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UNCONDITIONAL CHEBYSHEV BIASES IN

NUMBER FIELDS

by Daniel Fiorilli & Florent Jouve

Abstract. — Chebyshev’s bias is the phenomenon according to which for most x, the interval
[2, x] contains more primes congruent to 3 modulo 4 than primes congruent to 1 modulo 4.
We present new families of examples of analogous phenomena when counting prime ideals in
number fields of higher degree where the bias takes place for all large enough x. Our proofs are
unconditional.
Résumé (Biais de Tchebychev inconditionnels dans les corps de nombres)

On appelle biais de Tchebychev le phénomène de prépondérance du nombre de premiers
congrus à 3modulo 4 par rapport aux premiers congrus à 1modulo 4 dans l’intervalle [2, x], pour
la plupart des valeurs de x. Nous présentons de nouvelles familles d’exemples de phénomènes
analogues où l’on compte des idéaux premiers dans des corps de nombres de degré supérieur et
où l’on observe un biais pour tout x assez grand. Nos preuves sont inconditionnelles.
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1. Introduction and statement of results

In 1853, Chebyshev noticed in a letter to Fuss [Che53] that there seems to exist
a bias in the distribution of primes modulo 4, that is in most intervals of the form
[2, x], there appears to be more primes of the form 4n + 3 than of the form 4n + 1.
It turns out that the specific statements made in Chebyshev’s letter are quite deep:

Mathematical subject classification (2020). — 11R42, 11R44, 11R45.
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672 D. Fiorilli & F. Jouve

the second is equivalent to the Riemann hypothesis for L(s, χ−4), and the first can
be made explicit under an additional linear independence hypothesis on the zeros
of L(s, χ−4). Chebyshev’s observation has been widely generalized over the years;
notably, Rubinstein and Sarnak [RS94] have shown that for two invertible residue
classes a and b modulo q, there exists a bias towards a (that is π(x; q, a) > π(x; q, b)

is true more often than π(x; q, a) < π(x; q, b)) if and only if b is a quadratic residue
and a is a non-quadratic residue. These theoretical results, as well as the numerical
determinations of the bias in the paper, are conditional on the generalized Riemann
hypothesis and a linear independence hypothesis on the non-trivial zeros of Dirichlet
L-functions. In the same paper [RS94, §5], the authors mention several possible gen-
eralizations including biases in the distribution of prime ideals in Galois extensions of
number fields. This context was explored by Ng in his Ph.D. thesis [Ng00]. Consider
a Galois extension L/K of number fields, a conjugacy class C ⊂ G = Gal(L/K), and
define the Frobenius counting function

π(x;L/K,C) :=
∑

p/OK unram.
N p6x

Frobp=C

1,

where Frobp denotes the Frobenius conjugacy class associated to the unramified prime
ideal p, and N p = |OK/p| denotes its norm. The Chebotarev density theorem asserts
that

π(x;L/K,C) ∼ |C|
|G|

∫ x

2

dt

log t
.

More precisely, one is interested in understanding the size of the sets

PL/K;C1,C2
:= {x ∈ R>1 : |C2|π(x;L/K,C1) > |C1|π(x;L/K,C2)}.

Ng [Ng00] has shown under Artin’s holomorphy conjecture, GRH, as well as a lin-
ear independence hypothesis on the set of zeros of Artin L-functions, that the set
PL/K;C1,C2

admits a logarithmic density, that is the limit

δ(PL/K;C1,C2
) := lim

X→∞

1

logX

∫
16x6X

x∈PL/K;C1,C2

dx

x

exists. Moreover, he computed this density in several explicit extensions, under the
same hypotheses.

The goal of this paper is to show unconditionally the existence of the density
δ(PL/K;C1,C2

) in some families of extensions and for specific conjugacy classes. More
precisely, we will exhibit a sufficient group-theoretic criterion on G = Gal(L/K) which
implies in particular that δ(PL/K;C1,C2

) = 1. This will involve the class function
rG : G→ C defined by

rG(g) := #{h ∈ G : h2 = g}.
We will require L/Q to be Galois, and for a conjugacy class C ⊂ G we will denote
by C+ the unique conjugacy class of G+ := Gal(L/Q) which contains C. Explicitly,

(1) C+ :=
⋃

a∈G+

aCa−1.
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Theorem 1.1. — Let L/K be an extension of number fields for which L/Q is Galois.
Assume that the conjugacy classes C1, C2 ⊂ G = Gal(L/K) are such that C+

1 = C+
2 ,

but rG(gC1) < rG(gC2), where gCi is a representative of Ci. Then, for all large
enough x we have the inequality |C2|π(x, L/K,C1) > |C1|π(x, L/K,C2). In partic-
ular, the set PL/K;C1,C2

has natural (and logarithmic) density equal to 1.

