of these edges in the
core. Since Ker,, / Core,, ~ \/2 Ker, /n ~ \/6sn/n by Theorems 1 and 3, then

[Sn (d)
(31) ; . (Ln707"'7Ln,k,,.) — (70%"777@,.)7

n—oo

where the ;s are i.i.d. exponential random variables with mean 1/4/6. Appealing to
e.g. Lebesgue’s theorem, this convergence for the conditional law given Ker(M$r) and
Core,, also holds unconditionally, jointly with Theorem 1 and Theorem 3.

Proof of Theorem 5. Step 3: convergence of the trees. — Next, recall that conditionally
on its core, the map M is obtained from its core by grafting a rooted plane tree
(possibly with a single vertex) onto each corner of the latter. Moreover, the root edge
of M» is either the root edge of the core, or one oriented edge in the tree grafted onto
the root corner, hereafter call the “root tree”. Let us consider each edge of the kernel,
and the corresponding chain of edges in the core, and, except for the root tree, let us
group together all the trees grafter on the corners on one side of such a chain (say
from one extremity to the other one) and then those on the other side. The root tree
is canonically placed first. Then this forest, together with the root edge, is sampled
uniformly at random amongst all possibilities and it is coded by the first-passage
path W™ studied in Section 5, with one distinguished time R™ smaller than the first
hitting time of —1.

Then a direct consequence of Proposition 15 and Bismut’s decomposition is that,
conditionally on the kernel and the core of the map, /s, /n times the root tree and its
mark converge to a bipointed Brownian tree with law P* as defined in Section 6.1.1.
Moreover for every r > 1, jointly with this convergence and that (31) of the lengths
of the chains in the core replacing the edges of the ball of radius r in the kernel, the
forests of the trees grafted on both sides of these chains jointly converge after the
same rescaling by /s, /n to independent forests coded by Brownian motions with
drift B* killed when first reaching level —+; respectively, where we recall that we
take Kk = \/3/72 Since these ~;’s have the exponential law with rate v6 = 2x, then
Bismut’s decomposition (recall the discussion closing Section 6.1.2) entails that the
bipointed trees obtained by grafting all the trees, except the root tree, in the corners
of each chain in the core converge after rescaling by /s, /n to i.i.d bipointed Brownian
trees with law P*. Recall from Section 6.1 and especially Figure 11 that there when
constructing the limit §, we not only added a middle vertex on the root edge of M,
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but also attached to it a dangling leaf on the root corner and this edge was eventually
replaced by a bipointed CRT in §. This CRT is the limit of the root tree and its mark
here and again Bismut’s decomposition shows the equivalence of the two points of
views.

Proof'of Theorem 5. Step 4: convergence of the map. Again, the previous conditional
invariance principle is extended unconditionally by Lebesgue’s theorem so we conclude
that for any > 1, the subset B3, of M» obtained by taking the ball of radius r of its
kernel and replacing its edges by their corresponding bipointed trees in Mj» converges
in distribution, once rescaled by +/s, /n to the ball of radius r in M, where each edges
is replaced by i.i.d. bipointed CRT’s with law P*, with the extra twist for the root. In
order to conclude with the local Gromov—Hausdorff convergence of the map M:" to F,
it still remains to argue that for any fixed real value R > 0, the ball of radius R/n/s,
of this map is contained in B for some r. Indeed, it could a priori happen that,
thanks to very short lengths, points which lie at a large graph distance from the root
in the kernel get very close to the root in the core and then in the map. Now recall
that with high probability, the kernel of M~ is locally trivalent so for every r > 1,
its ball of radius r contains at most 3" distinct non self-intersecting paths. Then a
crude large deviation argument shows that, if 6 > 0 is small enough, then a.s. for
all sufficiently large r’s, none of these rescaled paths can have a total random length
smaller than ér. Consequently with high probability, the ball of radius R+/n/s, in

M is indeed entirely contained in By, for r > 6~ *R. g

6.3. Tue TREE REGIMES. — Let us end this section with the behaviour of the random
map M when seen at a smaller scale than y/n/s,, which complements Theorem 5.
As we have seen in the previous subsection, the tree grafted onto the core which
carries the root edge of M5 grows like \/n/s, and so does the distance between the
root vertex of the map and the core. Therefore, if one looks in a ball centred at the
root vertex with a much smaller radius, then one does not escape this tree so we
expect the maps to converge to trees at such scales. Let us describe more precisely
these limits before stating the result.

