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ON THE BERTINI REGULARITY THEOREM FOR

ARITHMETIC VARIETIES

by Xiaozong Wang

Abstract. — Let X be a regular projective arithmetic variety equipped with an ample Hermit-
ian line bundle L . We prove that the proportion of global sections σ with ‖σ‖∞ < 1 of L⊗d

whose divisor does not have a singular point on the fiber Xp over any prime p 6 eεd tends to
ζX (1 + dimX )−1 as d→ ∞.

Résumé (Autour du théorème de Bertini sur la régularité pour les variétés arithmétiques)
Soit X une variété arithmétique projective régulière munie d’un fibré en droites hermitien

ample L . On montre que la proportion des sections globales σ avec ‖σ‖∞ < 1 de L⊗d dont le
diviseur n’a pas de point singulier sur la fibre Xp pour tout nombre premier p 6 eεd tend vers
ζX (1 + dimX )−1 quand d→ ∞.
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1. Introduction

The main result of this article is Theorem 1.1. The classical Bertini theorem states
that if X is a smooth quasi-projective variety of dimension m over an infinite field k
embedded into some projective space Pnk , the intersection of X with a general hyper-
plane of Pnk is smooth of dimension m− 1. Here general means that the set of hyper-
planes satisfying this property is the set of k-points of an open subscheme U of the
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602 X. Wang

dual projective space (Pnk )∨ of Pnk . This open subscheme U of the dual projective
space exists regardless of the conditions on the base field, but it’s the infiniteness of
the field k that guarantees the existence of infinitely many k-points in U . We have
similar theorems on reducedness, irreducibility, connectedness, etc. A good reference
for these results is [Jou83].

When k is a finite field, this theorem still gives us an open subscheme of (Pnk )∨

parametrizing hyperplanes whose intersection with X is smooth, but may fail to
give such a hyperplane as the open subscheme may have no k-point. In [Poo04],
Poonen proved that if we consider the proportion of hypersurfaces of degree d whose
intersection withX is smooth of dimensionm−1 among all the degree d hypersurfaces,
this proportion tends to ζX(1 + m)−1 =

∏
x∈|X|(1 −#κ(x)−(1+m)) when d tends to

infinity. Here |X| denotes the underlying topological space of X consisting of its closed
points. In [CP16], Charles and Poonen also considered hypersurfaces of degree d of Pnk
whose intersection with an irreducible subscheme X of dimension at least 2 is still
irreducible, and proved that the proportion of such hypersurfaces tends to 1 when d
tends to infinity.

It is also of interest to have a good analogue of Bertini smoothness theorem for
quasi-projective schemes over SpecZ. But as Poonen explained in [Poo04, §5.7],
smoothness condition is too strong in the arithmetic situation. We need to con-
sider regularity instead. In the same article, Poonen established a density for subsets
of
⋃
d>0 H0(PnZ,O(d)) and showed that for a regular subscheme X of PnZ, assum-

ing the abc conjecture and an auxiliary conjecture, the density of sections f ∈⋃
d>0 H0(PnZ,O(d)) such that div f ∩ X is regular is ζX (dim X + 1)−1. Poonen’s

result depends on the embedding of X into PnZ and the choice of a coordinate system
in PnZ. It would be better to have a more general result without an explicit choice of
an embedding into some projective space. This leads us to look for a similar result in
the setting of Arakelov geometry.

1.1. Main theorems. — Let X be a projective arithmetic variety, i.e., an integral
separated scheme which is flat, projective of finite type over SpecZ. If X is regular
and that L is an ample line bundle on X , we want to define a good density for
a subset P ⊂

⋃
d>0 H0(X ,L ⊗d) so that the density of the subset of sections σ ∈⋃

d>0 H0(X ,L ⊗d) whose divisor is regular is positive. This will imply the existence
of global sections σ with regular divisor div σ for sufficiently large d.

In the arithmetic case, we use the word “singular” as “not regular”. If we say that X

is singular at a closed point x, we mean that X is not regular at x, which means that

dimκ(x)
mX ,x

m2
X ,x

6= dim X ,

where mX ,x is the maximal ideal of the stalk OX ,x of the structure sheaf of scheme X

on x and dim X is the dimension of X as a scheme.
In order to get good positivity properties of the ample line bundles on arithmetic

varieties, we add on them a Hermitian structure and consider the notion of arithmetic
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On the Bertini regularity theorem for arithmetic varieties 603

ampleness for Hermitian line bundles on projective arithmetic varieties developed by
Gillet and Soulé in [GS92] and by Zhang in [Zha92] (for arithmetic surfaces) and
[Zha95]. Assume that X is a projective arithmetic variety. An ample Hermitian line
bundles L = (L , ‖·‖) on X is an ample line bundle L equipped with a Hermit-
ian metric ‖·‖ on the restriction LC to the fiber X (C) with additional positivity
conditions. For such L on X , we consider the set of strictly effective sections

H0
Ar(X ,L ) := {σ ∈ H0(X ,L ) ; ‖σ‖∞ < 1}

as an analogue of H0(X,L ) for an ample line bundle L on a projective variety X
defined over a field, and

h0
Ar(X ,L ) := log

(
#H0

Ar(X ,L )
)

as an analogue of h0(X,L ). Here

‖σ‖∞ = sup
z∈X (C)

‖σ(z)‖.

We will give a precise definition of an ample Hermitian line bundle and discuss
some of its properties in Section 2.

For a fixed ample Hermitian line bundle L , we say that a subset P of⋃
d>0 H0(X ,L ⊗d) has Arakelov density ρ for some 0 6 ρ 6 1 if

lim
d→∞

#
(
P ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

= ρ.

We define the upper density and lower density in the same way. We denote the density,
the upper density and the lower density of P, when exist, by µAr(P), µAr(P) and
µAr(P), respectively.

Our main result is the following:

Theorem 1.1. — Let X be a regular projective arithmetic variety of dimension n,
and let L be an ample Hermitian line bundle on X . There exists a constant ε0 > 0

such that for any ε with 0 < ε < ε0 by denoting

Pd,p6eεd :=
{
σ ∈ H0(X ,L ⊗d) ;

div σ has no singular point of residual
characteristic smaller than or equal to eεd

}
and PA,ε =

⋃
d>0 Pd,p6eεd , we have

µAr(PA,ε) = ζX (1 + n)−1,

where ζX (s) is the zeta function

ζX (s) =
∏

x∈|X |

(1−#κ(x)−s)−1.

Here κ(x) is the residual field of x, and the residual characteristic of a closed point x
in X is the characteristic of its residue field.

J.É.P. — M., 2022, tome 9



604 X. Wang

Theorem 1.2. — Let X be a regular projective arithmetic variety of dimension n,
and let L be an ample Hermitian line bundle on X . Set

Pd :=
{
σ ∈ H0(X ,L ⊗d); div σ is regular

}
and P =

⋃
d>0 Pd. We have

µAr(P) 6 ζX (1 + n)−1,

where µAr(P) is the upper density of P.

Proof. — If a section σ ∈ H0
Ar(X ,L ⊗d) is such that div σ is regular, then in particu-

lar it has no singular point of residual characteristic smaller than or equal to eεd with
constant ε as in Theorem 1.1. So naturally Pd ⊂Pd,p6eεd and P ⊂PA,ε. Therefore
we have

µAr(P) 6 µAr(PA,ε) = ζX (1 + n)−1. �

Corollary 1.3. — Let X be a regular projective arithmetic variety of dimension n,
and let L be an ample Hermitian line bundle on X . There exists a constant c > 1

such that for any R > 1 we have

lim
d→∞

#
{
σ ∈ H0(X ,L ⊗d) ;

‖σ‖∞ < Rd, Sing(div σ) has no point of residual
characteristic smaller than or equal to (cR)d/2

}
#
{
σ ∈ H0(X ,L ⊗d) ; ‖σ‖∞ < Rd

}
= ζX (1 + n)−1.

Charles used this notion of density in [Cha21] to prove the analogous Bertini ir-
reducibility theorem for arithmetic varieties, which says that if X is an irreducible
arithmetic variety of dimension at least 2 and L an ample Hermitian line bundle
on X , then the set of global sections in

⋃
d>0 H0(X ,L ⊗d) whose divisor is irreducible

has density 1. The result of Charles can also be compared to the result of Breuillard
and Varjú in [BV19] for polynomials only with coefficients in 0 and 1. Breuillard and
Varjú showed that if we admit the Riemann hypothesis for the Dedekind zeta func-
tion ζK for all number fields of the form K = Q(a) for some root a of a polynomial
with 0, 1 coefficients, the density of the subset of irreducible polynomials in the set
of polynomials P (X) of 1 variable with 0, 1 coefficients such that P (0) 6= 0 is 1. (In
each degree d, such polynomials are finite in number, so the density can be defined
by the limit of proportion when d tends to infinity.)

1.2. Comparison with earlier results. — We compare our result with some existing
results.

We first recall the result of Poonen that we already mentioned. In [Poo04] Poo-
nen established a density for

⋃
d>0 H0(PnZ,O(d)) on the projective space PnZ. Let

P =
⋃
d>0 Pd be a subset of

⋃
d>0 H0(PnZ,O(d)), where Pd ⊂ H0(PnZ,O(d)). For

any d, we have a natural Z-basis of H0(PnZ,O(d)) which is composed of all monomi-
als of degree d. For simplicity of notations we denote them by fd,1, . . . , fd,hd , where

J.É.P. — M., 2022, tome 9
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hd = h0(PnQ,O(d)). Any section f ∈ H0(PnZ,O(d)) can be written as f =
∑hd
i=1 aifd,i

with some ai ∈ Z for each i. Poonen defines the upper density of Pd as

µP,d(P) = max
τ∈Shd

lim sup
Bτ(1)→∞

· · · lim sup
Bτ(hd)→∞

#
(
Pd ∩ {

∑hd
i=1 aifd,i ∈ H0(PnZ,O(d)) ; |ai| 6 Bi, ∀i}

)
#{
∑hd
i=1 aifd,i ∈ H0(PnZ,O(d)) ; |ai| 6 Bi, ∀i}

.

Here Shd is the symmetric group of hd symbols. The upper density of P is then
defined by

µP(P) = lim sup
d→∞

µP,d(Pd).

The lower density of P is defined similarly and the density of P exists if its upper
and lower density coincide. Using this density, Poonen proved the following theorem:

Theorem 1.4 (Poonen, [Poo04, Th. 5.1]). — When X is a regular subscheme of
dimension m of PnZ, assuming the abc conjecture and a supplementary conjecture
which holds at least when X is projective, the density of the set of sections f ∈⋃
d>0 H0(PnZ,O(d)) such that div(f)∩X is regular of dimension m−1 is ζX (m+1)−1.

Remark. — In Poonen’s proof, the abc conjecture is used to show that for any fixed d,
the upper density of global sections whose divisor has a singular point on a fiber over
a prime number p >M withM > 0 tends to 0 whenM tends to infinity. The proof of
this follows the idea of Granville in [Gra98] that for a polynomial f(x) ∈ Z[x] we can
get an asymptotic control of the prime squarefactors of f(n) by the norm of n ∈ Z.
Poonen generalized this idea to the case of multivariable polynomials in [Poo03].

Essentially, in each degree d, we get the density µd by taking the limit of coefficients
one by one. The action of symmetric group adds the condition that the order of
coefficients can be arbitrary. This theorem permits us to find global sections f ∈
H0(PnZ,O(d)) such that div(f)∩X is regular of dimension m−1 for sufficiently high d.

The density defined by Poonen depends on a choice of coordinates of PnZ. These
coordinates determine which global sections are monomials in each H0(PnZ,O(d)). His
method is hard to be applied to a more general case, for example when we consider an
arithmetic variety other than PnZ equipped with an ample line bundle which may not
be very ample. Moreover, the size of the global sections with regular divisor cannot
be controlled using this method. The global sections having regular divisor may have
very large coefficients as polynomials. Finally, the abc conjecture is powerfully used
in his proof. Without it, the proof can give control of sections whose divisor does not
have singular points of finitely many fixed residual characteristics, but cannot give
the limit of the proportion of global sections of O(d) whose divisor has no singular
point of residual characteristic smaller than or equal to eεd for a constant ε as we do.

In [BSW16], Bhargava, Shankar and Wang proved that monic integer polynomials
of one variable f(x) = xd + a1x

d−1 + · · · + ad ∈ V mon
d (Z) such that Z[x]/(f(x)) is

J.É.P. — M., 2022, tome 9



606 X. Wang

the ring of integers of the field Q[x]/(f(x)) has density ζ(2)−1. Here the density is
constructed using the size of the coefficients of polynomials.

This result can be viewed as a version of Bertini regularity theorem for P1
Z. In fact,

the condition that Z[x]/(f(x)) is the ring of integers of the field Q[x]/(f(x)) means
exactly that SpecZ[x]/(f(x)) is regular. When we homogenize f to the global section

F (X,Y ) = Xd + a1X
d−1Y + · · ·+ adY

d ∈ H0(P1
Z,O(d)),

this means that div(F ) is a regular divisor of P1
Z.

In their paper, fixing the degree d > 1, they order the monic integer polynomials

f(x) = xd + a1x
d−1 + · · ·+ ad

by a height function
H(f) := max{|ai|1/i},

and calculate the density of a subset Pd ⊂ V mon
d (Z) by

µH,d(Pd) = lim
R→∞

# (Pd ∩ {f ∈ V mon
d (Z) ; H(f) 6 R})

#{f ∈ V mon
d (Z) ; H(f) 6 R}

.

Identifying V mon
d (Z) with the set {F ∈ H0(P1

Z,O(d)) ; divF ∩∞Z = ∅} by homoge-
nization, the density of Pd can be understood as

µH,d(Pd) = lim
R→∞

#
(
Pd ∩ {F ∈ H0(P1

Z,O(d)) ; divF ∩∞Z = ∅, H(F ) 6 R}
)

#{F ∈ H0(P1
Z,O(d)) ; divF ∩∞Z = ∅, H(F ) 6 R}

.

We can then reformulate [BSW16, Th. 1.2] as follows:

Theorem 1.5 ([BSW16, Th. 1.2]). — For a fixed d > 1, set

Pd := {F ∈ H0(P1
Z,O(d)) ; divF ∩∞Z = ∅, divF is regular of dimension 1}.

Then we have
µH,d(Pd) = ζ(2)−1.

Remark. — This result is similar to Poonen’s theorem. In fact, if we note that ζ(2)−1

can be expressed by values of the zeta function of the affine line over SpecZ

ζA1
Z
(s) =

∏
p

ζA1
Fp

=
∏
p

1

1− p1−s ,

which is,
ζ(2)−1 =

∏
p

(1− p−2) = ζA1
Z
(3)−1,

then the theorem tells us that, for any d > 1, the density of the subset Pd of

{F ∈ H0(P1
Z,O(d)) ; divF ∩∞Z = ∅}

consisting of sections with regular divisor is equal to

ζP1
Z−∞Z

(
1 + dim(P1

Z −∞Z)
)−1

= ζA1
Z
(3)−1.

This is a statement similar to Theorem 1.4. But as we only consider global sections
whose divisor is disjoint of ∞Z, we can not recover Poonen’s theorem for X = A1

Z
in P1

Z.

J.É.P. — M., 2022, tome 9
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The result of Bhargava, Shankar and Wang surpasses our results for P1
Z in the

sense that for any d > 1, they can actually find global sections of H0(P1
Z,O(d)) whose

divisor is regular without auxiliary assumptions. Neither can we get such a strong
statement using Poonen’s method. But the method of Bhargava, Shankar and Wang
is hard to be generalized to other situations. Their proof depends on the monogenicity
of the finite Z-algebra Z[x]/(f(x)). They constructed a map from the moduli space
of monogenic finite Z-algebras of length d to the space of symmetric n × n matrices
quotient by the action of group SO(A0), where A0 is the n× n anti-diagonal matrix.
This map is then used in the article to turn the counting of monic polynomials to
the counting of special orbits in this quotient space. Due to the construction of this
map, it is difficult to release the monic condition in their theorem so as to get a result
for all polynomials with coefficients in Z. It is even more difficult to generalize this
method to regular arithmetic varieties other than P1

Z.
In [Aut01], Autissier showed another arithmetic analogue of the Bertini theorems.

He proved as a particular case that if X is an arithmetic variety of dimension n

over an integer ring OK (where K here is a number field), and L a very ample
Hermitian line bundle on X , then there exists a finite extension L of K and a section
σ ∈ H0(XOL ,L ) such that by writing g : Spec OL → Spec OK the morphism induced
by OK ↪→ OL, for any closed point b ∈ Spec OL, the fiber (div σ)b of the divisor div σ

is smooth if Xg(b) is smooth. Moreover, we can bound the height of div σ (defined
by L ) in terms of the height of X , degLQ

XQ, n and an effective constant which is
only dependent of L and n.

This result is stronger than ours in the sense where the divisor that he gives comes
from a global section of the sheaf L but not L ⊗d for a large d, and moreover the
divisor satisfies the smoothness condition rather that the regularity condition. The
disadvantage of this result is that it need to pass to finite base changes to find such
a global section. In particular, if X is defined over SpecZ, there’s little chance that
we can find a divisor satisfying the smoothness condition in the statement which is
defined over SpecZ by Autissier’s method. Our result, on the other hand, provides
divisors which are defined over SpecZ if so is the arithmetic variety that we consider.

As we can see, the densities in the above results are not defined in a natural way.
We construct them using additional information on polynomials. In particular, the
coordinate system on projective spaces are often needed for these constructions. Our
objective is to construct a density for arithmetic varieties in a more natural way and
get rid of this choice of coordinates. It is well-known that when we study arithmetic
varieties, it is usually better to consider vector bundles with Hermitian metric on
the complex fiber. In particular, we get good properties as arithmetic ampleness,
arithmetic Riemann-Roch theorem, and the set of effective sections behaves well in
the Hilbert-Samuel formula. Our construction of the Arakelov density via the set of
effective sections of Hermitian line bundles should be a better approach for a more
natural notion of density for arithmetic varieties.

1.3. Method of proof. — The proof of Theorem 1.1 relies on an effective estimate
of proportion of global sections whose divisor has no singular point on one single

J.É.P. — M., 2022, tome 9



608 X. Wang

fiber. This estimate can be reduced to computing, for a projective arithmetic vari-
ety X of dimension n with an ample Hermitian line bundle L , the proportion of σ∈
H0(Xp2 ,L

⊗d|Xp2
) such that for any closed point x∈div σ, dimκ(x) mdiv σ,x/m

2
div σ,x =

n− 1, where
Xp2 = X ×SpecZ SpecZ/p2Z.

In fact, for any closed point x of X on the fiber Xp, and any global section σ0 ∈
H0(X ,L ⊗d), the divisor div σ0 is singular at x if and only if the restriction of σ0 on
the first order infinitesimal neighbourhood x′ of x is 0. Note that x′ is defined by the
square of the maximal ideal of x in X , it is actually a closed subscheme of Xp2 (but
not of Xp), and the condition to test whether div σ0 is singular at x depends only
on the restriction σ0|X 2

p
. As the proportion in the group H0(Xp2 ,L

⊗d|Xp2
) is easier

to compute than in the set H0
Ar(X ,L ⊗d), we first estimate the above proportion,

and then lift it to the proportion of sections in H0
Ar(X ,L ⊗d) whose divisor has no

singular point on the fiber Xp via a proportion-lifting result about H0
Ar(X ,L ⊗d)→

H0(Xp2 ,L
⊗d|Xp2

).
We first generalize Poonen’s Bertini smoothness theorem over finite fields in the

appendix, replacing the very ample condition by ampleness. Then the generalized
proof can be applied to get the estimate on one single fiber. With a choice of positive
integers rp,d, N(p), where rp,d depends on p, d and N(p) depends only on p, we give
estimates of proportion of sections σ ∈ H0(Xp2 ,L

⊗d|Xp2
) whose divisor has a singular

point of degree smaller than or equal to rp,d, between rp,d and d/nN(p) and larger than
d/nN(p), respectively. Then we conclude by putting together these three estimates.

The estimate on one single fiber can be easily extended to finitely many fibers. The
effective estimates permit us to show that we can gather all fibers over p such that
p 6 d1/(n+1) without ruining the convergence of the proportion of σ ∈ H0

Ar(X ,L ⊗d)

such that div σ has no singular point on all these fibers.
Then we use a different method to show that there exists a constant c > 0 such that

for any prime p 6 eεd with constant ε satisfying the condition in Theorem 1.1 such
that the fiber over p is smooth and irreducible (these two conditions are satisfied by all
but finitely many p), the proportion of strictly effective global sections whose divisor
has singular points on this fiber is smaller than or equal to cp−2. Consequently the
proportion of σ ∈ H0

Ar(X ,L ⊗d) such that div σ has singular points on the fiber Xp

for some d1/(n+1) 6 p 6 eεd is bounded above by∑
d1/(n+1)6p6eεd

cp−2,

which tends to 0 when d tends to infinity. This together with the above estimate for
p 6 d1/(n+1) proves Theorem 1.1.

1.4. Organization of the paper. — In Section 2 we recall the definition of arithmetic
ampleness introduced by Zhang in [Zha92] and [Zha95] as well as some properties
of ample Hermitian line bundles such as the arithmetic Hilbert-Samuel formula and
present some results on restrictions to a subscheme. In Section 3 we gather two results
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on estimates of the convergences of special values of zeta functions. In Section 4 we
estimate how fast the proportion of strictly effective global sections whose divisor has
no singular point on a given special fiber over p ∈ SpecZ tends to ζXp(1 + n)−1.
In Section 5 we use the results of the previous sections to show that the proportion
of strictly effective global sections whose divisor has no singular point of residual
characteristic smaller than or equal to d1/(n+1) tends to ζX (1+n)−1 when d tends to
infinity. In Section 6, we prove that the proposition of sections in H0

Ar(X ,L ⊗d) whose
divisor has singular points on a special fiber over p can be bounded above by cp−2

with some positive constant c independent of p and d when d and p are large. We use
these results to prove Theorem 1.1 and Corollary 1.3 in the same section. In the
appendix, we give a proof of a generalized Poonen’s Bertini smoothness theorem over
finite fields where we allow the sheaf to be ample instead of very ample. This theorem
is not directly used in the main part of this paper, but some results in the appendix
are used in Section 4 and 6.