Remark. — The fact that the natural density of PL/K;C1,C2
exists in Theorem 1.1

is remarkable since it is widely believed that in the classical case of primes in arith-
metic progressions as well as in the more general case of Galois extensions of number
fields, the logarithmic density is the appropriate notion to work with. In general one
cannot expect natural densities to exist (see [Kac95], as well as [RS94, p. 174] and the
references therein).

Note also that in Theorem 1.1, one can further impose C1 and C2 to have the same
size. Indeed, we will see in the proof of Proposition 1.2 (see Section 2) that there
exists families of examples in which the group G is abelian.

Next we state a group theoretic result showing that the hypotheses of Theorem 1.1
are satisfied by infinitely many couples (G,G+) and associated conjugacy classes
C1, C2 ⊂ G.

Proposition 1.2. — For n > 8 the symmetric group G+ = Sn admits a subgroup G
which contains conjugacy classes C1, C2 satisfying C+

1 = C+
2 , but rG(gC1

) < rG(gC2
),

where gCi ∈ Ci (i = 1, 2).

The combination of Theorem 1.1, Proposition 1.2 and the fact going back to Hilbert
that the inverse Galois problem over Q is solved for the symmetric group Sn imme-
diately yields the following consequence.

Corollary 1.3. — There exists infinitely many Galois extensions L/K and conjugacy
classes C1, C2 ⊂ Gal(L/K) for which δ(PL/K;C1,C2

) = 1.

The paper is organized as follows. Section 2 is devoted to the group theoretic
aspects of our main result. In particular we prove Proposition 1.2 and discuss gener-
alizations and related questions. In Section 3, we prove Theorem 1.1. We conclude the
paper with Section 4 which is devoted to numerical computations and illustrations of
Theorem 1.1.

Acknowledgments. — Experiments presented in this paper were carried out using
the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB),
Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine (see https:
//www.plafrim.fr/). We thank Bill Allombert for his insights and for providing us
with the pari/gp code and the data needed for this project. We also thank Mounir
Hayani for very inspiring remarks. Finally we thank the referee and editors for a
thorough reading and for suggestions which led to significant improvements in the
presentation of the paper.
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2. Group theoretical results

The goal of this section is to construct families of abelian extensions L/K satisfying
the hypotheses of Theorem 1.1.

Proof of Proposition 1.2. — For n > 8, consider the permutations g1 := (12)(34) and
g2 := (57)(68) as elements of Sn. Let G := 〈(12)(34), (5678)〉 < Sn. We claim that
the choices C1 = {g1} and C2 = {g2} satisfy the required properties. Indeed, C+

1 =

C+
2 = C(2,2), where C(2,2) is the set of elements of Sn of cycle type (2, 2). Moreover,

an enumeration of the elements of G shows that rG(g1) = 0 and rG(g2) = 4. �

The next lemma gives a group theoretical criterion which generalizes the construc-
tion in the proof of Proposition 1.2 and which implies the conditions of Theorem 1.1.
(Here and later in the paper we make a slight abuse of notation by denoting rG(C)
the common value rG(g) as g runs over the G-conjugacy class C.)

Lemma 2.1. — Let G+ be a group and let H and K be subgroups having trivial in-
tersection and such that H centralizes K. Let h ∈ H be a non-square (in H), and
let k ∈ K be a square (in K) which is a conjugate of h in G+. Then, the conjugacy
classes C1 = Ch and C2 = Ck in the group G = HK are such that rG(C2) > rG(C1);
in other words, the conditions of Theorem 1.1 hold.

Proof. — The fact that H centralizes K guarantees that G = HK = KH is a sub-
group of G+. Moreover, any x ∈ G such that x2 = k can be written x = st with
s ∈ H and t ∈ K (and in this decomposition there is a unique (s, t) corresponding to
each x since H ∩K = {1}). Thus k = s2t2, which implies that s2 ∈ H ∩K. Therefore
s2 = 1, and as a result

#{x ∈ G : x2 = k} = #{x ∈ K : x2 = k} ·#{x ∈ H : x2 = 1} > 0.

By symmetry, we also have that

#{x ∈ G : x2 = h} = #{x ∈ H : x2 = h} ·#{x ∈ K : x2 = 1} = 0. �

In order to apply Lemma 2.1, take for instance G+ = Sn, and let σ, τ ∈ Sn be
permutations of order divisible by 4 which have the same cycle type, but have disjoint
supports. Consider the subgroups H = 〈σ2〉 and K = 〈τ〉, and the elements h = σ2

and k = τ2. We clearly have that rK(k) > 1 and rH(h) = 0, and Lemma 2.1 applies.

