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EXPLICIT CLOSED ALGEBRAIC FORMULAS FOR

ORLOV–SCHERBIN n-POINT FUNCTIONS

by Boris Bychkov, Petr Dunin-Barkowski, Maxim Kazarian
& Sergey Shadrin

Abstract. —We derive a new explicit formula in terms of sums over graphs for the n-point
correlation functions of general formal weighted double Hurwitz numbers coming from the
Kadomtsev–Petviashvili tau functions of hypergeometric type (also known as Orlov–Scherbin
partition functions). Notably, we use the change of variables suggested by the associated spectral
curve, and our formula turns out to be a polynomial expression in a certain small set of formal
functions defined on the spectral curve.

Résumé (Formules algébriques closes explicites pour les fonctions à n points d’Orlov-Scherbin)
Nous présentons une nouvelle formule explicite en termes de sommes sur les graphes pour les

fonctions de corrélation à n points des nombres de Hurwitz doubles pondérés formels généraux
provenant des fonctions tau de Kadomtsev-Petviashvili de type hypergéométrique (également
connues sous le nom de fonctions de partition d’Orlov-Scherbin). Nous utilisons notamment le
changement de variables suggéré par la courbe spectrale associée, et notre formule s’avère être
une expression polynomiale dans un certain petit ensemble de fonctions formelles définies sur
la courbe spectrale.
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1122 B. Bychkov, P. Dunin-Barkowski, M. Kazarian & S. Shadrin

1. Introduction

1.1. Hurwitz numbers and KP tau functions of hypergeometric type. — Hurwitz
numbers enumerate topologically distinct ramified coverings of the sphere S2 by
Riemann surfaces with prescribed ramification data. Different types of Hurwitz num-
bers are distinguished by the way the ramification data is specified. These data can
be encoded by the values of parameters ck, sk, k = 1, 2, . . . , collected into two formal
power series

(1) ψ(y) :=

∞∑
k=1

cky
k, y(z) :=

∞∑
k=1

skz
k.

We do not reproduce here the precise combinatorial definition of the Hurwitz num-
bers we are interested in, instead, we identify them as the Taylor coefficients of the
corresponding generating function F (p1, p2, . . . ) introduced below. Namely, its expo-
nential Z = expF is a Kadomtsev–Petviashvili tau function of hypergeometric type
(also known as an Orlov–Scherbin partition function) [KMMM95, OS01a, OS01b]
given explicitly by its expansion in the basis of Schur functions

(2) Z = eF =
∑
λ

e
∑

(i,j)∈λ ψ(~(j−i))sλ(p)sλ(s/~).

We regard Z and F as formal power series in the variables p1, p2, . . . depending on
additional parameters ck, sk, and ~. The summation runs over the set of all partitions
(Young diagrams) λ including the empty one, sλ denotes the corresponding Schur
symmetric function represented as a polynomial in the power sums pk. The parame-
ters ck are involved as the coefficients of the series ψ while sk are substituted as the
arguments of sλ via s/~ = (s1/~, s2/~, . . . ). We regard a Young diagram λ as a table
of rows of lengths λ1 > λ2 > · · · > 0, and for a cell of this table with coordinates
(i, j) its content is defined as the difference j − i of coordinates. For that reason, the
exponent e

∑
(i,j)∈λ ψ(~(j−i)) is sometimes referred to as the content product.

The (formal) Hurwitz numbers hg,(m1,...,mn) associated with the series F are defined
by the expansion

∂nF

∂pm1
. . . ∂pmn

∣∣∣
p=0

=

∞∑
g=0

~2g−2+nhg,(m1,...,mn).

The generating functions for many particular families of Hurwitz numbers
(e.g. simple, monotone, Bousquet-Mélou–Schaeffer numbers, Grothendieck’s dessins
d’enfants, and many others numbers of similar nature both of single, orbifold or
double types) are included in F for particular values of the parameters, see Table 1
(cf. [ACEH18b, ALS16, Har16, KL15]).

In the most general case, when ψ and y are arbitrary power series, the Taylor
coefficients hg,(m1,...,mn) have the combinatorial meaning of weighted double Hurwitz
numbers (see e.g. [Har16]). Roughly speaking, when regarding F as a generating se-
ries for Hurwitz numbers, these Hurwitz numbers correspond to a weighted count of
coverings with the ramification over the point ∞ ∈ S2 = CP 1 being encoded by a
monomial in the p-variables, the ramification over 0 corresponding to a monomial in
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Explicit closed algebraic formulas for Orlov–Scherbin n-point functions 1123

Table 1. Types of Hurwitz numbers

Hurwitz numbers eψ(y)

usual ey

atlantes ey
r

monotone 1/(1− y)

strictly monotone 1 + y

hypermaps (1 + uy)(1 + vy)

BMS numbers (1 + y)m

polynomial weighted 1 +
∑d
k=1 cky

k

general weighted exp
(∑∞

k=1 cky
k
)

Variations y(z)

simple z

orbifold zq

double
∑∞
k=1 skz

k

the s-variables, and the ramification of various types over the points different from 0

and∞ giving contribution to the weight according to the explicit form of the series ψ.
The exponent of the variable ~ is the negative Euler characteristic 2g − 2 + n of the
covering surface punctured at the preimages of∞, where g is the genus of the covering
surface and n is the number of preimages of ∞.

1.2. n-point functions. — Formula (2) is quite explicit and efficient for the numeri-
cal computation of particular Hurwitz numbers. Therefore, the main interest is related
not to the computation of a single Hurwitz number but to the study of analytical and
integrable properties of their generating functions. These properties are often for-
mulated in terms of the connected and disconnected, respectively, n-point correlation
functions defined by

Hn =

∞∑
k1,...,kn=1

∂nF

∂pk1 . . . ∂pkn

∣∣∣
p=0

Xk1
1 · · ·Xkn

n ,(3)

H
•
n =

∞∑
k1,...,kn=1

∂nZ

∂pk1 . . . ∂pkn

∣∣∣
p=0

Xk1
1 · · ·Xkn

n .(4)

These are infinite power series inX1, . . . , Xn serving as an alternative way of collecting
Hurwitz numbers enumerating connected and disconnected, respectively, coverings of
the sphere. Connected and disconnected n-point functions are related to one another
by the inclusion-exclusion relations

(5)

H
•
n(X{1,...,n}) =

∑
I`{1,...,n}

|I|∏
i=1

H|Ii|(XIi),

Hn(X{1,...,n}) =
∑

I`{1,...,n}

(−1)|I|−1(|I| − 1)!

|I|∏
i=1

H
•
|Ii|(XIi),

J.É.P. — M., 2022, tome 9



1124 B. Bychkov, P. Dunin-Barkowski, M. Kazarian & S. Shadrin

where the sums run over all unordered partitions of the set {1, . . . , n}, and for I =

{i1, i2, . . .} we denote XI := (Xi1 , Xi2 , . . . ). The connected n-point function admits a
genus decomposition

Hn =

∞∑
g=0

~2g−2+nHg,n,

where Hg,n is independent of ~:

Hg,n =

∞∑
m1,...,mn=1

hg,(m1,...,mn)X
m1
1 · · ·Xmn

n .

This follows from the combinatorial interpretation of Hurwitz numbers, but it is also
a formal corollary of the computation of Hn of the present paper.

One of the main discoveries of last years in the theory of Hurwitz numbers is the
fact that in many cases the n-point functions Hg,n are governed by the topological
recursion, a formalism allowing to compute Hg,n inductively in g and n. One of the
most general cases for which the topological recursion relations had been proved by
the time we wrote the first version of the present paper is the one when both eψ(y)

and y(z) are polynomials [ACEH18b, ACEH20]. Consider the following power series

(6) X(z) = z e−ψ(y(z)),

where ψ and y are given by (1), and apply the local change of coordinates Xi = X(zi)

to each of the arguments of Hg,n. One of the corollaries of the topological recursion
is that the function Hg,n written in z-coordinates is rational. Do note, however, that
for the approach of [ACEH18b, ACEH20] the polynomiality of eψ(y) and y(z) was
crucial. See also Remark 1.7 below.

In this paper we show that the function Hg,n simplifies considerably after the
change (6) even without any assumption of polynomiality or rationality (or even
convergence) for the series ψ(y) and y(z). The main result of the paper is an explicit
closed formula for Hg,n for each pair (g, n). Through the change (6) we have

(7) D := X
∂

∂X
=

1

Q
z
∂

∂z
,

where

(8) Q =
z

X

dX

dz
= 1−Dψ(y(z)) = 1− z y′(z)ψ′(y(z)).

For brevity, we will often use the notation of the form ∂z := ∂/∂z below.

Theorem 1.1. — In the unstable cases 2g−2+n 6 0 the n-point functions are given by

D1H0,1 = y(z1),

H0,2 = log
( z−1

1 − z−1
2

X−1
1 −X−1

2

)
,(9)

J.É.P. — M., 2022, tome 9



Explicit closed algebraic formulas for Orlov–Scherbin n-point functions 1125

and for all (g, n) with 2g−2+n > 0 the function Hg,n written in z-coordinates admits
a closed expression of the form

(10) Hg,n =

∞∑
j1,...,jn=0

Dj1
1 · · ·Djn

n

Pg;j1,...,jn
Q1 · · ·Qn

+ cg,n

with finitely many nonzero summands, where Qi = Q(zi), Di = D(zi) = (1/Qi)zi∂zi ,
and Pg;j1,...,jn is a polynomial combination of functions zj/(zi − zj) and derivatives
ψ(k)(y(zi)) and (zi∂zi)

k
y(zi), k > 1, i = 1, . . . , n. Finally, cg,n is a constant explicitly

given by

cg,n = (−1)n ψ(2g−2+n)(0) [u2g]
( u

eu/2 − e−u/2
)2

,

where [u2g] denotes the coefficient in front of u2g in the series expansion.

In particular, an immediate corollary of this theorem is the following statement:

Corollary 1.2. —If both y′(z) and ψ′(y) are rational functions then, for 2g−2+n>0,
Hg,n is a rational function in z1, . . . , zn.

An explicit description of the terms entering the formula for Hg,n (i.e., a formula
where all polynomials Pg;j1,...,jn are given explicitly) is presented in Theorem 5.3
in the case n > 2 and in Section 6 in the exceptional cases n = 1 and n = 2.
It might look somewhat complicated but it is actually quite explicit and can be used
for practical computations. The formula holds true even in those cases when ψ(y)

and y(z) are just formal series with no assumption of rationality or convergence and
the topological recursion is not applicable in principle. Moreover, even in those cases
when eψ(y) and y(z) are such that the topological recursion can be applied (e.g. when
they are polynomial, as in [ACEH18b, ACEH20], or in a more general case as referred
to in Remark 1.7) our formula is more efficient (as a way to compute the n-point
functions) since the number of its terms does not depend on the degrees of those
polynomials and it does not require finding roots of algebraic equations determining
critical points of the function X(z).

Remark 1.3. — The left-hand side of (10) is a formal power series in z1, . . . , zn while
the individual summands of the right-hand side have poles on the diagonals zi = zj
and their interpretation requires additional comments. First note that if both ψ′(y)

and y′(z) are rational functions then all terms of (10) are also rational, and the
equality implies, in particular, that all poles on the diagonals on the right-hand side
cancel out (see Corollary 5.7).