1.5. Notation

(1) For a finite set S, we denote by #S its cardinality.
(2) For a positive real number x, we define

bxc = max{n ∈ Z ; n 6 x}, dxe = min{n ∈ Z ; n > x}.

(3) Let f, g : R>0 → R be two real continuous functions such that f(0) = g(0) = 0.
We say f = O(g) if there exist c > 0 and ε > 0 such that for any x such that 0 < x < ε

we have
f(x) 6 c · g(x).

We say f ∼ g if f = O(g) and g = O(f).
(4) For an arithmetic variety X and a positive integer N , we write XN for the

closed subscheme X ×SpecZ Spec(Z/NZ).
(5) For an arithmetic variety X equipped with an ample Hermitian line bundle L ,

if Y is a subscheme of X such that YQ 6= ∅, we set H0(Y,L ) := H0(Y,L |Y ); if Y is
a subscheme of X such that YQ = ∅, we set H0(Y,L ) := H0(Y,L |Y ).

Acknowledgements. — The author is very grateful to François Charles for introducing
him to the subject, for the various discussions they had and for the helpful guidance
the author has received. The author thanks Yang Cao, Étienne Fouvry, Salim Tayou
for their useful conversations.

2. Arithmetic ampleness

In this section, we discuss arithmetic ampleness for arithmetic varieties, i.e., inte-
gral separated schemes which are flat and of finite type over SpecZ. This notion is
established in [Zha92] and [Zha95].

J.É.P. — M., 2022, tome 9



610 X. Wang

2.1. Basic properties

Definition. — Let M be a complex analytic space. Let L = (L, ‖·‖) be a Hermitian
line bundle on M , where ‖·‖ is a continuous Hermitian metric on L. Then L is said
to be semipositive if for any section σ of L on any open subset U of M such that s
does not vanish on any point of U , the function − log ‖σ‖ is plurisubharmonic on U .

Remark. — If M is a complex manifold and the Hermitian metric ‖·‖ on L is of
differentiability class C2, then saying that L is semipositive is equivalent to saying
that for any section s on any open subset U of M such that s does not vanish on any
point of U , we have that

√
−1∂∂ (− log ‖s‖)

is a non-negative (1, 1)-form.

In this article, we always demands that the Hermitian metric on a Hermitian line
bundle is smooth.

Definition. — Let X be a projective arithmetic variety, which means an arithmetic
variety projective over SpecZ. We say that L = (L , ‖·‖) is a Hermitian line bundle
on X if L is a line bundle on X and ‖·‖ is a smooth Hermitian metric on L |X (C)

which makes L |X (C) = (L |X (C), ‖·‖) a Hermitian line bundle as defined above. We
say that L is ample on X if it satisfies the following three conditions:

(i) L is ample over SpecZ;
(ii) L is semipositive on the complex analytic space X (C);
(iii) for any d� 1, H0(X ,L ⊗d) is generated by sections of norm strictly smaller

than 1.

For any Hermitian line bundle L = (L , ‖·‖) and any real number δ, we note L (δ)

the Hermitian line bundle (L , ‖·‖ e−δ). If L is ample, it is easy to see that L (δ) is
also ample for any δ > 0.

A useful result concerning ample Hermitian line bundles is the following proposi-
tion, which is a simple version of [Cha21, Prop. 2.4]:

Proposition 2.1. — Let X be a projective arithmetic variety, and let L be an
ample Hermitian line bundle on X and M a Hermitian vector bundle of rank r

on X . There exists a positive constant ε0 such that for any large enough integer d,
H0(X ,L ⊗d ⊗M ) has a basis consisting of sections with norm smaller than e−ε0d.

Now we recall the arithmetic Hilbert-Samuel theorem for ample Hermitian line
bundles on projective arithmetic varieties, which is proved by Gillet and Soulé in
[GS92] using arithmetic Riemann-Roch theorem for arithmetic varieties with smooth
generic fiber and generalized by Zhang in [Zha95] for arithmetic varieties whose generic
fiber may be singular. There is also a proof given by Abbes and Bouche in [AB95]
without the application of the arithmetic Riemann-Roch theorem.
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Theorem 2.2. — Let X be a projective arithmetic variety of absolute dimension n,
L an ample Hermitian line bundle on X and M a Hermitian vector bundle of rank r
on X . As d tends to ∞, we have

h0
Ar(X ,L ⊗d ⊗M ) =

r

n!
L ndn + o(dn).

Proof. — The statement can be found in [Yua08, Cor. 2.7 (1)]. We get this by
combining two results. The first one is the arithmetic Riemann-Roch formula esti-
mating χsup(L ⊗d ⊗ M ), which is the logarithm of the covolume of the lattice
H0(X ,L ⊗d ⊗M ) for the sup norm. This result is proved by Gillet-Soulé in [GS92]
by combining the Gromov inequality (see for example [Yua08, Cor. 2.7 (2)]), as

χsup(L ⊗d ⊗M ) =
r

n!
L ndn + o(dn),

when the generic fiber of the arithmetic variety is smooth. A generalization to the
case where we drop the smoothness condition on the generic fiber is given by Shouwu
Zhang in [Zha95, Th. (1.4)].

The second result, which says that

|h0
Ar(X ,L ⊗d ⊗M )− χsup(L ⊗d ⊗M )| = O(dn−1 log d),

is a consequence of [GS91, Th. 2], together with a Theorem of Zhang ([Zha95, Th. 4.2]),
which implies that h1

Ar(X ,L ⊗d ⊗M ) = 0 when d is large enough. �

2.2. Restriction modulo N of sections

Lemma 2.3. — Let X be a projective arithmetic variety, and let L be an ample
Hermitian line bundle on X . There is a positive integer d0 such that when d > d0,
we have

H0(XN ,L
⊗d) ' H0(X ,L ⊗d)/

(
N ·H0(X ,L ⊗d)

)
for any positive integer N .

Proof. — By the definition of XN , we have OXN
' OX /(N ·OX ). Therefore we have

that on X ,
L ⊗d ⊗ OXN

' L ⊗d/(N ·L ⊗d),

which induces an exact sequence of sheaves on X

0 −→ L ⊗d
N−−−→ L ⊗d −→ L ⊗d ⊗ OXN

−→ 0.

Since H0(XN ,L ⊗d) = H0(X ,L ⊗d ⊗ OXN
), we may choose d0 > 0 so that for any

d > d0, H1(X ,L ⊗d) = 0. For such d, we have the following exact sequence:

0 −→ H0(X ,L ⊗d)
N−−−→ H0(X ,L ⊗d) −→ H0(XN ,L

⊗d) −→ 0,

and the lemma follows from this exact sequence. �

We have two results concerning the restriction modulo N map.
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Proposition 2.4. — Let X be a projective arithmetic variety, and let L be an ample
Hermitian line bundle on X . Let 0 < α0 < 1 be a real number. There exists a positive
constant η such that for any d ∈ Z>0 large enough, if N ∈ Z>0 is bounded above by
exp(dα0), then the following holds:

(i) the restriction morphism

ψd,N : H0
Ar(X ,L ⊗d) −→ H0(XN ,L

⊗d)

is surjective;
(ii) for any two sections s, s′ in H0(XN ,L ⊗d), we have

|#ψ−1
d,N (s)−#ψ−1

d,N (s′)|
#ψ−1

d,N (s)
6 e−ηd.

This proposition is a reformulation of [Cha21, Prop. 2.15]. Here the constant α0

can be any real number between 0 and 1.

Proposition 2.5. — Let X be a projective arithmetic variety, and let L be an ample
Hermitian line bundle on X . Let ε0 be a constant as in Proposition 2.1. For a positive
integer N , let

ψd,N : H0
Ar(X ,L ⊗d) −→ H0(XN ,L

⊗d)

be the restriction map. When d is large enough, for any δ < ε0, any odd integer
N 6 eδd and any subset E ⊂ H0(XN ,L ⊗d), we have

#ψ−1
d,N (E)

#H0
Ar(X ,L ⊗d)

6 4
#E

#H0(XN ,L ⊗d)
.

Proof. — Note that H0(X ,L ⊗d) is a free Z-module for any d. For simplicity of no-
tation, we write h = rk(H0(X ,L ⊗d)). We may assume that d is large enough so that
for any positive integer N we have H0(XN ,L ⊗d) ' H0(X ,L ⊗d)/

(
N ·H0(X ,L ⊗d)

)
by Lemma 2.3. Let (σ1, . . . , σh) be a Z-basis of H0(X ,L ⊗d) such that

‖σj‖ < e−ε0d, ∀j ∈ {1, . . . , h}.

For an odd integer N such that 0 < N 6 eδd with a fixed δ < ε0, we set

Dd,N =
{
σ =

∑h
j=1 λjσj ; |λj | 6 N/2, λj ∈ R

}
⊂ H0(X ,L ⊗d)⊗Z R.

Then we have

Dd,N ∩H0(X ,L ⊗d) =
{
σ =

∑h
j=1 λjσj ; −(N − 1)/2 6 λj 6 (N − 1)/2, λj ∈ Z

}
,

and
H0(X ,L ⊗d)⊗Z R = N ·H0(X ,L ⊗d) +Dd,N .

Moreover, for any σ ∈ Dd,N , we have a bound for the norm of σ

‖σ‖ 6 (hN/2) e−ε0d.

The existence of such a basis is guaranteed by Proposition 2.1. In particular, when d
is large enough, as N 6 eδd with δ < ε0, any σ ∈ Dd,N satisfies

‖σ‖ 6 (h/2)e(δ−ε0)d < 1.
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Note that by the expression of Dd,N ∩ H0(X ,L ⊗d), we have a 1-1 correspondence
between elements in Dd,N ∩H0(X ,L ⊗d) and elements in H0(XN ,L ⊗d) induced by
the restriction modulo N map. So the map

ψd,N : H0
Ar(X ,L ⊗d) −→ H0(XN ,L

⊗d)

is surjective for such N .
For any R ∈ R+, we set

Bd(R) = {σ ∈ H0(X ,L ⊗d)⊗Z R ; ‖σ‖ < R}.

Then in particular, we have

Bd(1) ∩H0(X ,L ⊗d) = H0
Ar(X ,L ⊗d).

For any element σ ∈ H0(X ,L ⊗d)⊗Z R, we can find a σ′ ∈ N ·H0(X ,L ⊗d) such
that σ − σ′ ∈ Dd,N . If moreover σ ∈ Bd(1), we have

‖σ′‖ 6 ‖σ‖+ ‖σ − σ′‖ < 1 + (hN/2) e−ε0d.

Thus we have two inclusions

Bd(1) ⊂
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N ;

H0
Ar(X ,L ⊗d) ⊂

(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N ∩H0(X ,L ⊗d).

Note that any element in H0(XN ,L ⊗d) has exactly one preimage in Dd,N ∩
H0(X ,L ⊗d). The number of sections σ ∈ Dd,N∩H0(X ,L ⊗d) such that ψd,N (σ) ∈ E
is equal to #E. Then by the above inclusion, we have

#ψ−1
d,N (E) = #{σ ∈ H0

Ar(X ,L ⊗d) ; ψd,N (σ) ∈ E}

6 #
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
·#E.

Now we bound

#
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
.

If σ ∈ Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d), any σ′ ∈ σ +Dd,N satisfies

‖σ′‖ 6 ‖σ‖+ ‖σ − σ′‖ < 1 + (Nh/2)e−ε0d + (Nh/2)e−ε0d = 1 +Nhe−ε0d.

Hence (
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N ⊂ Bd(1 +Nhe−ε0d),

and in particular, we have

Vol
((
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N

)
6 Vol

(
Bd(1 +Nhe−ε0d)

)
.

If σ1, σ2 are two distinct elements in Bd(1 + (Nh/2)e−ε0d) ∩ N · H0(X ,L ⊗d), the
intersection (σ1 +Dd,N )∩(σ2 +Dd,N ) is either empty or a subset in H0(X ,L ⊗d)⊗ZR
of dimension smaller than h. In particular, the intersection always has volume 0.
Therefore we have

Vol
((
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N

)
= #

(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
·Vol(Dd,N ).
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From this equality, we can bound #
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
as

#
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
=

Vol
((
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
+Dd,N

)
Vol(Dd,N )

6
Vol

(
Bd(1 +Nhe−ε0d)

)
Vol(Dd,N )

Now set

Dd,1 =
{
σ =

∑h
j=1 λjσj ; |λj | 6 1/2, λj ∈ R

}
⊂ H0(X ,L ⊗d)⊗Z R.

We get similarly that for any σ ∈ Dd,1, ‖σ‖ 6 (h/2)e−ε0d. If σ ∈ H0(X ,L ⊗d)⊗Z R
satisfies ‖σ‖ < 1− (h/2)e−ε0d, then we can find a section σ′ ∈ H0(X ,L ⊗d) such that
σ ∈ σ′ +Dd,1; moreover, we get

‖σ′‖ 6 ‖σ‖+ ‖σ − σ′‖ < 1− (h/2)e−ε0d + (h/2)e−ε0d = 1.

Thus we have
Bd(1− (h/2)e−ε0d) ⊂ H0

Ar(X ,L ⊗d) +Dd,1.

So similarly we have

Vol
(
Bd(1− (h/2)e−ε0d)

)
6 #H0

Ar(X ,L ⊗d) ·Vol(Dd,1).

Note that for any R > 0,

Vol (Bd(R)) = RhVol (Bd(1)) , and Vol(Dd,N ) = NhVol(Dd,1).

Hence
Vol

(
Bd(1 +Nhe−ε0d)

)
Vol(Dd,N )

=
( 1 +Nhe−ε0d

1− (h/2)e−ε0d

)h Vol(Bd(1− (h/2)e−ε0d))

Nh ·Vol(Dd,1)

6
( 1 +Nhe−ε0d

1− (h/2)e−ε0d

)h #H0
Ar(X ,L ⊗d) ·Vol(Dd,1)

Nh ·Vol(Dd,1)

= N−h
( 1 +Nhe−ε0d

1− (h/2)e−ε0d

)h
#H0

Ar(X ,L ⊗d).

Since N 6 eδd, we have

(1 +Nhe−ε0d)h = exp
(
Nh2e−ε0d +O(N2h3e−2ε0d)

)
= 1 +Nh2e−ε0d +O(N2h4e−2ε0d)

6 1 + h2e(δ−ε0)d +O(h4e2(δ−ε0)d).

As δ < ε0 and that the rank h = rk(H0(X ,L ⊗d)) grows polynomially with d, when d
is sufficiently large,

(1 +Nhe−ε0d)h 6 1 + 2h2e(δ−ε0)d 6 2.

Similarly, we have when d is sufficiently large,

(1− (h/2)e−ε0d)h = 1− (h2/2)e−ε0d +O(h4e−2ε0d) > 1− h2e−ε0d > 1/2.
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Hence we have ( 1 +Nhe−ε0d

1− (h/2)e−ε0d

)h
6

1 + 2h2e(δ−ε0)d

1− h2e−ε0d
6 4

for any N6eδd. Therefore, we can bound #
(
Bd(1+(Nh/2)e−ε0d)∩N ·H0(X ,L ⊗d)

)
by

#
(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
6

Vol
(
Bd(1 +Nhe−ε0d)

)
Vol(Dd,N )

6 N−h
( 1 +Nhe−ε0d

1− (h/2)e−ε0d

)h
#H0

Ar(X ,L ⊗d)

6 4N−h ·#H0
Ar(X ,L ⊗d),

So finally we have

#ψ−1
d,N (E) 6 #

(
Bd(1 + (Nh/2)e−ε0d) ∩N ·H0(X ,L ⊗d)

)
·#E

6 4N−h ·
(
#H0

Ar(X ,L ⊗d)
)
·#E.

Note that by Lemma 2.3, when d is large enough,

H0(XN ,L
⊗d) ' H0(X ,L ⊗d)/

(
N ·H0(X ,L ⊗d)

)
.

So for such d we have #H0(XN ,L ⊗d) = Nh. Hence

#ψ−1
d,N (E)

#H0
Ar(X ,L ⊗d)

6 4
#E

#H0(XN ,L ⊗d)

and we conclude. �

Remark. — When d is large enough, H0(X ,L ⊗d) is a free Z-module such that

h = rk
(
H0(X ,L ⊗d)

)
= dimQ H0(XQ,L

⊗d) = χ(XQ,L
⊗d)

as L is ample.
The asymptotic Riemann-Roch Theorem tells us then that

h =

(
(L |XQ)n−1

)
(n− 1)!

dn−1 +O(dn−2),

where
(
(L |XQ)n−1

)
is the intersection number of n− 1 copies of L |XQ , where as

h0
Ar(X ,L ⊗d ⊗M ) =

r

n!
L ndn +O(dn−1 log d)

by Theorem 2.2.

3. Convergence of special values of zeta functions

Let X be a separated scheme of finite type and flat over Z of absolute dimension n.
We fix from now on a constant c0 > 0 such that for any prime integer p and any
e ∈ Z>0,

#X (Fpe) = #Xp(Fpe) 6 c0p(n−1)e,
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where n is the absolute dimension of X (so Xp is of dimension n − 1). Such a
constant exists by the Lang-Weil estimates in [LW54]. A good introduction to the
function #X (Fpe) and its properties is Serre’s book [Ser12].

We know that the zeta function

ζX (s) =
∏

x∈|X |

(1−#κ(x)−s)−1

is absolutely convergent for any s ∈ C satisfying Re(s) > n. Moreover, the zeta
function of X is the product of the zeta function of all its fibers, i.e., we have

ζX (s) =
∏

p prime
ζXp(s).

For later use, we calculate in this section the speed of convergence of∏
x∈|Xp|, deg x6r

(1−#κ(x)−(n+1))

to ζXp(n+ 1)−1 when r →∞, and that of
∏
p6R ζXp(n+ 1)−1 to ζX (n+ 1)−1 when

R→∞.

Lemma 3.1. — For any prime number p and any positive integer e > 1, we have

− log(1− p−e) < 2p−e.

In particular, for any closed point x on an arithmetic variety X and any integer
e > 1, we have

− log(1−#κ(x)−e) < 2 ·#κ(x)−e.

Proof. — For any real number 0 < t 6 (
√

5− 1)/2, we have − log(1−t) 6 2 log(1+t).
Indeed, when 0 < t 6 (

√
5− 1)/2, we have

−1 < t2 + t− 1 = (t+ 1/2)2 − 5/4 6 0.

Then
(1 + t)2(1− t) = 1− (t3 + t2 − t) = 1− t(t2 + t− 1) > 1,

which implies
1

1− t
6 (1 + t)2,

i.e.,
− log(1− t) 6 2 log(1 + t).

Since for any t > 0, log(1 + t) < t, we have for 0 < t 6 (
√

5− 1)/2,

− log(1− t) 6 2t.

As (
√

5− 1)/2 > 1/2, any prime p and positive integer r > 1 satisfy p−r < (
√

5− 1)/2.
Hence we conclude. �
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Lemma 3.2. — Let X be an arithmetic scheme of absolute dimension n. For any
prime number p and any positive integer r > 1, we have∣∣∣∣ ∏

x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
− ζXp

(n+ 1)−1

∣∣∣∣ 6 4c0p
−2(r+1).

Proof. — By Lemma 3.1, for any closed point x of X ,

− log(1−#κ(x)−(n+1)) < 2 ·#κ(x)−(n+1)

We have

∑
x∈|Xp|
deg x>r

(
− log(1− p−(n+1) deg x)

)
< 2

∑
x∈|Xp|
deg x>r

p−(n+1) deg x 6 2

∞∑
e=r+1

#X (Fpe)p−(n+1)e

6 2

∞∑
e=r+1

c0p
(n−1)e · p−(n+1)e = 2c0

∞∑
e=r+1

p−2e = 2c0
p−2(r+1)

1− p−2
< 4c0p

−2(r+1).

On the other hand, for any x ∈ |Xp|,(
1− p−(n+1) deg x

)
< 1.

Hence∣∣∣∣ ∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
− ζXp(n+ 1)−1

∣∣∣∣
=

∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
·
(

1−
∏

x∈|Xp|
deg x>r

(
1− p−(n+1) deg x

))

< 1−
∏

x∈|Xp|
deg x>r

(
1− p−(n+1) deg x

)
= 1− exp

( ∑
x∈|Xp|
deg x>r

log
(
1− p−(n+1) deg x

))
.

By the above computation, we have∣∣∣∣ ∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
− ζXp

(n+ 1)−1

∣∣∣∣ < 1− exp
(
−4c0p

−2(r+1)
)
< 4c0p

−2(r+1)

as for any t > 0, e−t > 1− t. Therefore we conclude. �

Lemma 3.3. — Let X be an arithmetic scheme of absolute dimension n. For any
prime number p, we have

0 < log ζXp
(n+ 1) 6 4c0p

−2.
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Proof. — In fact, we have

0 < log ζXp(n+ 1) = log

( ∏
x∈|Xp|

(1−#κ(x)−(n+1))−1

)
=(−1)

∑
x∈|Xp|

log
(
1−#κ(x)−(n+1)

)
<

( ∑
x∈|Xp|

2#κ(x)−(n+1)

)
< 2

∞∑
e=1

#X (Fpe) · p−e(n+1),

where the second line uses Lemma 3.1. By the choice of c0 at the beginning of this
section, for any e,

#X (Fpe) = #Xp(Fpe) 6 c0p(n−1)e.

Then we have
∞∑
e=1

#X (Fpe) · p−e(n+1) 6 c0

∞∑
e=1

p−2e 6
c0p
−2

1− p−2
< 2c0p

−2.

Hence we conclude. �

Lemma 3.4. — When R ∈ Z>0 is large enough, we have∣∣∣∣∏
p6R

ζXp
(n+ 1)−1 − ζX (n+ 1)−1

∣∣∣∣ < 8c0ζX (n+ 1)−1 ·R−1.