Remark. — From a group theoretical point of view, it would be interesting to classify
the tuples (G,H,C1, C2) such that G is a finite group, H < G and C1, C2 ⊂ H are
conjugacy classes such that rH(C1) 6= rH(C2) and C+

1 = C+
2 (recall (1)). For example,

one notices that no such tuple exists where H is a normal subgroup of G (see [FJ20,
Proof of Lem. 3.13]). Beyond this case, one may ask the following questions: how rare
is the property enjoyed by these tuples? What are the “minimal” examples? Such
questions are the subject of Mounir Hayani’s forthcoming Ph.D. thesis.

J.É.P. — M., 2022, tome 9
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3. Proof of Theorem 1.1

To introduce the natural framework of Theorem 1.1, we will work in the setting
of [Bel16], that is we will consider general class functions t : Gal(L/K) → C, and
define(1)

ψ(x;L/K, t) :=
∑
p/OK
N p6x
k>1

t(Frobkp) log(N p); θ(x;L/K, t) :=
∑
p/OK
N p6x

t(Frobp) log(N p);

π(x;L/K, t) :=
∑
p/OK
N p6x

p unram.

t(Frobp).

When L/Q is Galois, we will use the shorthands G := Gal(L/K), G+ := Gal(L/Q),
as well as

t+ = IndG
+

G t : G+ −→ C, g 7−→
∑

aG∈G+/G:

a−1ga∈G

t(a−1ga).

Finally, we recall that the inner product of class functions t1, t2 : G→ C is defined by

〈t1, t2〉G :=
1

|G|
∑
g∈G

t1(g)t2(g).

(We will simply write 〈t1, t2〉, dropping the subscript G, where the underlying group
is clear from context.)

Lemma 3.1. — Let L/K be an extension of number fields for which L/Q is Galois,
and let t : Gal(L/K)→ C be a class function. We have the estimate

π(x;L/K, t) =

∫ x

2−

dψ(u;L/Q, t+)
log u

− 〈t, rG〉
x1/2

log x
+ o
( x1/2
log x

)
.

Proof. — For any integer ` > 2, denote by f` : G → G the class function defined by
f`(g) = g`. Let µ denote the Möbius function; inclusion-exclusion implies that

θ(x;L/K, t) = ψ(x;L/K, t) +
∑
`>2

µ(`)ψ(x1/`;L/K, t ◦ f`)

= ψ(x;L/K, t)− 〈t, rG〉x1/2(1 + o(1)) +O(x1/3),

by the Chebotarev density theorem and the identity 1
|G|
∑
g∈G t(g

2) = 〈t, rG〉. The
claimed estimate follows from a summation by parts and an application of the identity

ψ(u;L/K, t) = ψ(u;L/Q, t+),

which is a consequence of the invariance of Artin L-functions under induction ([Art31,
§2], under the form used in [FJ20, Prop. 3.11]). �

(1)See for instance [Mar77, Chap. 1 §4] for a definition of Frobp in the case where p is ramified.

J.É.P. — M., 2022, tome 9



676 D. Fiorilli & F. Jouve

Proof of Theorem 1.1. — We first compute, for any conjugacy class C of G, any fixed
gC ∈ C and any irreducible character χ of G+,

〈1+C , χ〉G+ = 〈1C , χ|G〉G =
|C|
|G|

χ(gC) =
|C||G+|
|G||C+|

〈1C+ , χ〉G+ ,

where the first step uses Frobenius reciprocity. Therefore, denoting

tC1,C2
: Gal(L/K) −→ C

the class function tC1,C2
= |G|
|C1|1C1

− |G||C2|1C2
, one has t+C1,C2

= |G+|
|C+

1 |
1C+

1
− |G

+|
|C+

2 |
1C+

2
≡ 0.

Hence, Lemma 3.1 implies that

π(x;L/K, tC1,C2
) = −〈tC1,C2

, rG〉
x1/2

log x
+ o
( x1/2
log x

)
.