In the general case, one of the possibilities to interpret Equation (10) is to consider
the asymptotic Laurent expansion of all of its terms in the sector |z1| � |z2| � · · · �
|zn| � 1. This power expansion involves monomials in z1, . . . , zn containing both
positive and negative powers of the variables zi.

J.É.P. — M., 2022, tome 9



1126 B. Bychkov, P. Dunin-Barkowski, M. Kazarian & S. Shadrin

It is much more advisable, however, to treat the terms of (10) in a different way.
Namely we consider them as elements of the ring

R = C[[z1, . . . , zn]][{(zi − zj)−1; i, j ∈ {1, . . . , n}, i < j}]

of ‘formal power series with finite order poles on the diagonals’. It follows that for
each d > 0 the term of homogeneous degree d of each summand in (10) is expressed
as a degree d homogeneous rational function in z1, . . . , zn with possible poles on the
diagonals. After summation, all these poles cancel out and the result is a homogeneous
polynomial representing degree d homogeneous term of the Taylor expansion of Hg,n.

In this paper, we first deal with formal series in z1, . . . , zn (from definitions (3)–(4),
where we substitute Xi with X(zi) from (6), itself understood as a formal series
in zi). Then, starting with Proposition 3.4, we introduce the functions zizj/(zi− zj)2

understood as their Laurent expansions in the sector |z1| � |z2| � · · · � |zn| � 1.
Finally, in Proposition 4.8 and in what follows after it, we understand all terms as
elements of the ring R (which does not make sense prior to that proposition).

1.3. Further remarks

Remark 1.4. — Our results can be naturally extended to the case where ψ(y) and y(z)

depend on ~2, i.e., where ck and sk are formal series in ~2 rather than just constants.
This is done in [BDBKS20]. See also Remarks 4.9 and 5.6. This means that our
statement, in addition to the cases listed in Table 1, also covers e.g. the cases of r-spin
Hurwitz numbers [KLPS19] and the coefficients of the extended Ooguri–Vafa partition
functions of colored HOMFLY polynomials of torus knots [DBPSS19, DBKP+20]; see
Table 2, which is an extension of Table 1 to these cases.

Table 2. Types of Hurwitz-like numbers requiring ~-extension

Hurwitz numbers eψ(y) y(z)

r-spin q-orbifold exp
( (y + ~/2)r+1 − (y − ~/2)r+1

(r + 1) ~

)
zq

ext. Ooguri-Vafa e(P/Q)y
∑∞
k=1

~ (Ak −A−k) zk

ek~/2 − e−k~/2

Remark 1.5. — Note that for usual simple Hurwitz numbers [DBKO+15, KLS19],
for orbifold Hurwitz numbers [DBLPS15, KLS19], for monotone and strictly mono-
tone orbifold Hurwitz numbers [KLS19], for r-spin (and r-spin orbifold) Hurwitz
numbers [KLPS19], for the numbers of maps and hypermaps (dessins d’enfants)
[KZ15], for the Bousquet-Mélou–Schaeffer numbers [BDBS20], for the coefficients of
the extended Ooguri-Vafa partition function of the colored HOMFLY polynomials
of torus knots [DBPSS19], and for double Hurwitz numbers [BDK+20], there exist

J.É.P. — M., 2022, tome 9
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combinatorial-algebraic proofs of the so-called quasi-polynomiality property. This
property, in particular, implies the linear loop equation and the projection prop-
erty of [BS17] for the respective n-point functions. We remark that the results of
the present paper, in particular, serve as an independent proof of linear loop equa-
tions for all these cases (and, indeed, in the whole generality of the formal weighted
double Hurwitz numbers context). We discuss this in more detail in our subsequent
publication [BDBKS20].

Remark 1.6. — One way to interpret the statements of Theorem 1.1 and Theorem 5.3
is to say that they give a conceptual explanation why the change of variables (6) is
so ubiquitous in the weighted Hurwitz theory. This change of variables was suggested
by Alexandrov–Chapuy–Eynard–Harnad in [ACEH18b] based on the explicit com-
putation of H0,1 and the idea that the (0, 1)-function should determine the spectral
curve for the topological recursion, in the cases when the spectral curve topological
recursion is applicable. Specific cases of this sort of change of variables were also used
in [ACEH18a], in the combinatorial-algebraic papers mentioned in Remark 1.5 and
in other combinatorial papers, see e.g. [Cha09].

Our present paper clarifies the general and unconditional meaning of this change
of variables for the n-point functions in the ~-expansion in the semi-infinite wedge
formalism.

Remark 1.7. — The results of the present paper have very strong corollaries for the
theory of topological recursion for various types of Hurwitz numbers, including all
the ones mentioned in Remark 1.5. Specifically, in our subsequent paper [BDBKS20],
based on the results of the present paper, we prove the blobbed topological recursion
(defined in [BS17]) for generalized weighted double Hurwitz numbers basically in
full generality, and we prove the regular topological recursion for two very general
families of generalized weighted double Hurwitz numbers. These families include as
special cases all the cases of Hurwitz-type numbers for which topological recursion
was known from the literature (in particular, all the ones mentioned in Remark 1.5),
and are actually quite a bit more general than that. Importantly, while previously
in the literature the topological recursion for various types of Hurwitz-like numbers
has been proved on a case-by-case basis with complicated techniques which differed
between the cases, our technique of [BDBKS20] (based on the results of the present
paper) gives a clear and uniform way to do this and highlights the underlying common
structure.

Moreover, the results of the present paper are also applicable beyond Hurwitz
numbers. In particular, we applied them for maps and stuffed maps and their gener-
alizations: in our another subsequent paper [BDBKS21], based on the results of the
present paper, we prove a general duality for the generalized stuffed maps which we
call the ordinary vs fully simple duality, which also allowed us in that same paper to
prove the Borot–Garcia-Failde conjecture on the topological recursion for fully simple
maps ([BGF20, Conj. 5.3]).

J.É.P. — M., 2022, tome 9
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1.4. Prior work of the third named author. — The main result of this paper re-
solves a slightly weaker conjecture of the third named author that he posed in various
talks in 2019, see e.g. [Kaz19]. Namely, he conjectured the existence of universal for-
mulas for the Orlov–Scherbin n-point functions Hg,n which should represent them as
expressions polynomial in

ψ(j)(y(zk)), j > 1, k = 1, . . . , n,

(zk∂zk)jy(zk), j > 1, k = 1, . . . , n,

z`/(zk − z`), 1 6 k < ` 6 n,

Q(zk)−1, k = 1, . . . , n

(cf. the statement of Theorem 1.1). Moreover, using a variety of deformation tech-
niques he later proved his conjecture in [Kaz21], and his proof gave an algorithm to
produce the universal formulas inductively (see also [Kaz20]).

It is important to stress that although this paper resolves the conjecture of the
third named author in a different way than in [Kaz21], and the formulas for Hg,n

given in Theorem 5.3 have closed form (as opposed to their inductive algorithmic
derivation in [Kaz21]), the present paper is both ideologically and technically very
much dependent on [Kaz21]. In particular, many lemmas and computational ideas
that we use below are shared directly from [Kaz21].

1.5. Organization of the paper. — In Section 2 we recall the basic formalism of the
operators on the bosonic Fock space that we use throughout the paper. In Section 3 we
compute Hg,n as a series in X1, . . . , Xn, which, in particular, leads to formula giving
each particular formal weighted double Hurwitz number hg,(m1,...,mn) in a closed form.
Strictly speaking, this section is not necessary for the rest of the paper, but it sets up
the notation and illuminates the logic of computations in the subsequent parts of the
paper.

In Section 4 we derive an explicit closed formula for D1 · · ·DnHg,n. In Section 5
we prove the main theorem of the present paper, which explicitly represents Hg,n for
given g and n in a closed form. Section 6 deals with the slightly exceptional cases
of n = 1 for any g and (g, n) = (0, 2). Finally, in Section 7 we give examples of the
application of our main general formula, deriving explicit closed formulas for Hg,n for
particular small g and n.

Acknowledgments. — This project has started when S. S. was visiting the Faculty of
Mathematics at the National Research University Higher School of Economics, and
S. S. would like to thank the Faculty for warm hospitality and stimulating research
atmosphere.

We would like to thank A. Alexandrov, J. van de Leur, and the anonymous referees
for helpful remarks.
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2. Operators on the Fock space

By the (bosonic) Fock space we mean the space of infinite power series F =

C[[p1, p2, . . . ]]. It has a distinguished element 1 called vacuum vector and denoted
sometimes by

∣∣0〉, and a distinguished linear function F → C called covacuum vector
that takes a series to its free term (the value at p = 0) and is denoted by

〈
0
∣∣.

We will consider some operators acting on the Fock space. In particular, we set
Jm = m∂pm if m > 0, J0 = 0, and Jm = p−m (the operator of multiplication by
p−m), if m < 0. Note that

(11) [Jk, J`] = kδk+`,0.

Introduce also the operator D(~) acting diagonally in the basis of Schur functions by

D(~) sλ = e

∑
(i,j)∈λ

ψ(~(j−i))
sλ.

With these notations, and using the Cauchy identity
∑
λ sλ(p)sλ(s) = e

∑∞
i=1 sipi/i

for Schur polynomials (see, e.g., [Sta99, p. 386]), the definitions of the Orlov-Scherbin
partition function and the disconnected n-point functions can be rewritten as follows

Z = D(~)e
∑∞
i=1 siJ−i/i ~

∣∣0〉,
H
•
n =

∞∑
m1,...,mn=1

Xm1
1 · · ·Xmn

n

m1 · · ·mn

〈
0
∣∣Jm1 · · · JmnD(~)e

∑∞
i=1 siJ−i/i ~

∣∣0〉.(12)

The introduced standard terminology and notations come from physics. It might
look as an unnecessary complication at first glance; its benefit will be seen later.

A bigger set of operators of our interest is constructed as follows.

Definition 2.1. — The Lie algebra A∞ is the C-vector space of infinite matrices
(Ai,j)i,j∈Z+1/2 with only finitely many non-zero diagonals (that is, Ai,j is not equal
to zero only for finitely many possible values of i− j), together with the commutator
bracket. The standard basis is formed by the matrix units {Ei,j | i, j ∈ Z + 1/2} such
that (Ei,j)k,` = δi,kδj,`.

There is a remarkable projective representation of this algebra in the Fock space
by means of differential operators. It is denoted by the hat symbol and defined by
the following generating function for the action of the matrix units (see e.g. [MJD00,
§6.2]):

(13)
∑

k,`∈Z+1/2

x`y−kÊk,` = x1/2y1/2 e
∑∞
i=1(y−i−x−i)pi/ie

∑∞
i=1(xi−yi)∂pi − 1

x− y
.

The expansion of the exponents on the right-hand side enlists all possible monomial
differential operators in p-variables. The coefficient of any such monomial differential
operator, after cancellation, is a polynomial in the half-integer powers of x and y.
The contribution of this operator to Êk,` is equal to the coefficient of x`y−k in that
polynomial.

J.É.P. — M., 2022, tome 9
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The term ‘projective representation’ means that the commutator of matrices
from A∞ corresponds to the commutator of their action on the Fock space up to a
scalar operator. More explicitly, we have:

(14) [Êa,b, Êc,d] = δb,cÊa,d − δa,dÊc,b + δb,cδa,d(δb>0 − δd>0)Id.