Proof. — Since ζX (s) =
∏
p ζXp(s), for a positive integer R we have∣∣∣∣∏

p6R

ζXp(n+ 1)−1 − ζX (n+ 1)−1

∣∣∣∣ = ζX (n+ 1)−1 ·
∣∣∣∣∏
p>R

ζXp(n+ 1)− 1

∣∣∣∣
= ζX (n+ 1)−1 ·

∣∣∣∣exp
(∑
p>R

log ζXp
(n+ 1)

)
− 1

∣∣∣∣.
Since by Lemma 3.3, 0 < log ζXp(n+ 1) 6 4c0p

−2, we have

0 <
∑
p>R

log ζXp
(n+ 1) < 4c0

∑
p>R

p−2 < 4c0
∑
k>R

k−2 < 4c0

∫ ∞
R

x−2dx = 4c0R
−1.

When t ∈ R is sufficiently small, we have et− 1 < 2t. Therefore when R is sufficiently
large,∣∣∣∣∏
p6R

ζXp
(n+ 1)−1 − ζX (n+ 1)−1

∣∣∣∣ = ζX (n+ 1)−1 ·
∣∣∣exp

(∑
p>R log ζXp

(n+ 1)
)
− 1
∣∣∣

< ζX (n+ 1)−1 ·
∣∣exp

(
4c0R

−1
)
− 1
∣∣

< 8c0R
−1ζX (n+ 1)−1. �

4. Effective computations on a single fiber

In this section, for a regular projective arithmetic variety X of dimension n

equipped with an ample Hermitian line bundle L , we calculate the density of the
set of global sections in H0

Ar(X ,L ⊗d) whose divisor has no singular point lying on a
fiber Xp for a fixed prime integer p when d→∞. Note that this density differs from
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the density of sections in H0(Xp,L ⊗d) whose divisor is smooth over Fp. This is be-
cause when a global section σ ∈ H0(X ,L ⊗d) is such that div σ has no singular point
on Xp, it is still possible that its image by restriction map φd,p : H0(X ,L ⊗d) →
H0(Xp,L ⊗d) is such that div φd,p(σ) is singular.

Indeed, let x be a closed point on the fiber Xp with maximal ideal mx as a closed
subscheme of X . We may assume that Xp is smooth over Fp. The maximal ideal
of x as a closed point of Xp is mXp,x = mx/(p · Ox). For any σ ∈ H0(X ,L ⊗d), its
divisor div σ is singular at x if and only if σ is contained in H0(X ,L ⊗d⊗m2

x), where
we identify H0(X ,L ⊗d ⊗ m2

x) with a sub-Z-module of H0(X ,L ⊗d) by regarding
L ⊗d ⊗ m2

x as a subsheaf of L ⊗d. This is equivalent to the condition that, denoting
by x′ the closed subscheme of X defined by the ideal sheaf m2

x, the image of σ by
the restriction map H0(X ,L ⊗d) → H0(x′,L ⊗d) is 0. Similarly, denoting by x′′ the
closed subscheme of Xp defined by m2

Xp,x
, div φd,p(σ) is singular at x if and only if

the image of σ by the restriction map H0(X ,L ⊗d) → H0(x′′,L ⊗d) is 0. Note that
as x is a regular point of X ,

#H0(x′,L ⊗d) = #H0(x′,Ox′) =
(
#κ(x)

)1+n
.

Similarly, since Xp is smooth,

#H0(x′′,L ⊗d) = #H0(x′′,Ox′) =
(
#κ(x)

)1+(n−1)
=
(
#κ(x)

)n
.

Moreover, by the definition of x′ and x′′, the restriction map H0(X ,L ⊗d) →
H0(x′′,L ⊗d) factors through

#H0(x′,L ⊗d) −→ H0(x′′,L ⊗d).

Therefore we have a strict inclusion

Ker
(
H0(X ,L ⊗d)→ H0(x′,L ⊗d)

)
( Ker

(
H0(X ,L ⊗d)→ H0(x′′,L ⊗d)

)
,

which implies that it is possible that div φd,p(σ) is singular at x while div σ is regular
at x.

Example. — Consider P2
Z together with the ample line bundle O(1) on it. Then

X2 +5Y 2−Z2 is a global section in H0(P2
Z,O(2)). The restriction φ2,5(X2 +5Y 2−Z2)

in H0(P2
F5
,O(2)) is equal to X2 − Z2. So div(φ2,5(X2 + 5Y 2 − Z2)) has a singular

point P = [0, 1, 0] ∈ P2
F5
. But P is not a singular point of div(X2 +5Y 2−Z2). Indeed,

consider the open affine neighbourhood A2
Z = P2

Zrdiv(Y ) of P . The ideal sheaf mA2
Z,P

of P in A2
Z is generated by X/Y,Z/Y, 5 ∈ H0(A2

Z,OA2
Z
). Then m2

A2
Z,P

is generated
by X2/Y 2, Z2/Y 2, 25, XZ/Y 2, 5X/Y, 5Z/Y . Let P ′ be the first order infinitesimal
neighbourhood of P in P2

Z. Then P ′ can be regarded as a closed subscheme of A2
Z

defined by m2
A2

Z,P
. Note that

X2 + 5Y 2 − Z2 = (X2/Y 2 − Z2/Y 2 + 5)Y 2.

The image of X2 + 5Y 2 − Z2 in H0(P ′,O(2)) is 5 · Y 2, which is non-zero. So P

is a singular point of div(φ2,5(X2 + 5Y 2 − Z2)), but it is not a singular point of
div(X2 + 5Y 2 − Z2).
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The above argument shows that for a section σ ∈ H0(X ,L ⊗d), the condition that
the divisor div σ has a singular point on the fiber Xp is stronger than that div φd,p(σ)

is singular. However, we can test whether div σ has a singular point on the fiber Xp

through the restriction φd,p2(σ), where φd,p2 : H0(X ,L ⊗d) → H0(Xp2 ,L
⊗d) is the

restriction morphism to Xp2 . In fact, for a closed point x on the fiber Xp, as p · Ox
is contained in mx, we have naturally p2 ·Ox ∈ m2

x and that x′ is a closed subscheme
of Xp2 . This implies that the image of σ in H0(x′,L ⊗d) is the same as the image of
φd,p2(σ) via H0(Xp2 ,L

⊗d)→ H0(x′,L ⊗d), and also that when x ∈ div σ,

mdiv φd,p2 (σ),x

m2
div φd,p2 (σ),x

=
mdiv σ,x/p

2Ox
m2

div σ,x/p
2Ox

' mdiv σ,x

m2
div σ,x

.

So when x ∈ div σ, div σ is regular at x if and only if the image of φd,p2(σ) in
H0(x′,L ⊗d) is not 0, and this condition is equivalent to the condition that

dimκ(x)

mdiv φd,p2 (σ),x

m2
div φd,p2 (σ),x

= dimκ(x)
mdiv σ,x

m2
div σ,x

= n− 1.

Therefore we may study whether div σ has a singular point on the fiber Xp via the
study of div φd,p2(σ), although the latter is not regular itself.

4.1. Main results. — We write

Pd,p :=
{
σ ∈ H0(X ,L ⊗d) ; div σ has no singular point on Xp

}
.

Theorem 4.1. — Let X be a regular projective arithmetic variety of absolute dimen-
sion n, and let L be an ample Hermitian line bundle on X . There exists a constant
C > 1 such that for any large enough integer d and any prime number p satisfying
Cnpn < d, we have∣∣∣∣#

(
Pd,p ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

− ζXp(n+ 1)−1

∣∣∣∣ = O
(
(d/p)−2/n

)
,

where the constant involved in big O is independent of d, p.

To prove this result, it suffices to prove the following proposition:

Proposition 4.2. — Define

P ′
d,p2 :=

{
σ′ ∈ H0(Xp2 ,L

⊗d) ; ∀x ∈ |div σ′|, dimκ(x) mdiv σ′,x/m
2
div σ′,x = n− 1

}
.

Then there exists a constant C > 1 such that for any prime number p satisfying
Cnpn < d, we have∣∣∣∣∣ #P ′

d,p2

#H0(Xp2 ,L ⊗d)
− ζXp(n+ 1)−1

∣∣∣∣∣ = O
(
(d/p)−2/n

)
,

where the constant involved in big O is independent of d, p.
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Proof of Theorem 4.1. — Assuming this proposition, by Proposition 2.4 for any α0

such that 0 < α0 < 1 we can find a constant η > 0 such that when d is large enough,
for any prime number p such that p2 6 exp(dα0) and any σ′1, σ′2 ∈ H0(Xp2 ,L

⊗d),∣∣∣#(φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
−#

(
φ−1
d,p2(σ′2) ∩H0

Ar(X ,L ⊗d)
)∣∣∣

#
(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
) 6 e−ηd,

where φd,p2 : H0(X ,L ⊗d) → H0(Xp2 ,L
⊗d) is the restriction map. When we take

the sum over all σ′2 ∈ H0(Xp2 ,L
⊗d), as⋃

σ′2∈H0(Xp2 ,L
⊗d)

(
φ−1
d,p2(σ′2) ∩H0

Ar(X ,L ⊗d)
)

= H0
Ar(X ,L ⊗d),

we get∣∣∣#(φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
·
(
#H0(Xp2 ,L

⊗d)
)
−#H0

Ar(X ,L ⊗d)
∣∣∣

6
∑

σ′2∈H0(Xp2 ,L
⊗d)

∣∣∣#(φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)

−#
(
φ−1
d,p2(σ′2) ∩H0

Ar(X ,L ⊗d)
)∣∣∣

6
∑

σ′2∈H0(Xp2 ,L
⊗d)

e−ηd ·#
(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)

= e−ηd ·#
(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
·#H0(Xp2 ,L

⊗d).

Dividing both side of the inequality by #H0(Xp2 ,L
⊗d), we get∣∣∣∣#(φ−1

d,p2(σ′1) ∩H0
Ar(X ,L ⊗d)

)
− #H0

Ar(X ,L ⊗d)

#H0(Xp2 ,L ⊗d)

∣∣∣∣
6 e−ηd ·#

(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
.

Note that for any σ ∈ H0(X ,L ⊗d), σ ∈ Pd,p if and only if for any closed point
x ∈ div σ ∩Xp, we have dimκ(x) mdiv σ,x/m

2
div σ,x = n − 1. This is equivalent to the

condition that for any closed point x ∈ div φd,p2(σ), we have

dimκ(x)

mdiv φd,p2 (σ),x

m2
div φd,p2 (σ),x

= n− 1,

i.e., φd,p2(σ) ∈ P ′
d,p2 . Hence Pd,p ∩ H0

Ar(X ,L ⊗d) is exactly the preimage of P ′
d,p2

in H0
Ar(X ,L ⊗d). Summing up over all σ′1 ∈P ′

d,p2 , we get∣∣∣∣#(Pd,p ∩H0
Ar(X ,L ⊗d)

)
− #H0

Ar(X ,L ⊗d)

#H0(Xp2 ,L ⊗d)
·#P ′

d,p2

∣∣∣∣
=

∣∣∣∣# ⋃
σ′1∈P′

d,p2

(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
− #H0

Ar(X ,L ⊗d)

#H0(Xp2 ,L ⊗d)
·#P ′

d,p2

∣∣∣∣
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6
∑

σ′1∈P′
d,p2

∣∣∣∣#(φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)
− #H0

Ar(X ,L ⊗d)

#H0(Xp2 ,L ⊗d)

∣∣∣∣
6

∑
σ′1∈P′

d,p2

e−ηd ·#
(
φ−1
d,p2(σ′1) ∩H0

Ar(X ,L ⊗d)
)

= e−ηd ·#
(
Pd,p ∩H0

Ar(X ,L ⊗d)
)
6 e−ηd ·#H0

Ar(X ,L ⊗d).

Dividing this inequality by #H0
Ar(X ,L ⊗d), we get∣∣∣∣#

(
Pd,p ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

−
#P ′

d,p2

#H0(Xp2 ,L ⊗d)

∣∣∣∣ 6 e−ηd.
Therefore assuming Proposition 4.2, we have∣∣∣∣#

(
Pd,p ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

− ζXp(n+ 1)−1

∣∣∣∣
6

∣∣∣∣#
(
Pd,p ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

−
#P ′

d,p2

#H0(Xp2 ,L ⊗d)

∣∣∣∣
+

∣∣∣∣ #P ′
d,p2

#H0(Xp2 ,L ⊗d)
− ζXp

(n+ 1)−1

∣∣∣∣
= O(e−ηd) +O

(
(d/p)−2/n

)
= O

(
(d/p)−2/n

)
. �

The proof of Proposition 4.2 follows the method of Poonen for his proof of the
Bertini theorem over finite fields in [Poo04]. We will prove Proposition 4.2 through
the following steps.

(1) In Section 4.2 we will calculate the proportion of σ ∈ H0(Xp2 ,L
⊗d) such that

dimκ(x) mdiv σ,x/m
2
div σ,x = n− 1 for any closed point x of degree 6 r for an integer r.

This proportion equals to ∏
x∈|X |
deg x6r

(1−#κ(x)−(1+n))

for r not too big. We will give a bound rd for r depending on d where this proportion
is valid for any r such that 0 < r 6 rd.

(2) Then in Section 4.3, we will show that for some integer constant N , the propor-
tion of σ ∈ H0(Xp2 ,L

⊗d) such that there exists a closed point x of degree between rd
and d/nN where the condition dimκ(x) mdiv σ,x/m

2
div σ,x = n− 1 is not satisfied tends

to 0 when d tends to infinity.
(3) In Section 4.4, we will show the following: there exists a constant N(p) depend-

ing on p such that the proportion of σ ∈ H0(Xp2 ,L
⊗d) which satisfy the condition

that there exists a closed point x of degree strictly larger than d/nN(p) where we
have dimκ(x) mdiv σ,x/m

2
div σ,x 6= n− 1 tends to 0 when d tends to infinity.

(4) In Section 4.5, we will put these three estimates together to get an effective
estimate of proportion of global sections whose divisor has no singular point on one
single fiber.
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In the following, we need a relative version of Lemma A.2:

Lemma 4.3. — Let L be an ample line bundle on a projective scheme Y flat over an
open subscheme S = SpecR of SpecZ. Then there exists a positive integer N such
that

(i) L ⊗d is very ample for all d > N ;
(ii) for any a, b > N , the natural morphism of R-modules

H0(Y ,L ⊗a)⊗H0(Y ,L ⊗b) −→ H0(Y ,L ⊗(a+b))

is surjective.

Proof. — It suffices to take the integer N such that Lemma A.2 holds for the generic
fiber YQ and that H0(Y ,L ⊗d) is torsion free for any d > N . �

4.2. Singular points of small degree. — We need a lemma:

Lemma 4.4. — Let Z be a closed subscheme of Xp2 of dimension 0, and let N be a
positive integer such that L ⊗N is very ample. The restriction morphism

H0(Xp2 ,L
⊗d) −→ H0(Z,L ⊗d)

is surjective when d > NhZ , where hZ = dimFp
(
H0(Z,OZ)⊗Z/p2Z Fp

)
.

Proof. — Let Cd be the cokernel of the restriction map. Then Cd ⊗Z/p2Z Fp is the
cokernel of

H0(Xp,L
⊗d) −→ H0(Zp,L

⊗d) = H0(Z,L ⊗d)⊗Z/p2Z Fp.

When d > NhZ , by Lemma A.3, we have Cd ⊗Z/p2Z Fp = 0. Then by the short exact
sequence

0 −→ pCd −→ Cd −→ Cd ⊗Z/p2Z Fp −→ 0,

we get pCd = Cd. Applying Nakayama’s lemma to Cd, considered as a Z/p2Z-module,
we get Cd = 0. Thus the surjectivity of the restriction map in the lemma holds when
d > NhZ . �

Lemma 4.5. — Set

P ′
d,p2,6r :=

{
σ′ ∈ H0(Xp2 ,L

⊗d) ; ∀x ∈ |div σ′|,
deg x 6 r ⇒ dimκ(x) mdiv σ′,x/m

2
div σ′,x = n− 1

}
.

For any positive integer r satisfying 2c0Nnrp
(n−1)r 6 d, we have

#P ′
d,p2,6r

#H0(Xp2 ,L ⊗d)
=

∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
.
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Proof. — For any closed point x ∈ Xp2 , let x′ be the closed subscheme of Xp2

defined by the square of the maximal ideal of x. Then x′ is the first order infinitesimal
neighborhood of x in Xp2 . We have x′ ' Spec(OXp2,,x

/m2
Xp2,,x

). A section σ′ ∈
H0(Xp2 ,L

⊗d) is such that div σ′ contains x and that dimκ(x) mdiv σ′,x/m
2
div σ′,x = n

if and only if the restriction map
H0(Xp2 ,L

⊗d) −→ H0(x′,L ⊗d)

sends σ′ to 0. For a positive integer r, let X ′
p2,6r be the disjoint union

X ′
p2,6r =

∐
x∈|Xp2 |
deg x6r

x′.

Then we have a natural isomorphism
H0(X ′

p2,6r,L
⊗d) '

∏
x∈|Xp2 |
deg x6r

H0(x′,L ⊗d).

A section σ′ ∈ H0(Xp2 ,L
⊗d) is such that div σ′ is regular at all closed points x of

degree 6 r if and only if its image in H0(X ′
p2,6r,L

⊗d) lies in the subset which by
the above natural isomorphism corresponds to∏

x∈|Xp2 |
deg x6r

(
H0(x′,L ⊗d)− {0}

)
.

To get the result, we need to study the surjectivity of the restriction map
H0(Xp2 ,L

⊗d) −→ H0(X ′
p2,6r,L

⊗d) ' H0(Xp2 ,OX ′
p2,6r

⊗L ⊗d).

When n = 1, the number of closed points of |Xp2 | is bounded above by #X (C).
We have

dimFp H0(X ′
p2,6r,OX ′

p2,6r
)⊗Z/p2Z Fp = dimFp H0

(
Xp2 ,

∏
deg x6r Ox′

)
⊗Z/p2Z Fp

=
∑

deg x6r

dimFp H0(x′,Ox′)⊗Z/p2Z Fp

=
∑

deg x6r

(
(1− 1) + 1

)
deg x 6

∑
x∈|Xp2 |

deg x <∞

for any r > 0. So the restriction map is always surjective when d is sufficiently large
by Lemma 4.4. When n > 1, we have

dimFp H0(X ′
p2,6r,OX ′

p2,6r
)⊗Z/p2Z Fp = dimFp H0(Xp2 ,

∏
deg x6r Ox′)⊗Z/p2Z Fp

=
∑

deg x6r

dimFp H0(x′,Ox′)⊗Z/p2Z Fp =
∑

deg x6r

((n− 1) + 1) deg x

6 n
r∑
e=1

#Xp2(Fpe)e 6 n
r∑
e=1

c0p
(n−1)ee 6 nc0r ·

r∑
e=1

p(n−1)e

6 nc0r
p(n−1)(r+1) − 1

pn−1 − 1
.
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By Lemma 4.4, when d > N · (nc0r(p(n−1)(r+1) − 1)/(pn−1 − 1)) with N as in the
lemma, the restriction map

H0(Xp2 ,L
⊗d) −→ H0(Xp2 ,OX ′

p2,6r
⊗L ⊗d)

is surjective. In particular, since we have

nc0r
p(n−1)(r+1) − 1

pn−1 − 1
6 nc0r

p(n−1)(r+1)

(1/2)pn−1
= 2nc0rp

(n−1)r,

the surjectivity of the restriction holds for r, d satisfying
2c0Nnrp

(n−1)r 6 d.

For such r, d, we have
#P ′

d,p2,6r

#H0(Xp,L ⊗d)
=

∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
. �

4.3. Singular points of medium degree. — Let N be an integer satisfying Lem-
ma 4.3. Set

Qmed
d,p2,r :=

{
σ′ ∈ H0(Xp2 ,L

⊗d) ; ∃x ∈ |div σ′|,
r < deg x 6 d/nN and dimκ(x) mdiv σ′,x/m

2
div σ′,x = n

}
.

Note that a section σ ∈ H0(X ,L ⊗d) is such that div σ has a singular point x on
the fiber Xp of degree such that r < deg x 6 d/nN if and only if for such an x,
dimκ(x) mdiv σ,x/m

2
div σ,x = n, and hence if and only if φd,p2(σ) ∈ Qmed

d,p2,r.

Lemma 4.6. — We have for r > 1,
#Qmed

d,p2,r

#H0(Xp2 ,L ⊗d)
< 2c0p

−2(r+1),

where the constant c0 is as defined in Section 3.

Proof. — For any closed point x in Xp2 , applying Lemma 4.4 to the first order infin-
itesimal neighborhood x′ of x in Xp2 , we get that the restriction morphism

H0(Xp2 ,L
⊗d) −→ H0(Xp2 ,Ox′ ⊗L ⊗d)

is surjective when
N(ndeg x) 6 d,

which is when deg x 6 d/Nn. We can then estimate the proportion of elements in
Qmed
d,p2,r by

#Qmed
d,p2,r

#H0(Xp2 ,L ⊗d)
6

∑
r<deg x6bd/Nnc

# Ker
(
H0(Xp2 ,L

⊗d)→ H0(Xp2 ,Ox′ ⊗L ⊗d)
)

#H0(Xp2 ,L ⊗d)

6
bd/Nnc∑
e=r+1

#X (Fpe)p−(n+1)e 6
∞∑

e=r+1

c0p
(n−1)ep−(n+1)e

6 c0

∞∑
e=r+1

p−2e =
c0p
−2(r+1)

1− p−2
< 2c0p

−2(r+1). �
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4.4. Singular points of large degree

Proposition 4.7. — Fix a constant 0 < α < 1. There exist positive integers N0, N1

only depending on X and L such that for any p 6 dα, denoting

N(p) = (N0 + 1)(N1 + p− 1) + p,

and

Qhigh
d,p2 :=

{
σ′ ∈ H0(Xp2 ,L

⊗d) ; ∃x ∈ |div σ′|,

deg x > d/nN(p) and dimκ(x) mdiv σ′,x/m
2
div σ′,x = n

}
,

we have
#Qhigh

d,p2

#H0(Xp2 ,L ⊗d)
= O

(
dnp−c1d/p

)
,

where c1 and the constant involved in big O are independent of d, p and α.
In particular, we have

lim
d→∞

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)
= 0.