Analogously to the compact Brownian CRT coded by a Brownian excursion, one
can consider a Self-Similar Continuum Random Tree ¥, coded by a two sided Brow-
nian motion (B¢)ier, i-., a random path such that (B;)¢>0 and (B_;)i>0 are two
independent standard Brownian motions, see [Ald91, §2.5]. This tree is naturally
pointed at the image of 0 and it possesses a unique infinite line, corresponding to the
first hitting time of a negative level by both Brownian motions; the excursions above
their infimum of each of these paths code the subtrees grafted along this spine, on each
side. Another, “upward”, way of constructing ¥, is to take instead two independent
three-dimensional Bessel processes. The fact that this defines the same object in law
comes from the so-called Pitman transform, which shows that such a Bessel process
has the same law as (B; —2inf[g ;) B);>0, and the fact that the tree coded by the latter
is the same as that coded by (B¢):>0 since one can easily show that the corresponding
pseudo-distances are equal. See also [Pit06, §7.7.6].
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Finally, a discrete analogue, the Uniform Infinite Random Plane Tree A, can be
described as the discrete tree coded similarly by a two-sided simple random walk,
or equivalently two independent such random walks conditioned to stay nonnegative.
This infinite tree appears as local limit of large uniform random plane trees; it has
one end and is sometimes referred to as Kesten’s tree conditioned to survive (with
the critical geometric distribution), see e.g. [Jan12, §5].

Prorosition 18. —  Let s, satisfy (1).

(1) Both My, (sp,0) and M, (1, (s, — 1)/2) converge in distribution to A for the
local topology.
(2) For any sequence a, — oo such that a, = o(y/n/s,), the two convergences in

distribution
n — 1
ay, "My (sp, 0) 9w and a;an<1, S ) RN 9
n—oo n—o00

hold in the local pointed Gromov—Hausdorff topology.

See [KM21a] for related results on local limits of planar graphs. Let us mention
that T, also appears in the scaling limit of uniform random quadrangulations with n
internal faces and with a boundary with length much larger than /n, see [BMR19,
Th. 3.4].

Proof. — For a short proof, one can note from the proof of Proposition 17 that,
conditional on the number of edges of the tree grafted onto the core which carries
the root edge of the map, this tree has the uniform distribution on plane trees with
such a size, and further the oriented edge is independently sampled uniformly at
random. Then re-root this tree at this oriented edge: the resulting tree has again the
uniform distribution and the latter is known to converge when its size tends to infinity,
see [Jan12, Th.7.1] for the local convergence and [Ald91, §2.5], with the formalism
from [DLGO5] for the local Gromov—Hausdorff one. O

The claim can alternatively be proved along the same lines as previously, we
keep the same notation. Indeed, instead of Equation (30) which was used previously,
Lemma 16 shows that if \/n < ¢, < n and if N,, — oo is such that N,, = o((n/c,)?),
then the drift disappears and we simply obtain,

1 n  pn (d) 3
(ﬁ (BR. BN”))@O o (B Be) 50

where B and —B are independent standard Brownian motions. For r» > 0 fixed, the
concatenation of these paths stopped when first reaching level r encodes a tree in
which 0 is a distinguished time. The convergence of paths then implies the convergence
of the corresponding bipointed trees; in particular, the ball of radius r in N, 1 QMZ"
converges to that of the image of 0 in the preceding excursion, which is the ball of
radius 7 in ¥,. We then applies this result to the random number of edges of the core,
which by Theorem 3 grows like \/ns,,, so NV, can be any sequence with N,, = o(n/sy,).
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Similarly, the proof of Lemma 16 is easily adapted to show that for any fixed
N e N,
(B2, Br 9, (5,5,

% )ogz‘gN n—00 0<i<N?

in RN+ where S and S are two independent simple random walks. This similarly
implies the convergence in distribution of the map in the local topology towards A ..

7. COMMENTS AND QUESTIONS

Let us finish this paper by raising a few problems and open questions.