Equivalently, we have actually a representation of the central extension A∞ + CId.
The actual definition of the action of A∞ in the Fock space goes through fermionic

realization of the Fock space and the boson-fermion correspondence, see [MJD00, §§5
& 6] for the details. But as long as the formula (13) is established it can be taken as
a definition and most parts of the underlying formalism can be omitted. The profit of
using this representation is that while manipulating with operators it is much easier
to make computations directly in the algebra A∞ rather than in its more complicated
representation in the Fock space.

However, we will need one more relation that does not follow immediately from (13).
Namely, any diagonal matrix

∑
k∈Z+1/2 wkEk,k ∈ A∞ acts diagonally in the Schur

basis and the corresponding eigenvalue is determined by

∑
k∈Z+1/2

wkÊk,k sλ =

`(λ)∑
i=1

(wλi−i+1/2 − w−i+1/2) sλ =
∑

(i,j)∈λ

vj−i sλ,(15)

where
vk = wk+1/2 − wk−1/2,

see [KL15] for details. In particular, for the operator D(~) introduced above we have

D(~) = exp

( ∑
k∈Z+1/2

wkÊk,k

)
,

where wk is determined from relations wk+1/2 − wk−1/2 = ψ(~ k), k ∈ Z (this deter-
mines the factors wk up to a common additive constant, but this constant is unim-
portant, as (14) implies that

∑
k∈Z+1/2 Êk,k vanishes on any vector of our Fock space;

this follows from taking the limit y → x in the RHS of (14) and then taking the free
term in the resulting x-series).

Define

(16) E (u, z) :=
∑
m∈Z

zm
∑

k∈Z+1/2

eu(k−m/2)Êk−m,k.

Set

(17) S (z) :=
ez/2 − e−z/2

z
.

Then, setting x = z eu/2, y = z e−u/2 in (13), we obtain:

Proposition 2.2. — We have

E (u, z) =
e
∑∞
i=1 uS (u i)J−iz

−i
e
∑∞
i=1 uS (u i)Jiz

i − 1

uS (u)
.(18)
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An independent proof of the equality of the coefficients of z0 of both sides can
be found in [SSZ12]. For example, comparing the coefficients of zmu0 on both sides
we find

Jm =
∑

k∈Z+1/2

Êk−m,k.

The commutation relation (11) for these operators also implies the following formula:

Proposition 2.3

(19) e
∑∞
i=1 aiJie

∑∞
i=1 biJ−i = e

∑∞
i=1 i aibie

∑∞
i=1 biJ−ie

∑∞
i=1 aiJi

for any collection of constants ai, bi such that the corresponding infinite sums make
sense.

Proof. — This is just a very well-known common special case of the Baker–Campbell–
Hausdorff formula, but it is illuminating to see how in this particular case it is just
a manifestation of the Taylor formula. Namely, by the Taylor formula, the action of
the operator e

∑∞
i=1 aiJi = e

∑∞
i=1 i ai∂pi on a series f(p1, p2, . . . ) results in a shift of the

arguments,
e
∑∞
i=1 aiJif(p1, p2, . . . ) = f(p1 + 1 a1, p2 + 2 a2, . . . ).

Therefore, we have

e
∑∞
i=1 aiJie

∑∞
i=1 biJ−if(p1, p2, . . . ) = e

∑∞
i=1 bi(pi+i ai)f(p1 + 1 a1, p2 + 2 a2, . . . )

= e
∑∞
i=1 i aibie

∑∞
i=1 bipie

∑∞
i=1 i ai∂pi f(p1, p2, . . . ),

which proves the commutation relation formulated above. �

3. Preliminary computation of Hg,n

In this section we compute Hg,n as a series in X1, . . . , Xn. In particular, this leads
to a computation of each particular weighted double Hurwitz number hg,(m1,...,mn) in
a closed form.

3.1. Vacuum expectation expression for H•n. — Let us define

Jm := D(~)−1JmD(~).

This allows us to rewrite (12) as

H
•
n =

∞∑
m1,...,mn=1

Xm1
1 · · ·Xmn

n

m1 · · ·mn

〈
0
∣∣Jm1

· · · Jmne
∑∞
i=1 siJ−i/i~

∣∣0〉.(20)

Proposition 3.1. — The operators Jm(~) belong to A∞ for all m ∈ Z, namely,

(21) Jm(~) =
∑

k∈Z+1/2

φm(~ (k −m/2))Êk−m,k,
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where

φm(y) := exp

( m∑
i=1

ψ
(
y +

2i−m− 1

2
~
))

, m > 0,(22)

φ0(y) := 1,(23)
φm(y) := (φ−m(y))−1, m < 0.

More explicitly, we have

(24) Jm =

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[urzm]
e
∑∞
i=1 u ~S (u ~ i)J−iz−ie

∑∞
i=1 u ~S (u ~ i)Jizi

u ~S (u ~)
.

Note that φm(y) also depends on ~ but here and below we omit this argument for
brevity.

Notation 3.2. — Here and below [xk]f(x) stands for the coefficient in front of xk in
the series expansion of f(x).

Proof of Proposition 3.1. — For m = 0 the statement is evident: from (15), the op-
erator

∑
k∈Z+1/2 Êk,k annihilates the whole Fock space. Let m 6= 0. Recall that

Jm =
∑
k∈Z+1/2 Êk−m,k and D(~) = exp(W ), where W =

∑
k∈Z+1/2 wkÊk,k is rep-

resented by a diagonal matrix whose diagonal entries wk are determined from the
relations wk − wk−1 = ψ (~ (k − 1/2)), k ∈ Z. Therefore using (14) and Hadamard’s
formula eXY e−X = eadX (Y ), where adX(·) = [X; ·], we get

Jm = e−W
( ∑
k∈Z+1/2

Êk−m,k

)
eW =

∑
k∈Z+1/2

ewk−wk−mÊk−m,k

=
∑

k∈Z+1/2

φm(~ (k −m/2))Êk−m,k.

For the proof of (24) we compute:

Jm
(21)
=

∑
k∈Z+1/2

φm(~ (k −m/2))Êk−m,k

=
∑

k∈Z+1/2

∞∑
r=0

∂ryφm(y)
∣∣
y=0

(~ (k −m/2))r

r!
Êk−m,k

(16)
=

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[urzm] E (u ~, z)

(18)
=

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[urzm]
e
∑∞
i=1 u ~S (u ~ i)J−iz−ie

∑∞
i=1 u ~S (u ~ i)Jizi

u ~S (u ~)
.

In the second line we have simply expanded φm(~ (k −m/2)) in its Taylor series at
zero; and in the last line we omit the −1 summand in the numerator coming from (18)
since we have set m 6= 0 and it vanishes upon applying [zm]. �
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3.2. Computation of H•n. — Now we can obtain the following expression for the
disconnected n-point functions. Let

S (u) =
eu/2 − e−u/2

u
=

∞∑
k=0

u2k

22k(2k + 1)!
.

Definition 3.3. — Denote by U+ the transformation that takes a Laurent series
f(u, z) in u and z to the series in X given by

(25) (U+f)(X) =

∞∑
m=1

Xm

m

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
euS (u~ z∂z)y(z)

u~S (u~)
f(u, z).

This formula describes explicitly the coefficients of U+f as a power series in X.
It makes sense if f is polynomial in u or if f is a series in ~ whose coefficients are
polynomial in u. Remark that U+f is a regular series in X (i.e., containing only
positive powers of X) even though the series f might have a pole in z at the origin:
the non-positive powers of z in the expansion of f are just ignored.

Denote also by U+
k a similar transformation applied to uk and zk instead of u and z

(the output of U+
k is a power series in Xk).

In all relations of this section the functions on the right-hand sides are understood
as power asymptotic expansion in the sector |z1| � · · · � |zn| � 1.

Proposition 3.4. — We have

(26) H
•
n = U+

n · · ·U+
1

∏
16k<`6n

e~
2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)

2

,

where the expression in the product on the right-hand side is understood as its power
asymptotic expansion in the sector |z1| � · · · � |zn| � 1.

Proof. — Let us substitute expressions (24) for J-operators into (20). We get

H
•
n =

∞∑
m1,...,mn=1

∞∑
r1,...,rn=0

( n∏
k=1

∂rky φmk(y)
∣∣
y=0

Xmk
k

mk

)

×
[ n∏
i=1

zmii urii

]〈
0
∣∣∣ n∏
k=1

e
∑∞
i=1 uk ~S (uk ~ i)J−iz−ik e

∑∞
i=1 uk ~S (uk ~ i)Jizik

uk ~S (uk ~)
e
∑∞
i=1 siJ−i/i~

∣∣∣0〉.
Then we apply commutation relations (19) for the exponentials of J-operators moving
the J>0-factors to the right and the J<0-factors to the left. Since J>0 is killed by the
vacuum vector and J<0 is killed by the covacuum, we get〈

0
∣∣∣ n∏
k=1

e
∑∞
i=1 uk ~S (uk ~ i)J−iz−ik e

∑∞
i=1 uk ~S (uk ~ i)Jizik

uk ~S (uk ~)
e
∑∞
i=1 siJ−i/i~

∣∣∣0〉
=

n∏
k=1

exp
(∑∞

i=1 ukS (uk~ i)sizik
)

uk~S (uk~)

∏
16k<`6n

exp

( ∞∑
i=1

uk~S (uk~ i)u`~S (u`~ i) i
(zk
z`

)i)
.
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Recall that
∞∑
i=1

siz
i
k = y(zk) =: yk.

Also note that
∞∑
i=1

i

(
zk
z`

)i
= zk∂zk

z`
zk − z`

=
zkz`

(zk − z`)2
,

if we assume that |zk| � |z`|. Noting all that we finally obtain

H
•
n =

∞∑
m1,...,mn=1

∞∑
r1,...,rn=0

( n∏
k=1

∂rky φmk(y)
∣∣
y=0

Xmk
k

mk

)

× [zm1
1 · · · zmnn ur11 · · ·urnn ]

n∏
k=1

eukS (uk~ zk∂zk )yk

uk~S (uk~)∏
16k<`6n

e~
2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)

2

,

where the expression in the second line is understood as its power asymptotic expan-
sion in the sector |z1| � · · · � |zn| � 1. This formula is equivalent to that of the
proposition. �

Remark 3.5. — Note that the argument of the U+-operators in (26) involves both
positive and negative powers of the variables zk but the left-hand side is determined
by those monomials of the right-hand side that contain positive powers of all variables
only.

3.3. From disconnected to connected n-point functions. — With notations of the
previous section, we have:

Proposition 3.6

(27) Hn = U+
n · · ·U+

1

∑
γ∈Γn

∏
{vk,v`}∈Eγ

(
e~

2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)
2

− 1
)
,

where Γn is the set of all connected simple (i.e., without multiple edges and loops)
graphs over n vertices v1, . . . , vn, and Eγ is the set of edges of γ ∈ Γn.

Proof. — Let us denote

wk,` = e~
2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)

2

− 1

and consider the product∏
16k<`6n

e~
2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)

2

=
∏

16k<`6n

(1 + wk,`).