Remark. — When d is large enough, for any p 6 dα,

dnp−c1d/p 6 dnd−c1αd
1−α

= dn−c1αd
1−α

.

As α < 1, dn−c1αd1−α tends to 0 when d tends to infinity. So the above proportion
#Qhigh

d,p2 /#H0(Xp2 ,L
⊗d) is always near 0 for any p 6 dα when d is large enough.

When X is regular, so is its generic fiber XQ, which is equivalent to say that
XQ is smooth over Q. This implies that we can find an open subset S of SpecZ
such that XS is smooth over S . We will give a uniform control of the proportion
of Qhigh

d,p2 for primes p ∈ S such that 2c0N(p)npn−1 6 d. As SpecZ r S is a finite
scheme, the set of primes p where the proportion of Qhigh

d,p2 is not controlled is finite in
number. We then give independent control of the proportion of Qhigh

d,p2 for each fiber
with constants possibly depending on p. The finiteness of such p permits us to get a
uniform control for all primes p satisfying 2c0N(p)npn−1 6 d.

Thus Proposition 4.7 is implied by the following two propositions:

Proposition 4.8. — Fix a constant 0 < α < 1. For any prime p 6 dα such that Xp

is smooth over Fp we have

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)
= O

(
dn−1p−c1d/p

)
,

where c1 and the constant involved in big O are independent of d, p and α.

Proposition 4.9. — Fix a constant 0 < α < 1. For any prime number p 6 dα with
possibly singular Xp, we have

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)
= O

(
dnp−c

′
1d/p

)
,
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where c′1 and the constant involved in big O are independent of d, α, but may depend
on p.

We prove first the smooth case. Before proving Proposition 4.8, we need some
preparation.

Lemma 4.10. — Let S be an open subscheme of SpecZ such that XS is smooth
over S . We can find a finite cover of XS by open subschemes U satisfying the
following conditions:

(1) we can find t1, . . . tn−1 ∈ H0(U,OU ) such that

Ω1
U/S '

n−1⊕
i=1

OUdti;

(2) for any positive integerM , we can choose a constant N0 >M satisfying Lemma
4.3 such that there exists a τ0 ∈ H0(XS ,L ⊗(N0+1)) such that XS r div τ0 = U ;

(3) with the same N0 as above, there exist τ1, . . . τk ∈ H0(XS ,L ⊗N0) such that
U =

⋃
16j6k(XS r div τj).

Proof. — As Ω1
XS/S

is a locally free sheaf of rank n − 1, we can find a finite open
covering {Uβ} of XS and sections tβ,1, . . . tβ,n−1 ∈ H0(Uβ ,OUβ ) such that

Ω1
Uβ/S

'
n−1⊕
i=1

OUβdtβ,i.

Hence we may assume the condition (1) for U . Moreover, if the condition (1) is satisfied
by U , then it is also satisfied by any open subscheme of U .

If U is an open subscheme of XS satisfying the condition (1), we will show that
it can be covered by finitely many open subschemes {Uα} of U which satisfy the
conditions (2) and (3). This will complete the proof of the lemma.

Since L is ample, we may take a positive integer N ′0 > 0 satisfying Lemma 4.3
such that for any d > N ′0, the sheaf IXS rU ⊗ L ⊗dS is globally generated, where
IXS rU is the ideal sheaf of XS r U with the induced reduced structure. We may
then choose non-zero sections

τ ′1, . . . , τ
′
s ∈ H0(XS ,IXS rU ⊗L ⊗N

′
0) ⊂ H0(XS ,L

⊗N ′0),

generating IXS rU ⊗L ⊗N
′
0 . This means that set theoretically, we have XS r U =⋂

i div(τ ′i). In other words, we get a finite cover of U :

U =
⋃
i

(
XS r div(τ ′i)

)
,

where XS r div(τ ′i) are open subschemes of XS . Note that for each i, XS r div(τ ′i)

satisfies the condition (1) of the lemma. Without loss of generality, we may replace U
by one of the subschemes XS r div(τ ′i), i.e., we assume that there is a section τ ′0 ∈
H0(XS ,L ⊗N

′
0) such that U = Y r div(τ ′0). We denote div(τ ′0) by D.

Now set N0 = rN ′0 − 1 for some positive integer r such that N0 > M and that
the sheaf ID ⊗L ⊗N0 is globally generated. Then in particular we can find sections
τ1, . . . , τk ∈ H0(XS ,ID⊗L ⊗N0) ⊂ H0(XS ,L ⊗N0) such that D =

⋂k
j=1 div(τj) set
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theoretically. This means exactly U =
⋃

16j6k(XS rdiv τj). We also set τ0 = (τ ′0)r ∈
H0(XS ,L ⊗(N0+1)). In this situation we still have D = div(τ0) set theoretically. The
section τ0 and sections τ1, . . . , τk are then what we need for conditions (2) and (3) in
the lemma. �

Lemma 4.11. — For an open subscheme U of XS , set

Qhigh
d,p,U =

{
σ ∈ H0(Xp,L

⊗d) ; div σ has a singular point in U ∩ div σ

of degree > d

nN(p)

}
.

Then Proposition 4.7 holds if we have

#Qhigh
d,p,U

#H0(Xp,L ⊗d)
= O

(
dn−1p−cU,1d/p

)
,

for all U satisfying the conditions in Lemma 4.10, where the constant cU,1 only depends
on X ,L and U .

Proof. — Let {Uα} be a finite cover of XS where all the Uα are open subschemes
of XS satisfying the conditions in Lemma 4.10. Then for any p ∈ S , we get a finite
open cover {Uα,p2} of Xp2 . For an open set U of XS flat over S , set

Qhigh
d,p2,U =

{
σ′ ∈ H0(Xp2 ,L

⊗d) ; ∃x ∈ |div σ′ ∩ U |,
deg x > d/nN(p) and dimκ(x) mdiv σ′,x/m

2
div σ′,x = n

}
.

To bound Qhigh
d,p2 , it suffices to bound Qhigh

d,p2,Uα
for all Uα in the covering.

Note that for any σ ∈ H0(Xp2 ,L
⊗d) and any x ∈ |div σ|, we have an exact

sequence

pOdiv σ −→
mdiv σ,x

m2
div σ,x

−→ mdiv σ,x

m2
div σ,x

−→ 0

where σ = σ mod p is the restriction in H0(Xp,L ⊗d) and div σ is the divisor in Xp.
Therefore

dimκ(x)
mdiv σ,x

m2
div σ,x

> dimκ(x)
mdiv σ,x

m2
div σ,x

− 1

In particular, if dimκ(x) mdiv σ,x/m
2
div σ,x = n = dim XS , then as

dimκ(x)
mdiv σ,x

m2
div σ,x

− 1 6 dimκ(x)
mdiv σ,x

m2
div σ,x

6 dim Xp = n− 1,

we have dimκ(x) mdiv σ,x/m
2
div σ,x=n−1, which means that x is a singular point of div σ.

Then for a section σ ∈ H0(Xp2 ,L
⊗d), σ ∈ Qhigh

d,p2,U implies σ ∈ Qhigh
d,p,U . Thus

#Qhigh
d,p2,U

#H0(Xp2 ,L ⊗d)
6

#{σ ∈ H0(Xp2 ,L
⊗d) ; σ ∈ Qhigh

d,p,U}
#H0(Xp2 ,L ⊗d)

=
#Qhigh

d,p,U

#H0(Xp,L ⊗d)
.
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It suffices then to bound #Qhigh
d,p,Uα

for Uα in the covering. Here all Uα satisfies the
conditions in Lemma 4.10. Such a finite covering exists by Lemma 4.10. If for any α,
the estimate

#Qhigh
d,p,Uα

#H0(Xp,L ⊗d)
= O

(
dn−1p−cUα,1d/p

)
holds, then setting c1 = minα{cUα,1} > 0, we have

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)
6
∑
α

#Qhigh
d,p,Uα

#H0(Xp,L ⊗d)
= O

(
dn−1p−c1d/p

)
. �

Now for an open subscheme U as in Lemma 4.10, we get morphisms

Φj : H0(XS ,L
⊗d) −→ H0(U,OU )

σ 7−→ σ · τdj /τd0
for any d ∈ Z>0 and 1 6 j 6 k.

On the other hand, Lemma A.16 tells us that there exists a positive integer N1

such that for any σ ∈ H0(Xp,L ⊗d), any i such that 1 6 i 6 n − 1, the section
(∂iΦj(σ)) ·τd+δ

0,p extends to a global section in H0(Xp,L ⊗(N0+1)(d+δ)) for any δ > N1.
Here τ0,p is the restriction of τ0 modulo p in H0(Xp,L ⊗(N0+1)).

In fact, we may choose N1 to be N1 =N ′1 + d0 + 1 where N ′1 is such that when
δ>N ′1, for any i such that 1 6 i 6 n the section

∂i · τ δ0 ∈ H0
(
U,HomOXS

(Ω1
XS /S ,OXS )⊗L (N0+1)δ

)
can be extended to a global section in

H0
(
XS ,HomOXS

(Ω1
XS /S ,OXS )⊗L (N0+1)δ

)
' Hom(Ω1

XS /S ,L
⊗(N0+1)δ),

and where d0 is such that for any d > d0, the restriction morphism

H0
(
P(H0(XS ,L

⊗(N0+1))),O(d)
)
−→ H0(XS ,L

⊗(N0+1)d)

is surjective. So N1 is again independent of d and p.
We enlarge N0 if necessary so that it satisfies the following conditions:
(1) N0 + 1 is a power of a prime number;
(2) for any d > N0, (L |XS )⊗d is very ample;
(3) for any a, b > N0, we have a surjective morphism

H0(XS ,L
⊗a)⊗H0(S ,OS ) H0(XS ,L

⊗b) −→ H0(XS ,L
⊗(a+b)).

We prove the following result:

Lemma 4.12. — For any prime p ∈ S , take

N(p) = (N0 + 1)(N1 + p− 1) + p = p(N0 + 2) + (N0 + 1)(N1 − 1).

With notation as in Proposition 4.7, if p and N(p) satisfy 2c0N(p)npn−1 6 d, then
we have

#Qhigh
d,p,U

#H0(Xp,L ⊗d)
= O

(
dn−1p−c1d/p

)
,

where c1 and the constant involved in big O are independent of d, p.
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By Lemma 4.11, this implies Proposition 4.8.

Proof of Lemma 4.12. — For each p ∈ S , if d > N(p), d has a unique decomposition
d = pkp,d + (N0 + 1)`p,d

with N1 6 `p,d < N1 + p. We have a surjective map

H0(Xp,L
⊗d)×

(n−1∏
i=1

H0(Xp,L
⊗kp,d)

)
×H0(Xp,L

⊗kp,d) −→ H0(Xp,L
⊗d)

which sends
(
σ0, (β1, . . . , βn−1), γ

)
to

σ = σ0 +

n−1∑
i=1

βpi tiτ
`d
0,p + γpτ `d0,p,

where τ0,p is the restriction of τ0 modulo p in H0(Xp,L ⊗(N0+1)). Thus

Φj,p(σ) = Φj,p(σ0) +

n−1∑
i=1

Φj,p(βi)
ptiΦj,p(τ0,p)

`d + Φj,p(γ)pΦj,p(τ0,p)
`d

in H0(U ∩Xp,OU∩Xp), where Φj.p = Φj |U∩Xp . As τ0,p is nowhere zero on U , we have

Sing(div σ) ∩ (U r div τj,p) = Sing(div Φj,p(σ)) ∩ (U r div τj,p)

and hence
Sing(div σ) ∩ U ⊂

k⋃
j=1

Sing(div Φj,p(σ)).

Since

∂i[Φj,p(βi)
ptiΦj,p(τ0,p)

`d ]

= Φj,p(βi)
pΦj,p(τ0,p)

`d + `dΦj,p(βi)
ptiΦj,p(τ0,p)

`d−1 · ∂iΦj,p(τ0,p),

and for any i′ 6= i,
∂i[Φj,p(βi′)

pti′Φj,p(τ0,p)
`d ] = `dΦj,p(βi′)

pti′Φj,p(τ0,p)
`d−1 · ∂iΦj,p(τ0,p),

we have

∂iΦj,p(σ) = ∂iΦj,p(σ0) +

n−1∑
i′=1

∂i
[
Φj,p(βi′)

pti′Φj,p(τ0,p)
`d
]

+ ∂i
[
Φj,p(γ)pΦj,p(τ0,p)

`d
]

=

[n−1∑
i′=1

`dΦj,p(βi′)
pti′Φj,p(τ0,p)

`d−1 + `dΦj,p(γ)pΦj,p(τ0,p)
`d−1

]
·∂iΦj,p(τ0,p)

+ ∂iΦj,p(σ0) + Φj,p(βi)
pΦj,p(τ0,p)

`d

= ∂iΦj,p(σ0) +
`d(Φj,p(σ)− Φj,p(σ0))

Φj,p(τ0,p)
∂iΦj,p(τ0,p) + Φj,p(βi)

pΦj,p(τ0,p)
`d .

Now set

gp,j,i(σ0, βi) = ∂iΦj,p(σ0)− `dΦj,p(σ0)

Φj,p(τ0,p)
∂iΦj,p(τ0,p) + Φj,p(βi)

pΦj,p(τ0,p)
`d ,

and
Wp,j,i := Xp ∩ U ∩ {gp,j,1 = · · · = gp,j,i = 0}.
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Then for any σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p+γpτ `d0,p, comparing the expressions of gp,j,i and

∂iΦj,p we have
gp,j,i(σ0, βi) = ∂iΦj,p(σ)− `dΦj,p(σ)

Φj,p(τ0,p)
∂iΦj,p(τ0,p),

and hence
gp,j,i(σ0, βi)|div Φj,p(σ) = ∂iΦj,p(σ)|div Φj,p(σ).

Moreover, any section gp,j,i(σ0, βi)·τd+δ
0,p ∈ H0(Xp∩U,L ⊗(N0+1)(d+δ)) can be extended

to a global section in H0(Xp,L ⊗(N0+1)(d+δ)) for any δ > N1 + 1. In fact, we know
already that the section ∂iΦj,p(σ)·τd+δ

0,p ∈ H0(Xp∩U,L ⊗(N0+1)(d+δ)) can be extended
to a global section in H0(Xp,L ⊗(N0+1)(d+δ)) for any δ > N1. On Xp ∩ U we have

`dΦj,p(σ)

Φj,p(τ0,p)
= `d

σ · τdj,p
τd0,p

·
(τ · τN0+1

j,p

τN0+1
0,p

)−1

= `d
σ · τd−N0−1

j,p

τd−N0
0,p

.

By Lemma A.16, for any δ > N1, the section ∂iΦj,p(τ0,p) · τ (N0+1)+δ
0,p can be extended

to a global section in H0(Xp,L ⊗(N0+1)((N0+1)+δ)), so the section
`dΦj,p(σ)

Φj,p(τ0,p)
∂iΦj,p(τ0,p) · τd+δ

0,p =
( `dΦj,p(σ)

Φj,p(τ0,p)
· τd−N0

0,p

)
·
(
∂iΦj,p(τ0,p) · τ (N0+1)+(δ−1)

0,p

)
extends to a global section of L ⊗(N0+1)(d+δ) for any δ > N1 +1. Therefore the section

gj,i(σ0, βi) · τd+δ =
(
∂iΦj(σ)− `dΦj(σ)

Φj(τ)
∂iΦj(τ)

)
· τd+δ ∈ H0(U,L ⊗(N0+1)(d+δ))

can be extended to a global section in H0(Xp,L ⊗(N0+1)(d+δ)) for any δ > N1 + 1.

Lemma 4.13. — When d is sufficiently large, the proportion of(
σ0, (β1, . . . , βn−1), γ

)
∈ H0(Xp,L

⊗d)×
(n−1∏
i=1

H0(Xp,L
⊗kp,d)

)
×H0(Xp,L

⊗kp,d)

such that for σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p + γpτ `d0,p,

div σ ∩Wp,n−1,j ∩
{
x ∈ |Xp| ; deg x > d/nN(p)

}
= ∅,

is
1−O

(
dn−1p−c1d/p

)
,

with a constant c1 depending only on N0, N1 and the dimension n.

Proof. — Apply Lemma A.17 to the case Y = Xp and X = U ∩Xp. We obtain that
for 0 6 i 6 n−2, with a fixed choice of σ0, β1, . . . , βi such that dimWp,i,j 6 n−1− i,
the proportion of βi+1 in H0(Xp,L ⊗kp,d) such that dimWp,i+1,j 6 n − 2 − i is
1 − O

(
di · p2−d/(N0+1)N1p

)
, where the constant involved depends only on the degree

of Xp when embedded in P(H0(L
⊗(N0+1)
p )∨) (this degree is independent of p), hence

is independent of d, p. In particular, the proportion of
(
σ0, (β1, . . . , βn−1)

)
such that

Wp,n−1,j is finite is
n−2∏
i=0

(
1−O(di · p2−d/(N0+1)N1p)

)
= 1−O

(
dn−2 · p2−d/(N0+1)N1p

)
.
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And then Lemma A.18 tells us that for fixed
(
σ0, (β1, . . . , βn−1)

)
making Wp,n−1,j

finite, the proportion of γ ∈ H0(Xp,L ⊗kp,d) such that for σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p +

γpτ `d0,p,
div σ ∩Wp,n−1,j ∩

{
x ∈ |Xp| ; deg x > d/nN(p)

}
= ∅,

is
1−O

(
dn−1p−d/nN(p)

)
,

where the constant involved is independent of d, p.
Therefore for large enough d, the proportion of

(
σ0, (β1, . . . , βn−1), γ

)
∈ H0(Xp,L

⊗d)×
(n−1∏
i=1

H0(Xp,L
⊗kp,d)

)
×H0(Xp,L

⊗kp,d)

such that
div σ ∩Wp,n−1,j ∩

{
x ∈ |Xp| ; deg x > d/nN(p)

}
= ∅,

where σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p + γpτ `d0,p, is(n−2∏

i=0

(
1−O

(
di·p2−d/(N0+1)N1p

)))
·
(
1−O

(
dn−1p−d/nN(p)

))
=
(

1−O
(
dn−2 · p2−d/(N0+1)N1p

))
·
(

1−O
(
dn−1p−d/nN(p)

))
=
(

1−O
(
dn−2 · p2−d/(N0+1)N1p

))
·
(

1−O
(
dn−1p−d/nN(p)

))
= 1−O

(
max

(
dn−2p2−d/(N0+1)N1p, dn−1p−d/nN(p)

))
,

As N(p) = p(N0 + 2) + (N0 + 1)(N1 − 1), when d is sufficiently large, we have
d

nN(p)
=

d

n
[
p(N0 + 2) + (N0 + 1)(N1 − 1)

]
>

d

n
[
(N0 + 2)(N1 + p− 1)

] > d

n(N0 + 2)N1p
,

and
d

(N0 + 1)N1p
− 2 >

d

2n(N0 + 2)N1p
.

Therefore when d tends to infinity,(n−2∏
i=0

(
1−O

(
di·p2−d/(N0+1)N1p

)))
·
(
1−O

(
dn−1p−d/nN(p)

))
= 1−O

(
max

(
dn−2p2−d/(N0+1)N1p, dn−1p−d/nN(p)

))
= 1−O

(
dn−1p−d/2n(N0+2)N1p

)
= 1−O

(
dn−1p−c1d/p

)
with constant c1 = 1/2n(N0 + 2)N1 which then depends only on N0, N1 and the
dimension n. �
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On the other hand, for such σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p + γpτ `d0,p ∈ H0(Xp,L ⊗d),

we have
Sing(div σ) ∩ U ⊂

k⋃
j=1

Sing(div Φj,p(σ))

and

Sing(div Φj,p(σ)) = div Φj,p(σ) ∩ {∂1Φj,p(σ) = · · · = ∂n−1Φj,p(σ) = 0}
= div Φj,p(σ) ∩ {gp,j,1(σ0, β1) = · · · = gp,j,n−1(σ0, βn−1) = 0}
= div Φj,p(σ) ∩Wp,n−1,j

= div σ ∩Wp,n−1,j

as
gp,j,i(σ0, βi)|div Φj,p(σ) = ∂iΦj,p(σ)|div Φj,p(σ).

Since the homomorphism of groups

H0(Xp,L
⊗d)×

(n−1∏
i=1

H0(Xp,L
⊗kp,d)

)
×H0(Xp,L

⊗kp,d) −→ H0(Xp,L
⊗d)

sending
(
σ0, (β1, . . . , βn−1), γ

)
to σ = σ0+

∑n−1
i=1 β

p
i tiτ

`d
0,p+γpτ `d0,p is surjective, Lemma

4.13 implies that

#
{
σ ∈ H0(Xp,L ⊗d) ; Sing(div σ) ∩ U ∩

{
x ∈ |Xp| ; deg x > d/nN(p)

}
= ∅

}
#H0(Xp,L ⊗d)

= 1−O
(
dn−1p−c1d/p

)
.

which means that the proportion of σ ∈ H0(Xp,L ⊗d) such that div σ has no singu-
lar point of degree strictly larger than d/nN(p), that is, elements not contained in
Qhigh
d,p,U , is 1 − O

(
dn−1p−c1d/p

)
with a constant c1 depending only on N0, N1 and n.

We therefore conclude that
#Qhigh

d,p,U

#H0(Xp,L ⊗d)
= O

(
dn−1p−c1d/p

)
with a possibly smaller c1.