7.1. SHORT CYCLES AND DIAMETER IN THE UNICELLULAR CASE. — As mentioned in the
introduction, Janson & Louf [JL21] very recently proved that the statistics of the
length of short cycles in M,,(0, g,,) converge when 1 < g,, < n after normalisation by
v/n/(12g,) towards an inhomogeneous Poisson process on R with intensity

(32) cosh(t) — 1’
t
and this matches the statistics of the lengths of short non-contractible curves in Weil—
Petersson random surfaces [MP19]. Let us shed some light on these results using ours.
We do not however claim to give a full proof. Heuristically we saw that 1/12g, /n -
Core(M,,(1,gy,)) is given by first taking an essentially unicellular trivalent map whose
edges have been replaced by independent real segments of length distributed according
to an exponential law of mean 1. It is classical that the statistics of cycles of length
k > 1 in a random three-regular multi-graphs (where loops and multiple edges are
allowed) are given by independent Poisson variables with parameters

ﬁ =1, 1, §, e

2k 6
see [Wor99, Th. 2.5]. Taking the image of the above Poisson process on the number
of discrete cycles, after replacing each cycle of length k& by an independent sum of k
random exponential variables, we get a point process on R with intensity given
by t~!sinht. In the case of unicellular trivalent maps, we expect that the statistics
of discrete cycles of length £ > 1 are given by independent Poisson variables with
parameters

ok _9 1 7
=0, =1, —,...
2k 2 4

In particular, those maps have no loops. After decoration by independent exponential

lengths as above, we recover a Poisson process with intensity (32). However, we expect
that the large scale properties of unicellular trivalent maps (such as the diameter) are
close to those of trivalent maps.
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7.2. GLOBAL LIMITS IN THE PLANAR CASE. Let us here focus on the random plane
maps M, (£,,0). Theorem 5 and Proposition 18 study their asymptotic behaviour at
the scales /n/f,, and smaller. In another direction, one can be interested in their
asymptotic geometry at larger scales.

At least when f,, = o(n'/?), we know from Theorem 1 that Ker(M, (f,,0)) is triva-
lent with probability tending to 1, so by [CLG19, Cor. 23], once rescaled by a factor
of order f,l/ 4, it converges to the Brownian sphere. Combined with our previous ar-
gument (e.g. in the proof of Theorem 5), this indicates that f,}/4\/n/fn = (n?/f,)1/*
is the correct scale of the core and we believe that it also converges to the Brownian
sphere by arguments similar to [CLG19]. Finally, the original map M,,(f,,0) is ob-
tained by grafting trees on the core, with n edges in total, so the maximal diameter of
such a tree grows like \/n/f, = o((n?/f,)*/*) and therefore the rescaled map and its
core should be close to each other. We refrain to make this precise here for we believe
that this holds in a more general setting.

ConyecTure 19. If £, — oo and n~'f,, — 0, then the rescaled maps

31/4 £, \1/4
6 ——=- (= M, (f,,0
Vo e (05) Malt0)

converge in distribution to the Brownian sphere in the Gromov—Hausdorff topology.

Similarly, for any sequence o, such that \/n/f, < o, < (n?/f,)/*, we expect the
rescaled random map o, !M,(f,,0) to converge in distribution for the pointed local
Gromov-Hausdorff topology towards the Brownian plane, which is a non-compact
analogue of the Brownian sphere introduced in [CLG14].

The first step towards a proof of Conjecture 19 would be to prove the convergence of
random trivalent maps with a small defect number compared to the number of edges
to the Brownian sphere, once rescaled by the fourth root of the number of edges. This
would complement the local point of view of [Bud21]. Let us mention that, because
we were especially interested in the mesoscopic behaviour of the maps, we assumed
throughout this work that f,, = o(n), whereas in [KM21b], convergence of uniformly
chosen bipartite maps to the Brownian sphere is shown whenever f,,, n—f,, — oco. More
generally, establishing the scaling and local limits of planar maps with prescribed
degrees is still open in the non-bipartite case. See [Mar22] for the scaling limit point
of view and [BL22] for the local limit point of view, both in the bipartite case. Let
us mention that the case of local limit of Boltzmann non-bipartite maps is treated
in [Stel8].
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