Expanding the brackets we obtain 2(n2) summands. These summands are labeled by
simple graphs on n numbered vertices: the vertices k and ` are connected or not
connected by an edge if the factor corresponding to the pair of indices k and ` is
equal to wk,` or 1, respectively.
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Then, Equation (26) for the disconnected n-point functions attains the following
form

H
•
n = U+

n · · ·U+
1

∑
γ

∏
{vk,v`}∈Eγ

wk,`,

where the summation carries over the set of all simple graphs γ on n labeled vertices.
The inclusion-exclusion procedure applied to this sum over all simple graphs singles
out exactly the terms corresponding to the connected ones. �

It is sometimes convenient to rearrange the insertion of ~ in Equation (27) in the
following way:

~2−nHn = (~U+
n ) · · · (~U+

1 )
∑
γ∈Γn

~2(|Eγ |−n+1)
∏

{vk,v`}∈Eγ

wk,`
~2

.

Since any connected graph on n vertices has at least n − 1 edges, the right-hand
side involves only non-negative even powers of the variable ~. Indeed, it is easy to
see from definition that the series wk,`/~2 and the coefficients of the transformation
~U+ involve nonnegative even powers of ~ only. This justifies in a formal way the
mentioned genus decomposition

~2−nHn =

∞∑
g=0

~2gHg,n or Hn =

∞∑
g=0

~2g−2+nHg,n,

where Hg,n is independent of ~.
Finally, note that the operators U+

i describe explicitly the Taylor coefficients of
the resulting series. Therefore, we can regard (27) as an explicit expression for the
corresponding Hurwitz numbers:

(28) m1 · · ·mn hg,(m1,...,mn) = [~2g−2+n]
∞∑

r1,...,rn=0

( n∏
k=1

∂rky φmk(y)
∣∣
y=0

)
[zm1

1 · · · zmnn ur11 · · ·urnn ]

n∏
k=1

eukS (uk~ zk∂zk )yk

uk~S (uk~)∑
γ∈Γn

∏
{vk,v`}∈Eγ

(
e~

2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)
2

− 1
)
.

Remark 3.7. — Formulas (27) and (28) provide closed expressions for the connected
n-point functions and connected formal weighted double Hurwitz numbers as sums
over graphs, respectively. However, note that our main aim, as explained in the intro-
duction, is to express the connected n-point functions as finite polynomials in certain
formal functions on the spectral curve, and formula (27) does not achieve that. Indeed,
note that in the definition (25) of the operator U+ we have an infinite sum over m.
It turns out that, roughly speaking, it is possible to take these m-sums to arrive at
finite expressions, and this is what is done in the two following sections. However,
the precise path to arriving at these finite expressions, while being inspired by the
contents of the present section, does not explicitly rely on Proposition 3.6 and is,
strictly speaking, independent of this section. We do use the notation introduced in
the present section in what follows; notably, the φm’s will play an important role.
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4. Computation of D1 · · ·DnHn

Set
Di = Xi∂Xi .

Denote, for shortness,

DH
•
n =

( n∏
i=1

Di

)
H
•
n and DHn =

( n∏
i=1

Di

)
Hn =

∞∑
g=0

~2g−2+nDHg,n.

In this section we compute these functions in a closed form. Remark that the operator
D1 · · ·Dn multiplies a monomial Xm1

1 · · ·Xmn
n by the factor m1 · · ·mn. Since both Hn

and H•n only involve monomials with mi > 0, the series DHn and DH•n determine
uniquely the original series Hn and H•n, respectively.

4.1. Completed n-point function. — We have from (12)

(29) DH
•
n =

∞∑
m1,...,mn=1

Xm1
1 · · ·Xmn

n

〈
0
∣∣Jm1

· · · JmnD(~)e
∑∞
i=1 siJ−i/i ~

∣∣0〉.
Define the completed version of this function by

(30) D̂H
•

n =

∞∑
m1,...,mn=−∞

Xm1
1 · · ·Xmn

n

〈
0
∣∣Jm1

· · · JmnD(~)e
∑∞
i=1 siJ−i/i ~

∣∣0〉
and the corresponding completed connected functions D̂Hn =

∑∞
g=0 ~2g−2+nD̂Hg,n

through exactly the same inclusion-exclusion relations as the ones in (5).
These are infinite power series that involve both positive and negative powers of

the variables Xi. The advantage of using completed versions of n-point functions is
that they are better adapted to convolving in a closed form, as we shall see below.

Proposition 4.1. — We have

(31) D̂Hn = DHn + δ2,n
X1X2

(X1 −X2)2
,

where the last summand is considered as its power expansion over X1/X2:

X1X2

(X1 −X2)2
=

∞∑
m=1

m (X1/X2)
m
.

In other words, for (g, n) 6= (0, 2) we have

D̂Hg,n = DHg,n

and

(32) D̂H0,2 = DH0,2 +
X1X2

(X1 −X2)2
.

As a corollary, for (g, n) 6= (0, 2) the series D̂Hg,n only involves positive powers of
the variables Xi.
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Proof. — Denote

∇+
i =

∞∑
m=1

Xm
i Jm =

∞∑
m=1

mXm
i ∂pm , ∇−i =

∞∑
m=1

X−mi J−m =

∞∑
m=1

X−mi pm.

Using these operators, we can rewrite (29) and (30) as

DH
•
n = ∇+

1 · · · ∇+
nZ
∣∣∣
p=0

,

D̂H
•

n = (∇+
1 +∇−1 ) · · · (∇+

n +∇−n )Z
∣∣∣
p=0

.

Let us expand brackets in the last equation. By the Leibniz rule, the partial derivatives
entering ∇+

i are applied to either the linear functions entering ∇−j for some j > i or
to Z. Therefore, we obtain

(33) D̂H
•

n =
∑

{1,...,n}=
⊔
k{ik,jk}tK

(∏
k

XikXjk

(Xik −Xjk)2

)
DH

•
|K|(XK),

where the factor XiXj/(Xi −Xj)
2 for i < j is considered as a power expansion

∇+
i

∞∑
m=1

X−mj pm =

∞∑
m=1

m (Xi/Xj)
m

=
XiXj

(Xi −Xj)2
.

By the inclusion-exclusion relations, Equation (33) is equivalent to the relations of the
proposition. In order to see this, we observe that if we define the connected functions
D̂Hn by (31) then the corresponding disconnected functions are given exactly by (33).

�

4.2. Computation of completed n-point functions. — The computation of H•n
and Hn of the previous section can be extended to the computation of the completed
n-point functions D̂H

•

n and D̂Hn. The proofs of the corresponding statements for
D̂H

•

n and D̂Hn are similar to the ones from the previous section, one just needs to
extend all summations over mi > 1 to summations over mi ∈ Z.

Define the transformation U taking a Laurent series f(u, z) in u and z to the
Laurent series

(Uf)(X) =

∞∑
m=−∞

Xm
∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
euS (u~ z∂z)y(z)

u~S (u~)
f(u, z).

It differs from the transformation U+ of Definition 3.3 by an extra factor m of the
summands and by the summation range of the integer index m. Thus Uf is a Lau-
rent series and might involve negative powers of X. We denote also by Uk a similar
transformation applied to uk and zk instead of u and z (the output of Uk is a Laurent
series in Xk).
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Then, similarly to the computation of H•n we obtain

D̂H
•

n =

∞∑
m1,...,mn=−∞

Xm1
1 · · ·Xmn

n

〈
0
∣∣Jm1

· · · JmnD(~)e
∑∞
i=1 siJ−i/i~

∣∣0〉
=

∞∑
m1,...,mn=−∞

Xm1
1 · · ·Xmn

n

〈
0
∣∣Jm1 · · · Jmne

∑∞
i=1 siJ−i/i~

∣∣0〉
= Un · · ·U1

∏
16k<`6n

e~
2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)

2

,

where the expression in the product on the right-hand side is understood as its power
asymptotic expansion in the sector |z1| � · · · � |zn| � 1.

Next, the analogue of the computation of Hn of the previous section is the following
equation:

(34) D̂Hn = Un · · ·U1

∑
γ∈Γn

∏
{vk,v`}∈Eγ

(
e~

2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)
2

−1
)
,

where Γn is the set of all connected simple graphs over n vertices v1, . . . , vn, and Eγ
is the set of edges of γ ∈ Γn.

Since, by Proposition 4.1, D̂Hn differs from DHn by a small correction for n = 2,
we conclude:

Corollary 4.2. — For (g, n) 6= (0, 2) we have

(35) DHg,n = [~2g−2+n](
Un · · ·U1

∑
γ∈Γn

∏
{vk,v`}∈Eγ

(
e~

2uku`S (uk~ zk∂zk )S (u`~ z`∂z` )zkz`/(zk−z`)
2

− 1
))

.

In particular, all the terms on the right-hand side containing non-positive powers of
the variables Xi cancel out.

4.3. Principal identity. — Recall that the transformation U entering the formulas
of the previous section acts on a Laurent series f(u, z) in z and u by

(Uf)(X) =

∞∑
m=−∞

Xm
∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
euS (u~ z∂z)y(z)

u~S (u~)
f(u, z).

The result of this transformation is a function in X. Up to this point we regarded X
and z as independent variables. From now on we assume that they are related by the
change X = X(z), where

(36) X(z) = z e−ψ(y(z)).

Through this change we have

D := X
∂

∂X
=

1

Q
z
∂

∂z
,

where
Q :=

z

Xdz/dX
=

z

X

dX

dz
= 1−Dψ(y) = 1− zψ′(y)y′(z).
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Thus we have
z
∂

∂z
= QD.

Having this change in mind we treat the result of the transformation U as a function
(a Laurent series) in z. We claim that U acts on the coefficients of positive powers
of u as a differential operator. More explicitly, define

L0(v, y, ~) := e
v
(

S (v~∂y)

S (~∂y)
−1
)
ψ(y)

,

Lr(v, y, ~) := e−vψ(y)∂rye
vψ(y)L0(v, y, ~) = (∂y + vψ′(y))

r
L0(v, y, ~).(37)

The function Lr(v, y, ~) is a series in ~2 whose coefficients are polynomials in v and
the higher order derivatives of ψ(y).

The following principal identity plays a central role in the proof of the main theo-
rems 4.8 and 5.3 below.

Proposition 4.3. — Let H(u, z) be arbitrary Laurent series in z whose coefficients are
either polynomials in u or infinite series in ~ such that the coefficient of any power
of ~ is a polynomial in u. Then the following identity holds true:

(38)
∞∑

m=−∞

∞∑
r=0

∂ryφm(y)
∣∣
y=0

Xm[zmur]eu y(z)H(u, z)

=

∞∑
j,r=0

Dj
( [vj ]Lr(v, y(z), ~)

Q
[ur]H(u, z)

)
,

where X = X(z) on the left-hand side is given by (36).

Applying this identity to a function of the form

H(u, z) =
eu(S (u ~QD)−1)y(z)

u~S (u ~)
f(u, z),

we conclude:

Corollary 4.4. — Assume that f(u, z) is a Laurent series in z whose coefficients are
polynomials in u of bounded degree and with zero free term. Then the action of the
transformation U on f is given by

(39) (Uf)(z) =

∞∑
j,r=0

Dj
( [vj ]Lr(v, y(z), ~)

Q
[ur]

eu(S (u ~QD)−1)y(z)

u~S (u ~)
f(u, z)

)
.