Now that we have proved Lemma 4.12 except for the only prime number p0 dividing
N0 + 1, we can run the same process with another constant N ′0 > N0 such that
(N ′0 + 1, N0 + 1) = 1. We get a control for the proportion of Qhigh

d,p0,U
with different

constants as we have

Qhigh
d,p0,U

⊂
{
σ′ ∈ H0(Xp20

,L ⊗d) ; ∃x ∈ |div σ′|,
deg x > d/nN ′(p0) and dimκ(x) mdiv σ′,x/m

2
div σ′,x = n

}
,

where

N ′(p0) = (N ′0 + 1)(N1 + p0 − 1) + p0 > (N0 + 1)(N1 + p0 − 1) + p0 = N(p0).

So by modifying the constant c1 and the constant involved in the big O, this case can
be included in the uniform control. Therefore we proved Lemma 4.12. �
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Now we proceed to prove Proposition 4.9.

Proof of Proposition 4.9. — The main problem for controlling the proportion of Qhigh
d,p2

for p 6∈ S is that Xp over p might be singular. We decompose Xp into regular and
singular part:

Xp = Up ∪ Zp
where Zp = Sing(Xp) is the singular locus of Xp and Up = XprZp. As X is regular,
for a closed point x in Xp,

– if x ∈ Up, dimκ(x) mXp,x/m
2
Xp,x

= n− 1;
– if x ∈ Zp, dimκ(x) mXp,x/m

2
Xp,x

= dimκ(x) mX ,x/m
2
X ,x = n.

Set

Qhigh
d,Up

=
{
σ ∈ H0(Xp,L

⊗d) ; ∃x ∈ |div σ ∩ Up|,
deg x > d/nN(p) and dimκ(x) mdiv σ,x/m

2
div σ,x = n− 1

}
,

Qhigh
d,Zp

=
{
σ ∈ H0(Xp,L

⊗d) ; ∃x ∈ |div σ ∩ Zp|,
deg x > d/nN(p) and dimκ(x) mdiv σ,x/m

2
div σ,x = n

}
.

For a section σ ∈ H0(Xp2 ,L
⊗d), assume that div σ contains a closed point x with

dimκ(x) mdiv σ,x/m
2
div σ,x = n. Let σ = σ mod p be its image in H0(Xp,L ⊗d). Then if

x ∈ Up, x is also a singular point of div σ ∩ Up, i.e., dimκ(x) mdiv σ,x/m
2
div σ,x = n− 1;

if x ∈ Zp, we have then dimκ(x) mdiv σ,x/m
2
div σ,x = n. So we have

{σ ; σ ∈ Qhigh
d,p2 } ⊂ Qhigh

d,Up
∪Qhigh

d,Zp
,

hence
#Qhigh

d,p2

#H0(Xp2 ,L ⊗d)
6

#Qhigh
d,Up

#H0(Xp,L ⊗d)
+

#Qhigh
d,Zp

#H0(Xp,L ⊗d)
.

We can bound the first term #Qhigh
d,Up

/#H0(Xp,L ⊗d) by exactly the same method as
in the proof of Lemma 4.12. The second term can be bounded by a slightly different
way.

As now (Ω1
Xp/Fp)|Zp is locally free of rank n, we cover an open neighbourhood of Zp

by open subschemes VZp,α where we can find tα,1, . . . , tα,n ∈ H0(VZp,α,OVZp,α) such
that the image dti of dti in (Ω1

VZp,α/Fp
)
∣∣
VZp,α∩Zp

satisfies

(Ω1
VZp,α/Fp)

∣∣
VZp,α∩Zp

'
n⊕
i=1

OVZp,α∩Zpdti.

Then choosing convenient constants N ′0 > N0, N
′
1 > N1 and setting

N ′(p) = (N ′0 + 1)(N ′1 + p− 1) + p,

the same process as in the proof of Lemma 4.12 gives us that the proportion of Qhigh
d,Zp

,
being a subset of{
σ ∈ H0(Xp,L

⊗d) ; ∃x ∈ |div σ ∩ Zp|,
deg x > d/nN ′(p) and dimκ(x) mdiv σ,x/m

2
div σ,x = n

}
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is bounded by

1−
( n∏
i=0

(1−O(di·p2−d/(N ′0+1)N ′1p))

)
·
(

1−O(dnp−d/nN
′(p))

)
= 1−

(
1−O(dn · p2−d/(N ′0+1)N ′1p)

)
·
(

1−O(dnp−d/nN
′(p))

)
= O

(
dnp−c

′
1d/p

)
.

Thus Proposition 4.9 is proved. �

4.5. Proof of Proposition 4.2

Proof. — As in the previous section, let N0 be an integer satisfying the following
conditions:

(1) N0 + 1 is a power of a prime number;
(2) for any d > N0, (L |XS )⊗d is relatively very ample;
(3) for any a, b > N0, we have a surjective morphism

H0(XS ,L
⊗a)⊗H0(S ,OS ) H0(XS ,L

⊗b) −→ H0(XS ,L
⊗(a+b)).

Let N1 be as in Proposition 4.7. For each p ∈ S , take

N(p) = (N0 + 1)(N1 + p− 1) + p = p(N0 + 2) + (N0 + 1)(N1 − 1).

In particular, N(p) also satisfies the conditions (2) and (3) above. By Lemma 4.5, for
any positive integer r which satisfies 2c0N(p)nrp(n−1)r 6 d, we have

#P ′
d,p2,6r

#H0(Xp,L ⊗d)
=

∏
x∈|Xp|
deg x6r

(
1− p−(n+1) deg x

)
.

Let rp,d be the largest r satisfying this condition. In order to have rp,d > 1, we need

2c0N(p)npn−1 6 d.

Set C = 2c0(N0 + 3). When d is larger than 2c0n(N0 + 3)(N0 + 1)n(N1 − 1)n, if p
satisfies Cnpn < d, then either p < (N0 + 1)(N1 − 1), in which case we have

2c0N(p)npn−1 = 2c0

[
p(N0 + 2) + (N0 + 1)(N1 − 1)

]
npn−1

< 2c0

[
(N0 + 2)(N0 + 1)(N1 − 1) + (N0 + 1)(N1 − 1)

]
npn−1

= 2c0(N0 + 3)(N0 + 1)(N1 − 1)npn−1

< 2c0n(N0 + 3)(N0 + 1)n(N1 − 1)n 6 d;

or (N0 + 1)(N1 − 1) 6 p < Cnpn < d, so that

2c0N(p)npn−1 = 2c0[p(N0 + 2) + (N0 + 1)(N1 − 1)]npn−1

6 2c0(N0 + 3)pnpn−1

= Cnpn < d.

So the above condition is satisfied, hence rp,d > 1.
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Since

P ′
d,p2 ⊂P ′

d,p2,6rp,d ⊂P ′
d,p2 ∪Qmed

d,p2,rp,d
∪Qhigh

d,p2 ,

we have∣∣∣ #P ′
d,p2

#H0(Xp2 ,L ⊗d)
− ζXp

(n+ 1)−1
∣∣∣ 6 ∣∣∣ #P ′

d,p2

#H0(Xp2 ,L ⊗d)
−

#P ′
d,p2,6rp,d

#H0(Xp2 ,L ⊗d)

∣∣∣
+
∣∣∣ #P ′

d,p2,6rp,d

#H0(Xp2 ,L ⊗d)
− ζXp

(n+ 1)−1
∣∣∣

6
#Qmed

d,p2,rp,d

#H0(Xp2 ,L ⊗d)
+

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)

+

∣∣∣∣ζXp
(n+ 1)−1 −

∏
x∈|Xp2 |

deg x6rp,d

(
1− p−(n+1) deg x

)∣∣∣∣.
By Lemma 4.6,

#Qmed
d,p2,rp,d

#H0(Xp2 ,L ⊗d)
< 2c0p

−2(rp,d+1).

By the choice of rp,d, we have

2c0N(p)n(rp,d + 1) · p(n−1)(rp,d+1) > d.

So

p−(rp,d+1) =
(
pn(rp,d+1)

)−1/n
<
(
(rp,d + 1)p(n−1)(rp,d+1)

)−1/n

<
( d

2c0N(p)

)−1/n

= O
(
(d/p)−1/n

)
.

Therefore we have
#Qmed

d,p2,rp,d

#H0(Xp2 ,L ⊗d)
= O

(
(d/p)−2/n

)
,

where the coefficient involved in is independent of d, p.
By Proposition 4.7, we have

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)
= O

(
dnp−c1d/p

)
,

where again the coefficient involved in is independent of d, p.
Note that Lemma 3.2 shows∣∣∣∣ ∏
x∈|Xp|

deg x6rp,d

(
1− p−(n+1) deg x

)
− ζXp(n+ 1)−1

∣∣∣∣ 6 4c0p
−2(rp,d+1) = O

(
(d/p)−2/n

)
.
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Finally, by putting together all these three inequalities, we get∣∣∣ #P ′
d,p2

#H0(Xp2 ,L ⊗d)
− ζXp

(n+ 1)−1
∣∣∣ 6 #Qmed

d,p2,rp,d

#H0(Xp2 ,L ⊗d)
+

#Qhigh
d,p2

#H0(Xp2 ,L ⊗d)

+

∣∣∣∣ζXp
(n+ 1)−1 −

∏
x∈|Xp2 |

deg x6rp,d

(1− p−(n+1) deg x)

∣∣∣∣
= O

(
(d/p)−2/n

)
+O

(
dnp−c1d/p

)
+O

(
(d/p

)−2/n)
= O

(
(d/p)−2/n

)
,

where the coefficient involved in is independent of d, p, which is what we need to
show. �

5. Singular points of small residual characteristic

In this section, we will show the following result:

Proposition 5.1. — Let X be a regular projective arithmetic variety of absolute di-
mension n, and let L be an ample Hermitian line bundle on X . Set

Pd,p6d1/(n+1) :=
{
σ ∈ H0(X ,L ⊗d) ;

div σ has no singular point of residual char-
-acteristic smaller than or equal to d1/(n+1)

}
.

When d is sufficiently large, we have∣∣∣∣#
(
Pd,p6d1/(n+1) ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

− ζX (n+ 1)−1

∣∣∣∣ = O(d−1/(n+1)).

Here the constant involved in the big O depends only on X .
In particular, denoting PB =

⋃
d>0 Pd,p6d1/(n+1) , we have

µAr(PB) = ζX (n+ 1)−1.

5.1. Union of a finite number of fibers. — Let p, q be two different prime numbers.
We have

Xp2q2 = X ×SpecZ Spec(Z/p2q2Z) 'Xp2 qXq2 .

For any d > 0, we have an isomorphism

λp2q2 : H0(Xp2q2 ,L
⊗d)

∼−→ H0(Xp2 ,L
⊗d)×H0(Xq2 ,L

⊗d).

For any σ ∈ H0
Ar(X ,L ⊗d), σ ∈Pp,d ∩Pq,d if and only if the restriction map

ψd,p2q2 : H0
Ar(X ,L ⊗d) −→ H0(Xp2q2 ,L

⊗d)

sends σ to an element in the set λ−1
p2q2(P ′

p2,d ×P ′
q2,d). Therefore, applying Proposi-

tion 2.4, we have

lim
d→∞

#
(
Pp,d ∩Pq,d ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

= ζXp(n+ 1)−1ζXq (n+ 1)−1.
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More generally, for any finite set I of prime numbers p, we have

lim
d→∞

#
(⋂

p∈I Pp,d ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
=
∏
p∈I

ζXp
(n+ 1)−1.

By Lemma 2.3, we may only consider d > 0 such that for any positive integer N ,
we have

H0(XN ,L
⊗d) ' H0(X ,L ⊗d)/(N ·H0(X ,L ⊗d)).

Fix a positive constant α0 such that 3/4 < α0 < 1. By Proposition 2.4, when d is
large enough, for any N < ed

α0 , the map

ψd,N : H0
Ar(X ,L ⊗d) −→ H0(XN ,L

⊗d)

is surjective and there exists a positive constant η with

|#ψ−1(σ)−#ψ−1(σ′)|
#ψ−1(σ)

6 e−ηd

for any two sections σ, σ′ in H0(XN ,L ⊗d).
For a positive integer r, take Nr =

∏
p6r p

2.

Lemma 5.2. — Let C be the constant in Theorem 4.1. For any large enough integer d,
and for any integer r satisfying Cnrn < d with n = dim X and Nr < ed

α0 , we have∣∣∣∣#
(⋂

p6r Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
−
∏
p6r

ζXp
(n+ 1)−1

∣∣∣∣ = O
(
(
∑
p6r p

2/n)/d2/n
)
.

Proof. — The Chinese remainder theorem implies that

H0(XNr ,L
⊗d) ' H0(X ,L ⊗d)⊗Z Z/NrZ

' H0(X ,L ⊗d)⊗Z

(∏
p6r

Z/p2Z
)

'
∏
p6r

H0(Xp2 ,L
⊗d).

Moreover we have XNr =
∐
p6r Xp2 . Set

Ed,r :=
{
σ ∈ H0(XNr ,L

⊗d) ; ∀x ∈ |div σ|, dimκ(x) mdiv σ,x/m
2
div σ,x = n− 1

}
.

Then a section σ ∈ H0(XNr ,L
⊗d) is contained in Ed,r if and only if for any p 6 r,

its restriction σ|Xp2
is contained in P ′

p2,d. In particular, a section σ ∈ H0(X ,L ⊗d)

satisfies ψd,Nr (σ) ∈ Ed,r if and only if ψd,p2(σ) ∈ P ′
p2,d, for all p 6 r, which means

exactly that this σ is contained in
⋂
p6r Pd,p. On the other hand, still by the Chinese

remainder theorem,

#Ed,r
#H0(XNr ,L

⊗d)
=
∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
.
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As said above, with some positive constant η, we have
|#ψ−1(σ)−#ψ−1(σ′)|

#ψ−1(σ)
6 e−ηd,

with σ, σ′ in H0(XNr ,L
⊗d). Fixing one σ, we can sum up for all σ′ ∈ Ed,r and get∣∣∣∣#Ed,r − #(

⋂
p6r Pd,p)

#ψ−1(σ)

∣∣∣∣ =
|
(
#Ed,r ·#ψ−1(σ)

)
−#ψ−1(Ed,r)|

#ψ−1(σ)

6
∑

σ′∈Ed,r

|#ψ−1(σ)−#ψ−1(σ′)|
#ψ−1(σ)

6 #Ed,r · e−ηd,

where the last inequality follows from Proposition 2.4. This can also be written as∣∣∣∣#( ⋂
p6r

Pd,p ∩H0
Ar(X ,L ⊗d)

)
−
(
#Ed,r ·#ψ−1(σ)

)∣∣∣∣ 6 (#Ed,r ·#ψ−1(σ)
)
e−ηd.

Now we take the sum for all σ ∈ H0(XNr ,L
⊗d) and get∣∣∣∣(#

( ⋂
p6r

Pd,p ∩H0
Ar(X ,L ⊗d)

))
·#H0(XNr ,L

⊗d)

−
(
#Ed,r ·#H0

Ar(X ,L ⊗d)
)∣∣∣∣

=

∣∣∣∣ ∑
σ∈H0(XNr ,L

⊗d)

(
#

( ⋂
p6r

Pd,p ∩H0
Ar(X ,L ⊗d)

)
−
(
#Ed,r ·#ψ−1(σ)

))∣∣∣∣
6

∑
σ∈H0(XNr ,L

⊗d)

∣∣∣∣#( ⋂
p6r

Pd,p ∩H0
Ar(X ,L ⊗d)

)
−
(
#Ed,r ·#ψ−1(σ)

)∣∣∣∣
6

∑
σ∈H0(XNr ,L

⊗d)

(
#Ed,r ·#ψ−1(σ)

)
e−ηd

=
(
#Ed,r ·#H0

Ar(X ,L ⊗d)
)
e−ηd

6
(
#H0(XNr ,L

⊗d) ·#H0
Ar(X ,L ⊗d)

)
e−ηd.

Dividing both side by #H0(XNr ,L
⊗d) ·#H0

Ar(X ,L ⊗d), we get∣∣∣∣#
(⋂

p6r Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
− #Ed,r

#H0(XNr ,L
⊗d)

∣∣∣∣ 6 e−ηd.
Since we already know that

#Ed,r
#H0(XNr ,L

⊗d)
=
∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
,

the inequality can be written as∣∣∣∣#
(⋂

p6r Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
−
∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)

∣∣∣∣ 6 e−ηd.
Thus to finish the proof, it suffices to show the following lemma:
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Lemma 5.3. — Under the condition of Lemma 5.2, we have∣∣∣∣∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
−
∏
p6r

ζXp(1 + n)−1

∣∣∣∣ = O
(
(
∑
p6r p

2/n)/d2/n
)
.

Proof. — By the Lemma 4.2, for any prime number p satisfying Cnpn < d, we have

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
= ζXp

(1 + n)−1 +O
(
(d/p)−2/n

)
with the constant involved in big O independent of p and d. Therefore we can calculate
the product as∏

p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
=
∏
p6r

(
ζXp

(1 + n)−1 +O
(
(d/p)−2/n

))
=
∏
p6r

ζXp
(1 + n)−1 +

∑
p6r

O
(
(p/d)2/n

)
=
∏
p6r

ζXp(1 + n)−1 +O
(
(
∑
p6r p

2/n)/d2/n
)
. �

The above lemma shows the result, as∣∣∣∣#
(⋂

p6r Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
−
∏
p6r

ζXp
(n+ 1)−1

∣∣∣∣
6

∣∣∣∣#
(⋂

p6r Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
−
∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)

∣∣∣∣
+

∣∣∣∣∏
p6r

#P ′
p2,d

#H0(Xp2 ,L ⊗d)
−
∏
p6r

ζXp(1 + n)−1

∣∣∣∣
= O

(
e−ηd

)
+O

(
(
∑
p6r p

2/n)/d2/n
)

= O
(
(
∑
p6r p

2/n)/d2/n
)
. �

5.2. Bound on number of fibers. — Now we prove that we can choose r=d1/(n+1). As

Pd,p6d1/(n+1) =
⋂

p6d1/(n+1)

Pd,p,

we will in fact prove the following:

Lemma 5.4. — For large enough integer d, we have∣∣∣∣#
(
Pd,p6d1/(n+1) ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

−
∏

p6d1/(n+1)

ζXp
(n+ 1)−1

∣∣∣∣ = O(d−1/(n+1)).

Proof. — Note that

Nr =
∏
p6r

p2 6
r∏

k=1

k2 = (r!)2
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and that r! < rr = exp(r log r). If 2r log r < dα0 , we get Nr < exp(dα0). Then by
Proposition 2.4 the restriction morphism

ψd,Nr : H0
Ar(X ,L ⊗d) −→ H0(XNr ,L

⊗d)

is surjective. If moreover r satisfies Cnrn < d as in Theorem 4.1, then by Lemma 5.2,
we have∣∣∣∣#

(⋂
p6r Pd,p ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

−
∏
p6r

ζXp(n+ 1)−1

∣∣∣∣ = O
(
(
∑
p6r p

2/n)/d2/n
)
.

Now as above, ∑
p6r

p2/n 6
r∑

k=1

k2/n < r · r2/n = r(n+2)/n.

Thus for r = d1/(n+1) we have∑
p6d1/(n+1)

p2/n < d(n+2)/n(n+1) = O(d(n+2)/n(n+1)).

It’s easy to see that r = d1/(n+1) also satisfies conditions 2r log r < dα0 , Cnrn < d for
large d. For this r, we have

∣∣∣∣#
(⋂

p6d1/(n+1) Pd,p ∩H0
Ar(X ,L ⊗d)

)
#H0

Ar(X ,L ⊗d)
−

∏
p6d1/(n+1)

ζXp
(n+ 1)−1

∣∣∣∣
= O

(
(
∑
p6d1/(n+1) p2/n)/d2/n

)
= O

(
d(n+2)/n(n+1)−2/n

)
= O

(
d−1/(n+1)

)
.

�

Proof of Proposition 5.1. — Apply Lemma 3.4 and take R = d1/(n+1). We get∣∣∣∣ ∏
p6d1/(n+1)

ζXp(n+ 1)−1 − ζX (n+ 1)−1

∣∣∣∣ = O(d−1/(n+1)).

Combining this with Lemma 5.4, we get∣∣∣∣#
(
Pd,p6d1/(n+1) ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

− ζX (n+ 1)−1

∣∣∣∣
6

∣∣∣∣#
(
Pd,p6d1/(n+1) ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

−
∏

p6d1/(n+1)

ζXp
(n+ 1)−1

∣∣∣∣
+

∣∣∣∣ ∏
p6d1/(n+1)

ζXp
(n+ 1)−1 − ζX (n+ 1)−1

∣∣∣∣
= O(d−1/(n+1)) +O(d−1/(n+1)) = O(d−1/(n+1)),

which proves Proposition 5.1. �
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6. Final step

In this section, we prove Theorem 1.1. The main step is to show the following
proposition:

Proposition 6.1. — Let X be a regular projective arithmetic variety of dimension n,
and let L be an ample line bundle on X . Then there exists a constant c > 0 such
that for any d� 1 and any prime number p such that Xp is smooth and irreducible,
denoting

Qd,p2 :=
{
σ ∈ H0(Xp2 ,L

⊗d) ; ∃x ∈ |Xp2 |, dimκ(x) mdiv σ,x/m
2
div σ,x = n

}
,

we have
#Qd,p2

#H0(Xp2 ,L ⊗d)
6 c · p−2.

6.1. Divisors with higher dimensional singular locus

Lemma 6.2. — Let X be an irreducible projective scheme of dimension n over SpecZ.
Let L be an ample line bundle on X . For any large enough d and any prime number p
such that Xp is smooth over Fp, if σ ∈ H0(Xp,L ⊗d) is such that Sing(div σ) is finite,
then

#Sing(div σ) = O(dn−1),

where the constant involved does not depend on d or p.