However, −〈tC1,C2 , rG〉 = rG(gC2)− rG(gC1) > 0, and thus π(x;L/K, tC1,C2) > 0 for
all large enough values of x. �

We now discuss more precisely the oscillations of π(x;L/K,C1)−π(x;L/K,C2) for
triples (L/K,C1, C2) chosen as in the proof of Proposition 1.2 and Corollary 1.3 (an
explicit example of such a Galois extension produces Figure 1, and the purpose here
is to discuss the rate of convergence of the function plotted to its asymptotic value).
We recall that in the proof of Proposition 1.2, we have chosen G = 〈(12)(34), (5678)〉
and t = 1C1

− 1C2
, where C1 = {(12)(34)} and C2 = {(57)(68)}. Since G is abelian of

order 8, the class function rm(g) := #{h ∈ G : hm = g} is identically equal to 1 for all
oddm > 1, and in particular, 〈t◦f3, 1〉 = 0 (where we recall that f` is the function onG
raising elements to their `-th power). The identity ψ(x;L/K, t) = ψ(x;L/Q, t+) ≡ 0

and the Riemann Hypothesis for Artin L-functions then imply that

θ(x;L/K, t) = ψ(x;L/K, t)− ψ(x1/2;L/K, t ◦ f2)− ψ(x1/3;L/K, t ◦ f3) +O(x1/5)

= −〈t, rG〉x1/2 +
∑

χ∈Irr(G)

〈χ, t ◦ f2〉
∑
ρχ

x1/4+(1/2)=(ρχ)i

ρχ
+O(x1/5),

by the explicit formula (see for instance [Ng00, Th. 3.4.9]). Here, Irr(G) denotes the
set of irreducible characters of G, and ρχ runs through the non-trivial zeros of the
Artin L-function L(s, L/K, χ). Now, in this particular example

8t ◦ f2 = 1{(5678)} + 1{(5678)(12)(34)} + 1{(5876)} + 1{(5876)(12)(34)},

and thus

〈χ, t ◦ f2〉 = χ((5678)) + χ((5678)(12)(34)) + χ((5876)) + χ((5876)(12)(34))

(which is not identically zero). This explains why we expect the difference between
the solid line and the data in Figure 1 to be roughly of order x−1/4. (More precisely,
we expect order x−1/4 almost everywhere, and maximal order x−1/4(log log log x)2.)

J.É.P. — M., 2022, tome 9
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Figure 1. The normalized difference (π(x;L/K,C1)− π(x;L/K,C2))/R(x)

with 1 6 x 6 1010 (data due to B. Allombert)

J.É.P. — M., 2022, tome 9
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4. Numerical examples

In this section we discuss our numerical verification of Theorem 1.1 and Proposi-
tion 1.2. It would be computationally very expensive to work with the full group S8.
However, it turns out that one can replace S8 with a relatively small subgroup which
has the required properties. Consider G+ := 〈(12)(34), (5678), (15)(27)(36)(48)〉; let
us show that G+ is isomorphic to the wreath product of Z/4Z and Z/2Z, which is
of order 32. Denote the permutations appearing in the generating set of G+ by τ , σ,
and γ, respectively, and note that G+ = 〈σ, γσγ, γ〉 (since γσγ = (1324), and thus
(γσγ)2 = τ). The subgroup 〈σ, γσγ〉 is clearly isomorphic to (Z/4Z)× (Z/4Z). More-
over, conjugating by γ on 〈σ, γσγ〉 amounts to exchanging the two factors Z/4Z, which
is the definition of the wreath product.

Consider also the abelian subgroup G := 〈(12)(34), (5678)〉 < G+ as well as the
conjugacy classes C1 := {(12)(34)} and C2 := {(57)(68)}. In the group G+, one has
that γ−1C1γ = C2, that is C+

1 = C+
2 . It follows from Theorem 1.1 that for any Galois

number field L/Q such that Gal(L/Q) ' G+, the sub-extension K = LG has the
property that for all large enough x,

π(x;L/K,C1) > π(x;L/K,C2)

(recall that |C1| = |C2| = 1). Bill Allombert has kindly provided us with the pari/gp
code allowing for a numerical check of this inequality up to x = 1010, for a particular
number field L/Q of Galois group G+. Explicitly, L = Q[x]/(f(x)), where

f(x) = x32 − 128x30 + 5680x28 − 120576x26 + 1386352x24

− 9267712x22 + 38233408x20 − 101305344x18 + 176213088x16

− 202610688x14 + 152933632x12 − 74141696x10 + 22181632x8

− 3858432x6 + 363520x4 − 16384x2 + 256.

For the full code, visit
https://www.math.u-bordeaux.fr/~fjouve001/UnconditionalBiasCode.gp.
In Figure 1 we have plotted the difference π(x;L/K,C1)−π(x;L/K,C2), normalized
by the function

R(x) :=
x1/2

log x
+

∫ x

2

du

u1/2(log u)2
∼ x1/2

log x
,

which can be shown following the proof of Lemma 3.1 to be the “natural approxi-
mation” for the order of magnitude of this difference. As expected, we see that the
plotted function converges to 1/2, and to illustrate this we have added the solid line
y = 1/2 on the plot. Finally, we see that as predicted in Section 3, the difference
between the graph and the solid line is of order x1/4.
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