4.4. Proof of the principal identity. — The proof of the principal identity is split
into several lemmas.

Lemma 4.5. — Let Φ(y) and H(u) be two arbitrary regular series. Then

(40)
∞∑
r=0

∂ryΦ(y)
∣∣
y=0

[ur] euyH(u) =

∞∑
r=0

∂ryΦ(y) [ur]H(u).

J.É.P. — M., 2022, tome 9



1140 B. Bychkov, P. Dunin-Barkowski, M. Kazarian & S. Shadrin

Proof. — We have:
∞∑
r=0

∂ryΦ(y)
∣∣
y=0

[ur] euyH(u) =

∞∑
r,k=0

∂r+ky Φ(y)
∣∣
y=0

(
[uk]euy

)(
[ur]H(u)

)
=

∞∑
r,k=0

∂r+ky Φ(y)
∣∣
y=0

yk

k!
[ur]H(u)

=

∞∑
r=0

∂ryΦ(y) [ur]H(u). �

Lemma 4.6 ([Kaz21]). — We have:

φm(y) = emψ(y)L0(m, y, ~),(41)

∂ryφm(y) = emψ(y)Lr(m, y, ~).(42)

Proof. — Note that ea∂yf(y) = f(y + a). We have (for m ∈ Z>0):

emψ(y)L0(m, y, ~)
(37)
= emψ(y)e

m
(

S (m~∂y)

S (~∂y)
−1
)
ψ(y)

= exp
(e(m/2)~∂y − e−(m/2)~∂y

e(1/2)~∂y − e−(1/2)~∂y
ψ(y)

)
= exp

(
e−((m−1)/2)~∂y e

m~∂y − 1

e~∂y − 1
ψ(y)

)
= exp

(
e−((m−1)/2)~∂y

( m∑
i=1

e(i−1)~∂y
)
ψ(y)

)

= exp

( m∑
i=1

ψ
(
y +

(
i− 1− ((m− 1)/2)

)
~
)) (22)

= φm(y).

The m = 0 case is trivial and the m < 0 case is analogous. Thus we have proved (41),
and (42) is evident from the definition (37) of Lr. �

We also need a certain form of what is known as the Lagrange-Bürmann formula:

Lemma 4.7. — For any Laurent series H in z and for any m ∈ Z we have

[zm]emψ(y)H = [Xm]
1

Q
H,

and, therefore,

(43)
∞∑

m=−∞
Xm[zm]emψ(y)H =

1

Q
H,

where y = y(z) and the function on the right-hand side is regarded as a Laurent series
in X through the change inverse to (36).

Proof. — We have:

[zm]emψ(y)H = res
z=0

emψ(y)H

zm+1
dz = res

z=0

H

zXm
dz = res

z=0

H

QXm+1
dX = [Xm]

1

Q
H. �

Now we are ready to prove the principal identity.
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Proof of Proposition 4.3. — We have:
∞∑

m=−∞
Xm

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur] eu y(z)H(u, z)

(40)
=

∞∑
m=−∞

Xm[zm]

∞∑
r=0

[ur] ∂ryφm(y)
∣∣
y=y(z)

H(u, z)

(42)
=

∞∑
m=−∞

Xm[zm]

∞∑
r=0

[ur] emψ(y(z))Lr(m, y(z), ~)H(u, z)

=

∞∑
j=0

Dj
∞∑

m=−∞
Xm[zm]

∞∑
r=0

[ur] emψ(y(z))[vj ]Lr(v, y(z), ~)H(u, z)

(43)
=

∞∑
j=0

Dj
∞∑
r=0

[vj ]Lr(v, y(z), ~)

Q
[ur]H(u, z)

(here we consider X and z as independent variables). �

4.5. A closed formula for D1 · · ·DnHn. — The principal identity together with
Corollary 4.2 lead to our first theorem, which is just one step away from the main
result formulated in the next section:

Theorem 4.8. — For n > 2, (g, n) 6= (0, 2) we have

(44) D1 · · ·DnHg,n = [~2g−2+n]Un · · ·U1

∑
γ∈Γn

∏
{vk,v`}∈Eγ

wk,`,

where

(45) wk,` = e~
2uku`S (uk~QkDk)S (u`~Q`D`)zkz`/(zk−z`)2 − 1

and Ui is the operator of Proposition 4.3 acting on a function f in ui and zi by

Uif =

∞∑
j,r=0

Dj
i

( [vj ]Lr(v, y(zi), ~)

Qi
[uri ]

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)
f(ui, zi)

)
.

As before, the sum is over all connected simple graphs on n labeled vertices.
For fixed g and n, after taking the coefficient [~2g−2+n], all sums in this formula

for (
∏n
i=1Di)Hg,n become finite, and it becomes a rational expression in z1, . . . , zn

and the derivatives of the functions yi = y(zi) and ψ(yi).

The coefficient of any power of ~ in wi,j is a polynomial in ui and uj vanishing
at ui = 0 and at uj = 0 so that Corollary 4.4 can be applied. The restriction n > 1

is imposed because in the case n = 1 the operator U1 is applied to the constant
function 1, which is not divisible by u1, so the conclusion of Corollary 4.4 does not
hold. The requirement (g, n) 6= (0, 2) is a consequence of Corollary 4.1. The cases
n = 1 and (g, n) = (0, 2) are treated in Section 6 separately.

The (very important) finiteness statement is evident from the way ~ and ui enter
the expression.
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A nice property of the equality of Theorem 4.8 (that does not hold for earlier
equalities of Proposition 3.6 and Corollary 4.2) is that it can be applied without
expanding the involved functions in Laurent series and is valid in the ring

R := C[[z1, . . . , zn]][{(zi − zj)−1; i, j ∈ {1, . . . , n}, i < j}]

of functions with finite order poles on the diagonals zi = zj . Note that C[[z1, . . . , zn]]

can be considered as a subring of this ring, corresponding to the expressions where
all factors (zi − zj)−1 have degree zero.

Remark 4.9. — Note that the statement of Theorem 4.8 still holds if one allows ψ(z)

and y(z) to also be formal series in ~2. More precisely, an analogous statement can
be proved in a very similar way if one puts

ψ(~2, y) :=

∞∑
k=1

∞∑
m=0

ck,my
k~2m, y(~2, z) :=

∞∑
k=1

∞∑
m=0

sk,mz
k~2m,

while still keeping the formula for X(z) free of ~, i.e., using

X(z) = z e−ψ(y(z))
∣∣∣
~=0

in place of (6), see [BDBKS20, §2].

Theorem 4.8 has an important corollary:

Corollary 4.10. — All diagonal poles (i.e., poles at zi = zj for i 6= j) on the right-
hand side of (44) cancel out; in other words, the expression in the right-hand side
of (44) actually belongs to the subring C[[z1, . . . , zn]] of the ring R.

Proof. — Indeed, the left-hand side of (44), by definition, is a formal series in
X1, . . . , Xn (containing only positive powers of Xi), into which we plug Xi = X(zi),
where X(z) is a formal series in z (again, containing only positive powers of z).
Thus, the expression in the left-hand side of (44) manifestly belongs to the subring
C[[z1, . . . , zn]] of the ring R, and thus, by Theorem 4.8, so does the right-hand side. �

At the end of this section we state several reformulations of Theorem 4.8. First,
substituting the definitions of wk,` and Uk to (44), we get, explicitly,

(46) D1 · · ·DnHg,n = [~2g−2+n]

∞∑
j1,...,jn,r1,...,rn=0

(∏n
i=1D

ji
i

)
×
( n∏
i=1

[vji ]Lri (v,y(zi),~)

Qi
[
∏n
i=1 u

ri
i ]

n∏
i=1

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)∑
γ∈Γn

∏
{vk,v`}∈Eγ

(
e~

2uku`S (uk~QkDk)S (u`~Q`D`)zkz`/(zk−z`)2 − 1
))

.
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Next, expanding the exponential in a series we can represent the last formula in the
following even more explicit form:

(47) D1 · · ·DnHg,n = [~2g−2+n]

∞∑
j1,...,jn,r1,...,rn=0

(∏n
i=1D

ji
i

)
×
( n∏
i=1

[vji ]Lri(v, y(zi), ~)

Qi
[
∏n
i=1 u

ri
i ]

n∏
i=1

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)∑
γ∈Γ̃n

~2|Eγ |

|Autγ |
∏

{vk,v`}∈Eγ

uku`S (uk~ zk∂zk)S (u`~ z`∂z`)
zkz`

(zk − z`)2

)
.

Here Γ̃n is the set of all connected graphs on n labeled vertices v1, . . . , vn, with
multiple edges allowed but no loops (i.e., no edges connecting a vertex to itself). Both
Equations (46) and (47) hold for n > 1 and (g, n) 6= (0, 2).

5. General formula

In this section we prove the main theorem of the present paper, which explicitly
represents Hg,n for given g and n in a closed form. What remains is to get rid of
D1 · · ·Dn which are applied in the LHS in Theorem 4.8. Let us introduce in a formal
way the operator D−1

i Ui acting on a function f(ui, zi) by

(48) D−1
i Uif =

∞∑
j,r=0

Dj−1
i

( [vj ]Lr(v, y(zi), ~)

Qi
[uri ]

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)
f(ui, zi)

)
,

where we define the action of D−1
i on a function w(zi) by

(49) (D−1
i w)(zi) =

∫ zi

0

Q(z)

z
w(z) dz.

Note that this formal definition of the operator D−1
i Ui implies that

(50) Di

(
D−1
i Uif

)
= Uif.

Then we set
(51) H̃g,n = [~2g−2+n]

(∏n
i=1D

−1
i Ui

) ∑
γ∈Γn

∏
{vi,vj}∈Eγ

wi,j ,

where wi,j is given by (45).
Now we formulate the propositions needed to prove the theorem; their proofs are

given below at the end of this section.

Proposition 5.1. — Assume that n > 2 and (g, n) 6= (0, 2). Then each time when
the operator D−1

i defined by (49) is applied in the expression (51) for H̃g,n the cor-
responding integrated differential form (Q(z)/z)w(z) dz is rational in z with possible
poles at z = zj for j 6= i with zero residues. It follows that its primitive is well-defined
as a rational function in zi and the whole function H̃g,n is well-defined and has the
form as in Theorem 1.1 up to an additive constant.

By construction, we have D1 · · ·DnHg,n = D1 · · ·DnH̃g,n. This does not imply
that the functions Hg,n and H̃g,n are equal.
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Proposition 5.2. — For n > 2 and (g, n) 6= (0, 2), the difference between Hg,n and
H̃g,n is the following constant:

(52) Hg,n = H̃g,n − (−1)n−1ψ(2g+n−2)(0) [u2g]
1

S 2(u)
.

Proposition 5.2 directly implies the main theorem:

Theorem 5.3. — For n > 2 and (g, n) 6= (0, 2) we have:

(53) Hg,n = [~2g−2+n]
(∏n

i=1D
−1
i Ui

) ∑
γ∈Γn

∏
{vi,vj}∈Eγ

wi,j

+ (−1)n ψ(2g+n−2)(0) [u2g]
1

S 2(u)
,

where Γn is the set of simple graphs on n vertices v1, . . . , vn with edges Eγ , wi,j is
given by (45), and D−1

i Ui is given by (48)–(49).
For fixed g and n, after taking the coefficient [~2g−2+n], this formula turns into a

rational expression in z1, . . . , zn and the derivatives of the functions yi = y(zi) and
ψ(yi).