Proof. — We take the construction in Section 4.4. Let S be the maximal open sub-
scheme of SpecZ such that XS = X ×SpecZ S is smooth over S . So S contains
all prime numbers p such that Xp is smooth of dimension n − 1 over Fp. Applying
Lemma 4.10, we may assume that there exists a positive integer N and an open cover
of XS by XS =

⋃
α∈A Uα making the following conditions valid:

(1) the sheaf L ⊗d is very ample for any d > N ;
(2) there exists τα ∈ H0(XS ,L ⊗(N+1)) such that

XS r div τα = Uα;

(3) there exist τα,1, . . . , τα,kα ∈ H0(XS ,L ⊗N ) such that

Uα =
⋃

16j6kα

(XS r div τα);

(4) for any α ∈ A, there exist tα,1, . . . , tα,n−1 ∈ H0(Uα,OUα) such that

Ω1
Uα/S

'
n−1⊕
i=1

OUαdtα,i.

We denote by ∂α,i ∈ DerOS (OUα ,OUα) ' Hom(Ω1
Uα/S

,OUα) the dual of dtα,i.
Now we take one arbitrary U among the Uα’s in the open cover, and we drop the

subscript α for simplicity of notation. For any j such that 1 6 j 6 k, we have a
morphism

Φj : H0(XS ,L
⊗d) −→ H0(U,OU )
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sending σ to στdj /τ
d. Then for any σ ∈ H0(XS ,L ⊗d), ∂iΦj(σ) is a section in

H0(U,OU ). For any p ∈ S , Φj induces

Φp,j : H0(Xp,L
⊗d) −→ H0(Up,OUp)

such that for any σ′ ∈ H0(Xp,L ⊗d), ∂iΦp,j(σ′) is a section in H0(Up,OUp). Here
Up = U ∩Xp. Then Lemma A.16 tells that we can find a positive integer N1 such that
for any δ > N1, any p ∈ S and any σ ∈ H0(Xp,L ⊗d), the section (∂iΦp,j(σ)) · τd+δ

extends to a global section in H0(Xp,L ⊗(N+1)(d+δ)). Since L ⊗(N+1) is very ample,
(∂iΦp,j(σ)) · τd+δ can also be regarded as a global section of

H0
(
P(H0(Xp,L

⊗(N+1))∨),O(d+ δ)
)
.

Then since τ is nowhere 0 on U ⊃ (XS r div τα,j), for any σ ∈ H0(Xp,L ⊗d), we have

(XS r div τα,j) ∩ Sing(div σ) ⊂ Sing(div Φj(σ))

= div Φj(σ) ∩
(
n−1⋂
i=1

div (∂iΦj(σ))

)
= (XS r div τα,j) ∩ div(σN+1) ∩

(
n−1⋂
i=1

div
(
∂iΦj(σ) · τd+N1

))
.

On the other hand, we have

σN+1 ∈ H0(P(H0(Xp,L
⊗(N+1))∨),O(d)).

Denote the degree of Xp as a closed subscheme of P(H0(Xp,L ⊗(N+1))∨) by
degL⊗N+1(Xp). If σ ∈ H0(Xp,L ⊗d) is such that Sing(div σ) is finite, then
(XS r div τα,j) ∩ Sing(div σ) is finite and we can find n − 1 divisors among
the n ones appeared in the above intersection such that the intersection of these
n − 1 divisors and XS r div τα,j is finite. Obviously this intersection contains
(XS r div τα,j) ∩ Sing(div σ). Applying refined Bézout’s theorem [Ful84, Th. 12.3],
we get

# (Sing(div σ) ∩ (XS r div τα,j)) 6 (degL⊗(N+1)(Xp))(d+N1)n−1 = O(dn−1),

where coefficients involved in O(di) is independent of p when d is large enough
(degL⊗(N+1)(Xp) is independent of p). Therefore we have

#Sing(div σ) 6
∑
α∈A

kα∑
j=1

# (Sing(div σ) ∩ (XS r div τα,j)) = O(dn−1),

with coefficients involved in O(dn−1) independent of p when d is large enough. �

The following lemma is a generalization of Lemma 5.9 in [Poo04], where Poo-
nen shows that for an integral quasi-projective scheme X generically smooth over Z
equipped with a very ample line bundle inducing an immersion X ↪→ PnZ for some
n > 0, if the generic fiber XQ of the Zariski closure X of X in PnZ has at most isolated
singular points, then there exists c > 0 such that if d, p are sufficiently large, then

#
{
σ ∈ H0(Pnp ,O(d)) ; dim

(
Sing(div σ|Xp)

)
> 0
}

#H0(Pnp ,O(d))
<

c

p2
.
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We prove the same conclusion for the case when X is projective and equipped with
an ample line bundle, in place of a very ample line bundle.

Lemma 6.3. — Let X be a integral scheme of dimension n which is projective and
generically smooth over SpecZ, and let L be an ample line bundle on X . Then there
exists a constant cH > 0 such that for any d � 1 and any prime number p such
that Xp is smooth and irreducible, we have

#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
6 cH · p−2.

Remark. — If the prime p is fixed, Corollary A.19 tells us that there exists a constant
c > 0 such that

#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
= O(dn−1 · p−cd/p).

When d is sufficiently large, we deduce from it that
#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
6 p−2.

So Corollary A.19 gives a better bound on the proportion of sections whose divisor
has positive dimensional singular locus. But this bound is well-behaved only when d
is much larger than the prime p. In this lemma, the bound we give is independent of
the choice of p. In particular, it is valid even when p is much bigger than d.

Proof. — We choose a constant N ∈ Z>0 satisfying Lemma 4.3. If X is of dimension
1, then dim(Xp) = 0 for any prime p and the conclusion holds automatically. When
X is of dimension 2, for p such that Xp is smooth and irreducible of dimension
1 (which is satisfied for all but finitely many p), if σ ∈ H0(Xp,L ⊗d) is such that
dim

(
Sing(div σ)

)
> 0, then Sing(div σ) = Xp, which is impossible unless σ = 0. This

means in the case of dimension 2, when d is large enough we always have
#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
=

1

#H0(Xp,L ⊗d)

= p−h
0(XQ,L

⊗d) < p−2.

So the lemma is true when dim X 6 2. We prove the higher dimensional case by
induction. Assume that for any scheme Y of dimension smaller than n which is pro-
jective over SpecZ with YSY irreducible and smooth over some open subscheme SY

of SpecZ, and which is equipped with an ample line bundle M , there exists a con-
stant cY ,M > 0 such that for any d� 1 and any prime p such that Yp is smooth and
irreducible of dimension dim Y − 1, we have

#
{
σ ∈ H0(Yp,M⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Yp,M⊗d)
6 cY ,M · p−2.

By the classical Bertini theorem over Q, we can find a section σD ∈ H0(XQ,L ⊗N )

whose divisor DQ is a smooth and irreducible divisor of XQ. By possibly replacing σD
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by a multiple of it, we may assume that σD is in fact a section of H0(X ,L ⊗N ). Then
the divisor D = div σD on X has no singular point on the generic fiber XQ. Let S

be an open subscheme of SpecZ such that XS is smooth over S and irreducible of
dimension n. By restricting to a smaller S we may assume that XS does not contain
any vertical component of D , and that DS = D ∩XS is smooth over S . We may
assume moreover that for any p ∈ S , Xp and Dp are both smooth and irreducible
such that dim Xp = n − 1 and dim Dp = n − 2. For the rest of the proof, we fix
the divisor D . Note that D together with the open subscheme S of SpecZ and the
restriction sheaf L |D also satisfies the assumption of the lemma.

For any prime p ∈ SpecZrS such that Xp is smooth and irreducible of dimension
n− 1, we can find a constant c by Corollary A.19, such that

#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
= O(dn−1 · p−cd/p).

So when d is sufficiently large, the right side can be bounded above by p−2. Since
SpecZ r S is a finite scheme, when d is sufficiently large, for any p ∈ SpecZ r S

such that Xp is smooth and irreducible, we have
#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Xp,L ⊗d)
6 p−2.

Hence it suffices to prove the lemma for primes p ∈ S .
Now let p ∈ S . If a section σ ∈ H0(Xp,L ⊗d) is such that

dim
(
Sing(div σ)

)
> 0,

then as Xp is irreducible and projective by the assumption on S , we have

Sing(div σ) ∩Dp 6= ∅.

By induction hypothesis, we know that there exists a constant cD > 0 such that if d
is sufficiently large, then for any p ∈ S , we have

#
{
σ ∈ H0(Dp,L ⊗d) ; dim

(
Sing(div σ)

)
> 0
}

#H0(Dp,L ⊗d)
6 cD · p−2.

As L is ample on X , when d is large enough, the restriction map

H0(X ,L ⊗d) −→ H0(D ,L ⊗d)

is surjective. So for such d, the morphism

H0(Xp,L
⊗d) −→ H0(Dp,L

⊗d)

is surjective for any p ∈ S , and hence
#
{
σ ∈ H0(Xp,L ⊗d) ; dim

(
Sing(divσ ∩Dp)

)
> 0
}

#H0(Xp,L ⊗d)
6 cD · p−2.

We need to bound sections σ ∈ H0(Xp,L ⊗d) such that Sing(div σ) ∩ Dp is finite
and non-empty. Since D is of dimension n− 1, let c′0 > 0 be a constant such that

#D(Fpe) 6 c′0p(n−2)e
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for any prime number p and any integer e > 1. For any closed point x ∈ |Dp| of degree
e 6 d/Nn, we have by Lemma A.5 that the proportion of σ ∈ H0(Xp,L ⊗d) such
that div σ is singular at x is p−ne. Then we have

#
{
σ ∈ H0(Xp,L ⊗d) ; ∃x ∈ |Sing(div σ) ∩Dp|, deg x 6 bd/Nnc

}
#H0(Xp,L ⊗d)

6
∑
x∈|Dp|

deg x6bd/Nnc

p−n deg x <

bd/Nnc∑
e=1

#D(Fqe)p−ne6
bd/Nnc∑
e=1

c′0q
(n−2)e · p−ne =

c′0p
−2

1− p−2
< 2c′0p

−2.

If a section σ ∈ H0(Xp,L ⊗d) whose divisor has positive dimensional singular locus
is not included in the above two cases, then it satisfies the two following conditions
at the same time:

– Sing(div σ ∩Dp) is a finite set;
– if x is a closed point of Sing(div σ)∩Dp ⊂ Sing(div σ ∩Dp), then deg x > d/Nn.

Then to finish the proof, it suffices to show that we can find a constant c3 > 0 such
that when d is large enough, for any p ∈ S

#
{
σ ∈ H0(Xp,L ⊗d) ; Sing(div σ ∩Dp) finite,∃x∈Sing(div σ) ∩Dp, deg x>d/Nn

}
#H0(Xp,L ⊗d)

< c3p
−2.

For large enough d, consider the surjective morphism

H0(Xp,L
⊗d)×H0(Xp,L

⊗(d−N)) −→ H0(Xp,L
⊗d)

which sends (σ0, σ1)∈H0(Xp,L ⊗d)×H0(Xp,L ⊗(d−N)) to the section σ=σ0+σ1·σD .
For any σ = σ0+σ1·σD in H0(Xp,L ⊗d), the singular locus of div σ∩Dp is independent
of σ1, i.e.,

Sing(div σ ∩Dp) = Sing(div σ0 ∩Dp).

If (σ0, σ1) ∈ H0(Xp,L ⊗d)×H0(Xp,L ⊗(d−N)) is such that Sing(div σ0∩Dp) is finite,
we assume that Sing(div σ0∩Dp) = {x1, . . . , x`}. Applying Lemma 6.2 to D , we have
` = O(dn−2) with coefficients depending on L and D but not on p. For a fixed σ0

and any xi ∈ Sing(div σ0 ∩Dp), let x′i be the first order infinitesimal neighbourhood
of xi in Xp. If div

(
σ0 + σ1σDp

)
is singular at xi, then the image of σ0 + σ1σDp in

H0(x′i,L
⊗d) by the natural restriction morphism is 0. Let mXp,xi be the ideal sheaf

of xi in Xp. We have a natural exact sequence of sheaves on Xp

0 −→ L ⊗(d−N) −→ L ⊗d −→ L ⊗d ⊗ OD −→ 0,

where the morphism L ⊗(d−N) → L ⊗d is the multiplication by σD . Restricting this
exact sequence of sheaves to the closed subscheme x′i, we get a right exact sequence

OXp

m2
Xp,xi

⊗L ⊗(d−N) −→
OXp

m2
Xp,xi

⊗L ⊗d −→
OXp

m2
Xp,xi

+ ID
⊗L ⊗d −→ 0,

J.É.P. — M., 2022, tome 9



On the Bertini regularity theorem for arithmetic varieties 647

where ID is the ideal sheaf of D . Note that the sheaf (mXp,xi/m
2
Xp,xi

) ⊗L ⊗(d−N)

is contained in the kernel of the first morphism as xi ∈ D . So the above right exact
sequence induces the following right exact sequence

OXp

mXp,xi

⊗L ⊗(d−N) −→
OXp

m2
Xp,xi

⊗L ⊗d −→
OXp

m2
Xp,xi

+ ID
⊗L ⊗d −→ 0.

Since D is nonsingular at xi, the multiplication by σD morphism
OXp

m2
Xp,xi

⊗L ⊗(d−N) −→
OXp

m2
Xp,xi

⊗L ⊗d

is not a zero map. This implies that the induced morphism
OXp

mXp,xi

⊗L ⊗(d−N) −→
OXp

m2
Xp,xi

⊗L ⊗d

is also non-zero. As the left term is a κ(x) linear space of dimension 1, this morphism
is in fact injective and hence we have the following short exact sequence

0 −→
OXp

mXp,xi

⊗L ⊗(d−N) −→
OXp

m2
Xp,xi

⊗L ⊗d −→
OXp

m2
Xp,xi

+ ID
⊗L ⊗d −→ 0.

Now, with the same notation as above, xi ∈ Sing(div σ0∩Dp) means that the image
of the restriction of σ0 in (OXp/(m

2
Xp,xi

+ ID))⊗L ⊗d is 0. If xi ∈ Sing(div σ0) ∩Dp,
then σ0 +σ1σD has image 0 by the restriction to (OXp

/m2
Xp,xi

)⊗L ⊗d. By the above
exact sequence, this is a condition on σ1(xi) ∈ H0(xi,L ⊗(d−N)). By the exactness
of the sequence, there is only one value of σ1(xi) ∈ H0(xi,L ⊗(d−N)) which makes
div(σ0 + σ1σD) singular at xi. If moreover we have deg xi > d/Nn, then for any
β ∈ H0(xi,L ⊗(d−N)), by Lemma A.8 the number of sections in H0(Xp,L ⊗(d−N))

whose image in H0(xi,L ⊗(d−N)) by the restriction map is β is bounded above by

p−min(bd/Nc,deg xi) ·#H0(Xp,L
⊗(d−N)) 6 p−d/Nn ·#H0(Xp,L

⊗(d−N)).

Therefore, we have

#
{
σ ∈ H0(Xp,L ⊗d) ;

Sing (div σ ∩Dp) finite,
∃x ∈ Sing(div σ) ∩Dp, deg x > d/Nn

}
#H0(Xp,L ⊗d)

=

#
{

(σ0, σ1);
Sing (div(σ0 + σ1σD) ∩Dp) finite,
∃x ∈ Sing(div(σ0 + σ1σD)) ∩Dp, deg x > d/Nn

}
#H0(Xp,L ⊗d) ·#H0(Xp,L ⊗(d−N))

6
#H0(Xp,L ⊗d) ·

[
O(dn−2)p−d/Nn#H0(Xp,L ⊗(d−N))

]
#H0(Xp,L ⊗d) ·#H0(Xp,L ⊗(d−N))

= O(dn−2)p−d/Nn.

Obviously, the last term is bounded above by p−2 when d is large enough. Hence we
finish the proof. �
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6.2. Bound on the proportion of bad sections. — Now we can prove Proposi-
tion 6.1.

Proof. — We fix a positive integer N that satisfies Lemma 4.3. Let p be a prime such
that Xp is smooth and irreducible. By Lemma 4.4, for any closed point x ∈ |Xp|
satisfying d > N(n deg x), i.e., deg x 6 d/Nn, the restriction morphism

ϕp2,x : H0(Xp2 ,L
⊗d) −→ H0(x′,L ⊗d),

is surjective, where x′ is the first order infinitesimal neighbourhood of x in X .
Therefore the proportion of global sections in H0(Xp2 ,L

⊗d) whose divisor satisfies
dimκ(x) mdiv σ,x/m

2
div σ,x = n is equal to

# Ker ϕp2,x
#H0(Xp2 ,L ⊗d)

= p−(n+1) deg x.

Then with the constant c0 defined in Section 3, we have

#
{
σ ∈ H0(Xp2 ,L

⊗d) ; ∃x ∈ |Xp2 |, deg x 6 d/Nn, dimκ(x) mdiv σ,x/m
2
div σ,x = n

}
#H0(Xp2 ,L ⊗d)

6
∑

x∈|Xp2 |
deg x6d/Nn

p−(n+1) deg x 6
bd/Nnc∑
e=1

#Xp2(Fpe)p−(n+1)e

6
bd/Nnc∑
e=1

c0p
(n−1)e · p−(n+1)e 6

∞∑
e=1

c0p
−2e = c0p

−2 +

∞∑
e=2

c0p
−2e 6 2c0p

−2.

Note that Lemma 6.3 tells us that in H0(Xp2 ,L
⊗d), the proportion of sections

whose divisor has positive dimensional singular locus is bounded above by cHp
−2.

Consequently, as the restriction

ϕd,p : H0(Xp2 ,L
⊗d) −→ H0(Xp,L

⊗d)

is surjective, the proportion of sections σ ∈ H0(Xp2 ,L
⊗d) such that

dim Sing
(

div(σ|Xp)
)
> 0

is also bounded above by cHp−2. To finish the proof, it suffices to bound the proportion
of sections in the set{
σ ∈ H0(Xp2 ,L

⊗d) ; Sing(div σ|Xp) finite, ∃x ∈ |Xp2 |,

deg x > d/Nn and dimκ(x) mdiv σ,x/m
2
div σ,x = n

}
.

Now we take a subset Ed,p ⊂ H0(Xp2 ,L
⊗d) such that the restriction map ϕd,p

induces a bijection from Ed,p to H0(Xp,L ⊗d). For example, if we choose a Z/p2Z-
basis of H0(Xp2 ,L

⊗d), we can take Ed,p to be the set of sections having coefficients
in {0, 1, . . . , p − 1} ⊂ Z/p2Z when written as linear combination of sections in this
basis. Then any section σ ∈ H0(Xp2 ,L

⊗d) can be written uniquely as

σ = σ1 + pσ2
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for some σ1, σ2 ∈ Ed,p. Then Sing(div(σ|Xp
)) = Sing(div(σ1|Xp

)). Now let σ be a
section in H0(Xp2 ,L

⊗d) such that Sing(div(σ|Xp)) is finite. We may assume that as
a set, |Sing(div(σ|Xp))| = {x1, . . . , x`}. Then by Lemma 6.2, we have

` = O(dn−1).

Moreover, for i ∈ {1, . . . , `}, div(σ1 + pσ2) is singular at xi if and only if the image of
σ1 + pσ2 in H0(x′i,L

⊗d) is 0, where x′i is the first order infinitesimal neighbourhood
of xi in Xp2 . Let mxi be the ideal sheaf of xi in Xp2 . Then x′i is defined by the ideal
sheaf m2

xi . Now we have a right exact sequence of sheaves
OXp2

m2
xi

⊗L ⊗d −→
OXp2

m2
xi

⊗L ⊗d −→
OXp2

m2
xi + pOXp2

⊗L ⊗d −→ 0,

where the first morphism is the multiplication by p. Note that

mxi
m2
xi

⊗L ⊗d ⊂
OXp2

m2
xi

⊗L ⊗d

is contained in the kernel of the second morphism, we obtain an exact sequence
OXp2

mxi
⊗L ⊗d −→

OXp2

m2
xi

⊗L ⊗d −→
OXp2

m2
xi + pOXp2

⊗L ⊗d −→ 0.

Note that X is regular. The multiplication by p map
OXp2

m2
xi

⊗L ⊗d −→
OXp2

m2
xi

⊗L ⊗d

cannot be zero, so is (OXp2
/mxi)⊗L ⊗d → (OXp2

/m2
xi)⊗L ⊗d. But if this morphism

is not zero, it must be injective as (OXp2
/mxi) ⊗ L ⊗d is in fact a sheaf supported

on xi, where its stalk is a κ(xi)-vector space of dimension 1. Hence we get a short
exact sequence

0 −→
OXp2

mxi
⊗L ⊗d −→

OXp2

m2
xi

⊗L ⊗d −→
OXp2

m2
xi + pOXp2

⊗L ⊗d −→ 0.

Since these sheaves are all supported on xi, this sequence induces the following exact
sequence of groups

0 −→ H0(xi,L
⊗d) −→ H0(x′i,L

⊗d) −→ H0(x′i ∩Xp,L
⊗d) −→ 0.

It tells us that there is only one value of H0(xi,L ⊗d) for σ2(xi) which makes
dimκ(x) mdiv σ,x/m

2
div σ,x = n for σ = σ1 + pσ2. Note that Lemma A.8 tells us that

when d is large enough, for any x ∈ |Xp2 | satisfying deg x > d/Nn and any value
s ∈ H0(x,L ⊗d), we have

#{σ ∈ H0(Xp,L ⊗d) ; σ(x) = s}
#H0(Xp,L ⊗d)

6 p−bd/Nc 6 p1−d/N .

Since ϕd,p induces a bijection between E and H0(Xp,L ⊗d), we have

#{σ ∈ Ed,p ; σ(x) = s} 6 p1−d/N ·#H0(Xp,L
⊗d).
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Therefore, when d is large enough, we have

#
{
σ ∈ H0(Xp2 ,L

⊗d) ;
Sing(div(σ|Xp)) finite, ∃x ∈ |Xp2 |,
deg x > d/Nn, dimκ(x) mdiv σ,x/m

2
div σ,x = n

}
#H0(Xp2 ,L ⊗d)

=

#
{

(σ1, σ2) ∈ Ed,p × Ed,p;
Sing(div(σ1|Xp

)) finite, ∃x ∈ |Xp2 |, deg x > d/Nn,
dimκ(x) mdiv σ,x/m

2
div σ,x = n, with σ = σ1 + pσ2

}
#H0(Xp2 ,L ⊗d)

6
#Ed,p ·

[
O(dn−1)p1−d/N#H0(Xp,L ⊗d)

]
#H0(Xp2 ,L ⊗d)

= O(dn−1)p1−d/N 6 p−2.