Remark 5.4. — Note that the structure of the obtained answer agrees with that
suggested by Theorem 1.1. Thus, we have proved Theorem 1.1 in the case n > 2,
(g, n) 6= (0, 2). The special cases n = 1 and (g, n) = (0, 2) are treated in the next
section.

Remark 5.5. — Let us also provide another form of the statement of the main theorem
(narrowing it slightly to n > 3), where all integrals (49) are taken explicitly. Namely,
for n > 3 we have:

(54) Hg,n = [~2g−2+n]
∑
γ∈Γn

∏
vi∈Iγ

U i
∏

{vi,vk}∈EγrKγ

wi,k

×
∏

{vi,vk}∈Kγ

(
U iwi,k + ~ukS (uk~QkDk)

zi
zk − zi

)
+ (−1)n ψ(2g+n−2)(0) [u2g]

1

S 2(u)
,

where Γn is the set of simple graphs on n vertices v1, . . . , vn, Eγ is the set of edges of
a graph γ, Iγ is the subset of vertices which are not leaves and Kγ is the subset of
edges with one end vi of valency 1 and another end vk, and where

U i f =

∞∑
r=0

∞∑
j=1

Dj−1
i

( [vj ]Lr(v, y(zi), ~)

Qi
[uri ]

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)
f
)
,

wk,`
(45)
= e~

2uku`S (uk~QkDk)S (u`~Q`D`)zkz`/(zk−z`)2 − 1,

Di
(7)
=

1

Qi
z
∂

∂z
, Lr

(37)
= (∂y + vψ′(y))

r
e
v
(

S (v~∂y)

S (~∂y)
−1
)
ψ(y)

,

Qi
(8)
= 1− z y′(z)ψ′(y(z)), S (u)

(17)
=

eu/2 − e−u/2

u
.
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(to help the reader, we included in this list the notation and definitions of some
functions introduced earlier in the paper). For n = 2, g > 0, the form of statement (53)
analogous to (54) is obtained in Section 6.4. For brevity we do not provide the proof
of the general case (54) in this text, but it is rather similar to the (g, 2) case of
Section 6.4.

Remark 5.6. — Note that a statement similar to the statement of Theorem 5.3, as
in the case of Theorem 4.8, still holds if one allows ψ(z) and y(z) to also be formal
series in ~2. More precisely, it still holds in a very similar form, if one puts

ψ(~2, y) :=

∞∑
k=1

∞∑
m=0

ck,my
k~2m, y(~2, z) :=

∞∑
k=1

∞∑
m=0

sk,mz
k~2m,

while still keeping the formula for X(z) free of ~, i.e., using

X(z) = z e−ψ(y(z))
∣∣∣
~=0

in place of (6), see [BDBKS20, §3].

Analogously to the case of Theorem 4.8 and Corollary 4.10, Theorem 5.3 has a
similar corollary (which is proved via exactly the same reasoning):

Corollary 5.7. — All diagonal poles (i.e., poles at zi = zj for i 6= j) on the right-
hand side of (53) (and of (54)) cancel out; in other words, the respective expressions
actually belong to the subring C[[z1, . . . , zn]] of the ring R.

Now we provide the proofs of the propositions of the present section.

Proof of Proposition 5.1. — The operator D−1
i appears in the summand with j = 0 in

the definition of D−1
i Ui. In the case j = 0 we have [v0]L0(v, y, ~) = 1 and, for r > 0,

[v0]Lr(v, y, ~) = 0. Therefore, the summand with j = 0 in (48) can be written as

(55) D−1
i

1

Qi
[u0
i ]
eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)
f = D−1

i

1

~Qi
[u1
i ] f.

Recall that we are interested in (51). Let us check for which graphs γ the product∏
{vi,vj}∈Eγ wi,j has a non-vanishing linear term in ui. By definition, wi,j is divisible

by uiuj . It follows that if the vertex vi has valency greater that 1 then the contribution
of such graph to the sum has a vanishing linear term in ui.

If the vertex i has valency 1 and is connected to the vertex k then up to a factor
that does not depend on zi the linear term in ui is the following:

(56) [u1
i ]wi,k = ~2ukS (uk~QkDk)

zizk
(zi − zk)2

.

The contribution of this term to the j = 0 part in the expression one obtains af-
ter substituting (48) in (51) is given (again, up to a factor not dependent on zi)
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by applying (55) to (56):

(57)

D−1
i

1

~Qi
[u1
i ]wi,k = D−1

i

1

Qi
~ukS (uk~QkDk)

zizk
(zi − zk)2

= ~ukS (uk~QkDk)zk

∫ zi

0

dz

(z − zk)2

= ~ukS (uk~QkDk)
zi

zk − zi
.

This function is rational in zi, as required.
This proves the main part of the statement of Proposition 5.1 in the case n > 2.

Indeed, we assumed implicitly in the above arguments that the leaf vi is connected to
a vertex vk which is not a leaf so that D−1

i and D−1
k are not applied simultaneously.

This is always the case for a connected graph with the number of vertices n > 2.
If n = 2 then there could be summands linear both in u1 and u2 but these summands
contribute to the case g = 0 only. Therefore, the conclusion of the proposition holds
in the case n = 2 as well if g > 0.

The fact that H̃g,n has the form as in Theorem 1.1 then follows from the way ~
and ui enter the expression (51) (similarly to what happened in Theorem 4.8). The
coefficient [~2g−2+n] becomes a finite rational expression of the form described in
Theorem 1.1, up to an additive constant. �

Proof of Proposition 5.2. — We regard all considered functions as elements of the
ring R. Let us denote by I the ideal (z1 ·· · ··zn) generated by the product of coordinate
functions. Hg,n itself lies in I, and we have, by construction (from Equations (44),
(51), and (50)),

D1 · · ·DnHg,n = D1 · · ·DnH̃g,n.

Therefore, it suffices to show that the right-hand side of (52) belongs to I. Let us
compute H̃g,n modulo I.

Let n > 3. From the proof of Proposition 5.1 it follows that each internal edge
{vi, vk} of a graph γ in the sum (51) brings a factor of zizk. Indeed, wi,k itself belongs
to the ideal (zizk), and the j = 0 terms in the sums (48) for D−1Ui and D−1Uk
vanish, while the j > 0 terms cannot affect the property of divisibility by zizk.

On the other hand, if vi is a leaf (connected to some vk of valence greater than 1),
then {vi, vk} ∈ Eγ brings a factor of zi, since, as above, wi,k is divisible by zizk and
the j > 0 terms of (48) cannot affect this property, while the j = 0 term takes the
form ~ukS (uk~QkDk)zi/(zk − zi) (from Equation (57)), which is divisible by zi.

Note that since n > 3 and the graphs are connected all edges belong to one of the
above two cases.

Thus the contribution of the whole graph γ is not divisible by zk for some k only
if the vertex k is internal and all adjacent vertices are leaves. In this case the graph
is the star with one vertex (labeled by k) of valency n − 1 > 2 and n − 1 vertices of
valency 1. We conclude that the contribution of all but the star graphs belong to I.
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The star graphs produce the following contributions:

H̃g,n + I = [~2g−2+n]

n∑
k=1

D−1
k Uk

∏
i 6=k

D−1
i Ui

∏
i 6=k

wi,k + I

= [~2g−2+n]

n∑
k=1

∞∑
j,r=0

Dj−1
k

[vj ]Lr(v, y(zk), ~)

Qk

× [urk]
euk(S (uk ~QkDk)−1)y(zk)

uk~S (uk ~)

∏
i6=k

D−1
i Ui wi,k + I.

Note that all j = 0 terms vanish since vk is an internal vertex (with valence > 2),
as discussed in the proof of Proposition 5.1. Thus we have

H̃g,n + I = [~2g−2+n]

n∑
k=1

∑
j>1
r>0

Dj−1
k

[vj ]Lr(v, y(zk), ~)

Qk
[urk]

euk(S (uk ~QkDk)−1)y(zk)

uk~S (uk ~)

∏
i 6=k

∞∑
ji,ri=0

Dji−1
i

( [vji ]Lri(v, y(zi), ~)

Qi
[urii ]

eui(S (ui ~QiDi)−1)y(zi)

ui~S (ui ~)
wi,k

)
+ I.

Now note that if any of ji > 0 then the corresponding term is divisible by zk since
wi,k is divisible by zk and it gets acted upon only by operators of the sort Dm

k and Dm
i

for m > 0 which do not spoil this property. Thus, we can factor out all these terms
and we get, applying also formula (57),

(58) H̃g,n + I = [~2g−2+n]

n∑
k=1

∑
j>1
r>0

Dj−1
k

[vj ]Lr(v, y(zk), ~)

Qk

× [urk]
euk(S (uk ~QkDk)−1)y(zk)

uk~S (uk ~)

∏
i 6=k

~ukS (uk~QkDk)
zi

zk − zi
+ I.

Now we note that all summands with j > 2 are also divisible by zk since
Dk = (1/Qk) zk ∂/∂zk and thus only the j = 1 term remains. Also note that
Qk ≡ S (uk~QkDk) ≡ 1 mod (zk). Taking this into account, we obtain

H̃g,n + I = [~2g+n−2]

n∑
k=1

∞∑
r=0

[v1]Lr(v, yk, ~) [urk]
1

uk~S (uk~)

∏
i 6=k

uk~
zi

zk − zi
+ I.

We have

(59)
[v1]Lr(v, yk, ~) ≡ [v1](∂yk + vψ′(yk))r

(
1 + v

( 1

S (~∂yk)
− 1
)
ψ(yk)

)∣∣∣
yk=0

≡
∂ryk

S (~∂yk)
ψ(yk)

∣∣
yk=0

mod (zk).

Using the fact
n∑
k=1

∏
i 6=k

zi
zk − zi

= (−1)n−1
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we finally obtain:

H̃g,n + I = (−1)n−1[~2g+n−2]

∞∑
r=0

∂ry
S (~∂y)

ψ(y)
∣∣
y=0

[ur]
(u~)n−2

S (u~)
+ I.

Note that we can reexpand the last sum in ~:

(−1)n−1
∞∑
r=0

∂ry
S (~∂y)

ψ(y)
∣∣
y=0

[ur]
(u~)n−2

S (u~)
= (−1)n−1 1

S (~∂y)

(~∂y)n−2

S (~∂y)
ψ(y)

∣∣∣
y=0

= (−1)n−1~n−2 1

S 2(~∂y)
ψ(n−2)(y)

∣∣∣
y=0

= (−1)n−1
∞∑
g=0

~2g+n−2ψ(2g+n−2)(0) [u2g]
1

S 2(u)
,

thus
(60) H̃g,n + I = (−1)n−1ψ(2g+n−2)(0) [u2g]

1

S 2(u)
+ I.

This concludes the proof for the n > 3 case.
For n = 2, g > 0, we have only one graph:

(61)

H̃g,2 + I = [~2g]D−1
1 U1D

−1
2 U2 w1,2 + I

= [~2g]

∞∑
j1,r1=0

Dj1−1
1

[vj1 ]Lr1(v, y(z1), ~)

Q1

× [ur11 ]
eu1(S (u1 ~Q1D1)−1)y(z1)

u1~S (u1 ~)

∞∑
j2,r2=0

Dj2−1
2

[vj2 ]Lr2(v, y(z2), ~)

Q2

× [ur22 ]
eu2(S (u2 ~Q2D2)−1)y(z2)

u2~S (u2 ~)
w1,2 + I.