This finishes the proof. �

6.3. Proof of Theorem 1.1. — Note that in Section 5 we have shown that the pro-
portion of sections in H0

Ar(X ,L ⊗d) whose divisor has no singular point of resid-
ual characteristic smaller than or equal to d1/(n+1) tends to ζX (n + 1)−1 already.
Choose ε0 so that 2ε0 satisfies Proposition 2.1, i.e., for d � 1, H0(X ,L ⊗d) has a
basis consisting of sections with norm smaller than e−2ε0d. Then Theorem 1.1 can be
reduced to the following:

Proposition 6.4. — Let X be a regular projective arithmetic variety of absolute di-
mension n, and let L be an ample Hermitian line bundle on X . For any ε such that
0 < ε < ε0, set

Qm
d :=

{
σ ∈ H0(X ,L ⊗d) ;

div σ has a singular point of residual
characteristic between d1/(n+1) and eεd

}
.

When d is sufficiently large, we have

#
(
Qm
d ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

= O(d−1/(n+1)).

Here the constant involved in the big O depends only on X and L .
In particular, denoting Qm =

⋃
d>0 Qm

d , we have

µAr(Q
m) = 0.

Proof. — For any σ ∈ H0(X ,L ⊗d), if div σ has a singular point on the fiber Xp,
then σ mod p2 ∈ Qd,p2 . So we have

#
(
Qm
d ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

6
∑

d1/(n+1)6p6eεd

#{σ ∈ H0
Ar(X ,L ⊗d) ; σ mod p2 ∈ Qd,p2}

#H0
Ar(X ,L ⊗d)

.

As p > d1/(n+1) implies that p2 is odd, we can apply Proposition 2.5 to the case
N = p2 and E = Qd,p2 , and obtain that for any δ such that 0 < δ < 2ε0 (note that
we assume that 2ε0 satisfies Proposition 2.1), when d is large enough and p2 6 eδd,
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we have

#{σ ∈ H0
Ar(X ,L ⊗d) ; σ mod p2 ∈ Qd,p2}

#H0
Ar(X ,L ⊗d)

6 4p−2rk(H0(X ,L⊗d)) ·#Qd,p2

= 4
#Qd,p2

#H0(Xp2 ,L ⊗d)
.

Since X is a regular arithmetic variety, it is irreducible and generically smooth. So if d
is large enough, for any prime number p > d1/(n+1), Xp is irreducible and smooth
over Fp. Then Proposition 6.1 tells us that there exists a constant c > 0 such that

#Qd,p2

#H0(Xp2 ,L ⊗d)
6 cp−2.

Note that if ε > 0 satisfies ε < ε0, then 2ε satisfies the condition on δ. Therefore we
conclude with

#
(
Qm
d ∩H0

Ar(X ,L ⊗d)
)

#H0
Ar(X ,L ⊗d)

6
∑

d1/(n+1)6p6eεd

#{σ ∈ H0
Ar(X ,L ⊗d) ; σ mod p2 ∈ Qd,p2}

#H0
Ar(X ,L ⊗d)

6
∑

d1/(n+1)6p6eεd

4
#Qd,p2

#H0(Xp2 ,L ⊗d)

6
∑

d1/(n+1)6p6eεd

4cp−2 = 4c

( ∑
d1/(n+1)6p6∞

p−2

)
< 4cd−1/(n+1),

which is the statement of the proposition. �

Proof of Theorem 1.1. — Since PA,ε ⊂PB ⊂PA ∪Qm, we get that

|µAr(PA,ε)− µAr(PB)| 6 µAr(Q
m) = 0.

Therefore we have

µAr(PA,ε) = µAr(PB) = ζX (1 + n)−1.

This finishes the proof. �

Proof of Corollary 1.3. — X be a regular projective arithmetic variety of dimension
n, and let L be an ample Hermitian line bundle on X . Let ε′0 > 0 be a constant such
that 2ε′0 satisfies Proposition 2.1, i.e., for d� 1, H0(X ,L ⊗d) has a basis consisting
of sections with norm smaller than e−2ε′0d. Choose the constant c to be a real number
satisfying 1 < c < e2ε′0 . For any R > 1, set L ′ = (L , ‖·‖′) where ‖·‖′ = ‖·‖R−1. Since
(L , ‖·‖e−δ) is ample for any δ > 0, the Hermitian line bundle L ′ is also ample. Then
by construction, for any large enough integer d, H0(X ,L ′⊗d) has a basis consisting
of sections with norm smaller than R−de−2ε′0d = e−(2ε′0+logR)d. Set ε0 = ε′0 + 1

2 logR

and ε = 1
2 log(cR) = 1

2 (log c + logR) < ε0. Then we can apply Theorem 1.1 to L ′

with constant ε0 and ε chosen as above. Then the density result is exactly what we
need to prove. �
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Appendix. Bertini smoothness theorem over finite fields

In the appendix, we prove a slightly generalized version of Poonen’s Bertini theorem
over finite fields. The precise statement is the following:

Theorem A.1. — Let Fq be a finite field of characteristic p. Let Y be a projective
scheme of dimension n over Fq, and X a smooth subscheme of Y of dimension m.
Let L be an ample line bundle on Y . Assume that there exists a smooth open sub-
scheme U in Y containing X. Set

Pd := {σ ∈ H0(Y,L ⊗d) ; div σ ∩X is smooth of dimension m− 1}

and P =
⋃
d>0 Pd. We have

µ(P) = lim
d→∞

#Pd

#H0(Y,L ⊗d)
= ζX(m+ 1)−1 > 0.

Here ζX is the zeta function

ζX(s) =
∏
x∈|X|

(
1−#κ(x)−s

)−1
.

Remark. — If we take Y = PnFq , L = O(1), we get Poonen’s theorem.

Note that for a σ ∈ H0(Y,L ⊗d), div σ∩X is smooth if and only if it is non-singular
at every closed point of div σ∩X. To prove this theorem, we classify the closed points
of X by their degree, so that for each degree there exist only finitely many closed
points. In Poonen’s proof, he classifies the closed points into three parts for each
L ⊗d, which are the following: closed points of degree smaller than or equal to a
chosen positive integer r, closed points of degree between r and d/(m+ 1), and closed
points of degree bigger than d/(m+ 1). Then he estimates the number of sections in
H0(Y,L ⊗d) whose divisor has singular points in these parts, respectively.

Our proof follows his method in a faithful way. But we need more explicit bounds
for bad sections, so as to get the speed of convergence for the final limit. For technical
reasons, we need the following result:

Lemma A.2. — Let L be an ample line bundle on a projective scheme Y over a field k.
Then there exists a positive integer N such that

(i) L ⊗d is very ample for all d > N ;
(ii) for any a, b > N , the natural morphism

H0(Y,L ⊗a)⊗H0(Y,L ⊗b) −→ H0(Y,L ⊗(a+b))

is surjective.

Proof. — This is a classical result. The first statement is part of [Laz04, Th. 1.2.6],
and the second statement can be deduced directly from [Laz04, Th. 1.8.3]. �
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We choose a positive integer r, an integer N satisfying this lemma and depending
possibly on q, and set

Pd,6r = {σ ∈ H0(Y,L ⊗d) ; ∀x ∈ X, deg x 6 r,

div σ ∩X is smooth of dimension m− 1 at x},

Qmed
d,>r = {σ ∈ H0(Y,L ⊗d) ; ∃x ∈ X, r < deg x 6 d/(m+ 1)N,

div σ ∩X is singular at x},

Qhigh
d = {σ ∈ H0(Y,L ⊗d) ; ∃x ∈ X, deg x > d/(m+ 1)N,

div σ ∩X is singular at x}.

Then clearly
Pd ⊂Pd,6r ⊂Pd ∪Qmed

d,>r ∪Qhigh
d .

We give bound for the proportion of these three sets.

A.1. Singular points of small degree

Lemma A.3. — Let Y be a projective scheme over Fq, L an ample line bundle over Y .
Let Z be a finite subscheme of Y . Let N be a positive integer satisfying Lemma A.2.
Then the restriction morphism

φd,Z : H0(Y,L ⊗d) −→ H0(Z,L ⊗d)

is surjective for all d > NhZ , where hZ = dimFq H0(Z,OZ).

Proof. — If L is very ample, by [Poo04, Lem. 2.1], φd,Z is surjective when d > hZ−1,
and this lemma is also true. When L is only ample, for any δ0 > N , L δ0 is very
ample and φdδ0,Z is surjective for any d > hZ − 1. Now for any d > NhZ , we can find
sd > hZ − 1 and N 6 rd 6 2N such that d = sdN + rd. By Lemma A.2, we have a
surjection

H0(Y,L ⊗sdN )⊗H0(Y,L ⊗rd) −→ H0(Y,L ⊗d).

Moreover, since Z is finite, for all d > 0, we have H0(Z,L ⊗d) ' H0(Z,OZ). These
isomorphisms are not canonical, but can give us an isomorphism

H0(Z,L ⊗sdN )⊗H0(Z,OZ) H0(Z,L ⊗rd) −→ H0(Z,L ⊗d)

which makes the following diagram commutative:

H0(Y,L ⊗sdN )⊗H0(Y,L ⊗rd) // //

��

H0(Y,L ⊗d)

��

H0(Z,L ⊗sdN )⊗H0(Z,OZ) H0(Z,L ⊗rd)
∼ // H0(Z,L ⊗d).

Thus it suffices to show that the left vertical morphism is surjective. Since Y is
projective, H0(Y,L ⊗rd) is of finite Fq-dimension. Let H0(Y,L ⊗rd) =

⊕
i Fqti. As L rd

is very ample, it is globally generated. So for each z ∈ |Z|, we can find one ti in the
set of generators such that ti(z) 6= 0. Since surjectivity is stable under field base
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change, replacing Fq by a finite field extension, we can assume that there exists a
linear combination t =

∑
i aiti such that t(z) 6= 0 for any z ∈ |Z|. Then we have

H0(Y,L ⊗sdN )⊗ Fqt �
�

//

����

H0(Y,L ⊗sdN )⊗H0(Y,L ⊗rd)

��

H0(Z,L ⊗sdN )⊗ Fqt|Z // H0(Z,L ⊗sdN )⊗H0(Z,OZ) H0(Z,L ⊗rd).

By our construction, the section t trivializes H0(Z,L ⊗rd). So the bottom morphism
is an isomorphism. Hence the right vertical morphism is surjective. By the commuta-
tivity of the first diagram, the morphism

H0(Y,L ⊗d) −→ H0(Z,L ⊗d)

is also surjective, which is what we need to show. �

With this lemma, we can control the proportion of Pd,6r.

Proposition A.4. — Let Y be a projective scheme of dimension n over Fq equipped
with an ample line bundle L . Let X be a subscheme smooth over Fq of dimension m
of Y . Set

Pd,6r = {σ ∈ H0(Y,L ⊗d) ; ∀x ∈ X, deg x 6 r,

div σ ∩X is smooth of dimension m− 1 at x},

and P6r =
⋃
d>0 Pd,6r. We have

µ(P6r) = lim
d→∞

#Pd,6r

#H0(Y,L ⊗d)
=

∏
deg x6r

(
1− q−(m+1) deg x

)
.

In fact, with a positive integer N satisfying Lemma A.2, for any

d > N
( ∑

deg x6r

(1 +m) deg x
)
,

we have
#Pd,6r

#H0(Y,L ⊗d)
=

∏
deg x6r

(
1− q−(m+1) deg x

)
.

Proof. — For any closed point x of X, let x′ be the closed subscheme in X defined
by m2

x, where mx is the ideal sheaf of x in X. Then x′ is the first order infinitesimal
neighbourhood of x in X. Let X ′6r be the union of the closed subschemes x′ for all
x ∈ X with deg x 6 r. Note that the number of closed points of X with degree smaller
than or equal to r is finite. This union is a disjoint finite union. So X ′6r is a finite
subscheme of X defined by the ideal sheaf

∏
deg x6r m

2
x. Hence

H0(X ′6r,OX′6r ) = H0(X ′6r,
∏

deg x6r

Ox′) =
∏

deg x6r

H0(Y,OX/m
2
x).

Since X is smooth over Fq, for any closed point x, we have

dimκ(x) H0(X,mx/m
2
x) = m.
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Hence
dimFq H0(X,OX/m

2
x) = (1 +m) deg x,

and we have
dimFq H0(X ′6r,OX′6r ) =

∑
deg x6r

(1 +m) deg x.

Apply Lemma A.3 to the case Z = X ′6r. We get that the morphism

H0(Y,L ⊗d) −→ H0(X ′6r,L
⊗d)

is surjective if d > N
(∑

deg x6r(1 +m) deg x
)
.

Note that for a section σ ∈ H0(Y,L ⊗d), the intersection div σ ∩X is singular at
a closed point x ∈ X if and only if the image of σ in H0(x′,L ⊗d) by the restriction
map

H0(Y,L ⊗d) −→ H0(x′,L ⊗d)

is zero. So div σ ∩X has no singular point of degree smaller than or equal to r if and
only if its restriction to H0(X ′6r,OX′6r ) '

∏
deg x6r H0(x′,L ⊗d) lies in the subset∏

deg x6r

(
H0(x′,L ⊗d)− {0}

)
. So for any d > N

(∑
deg x6r(1 +m) deg x

)
,

#Pd,6r

#H0(Y,L ⊗d)
=

#
∏

deg x6r

(
H0(X,OX/m2

x)− {0}
)

#
∏

deg x6r H0(X,OX/m2
x)

=

∏
deg x6r

(
q(m+1) deg x − 1

)∏
deg x6r q

(m+1) deg x
=

∏
deg x6r

(
1− q−(m+1) deg x

)
.

This shows the result. �

A.2. Singular points of medium degree

Lemma A.5. — Let Y be a projective scheme over Fq of dimension n and X a smooth
subscheme of Y of dimension m. Let L be an ample line bundle of Y . Let N be a
positive integer satisfying Lemma A.2. For a fixed d, let x ∈ X be a closed point of X
of degree e such that

e 6
⌊ d

N(m+ 1)

⌋
.

Then the proportion of σ ∈ H0(Y,L ⊗d) such that div σ∩X is not smooth of dimension
m− 1 at x is q−(m+1)e.

Proof. — Let x′ be the first order infinitesimal neighbourhood of x in X. Apply
Lemma A.3 to the case Z = x′. We obtain that the restriction map

H0(Y,L ⊗d) −→ H0(x′,L ⊗d)

is surjective when
Nh0(x′,L ⊗d) = N(m+ 1) deg x 6 d,

that is, when

deg x 6
⌊ d

N(m+ 1)

⌋
.
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Since a section σ ∈ H0(Y,L ⊗d) is such that div σ ∩X is singular at x if and only if
the image of σ in H0(x′,L ⊗d) is 0. Hence when the degree condition for x is satisfied,
the proportion of such sections is equal to

1

#H0(x′,L ⊗d)
= q−(m+1)e,

Thus we get the result. �

Proposition A.6. — Let Y be a projective scheme over Fq of dimension n and X a
smooth subscheme of Y of dimension m. Let L be an ample line bundle of Y . Let N
be a positive integer satisfying Lemma A.2. Set

Qmed
d,>r =

{
σ ∈ H0(Y,L ⊗d) ; ∃x ∈ X, r < deg x 6 d/(m+ 1)N,

div σ ∩X is singular at x
}
.

Then there exists a constant c0 such that
#Qmed

d,>r

#H0(Y,L ⊗d)
6 2c0q

−r.

In particular,
µ(Qmed

d,>r) 6 2c0q
−r.

Proof. — Identifying Y to a closed subscheme of a projective space, we can see X as
a subscheme of the same projective space. By [LW54], we can find a constant c0 > 0

such that for any e > 1,
#X(Fqe) 6 c0qme.

Let N be the positive integer as in the previous lemma. Then the lemma tells us that
if x ∈ X is a closed point of degree e 6 bd/(m+ 1)Nc, the proportion of sections
σ ∈ H0(Y,L ⊗d) such that div σ ∩X is singular at x is q−(m+1)e. Therefore we have

#Qmed
d,>r

#H0(Y,L ⊗d)
6
bd/(m+1)Nc∑

e=r+1

#X(Fqe) · q−(m+1)e

<

∞∑
e=r

#X(Fqe)q−(m+1)e6
∞∑
e=r

c0q
em · q−(m+1)e=

∞∑
e=r

c0q
−e=

c0q
−r

1− q−1
.

Since q > 2, we have 1 − q−1 > 1/2 and c0q
−r/(1− q−1) 6 2c0q

−r. Hence we get
µ(Qmed

d,>r) 6 2c0q
−r. This implies our result. �

A.3. Singular points of high degree

Lemma A.7. — Let Y be a projective scheme over Fq of dimension n. Let Z be a finite
closed subscheme of Y whose support is included in the smooth locus of Y . Let L be
an ample line bundle over Y and let N be a positive integer satisfying Lemma A.2.
After replacing Fq by a finite extension of Fq if needed, we can find a linear subspace
V ⊂ H0(Y,L N ) of dimension n+ 1 such that the rational map

ϕ : Y P(V ∨),

with V ∨ the dual space of V , is dominant, and that ϕ induces a closed embedding of Z
in P(V ∨).
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Proof. — We may assume that |Z| = {z1, . . . , zl}. It suffices to find a linear subspace
V ⊂ H0(Y,L N ) of dimension n+ 1 such that the induced rational map

ϕ : Y P(V ∨)

is defined and étale on a neighbourhood of Z in Y , and satisfies the condition that
ϕ(zi) 6= ϕ(zj) for any zi 6= zj ∈ |Z|.

Since L ⊗N is very ample on Y , we can first embeds Y in PK = P(H0(Y,L ⊗N )∨).
Replacing Fq by a larger finite field if needed, we can find a section s ∈ H0(Y,L ⊗N )

which is non-zero at any point of |Z|. Write U1 := Y rdiv s. The embedding of Y in PK

induces an embedding of U1 in AK . The hyperplane PKrAK is defined by the section
s ∈ H0(PK ,O(1)) = H0(Y,L ⊗N ). Moreover, the scheme Z, being a closed subscheme
of U1, is also embedded in AK . To finish the proof, we only need to find a projection
AK → An which is étale when restricted to a neighbourhood of Z in U1 and injective
when restricted to Z. In fact, we show that a general projection satisfies these two
conditions. Here general means all projections AK → An contained in a non-empty
open subscheme of Gr(n,K), which is the moduli space of such projections.

For a general projection AK → An, the composition ϕ : U1 → AK → An is étale
on a neighbourhood of Z in U1. To see this, we show that for a general projection
AK → An, ϕ : U1 → AK → An is étale at any point of Z. For zi ∈ Z, the exact
sequence

0 −→ CU1/AK ,zi −→ ΩAK ,zi −→ ΩU1,zi −→ 0

splits, and ΩU1,zi is free of rank n by hypothesis. Therefore for any projection AK→An,
the composition ϕ : U1 → AK → An induces a morphism on differential sheaves

ΩAn,ϕ(zi) −→ ΩAK ,zi −→ ΩU1,zi .

By the Jacobian criterion, a general projection AK → An induces an isomorphism

ΩAn,ϕ(zi)
∼−→ ΩU1,zi .

As Z is a finite scheme, a general projection AK → An is étale at any point of Z.
Moreover, if a AK → An sends two different points zi, zj of Z to the same point, then
it contracts the A1 containing zi, zj . Projections contracting a certain fixed line is
contained in a strictly closed subscheme of the moduli space of projections AK → An.
Thus a general projection do not contract this line. Since Z is finite, there are only
finitely many lines in AK joining two of the points in Z. Therefore a general projection
AK → An sends the set of points |Z| injectively to An, hence injective when restricted
to Z. Such a projection induces a rational map PK Pn, which shows our result. �

Lemma A.8. — Let Y,Z,L , N be as in the above lemma. Set hZ = dimFq H0(Z,OZ).
Then for any d > 2N the proportion of global sections σ ∈ H0(Y,L ⊗d) which are sent
to 0 by the restriction morphism

H0(Y.L ⊗d) −→ H0(Z,L ⊗d)

is at most q−min(bd/Nc,hZ).
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Proof. — By the previous lemma, we can find a finite extension F of Fq and a subspace
V ⊂ H0(YF,L ⊗N ) of dimension n+ 1 which induces a dominant rational map

ϕ : YF P(V ∨)

such that ϕ|ZF is injective. Now we use this rational map to show that
dimF Im

(
H0(YF,L

⊗d) −→ H0(ZF,L
⊗d)
)
> min(bd/Nc, hZ).

As the dimension of the image is invariant under field base change, we then get
dimFq Im

(
H0(Y,L ⊗d) −→ H0(Z,L ⊗d)

)
> min(bd/Nc, hZ).

Let (σ0, . . . , σn) be a base of V and H0 = div σ0 in YF. The sections σi can also be
regarded as global sections of O(1) on P(V ∨). This way we can identify P(V ∨)rdiv σ0

with An with coordinates x1 = σ1/σ0, . . . , xn = σn/σ0. Then the rational map ϕ can
be represented by a morphism

ϕ : YF rH0 −→ An.