Note that if both j1 and j2 are positive, then the corresponding terms are divisible
by z1z2, analogously to what happened above. For j1 = j2 = 0 we apply (55) and get

[~2g]D−1
1

1

~Q1
[u1

1]D−1
2

1

~Q2
[u1

2]w1,2

= [~2g]D−1
1

1

~Q1
[u1

1]D−1
2

1

~Q2
[u1

2]
(
e~

2u1u2S (u1~Q1D1)S (u2~Q2D2)z1z2/(z1−z2)2 − 1
)

= [~2g]D−1
1

1

~Q1
D−1

2

1

~Q2
~2 z1z2

(z1 − z2)2
,

which clearly vanishes for g > 0.
Thus the sum in (61) can be represented as combination of two sums, one for

j1 = 0, j2 > 0, and the other for j1 > 0, j2 = 0. This is actually precisely formula (58)
where one substitutes n = 2. Thus we have reduced this case to the case of arbitrary
n > 2, so formula (60) holds here as well.

This completes the proof of Proposition 5.2. �

Proof of Theorem 5.3. — The proof of the main statement immediately follows from
Proposition 5.2, while the rationality statement is implied by the respective rationality
statement of Theorem 4.8. �
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6. Exceptional cases

Let us remind the definition of the functions Lr:

L0(v, y, ~) := e
v
(

S (v~∂y)

S (~∂y)
−1
)
ψ(y)

,

Lr(v, y, ~) := e−vψ(y)∂rye
vψ(y)L0(v, y, ~) = (∂y + vψ′(y))

r
L0(v, y, ~).

In order to simplify the notation, we denote in Addedthe computations of this section

Ljr,i = [vj ]Lr(v, y(zi), ~).

Note that in the case j = 0 we have

L0
0,i = 1, L0

r,i = 0 (r > 0).

6.1. Computation of the (0, 1)-term. — Extracting the terms with g = 0 in (27) for
n = 1 and noting φm(y)

∣∣
~=0

= emψ(y) and S (~u)
∣∣
~=0

= 1 we get

D1H0,1 = [~−1]D1U
+
1 1 =

∞∑
m=1

Xm
1

∞∑
r=0

∂rye
mψ(y)

∣∣
y=0

[zmur]
eu y(z)

u
.

In order to apply Lemma 4.5 to the right-hand side one needs to get rid of a pole in u
at the origin. One of the possibilities to do that is to differentiate this expression:

D2
1H0,1 =

∞∑
m=1

mXm
1

∞∑
r=0

∂rye
mψ(y)

∣∣
y=0

[zmur]
eu y(z)

u

=

∞∑
m=1

Xm
1

∞∑
r=0

∂rye
mψ(y)

∣∣
y=0

[zmur] z∂z
eu y(z)

u

=

∞∑
m=1

Xm
1

∞∑
r=0

∂rye
mψ(y)

∣∣
y=0

[zmur] eu y(z)QDy(z)

=

∞∑
m=1

Xm
1 [zm]

∞∑
r=0

∂rye
mψ(y)

∣∣
y=0

y(z)r

r!
QDy(z)

′

==

∞∑
m=1

Xm
1 [zm]emψ(y(z))QDy(z)

′′

==
∞∑

m=−∞
Xm

1 [zm]emψ(y(z))QDy(z)

(43)
= D1y(z1).

The equality
′

== is the Taylor series expansion, and the equality
′′

== we obtain from the
fact that for all m ∈ Z60 holds [zm]emψ(y(z))QDy(z) = 0. The constant term equals
zero (after one performs integration of the equality D1D1H0,1 = D1y(z1)) since both
D1H0,1 and y(z1) are divisible by z1. This proves the equality

D1H0,1 = y(z1)

of Theorem 1.1.
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6.2. Computation of the (g, 1)-term, g > 0. — By (27), we have

(62)

~D1H1 =

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
euS (u ~QD)y(z)

uS (u ~)

=

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
(euS (u ~QD)y(z)

uS (u ~)
− eu y(z)

u

)
+

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
eu y(z)

u
.

The expression of the first summand is regular in u and we can apply the principal
identity (38) to get

(63)

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
(euS (u ~QD)y(z)

uS (u ~)
− eu y(z)

u

)
=

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur] euy(z)
(eu (S (u ~QD)−1)y(z)

uS (u ~)
− 1

u

)
=

∞∑
m=−∞

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur] euy(z)
(eu (S (u ~QD)−1)y(z)

uS (u ~)
− 1

u

)
(38)
=

∞∑
j,r=0

Dj
1

(Ljr,1
Q1

[ur]
(eu (S (u ~QD)−1)y(z1)

uS (u ~)
− 1

u

))
=

∞∑
j,r=0

Dj
1

(Ljr,1
Q1

[ur]
eu (S (u ~QD)−1)y(z1)

uS (u ~)

)
.

In the second equality we used that φ0 = 1 from the definition (23) and the fact
that the expression after [zmur] does not contain negative powers of z (we will use
this switch from summation over m starting from 0 to summation over m starting
at −∞ again in what follows, where it is applicable, without further commenting
on it). In the last equality the term 1/u disappears since the sum goes only over
nonnegative r. Note that (63) can be obtained if we take formally the right-hand side
of (46) for the case n = 1.

The second summand in the right-hand side of (62) can be computed by the dif-
ferentiation trick similar to the case g = 0 above. We have:

D1

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur]
eu y(z)

u

=

∞∑
m=1

Xm
1

∞∑
r=0

∂ryφm(y)
∣∣
y=0

[zmur] eu y(z)QDy(z)

(38)
=

∞∑
j,r=0

Dj
1

( [vj ]Lr(v, y(z), ~)

Q
[ur]QDy(z)

)
=

∞∑
j=0

Dj
1

(
Lj0,1D1y(z1)

)
= D1y(z1) +D1

∞∑
j=1

Dj−1
1

(
Lj0,1D1y(z1)

)
.
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Putting together and using again that the constant of integration equals zero we
conclude

D1(~H1 −H0,1) =

∞∑
j=0

Dj
1

( ∞∑
r=0

Ljr,1
Q1

[ur]
eu (S (u ~QD)−1)y(z1)

uS (u ~)
+ Lj+1

0,1 D1y(z1)

)
,

i.e., for g > 0 we have

D1Hg,1 = [~2g]

∞∑
j=0

Dj
1

( ∞∑
r=0

Ljr,1
Q1

[ur]
eu (S (u ~QD)−1)y(z1)

uS (u ~)
+ Lj+1

0,1 D1y(z1)

)
.

Our next step is to invert the operator D1 on the right-hand side of Equation 6.2.
Possible problems can only appear in the case j = 0. Observe that the summand with
r = 0 vanishes, which implies that the first summand in the term j = 0 also vanishes.
The second summand in the term with j = 0 is equal to

L1
0,1D1y(z1)=

( 1

S (~∂y)
−1
)
ψ(y)

∣∣∣
y=y(z1)

D1y(z1)=D1

∞∑
k=1

[u2k]
1

S (u~)
ψ(2k−1)(y(z1)).

If we define for g > 0

(64) H̃g,1 := [~2g]

∞∑
j=1

Dj−1
1

( ∞∑
r=1

Ljr,1
Q1

[ur]
eu (S (u ~QD)−1)y(z1)

uS (u ~)
+ Lj+1

0,1 D1y(z1)

)
+
(

[u2g]
1

S (u)

)
ψ(2g−1)(y(z1)),

then we have D1Hg,1 −D1H̃g,1 = 0. This means that Hg,1 and H̃g,1 may differ only
by a constant. To determine this constant let us put z1 = 0 in (64). The second term
in the brackets in the first line vanishes, as well as all terms in the j-sum for j > 1,
and the exponential and Q both turn into 1. Let

1

S (x)
= 1 +

∞∑
k=1

σkx
2k.

The first line of (64) for z1 = 0 turns into the following:

[~2g]

∞∑
r=1

L1
r,1

∣∣
y=0

[ur]
1

uS (u ~)

(59)
= [~2g]

∞∑
r=1

∂ry
S (~∂y)

ψ(y)
∣∣
y=0

[ur]
1

uS (u ~)

= [~2g]

∞∑
r=1

∂ry
S (~∂y)

ψ(y)
∣∣
y=0

[ur]
( 1

uS (u ~)
− 1

u

)
= [~2g]

∞∑
r=2

∂r−1
y

S (~∂y)
ψ(y)

∣∣
y=0

[ur]
( 1

S (u ~)
− 1
)

= [~2g]

∞∑
r=2

∂r−1
y

(
1 +

∞∑
k=1

σk~2k∂2k
y

)
ψ(y)

∣∣
y=0

[ur]

( ∞∑
m=1

σm~2mu2m

)

= [~2g]

( ∞∑
m=1

σm~2m∂2m−1
y

)(
1 +

∞∑
k=1

σk~2k∂2k
y

)
ψ(y)

∣∣
y=0

= ψ(2g−1)(y)(0) [u2g]
( 1

S (u)2
− 1

S (u)

)
.

Setting z1 = 0 in the second line of (64) is trivial and we arrive at
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Proposition 6.1. — For n = 1 and g > 0 we have:

(65) Hg,1 = [~2g]

∞∑
j=1

Dj−1
1

( ∞∑
r=1

Ljr,1
Q1

[ur]
eu (S (u ~QD)−1)y(z1)

uS (u ~)
+ Lj+1

0,1 D1y(z1)

)
+
(

[u2g]
1

S (u)

)
ψ(2g−1)(y(z1))−

(
[u2g]

1

S (u)2

)
ψ(2g−1)(0).

Note that the structure of this formula agrees with the statement of Theorem 1.1.

6.3. Computation of the (0, 2)-term. — We have

D1D2H0,2 +
X1X2

(X1 −X2)2

(32)
= D̂H0,2

(34)
= [~0]U2U1w1,2

(39)
= [~0]

∞∑
j1,j2=0

Dj1
1 D

j2
2

∞∑
r1,r2=0

Lj1r1,1L
j2
r2,2

Q1Q2
[ur11 u

r2
2 ]

z1z2

(z1 − z2)2

= [~0]

∞∑
j1,j2=0

Dj1
1 D

j2
2

Lj10,1L
j2
0,2

Q1Q2

z1z2

(z1 − z2)2
=

1

Q1Q2

z1z2

(z1 − z2)2
.

Thus, we get

D1D2H0,2 =
1

Q1Q2

z1z2

(z1 − z2)2
− X1X2

(X1 −X2)2

= D1

( 1

Q2

z1

z2 − z1
− X1

X2 −X1

)
= D1D2 log

( z−1
1 − z−1

2

X−1
1 −X−1

2

)
.

The function H̃0,2 = log
(
z−1
1 −z

−1
2

X−1
1 −X

−1
2

)
represents a regular series vanishing at z1 = 0

and at z2 = 0 and satisfies D1D2H0,2 = D1D2H̃0,2. Therefore, it coincides with H0,2.
This proves (9).

This completes the proof of remaining exceptional cases of Theorem 1.1.

6.4. Computation of the (g, 2)-term, g > 0. — This case is actually already covered
by Theorem 5.3, but we can present a more explicit form of the answer (in line with
Remark 5.5). We have

D1D2Hg,2
(35)
= [~2g]U2U1w1,2

(56)
= [~2g]U2D1

(
U1w1,2 + ~u2S (u2~Q2D2)

z1

z2 − z1

)
= [~2g]D1

(
U1U2w1,2 + U2~u2S (u2~Q2D2)

z1

z2 − z1

)
= D1D2H̃g,2,

where

H̃g,2 = [~2g]

(
U1

(
U2w1,2 + ~u1S (u1~Q1D1)

z2

z1 − z2

)
+ U2

(
~u2S (u2~Q2D2)

z1

z2 − z1

))
.

One extra term that we omitted here contributes only in the case g = 0, which we
considered above.
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Arguing as in the proof of Proposition 5.2, we conclude that Hg,2 and H̃g,2 differ
by a constant that is given by the same formula as in the general case, and we obtain:

Proposition 6.2. — For n = 2 and g > 0 we have:

Hg,2 = [~2g]

(
U1U2w1,2 + U1

(
~u1S (u1~Q1D1)

z2

z1 − z2

)
+ U2

(
~u2S (u2~Q2D2)

z1

z2 − z1

))
+ ψ(2g)(0) [u2g]

1

S 2(u)
.

Remark that the structure of the obtained answer agrees with that suggested by
Theorem 1.1 and correlates with Equation (54).

7. Applying general formula

In this section we derive explicit expressions for Hg,n for small g and n in terms of
small number of basic functions. These functions include:

ψ
(k)
i = ψ(k)(y(zi)), k > 1,

y
[k]
i = (zi∂zi)

k
y(zi), k > 1,

Qi = Q(zi) = 1− ψ′iy
[1]
i .

If n = 1 we set z1 = z and drop the lower index i = 1. In the case n > 2 we will use
also the functions

γi,j = γj,i =
zizj

(zi − zj)2
,

γ
[k]
i,j = (−1)kγ

[k]
j,i = (zi∂zi)

k
γi,j , k > 0.

Then, according to (the proof of) Proposition 5.1, the application of D−1
i is reduced to

D−1
i (Qiγ

[k]
i,j ) = (−1)kD−1

i (Qiγ
[k]
j,i ) = (zi∂zi)

−1
γ

[k]
i,j := γ

[k−1]
i,j .

This formula can be applied also for k = 0 if we set, in addition,

γ
[−1]
i,j = −1− γ[−1]

j,i =
zi

zj − zi
.

7.1. Computations for n = 1. — Substituting the genus expansions

(66) eu(S (u ~ z∂z)−1)y(z)

uS (u~)
=

1

u
+

1

24

(
u2y[2] − u

)
~2 +O(~4)

to Equation (65) in the case n = 1, g > 1, we obtain

Hg,1 = [~2g]

∞∑
j=0

Dj 1

Q
[vj ]

(
1

24

(L2(v, y, ~)

v
y[2]− L1(v, y, ~)

v

)
~2 +

L0(v, y, ~)

v2
+O(~4)

)
+ [u2g]

1

S (u)
ψ(2g−1)(y(z))− [u2g]

1

S (u)2
ψ(2g−1)(0).
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Then, using explicit expressions for the series Lr,

(67)

L0(v, y, ~) = 1 + (v3 − v)
ψ′′(y)

24
~2 +O(~4),

L1(v, y, ~) = v ψ′(y) +O(~2),

L2(v, y, ~) = v ψ′′(y) + v2ψ′(y)2 +O(~2),

L3(v, y, ~) = v3ψ′(y)3 + 3 v2ψ′(y)ψ′′(y) + v ψ(3)(y) +O(~2),

we obtain, in the case g = 1,

H1,1 = D
(ψ′)

2
y[2] + ψ′′y[1]

24Q
+
ψ′′y[2] − ψ′

24Q
− ψ′

24
+
ψ′(0)

12
.

Similar computations in the case (g, n) = (2, 1) give

H2,1(z) = D4 10ψ′′ (ψ′)
2
y[2] + 5 (ψ′′)

2
y[1] + 5 (ψ′)

5 (
y[2]
)2

5760Q
+ · · ·

+
5ψ(5)

(
y[2]
)2 − 20ψ(4)y[2] + 3ψ(4)y[4] + 17ψ(3) + 5 (ψ′′)

2
y[1]

5760Q
+

7ψ(3)

5760
− ψ(3)(0)

240
,

where the dots denote the terms containing Dj with j = 1, 2, 3.

7.2. Computations for n = 2. — If n > 1, then equation of Theorem 5.3 can be
applied. It is convenient to represent the transformation D−1U of Theorem 5.3 acting
on a function f(u, z) in u and z as follows

D−1Uf =
1

~

∞∑
r=0

Mr([u
r]f),

where Mr is the differential operator acting on a function f(z) in z by

Mrf =

∞∑
k,j=0

Dj−1
( [vj ]Lk(v, y(z), ~)

Q
[uk]ur

eu(S (u ~ z∂z)−1)y(z)

uS (u~)
f
)
.

From (66) and (67) we find, explicitly,

M1f = D−1 f

Q
+
((ψ(3)y[2] − 2ψ′′

)
f

24Q
+D

ψ′
(
3ψ′′y[2] − ψ′

)
f

24Q

+D2

(
(ψ′)

3
y[2] + ψ′′

)
f

24Q

)
~2 +O(~4),

M2f =
ψ′f

Q
+O(~2),

M3f =
ψ′′f

Q
+D

(ψ′)
2
f

Q
+O(~2).

We denote by Mk,i the transformation Mk applied to the functions in ui and zi
instead of u and z, respectively. With this notation, the statement of Theorem 5.3
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can be written as follows

Hg,n = [~2g]

∞∑
r1,...,rn=1

Mr1,1 · · ·Mrn,n[ur11 · · ·urnn ]
∑
γ∈Γn

~2(|Eγ |−n+1)
∏

{vi,vj}∈Eγ

wi,j

+ (−1)n [u2g]
1

S 2(u)
ψ(2g+n−2)(0),

where

wi,j =
wi,j
~2

=
e~

2uiujS (ui~zi∂zi )S (uj~zj∂zj )γi,j − 1

~2

= uiujγi,j +
(u3

iuj + uiu
3
j

24
γ

[2]
i,j +

1

2
u2
iu

2
j (γi,j)

2
)
~2 +O(~2).

If n = 2, then the sum over graphs is reduced to just w1,2 and we get

Hg,2 = [~2g]

∞∑
r1,r2=1

Mr1,1Mr2,2[ur11 u
r2
2 ]w1,2 + [u2g]

1

S 2(u)
ψ(2g)(0)

= [~2g]

(
M1,1M1,2γ1,2 +

(
M3,1M1,2

γ
[2]
1,2

24
+M1,1M3,2

γ
[2]
1,2

24
+M2,1M2,2

(γ1,2)2

2

)
~2

+O(~4)

)
+ [u2g]

1

S 2(u)
ψ(2g)(0).

In particular, for (g, n) = (1, 2) we have

H1,2 = D2
1

γ
[−1]
2,1 (ψ′′1 + (ψ′1)3y

[2]
1 )

24Q1
+D1

ψ′1(ψ′1(γ
[1]
2,1 − γ

[−1]
2,1 ) + 3γ

[−1]
2,1 ψ′′1 y

[2]
1 )

24Q1

+
ψ′′1 (γ

[1]
2,1 − 2γ

[−1]
2,1 ) + ψ

(3)
1 γ

[−1]
2,1 y

[2]
1

24Q1
+D2

2

γ
[−1]
1,2 (ψ′′2 + (ψ′2)3y

[2]
2 )

24Q2

+D2

ψ′2(ψ′2(γ
[1]
1,2 − γ

[−1]
1,2 ) + 3γ

[−1]
1,2 ψ′′2 y

[2]
2 )

24Q2
+
ψ′′2 (γ

[1]
1,2 − 2γ

[−1]
1,2 ) + ψ

(3)
2 γ

[−1]
1,2 y

[2]
2

24Q2

+
(γ1,2)2ψ′1ψ

′
2

2Q1Q2
− 1

12
ψ′′(0).

7.3. Computations for n = 3. — There are four possible connected simple graphs on
three labeled vertices, and summing up the contributions of these four graphs we get

Hg,3 = [~2g]

∞∑
r1,r2,r3=1

Mr1,1Mr2,2Mr3,3[ur11 u
r2
2 u

r3
3 ]
(
w1,2w1,3 + w1,2w3,3 + w1,3w2,3

+ ~2w1,2w1,3w2,3

)
− [u2g]

1

S 2(u)
ψ(2g+1)(0).

For instance, for g = 0 using wi,j = uiujγi,j +O(~2) we get
H0,3

=
(
M2,1M1,2M1,3γ1,2γ1,3+M1,1M2,2M1,3γ1,2γ2,3+M1,1M1,2M2,3γ1,3γ2,2

)∣∣
~=0
−ψ′(0).
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This gives the final answer

(68)

H0,3 =
ψ′1
Q1

γ
[−1]
2,1 γ

[−1]
3,1 +

ψ′2
Q2

γ
[−1]
1,2 γ

[−1]
3,2 +

ψ′3
Q3

γ
[−1]
1,3 γ

[−1]
2,3 − ψ′(0)

=

3∑
i=1

ψ′(yi)

Q(zi)

∏
j 6=i

zj
zi − zj

− ψ′(0).

Remark 7.1. — Note that Equation (68) differs from [ACEH20, Prop. 10.2 &
Eq. (10.4)] produced by means of the spectral curve topological recursion. The
formula given in Equation (10.4) in op. cit. does not appear to be vanishing on the
coordinate axes and seems to have an incorrect overall sign, which are typical bugs
that often occur in applications of topological recursion.

7.4. Computation for (g, n) = (0, 4). — In the case g = 0 the graphs that contribute
to H0,n are trees. For n = 4 there are 4 trees on 4 labeled vertices isomorphic toqq q q!a and 12 more trees isomorphic to q q q q . They contribute to the corresponding
summands in H0,4:

H0,4 = [~0]
∑

r1,...,r4>1

(∏4
k=1Mrk,k

)
[∏4

k=1 u
rk
k

]((
u1u2γ1,2u1u3γ1,3u1u4γ1,4 + . . . (4 terms in total)

)
+
(
u1u2γ1,2u2u3γ2,3u3u4γ3,4 + . . . (12 terms in total)

))
+ ψ′′(0)

=
((
M3,1M1,2M1,3M1,4

(
γ1,2γ1,3γ1,4

)
+ . . . (4 terms in total)

)
+
(
M1,1M2,2M2,3M1,4

(
γ1,2γ2,3γ3,4

)
+ . . . (12 terms in total)

))∣∣∣
~=0

+ ψ′′(0),

and we get the final answer

H0,4 =
(
D1

(ψ′1)2γ
[−1]
2,1 γ

[−1]
3,1 γ

[−1]
4,1

Q1
+
ψ′′1γ

[−1]
2,1 γ

[−1]
3,1 γ

[−1]
4,1

Q1
+ . . . (2× 4 terms in total)

)
+
(ψ′2ψ′3γ[−1]

1,2 γ2,3γ
[−1]
4,3

Q2Q3
+ . . . (12 terms in total)

)
+ ψ′′(0).
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