Moreover, we can assume that ZF is a closed subscheme of YF rH0.
For all r>0 with (r+1)N<d, the sheaf L ⊗d⊗O(−rH0) ' L ⊗(d−rN) is very ample

on YF. So we can find a section σH0
∈ H0(YF,L ⊗d) which vanishes of order r along H0

but does not vanish identically on YF. Let P ∈ F[x1, . . . , xn] be a polynomial of total
order smaller than or equal to r. Then the section ϕ∗(P ) · σH0 ∈ H0(YF rH0,L ⊗d)

extends to a global section on YF. As ϕ is dominant, linearly independent polyno-
mials of degree smaller than or equal to r induce linearly independent sections in
H0(YF rH0,L ⊗d), hence in H0(YF,L ⊗d). Thus we get a injective homomorphism

F[x1, . . . , xn]6r ↪−→ H0(YF,L
⊗d).

Moreover, we can choose an isomorphism H0(ZF,L ⊗d)
∼→ H0(ZF,OZF) so that the

following diagram commutes:
F[x1, . . . , xn]6r �

�
//

��

H0(YF,L ⊗d)

��

H0(ϕ(ZF),Oϕ(ZF))
∼
((

H0(ZF,L ⊗d)
∼
ww

H0(ZF,OZF).

Then we have
dimF Im

(
H0(YF,L

⊗d)→ H0(ZF,L
⊗d)
)

> dimF Im
(
F[x1, . . . , xn]6r → H0(ϕ(ZF),Oϕ(ZF))

)
> min(hZ , r + 1),

where the last inequality follows from [Poo04, Lem. 2.5]. Now choose r=bd/Nc−1,
which is possible as (r + 1)N = bd/Nc ·N 6 d. Then the above inequality becomes

dimF Im
(
H0(YF,L

⊗d) −→ H0(ZF,L
⊗d)
)
> min(hZ , bd/Nc).

This induces, as said above, that

dimFq Im
(
H0(Y,L ⊗d) −→ H0(Z,L ⊗d)

)
> min(bd/Nc, hZ).
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Therefore the proportion of global sections σ ∈ H0(Y,L ⊗d) which are sent to 0 by
the restriction morphism H0(Y.L ⊗d)→ H0(Z,L ⊗d) is at most q−min(bd/Nc,hZ). �

Proposition A.9. — Let Fq be a finite field of characteristic p. Let Y be a projective
scheme of dimension n over Fq, and X a smooth subscheme of Y of dimension m.
Assume that there exists a smooth open subscheme U in Y containing X. Let L be
an ample line bundle on Y , and let N be a sufficiently large integer. Set
Qhigh
d =

{
σ ∈ H0(Y,L ⊗d) ; ∃x∈X, deg x>d/(m+ 1)N, div σ ∩X is singular at x

}
and Qhigh =

⋃
d>0 Qhigh

d . There exists a constant c > 0 only depending on X,U and
the choice of N , independent of d, such that

#Qhigh
d

#H0(Y,L ⊗d)
= O(dm · q−cd/p).

Here the constant involved in the big O only depends on the sheaf L , and the schemes
X = X ×Spec Fq SpecFq, Y = Y ×Spec Fq SpecFq, where Fq is any algebraic closure
of Fq, hence is independent of d, q. In particular,

µ(Qhigh) = lim sup
d→∞

#Qhigh
d

#H0(Y,L ⊗d)
= 0.

We need some reduction before proving this proposition.

Lemma A.10. — Let {Uα}α∈I be a finite open covering of U . If the proposition is true
for all X ∩ Uα, then it is also true for X.

Proof. — If {Uα}α∈I is a finite open covering of U , then X =
⋃
α∈I(X ∩ Uα). If we

write

Qhigh
d,α =

{
σ ∈ H0(Y,L ⊗d) ; ∃x ∈ X ∩ Uα, deg x > d/(m+ 1)N,

div σ ∩X ∩ Uα is singular at x
}
,

then we have
Qhigh
d ⊂

⋃
α∈I

Qhigh
d,α .

Hence if the proposition is true for all X ∩Uα, we can find constants cUα for each Uα
such that

#Qhigh
d,α

#H0(Y,L ⊗d)
= O(dm · q−cUαd/p),

Then setting c = minα{cUα}, we get
#Qhigh

d

#H0(Y,L ⊗d)
6
∑
α∈I

#Qhigh
d,α

#H0(Y,L ⊗d)
= O(dm · q−cd/p). �

Therefore we may replace X by one of the X ∩ Uα. In particular, we have the
following:

Corollary A.11. — We may assume that the smooth open subscheme U containing X
in the statement satisfies the following condition: there exist t1, . . . , tn ∈ H0(U,OY )

such that X is defined by tm+1 = · · · = tn = 0, and that

Ω1
U/Fq '

n⊕
i=1

OUdti, Ω1
X/Fq '

m⊕
i=1

OXdti.
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Proof. — As the two condition in the corollary is satisfied locally at any point of X,
the corollary follows from Lemma A.10 as U is quasi-compact. �

Lemma A.12. — For any positive integer M , with a choice of an integer N0 >M , we
can cover U by finitely many open subschemes U ′ satisfying the condition that we can
find a section τ ∈ H0(Y,L ⊗(N0+1)) and sections τ1, . . . , τs ∈ H0(Y,L ⊗N0) such that

U ′ = Y r div(τ) =
s⋃
j=1

(Y r div(τj)) .

Proof. — First, take an integer N ′0 > 0 satisfying Lemma A.2 and that IYrU ⊗L ⊗d

is globally generated for all d > N ′0. Here IYrU is the ideal sheaf of the closed
subscheme Y rU with the reduced induced structure. We may then choose non-zero
sections

τ ′1, . . . , τ
′
t ∈ H0(Y,IYrU ⊗L ⊗N

′
0) ⊂ H0(Y,L ⊗N

′
0),

generating IYrU ⊗ L ⊗N
′
0 . This means that set theoretically, we have Y r U =⋂

i div(τ ′i). In other words,
U =

⋃
i

(
Y r div(τ ′i)

)
,

where Y r div(τ ′i) are open subschemes of Y . Without loss of generality, we may
assume that U itself is one of such open subschemes, i.e., there exists a section τ ′ ∈
H0(Y,L ⊗N

′
0) such that U = Y r div(τ ′). We denote div(τ ′) by D.

Now set N0 = rN ′0 − 1 for some positive integer r such that N0 > M and that
the sheaf ID ⊗L ⊗N0 is globally generated. Then in particular we can find sections
τ1, . . . , τs ∈ H0(Y,ID ⊗ L ⊗N0) ⊂ H0(Y,L ⊗N0) such that D =

⋂s
j=1 div(τj) set

theoretically. This suggests that

U =
s⋃
j=1

(Y r div(τj)) .

We also set τ = (τ ′)r ∈ H0(Y,L ⊗(N0+1)). In this situation we still have D = div(τ)

set theoretically. The section τ and sections τ1, . . . , τs are then what we need in the
lemma. �

Corollary A.13. — We may assume that the smooth open subscheme U containing X
in the statement satisfies the condition in Corollary A.11 and the condition that we
can find a section τ ∈ H0(Y,L ⊗(N0+1)) and sections τ1, . . . , τs ∈ H0(Y,L ⊗N0) such
that

U = Y r div(τ) =
s⋃
j=1

(Y r div(τj)) .

Proof. — This is a direct consequence of Lemma A.10 and Lemma A.12. �

For any d > 0 and any j such that 1 6 j 6 s, consider the morphism

Φj : H0(Y,L ⊗d) −→ H0(U,OY )

σ 7−→ σ · τdj /τd.
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For simplicity of notations, we don’t distinguish morphisms Φj for different d. This
will not cause any confusion as the source of Φj will be clear by the context. Then
for any σ ∈ H0(Y,L ⊗d), we have

div σ ∩ U =
⋃

16j6s

(
Uj ∩ div Φj(σ)

)
,

where Uj := (Y r div(τj)). Let ∂i ∈ DerFq (OU ,OU ) ' HomOU (Ω1
U/Fq ,OU ) be the

dual of dti ∈ H0(U,Ω1
U/Fq ). If a global section σ ∈ H0(Y,L ⊗d) is such that div σ ∩X

is singular at a closed point x ∈ X, then for a Uj containing x, we have
Φj(σ)(x) = (∂1Φj(σ)) (x) = · · · = (∂mΦj(σ)) (x) = 0.

We want to show that there exists a positive integer N1 such that for each i,
(∂iΦj(σ)) · τd+N1 can be extended to a global section of L ⊗(N0+1)(d+N1). To show
this, we need to study the derivation map

d : H0(U,OY ) −→ H0(U,Ω1
Y/Fq ).

For any section f ∈ H0(U,OY ), we denote its image under the derivation by df ∈
H0(U,Ω1

Y/Fq ).

Lemma A.14. — In the setting of the above corollary, there exists a positive integer d0

such that when d > d0, for any f ∈ H0(U,OY ), if f · τd can be extended to a global
section in H0(Y,L ⊗(N0+1)d), then df · τd+1 can be extended to a global section in
H0(Y,Ω1

Y/Fq ⊗L ⊗(N0+1)(d+1)).

Proof. — By assumption, the sheaf L ⊗(N0+1) is very ample. So it induces a closed
embedding

Y ↪−→ P
(
H0(Y,L ⊗(N0+1))

)
.

To simplify the notation, we denote the projective space P
(
H0(Y,L ⊗(N0+1))

)
by PK0

with homogeneous coordinates T0, T1, . . . , TK0
. In particular, let T0 be the section

corresponding to τ in H0(PK0 ,O(1)). Therefore the closed embedding Y ↪→ PK0

identifies U with a closed subscheme of AK0 = PK0 r div T0. Write xi = Ti/T0. Then
x1, . . . , xK0

form a system of coordinates of AK0 . Let d0 > 0 be an integer such that
for any d > d0, the restriction morphism

H0(PK0 ,O(d)) −→ H0(Y,L ⊗(N0+1)d)

is surjective. Take f ∈ H0(U,OY ) and d > d0 such that f · τd can be extended to a
global section in H0(Y,L ⊗(N0+1)d). The surjectivity of the above restriction morphism
suggests that we can find F̃ ∈ H0(PK0 ,O(d)) whose restriction to H0(Y,L ⊗(N0+1)d)

is the chosen extension of f · τd. Set
f̃ = F̃ /T d0 ∈ H0(AK0 ,OPK0 ).

Then f̃ has image f when restricted to U . So f̃ = H0(AK0 ,OPK0 ) is a section such
that f̃ · T d0 can be extended to a section in H0(PK0 ,O(d)) and that f̃ |U = f .

Now we consider the derivation

H0(AK0 ,OPK0 ) −→ H0(AK0 ,Ω1
PK0/Fq )
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sending f̃ to

df̃ =

K0∑
i=1

( ∂

∂xi
f̃
)

dxi.

The fact that f̃ · T d0 can be extended to a section in H0(PK0 ,O(d)) means that f̃ is
a polynomial of total degree smaller than or equal to d in x1, . . . xK0 . As for each i,
∂
∂xi

f̃ is of degree strictly smaller than f̃ if non-zero, all
(
∂
∂xi

f̃
)
·T d−1

0 can be extended
to a global section in H0(PK0 ,O(d− 1)). Note that we have a short exact sequence

0 −→ Ω1
PK0/Fq −→ OPK0/Fq (−1)⊕(K0+1) −→ OPK0/Fq −→ 0

identifying Ω1
PK0/Fq with a locally free subsheaf of OPK0/Fq (−1)⊕(K0+1). Under this

identification, for each 1 6 i 6 K0 we can write

dxi = d (Ti/T0) = (1/T0) ei − (Ti/T
2
0 ) e0,

where e0, . . . , eK0 is a chosen basis of OPK0/Fq (−1)⊕(K0+1). Therefore for each i such
that 16 i6K0, dxi·T 2

0 can be extended to a global section in H0(PK0 ,Ω1
PK0/Fq⊗O(2)).

As a consequence, df̃ · T d+1
0 can be extended to a global section in the space

H0(PK0 ,Ω1
PK0/Fq ⊗ O(d+ 1)).

When restricted to Y , we have a natural morphism(
Ω1

PK0/Fq ⊗ O(d+ 1)
)∣∣
Y
'
(
Ω1

PK0/Fq

)∣∣
Y
⊗L ⊗(d+1) r−−→ Ω1

Y/Fq ⊗L ⊗(d+1),

which gives us a section r(df̃ · T d+1
0 ) ∈ H0(Y,Ω1

Y/Fq ⊗L ⊗(N0+1)(d+1)). To finish the
proof, it suffices to show that

r
(
df̃ · T d+1

0

)∣∣
U

= df · τd+1.

But as r is induced by
(
Ω1

PK0/Fq

)∣∣
Y
→ Ω1

Y/Fq , it commutes with the multiplication by
T0, τ . So the equality is clear. Therefore r

(
df̃ · T d+1

0

)
is an extension of df · τd+1 in

H0(Y,Ω1
Y/Fq ⊗L ⊗(N0+1)(d+1)). �

Lemma A.15. — There exists a positive integer N ′1 which only depends on the sections
t1, . . . , tn ∈ H0(U,OY ) and τ ∈ H0(Y,L ⊗(N0+1)) satisfying the following condition:
if a section f ∈ H0(U,OY ) is such that df · τd can be extended to a global section
in H0(Y,Ω1

Y/Fq ⊗L ⊗(N0+1)d), then for any i such that 1 6 i 6 m and any δ > N ′1,
the section ∂if · τd+δ can be extended to a global section of L ⊗(N0+1)(d+δ). If this
condition is satisfied by N ′1, it is also satisfied by any integer bigger than N ′1.

Proof. — Note that for each 1 6 i 6 n, the dual

∂i ∈ DerFq (OU ,OU ) ' HomOU (Ω1
U/Fq ,OU )

of dti ∈ H0(U,Ω1
U/Fq ) can be regarded as a section in H0

(
U,HomOY (Ω1

Y/Fq ,OY )
)
.

Since HomOY (Ω1
Y/Fq ,OY ) is coherent and that U is the complement of div τ

in Y , there exists an integer N ′1,i > 0 such that for any δ > N ′1,i, the section
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∂i · τ δ ∈ H0
(
U,HomOY (Ω1

Y/Fq ,OY )⊗L (N0+1)δ
)
can be extended to a global section

in H0
(
Y,HomOY (Ω1

Y/Fq ,OY )⊗L (N0+1)δ
)
. Set

N ′1 = max{N ′1,i ; 1 6 i 6 n}.

Then when δ > N ′1, for any i such that 1 6 i 6 n the section
∂i · τ δ ∈ H0

(
U,HomOY (Ω1

Y/Fq ,OY )⊗L (N0+1)δ
)

can be extended to a global section in
H0
(
Y,HomOY (Ω1

Y/Fq ,OY )⊗L (N0+1)δ
)
' Hom(Ω1

Y/Fq ,L
(N0+1)δ).

Note that
Hom(Ω1

Y/Fq ,L
(N0+1)δ) ' Hom(Ω1

Y/Fq ⊗L (N0+1)d,L (N0+1)(d+δ)).

The global section
(∂i · τ δ)

(
df · τd

)
∈ H0(Y,L (N0+1)(d+δ))

satisfies (
(∂i · τ δ)(df · τd)

) ∣∣
U

= (∂if) · τd+δ,

which means that (∂if) · τd+δ can be extended to a global section of L (N0+1)(d+δ).
Hence we conclude. �

Lemma A.16. — There exists a positive integer N1 which only depends on the sheaf L ,
the sections t1, . . . , tn ∈ H0(U,OY ) and τ ∈ H0(Y,L ⊗(N0+1)) such that for any σ ∈
H0(Y,L ⊗d), any i such that 1 6 i 6 m, 1 6 j 6 s, the section (∂iΦj(σ)) · τd+δ can
be extended to a global section of L ⊗(N0+1)(d+δ) for any δ > N1. If this condition is
satisfied by N1, it is also satisfied by any integer bigger than N1.

Proof. — For any σ ∈ H0(Y,L ⊗d), as Φj(σ) = σ · τdj /τd, evidently Φj(σ) · τd can be
extended to a global section in H0(Y,L ⊗(N0+1)d). Let d0 be the constant defined in
Lemma A.14. In particular, Φj(σ) · τd+d0 can also be extended to a global section in
H0(Y,L ⊗(N0+1)(d+d0)). Then by Lemma A.14 dΦj(σ) · τd+d0+1 can be extended to a
global section in H0(Y,Ω1

Y/Fq ⊗L ⊗(N0+1)(d+d0+1)). Set N1 = N ′1 + d0 + 1. So when
δ > N1, δ − d0 − 1 > N ′1. Applying Lemma A.15, we obtain that for any δ > N1, the
section

(∂iΦj(σ)) · τd+δ = (∂iΦj(σ)) · τ (d+d0+1)+(δ−d0−1)

can be extended to a global section in H0(Y,L (N0+1)(d+δ)). �

Now we assume that p is the characteristic of Fq and that (N0 + 1, p) = 1. We also
assume that N1 > N0. Take N = (N0 + 1)(N1 + p − 1) + p. For any d > N , there
exists an `d with N1 6 `d 6 N1 + p such that

d mod p ≡ (N0 + 1)`d mod p.

Set kd = (1/p)[d − (N0 + 1)`d]. Then for any d > N , fixing extensions of tiτ `d to
global sections for all i such that 1 6 i 6 m, we can construct morphisms of groups

H0(Y,L ⊗kd) −→ H0(Y,L ⊗d)

β 7−→ βp · tiτ `d
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for any i such that 1 6 i 6 m, and

H0(Y,L ⊗kd) −→ H0(Y,L ⊗d)

γ 7−→ γp · τ `d .

We construct a surjective morphism

H0(Y,L ⊗d)×
( m∏
i=1

H0(Y,L ⊗kd)

)
×H0(Y,L ⊗kd) −→ H0(Y,L ⊗d)

which sends (σ0, (β1, . . . , βm), γ) to

σ = σ0 +

m∑
i=1

βpi tiτ
`d + γpτ `d .

Naturally, this morphism commutes with all Φj :

Φj(σ) = Φj(σ0) +

m∑
i=1

Φj(βi)
ptiΦj(τ)`d + Φj(γ)pΦj(τ)`d .

Since

∂i[Φj(βi)
ptiΦj(τ)`d ] = Φj(βi)

pΦj(τ)`d + `dΦj(βi)
ptiΦj(τ)`d−1 · ∂iΦj(τ),

and for i′ 6= i,

∂i[Φj(βi′)
pti′Φj(τ)`d ] = `dΦj(βi′)

pti′Φj(τ)`d−1 · ∂iΦj(τ),

the differential of Φj(σ) can be written as

∂iΦj(σ) =

[ m∑
i′=1

`dΦj(βi′)
pti′Φj(τ)`d−1 + `dΦj(γ)pΦj(τ)`d−1

]
· ∂iΦj(τ)

+ ∂iΦj(σ0) + Φj(βi)
pΦj(τ)`d

= ∂iΦj(σ0) +
`d(Φj(σ)− Φj(σ0))

Φj(τ)
∂iΦj(τ) + Φj(βi)

pΦj(τ)`d .

To prove Proposition A.9, for a section σ ∈ H0(Y,L ⊗d), we need to study the singular
locus of div σ ∩X. Since

div σ ∩ U =
⋃

16j6s

(
Uj ∩ div Φj(σ)

)
,

and X ⊂ U , we have

Sing(div σ ∩X) ⊂
⋃

16j6s

(
Uj ∩ Sing(div(Φj(σ)) ∩X)

)
.

Note that for a σ ∈ H0(Y,OY ), div(Φj(σ)) ∩ X is singular at a point x ∈ X if and
only if

Φj(σ)(x) = ∂1Φj(σ)(x) = · · · = ∂mΦj(σ)(x) = 0,

by conditions on ∂i, 1 6 i 6 n. Therefore we have

Sing(div(Φj(σ)) ∩X) = div(Φj(σ)) ∩ div(∂1Φj(σ)) ∩ · · · ∩ div(∂mΦj(σ))

J.É.P. — M., 2022, tome 9



On the Bertini regularity theorem for arithmetic varieties 665

in U . Now for any

(σ0, (β1, . . . , βm), γ) ∈ H0(Y,L ⊗d)×
( m∏
i=1

H0(Y,L ⊗kd)

)
×H0(Y,L ⊗kd),

set
gj,i(σ0, βi) = ∂iΦj(σ0)− `dΦj(σ0)

Φj(τ)
∂iΦj(τ) + Φj(βi)

pΦj(τ)`d ,

and
Wj,i := X ∩ Uj ∩ {gj,1 = · · · = gj,i = 0}.

Then for any σ = σ0 +
∑n−1
i=1 β

p
i tiτ

`d
0,p + γpτ `d0,p, comparing the expressions of gj,i and

∂iΦj , which give

gj,i(σ0, βi) = ∂iΦj(σ)− `dΦj(σ)

Φj(τ)
∂iΦj(τ),

we have
gj,i(σ0, βi)|div Φj(σ) = ∂iΦj(σ)|div Φj(σ).

Applying Lemma A.16 to the section σ ∈ H0(Y,L ⊗d), we know that (∂iΦj(σ)) · τd+δ

can be extended to a global section of L ⊗(N0+1)(d+δ) for any δ > N1. By
the same lemma, the section ∂iΦj(τ) · τ (N0+1)+δ extends to a global section of
L ⊗(N0+1)((N0+1)+δ) for any δ > N1. Note that on U we have

`dΦj(σ)

Φj(τ)
= `d

σ · τdj
τd

·
(τ · τN0+1

j

τN0+1

)−1

= `d
σ · τd−N0−1

j

τd−N0
.

So the section
`dΦj(σ)

Φj(τ)
∂iΦj(τ) · τd+δ =

(`dΦj(σ)

Φj(τ)
· τd−N0

)
·
(
∂iΦj(τ) · τ (N0+1)+(δ−1)

)
extends to a global section of L ⊗(N0+1)(d+δ) for any δ > N1 +1. Therefore the section

gj,i(σ0, βi) · τd+δ =
(
∂iΦj(σ)− `dΦj(σ)

Φj(τ)
∂iΦj(τ)

)
· τd+δ ∈ H0(U,L ⊗(N0+1)(d+δ))

can be extended to a global section in H0(Y,L ⊗(N0+1)(d+δ)) for any δ > N1 + 1.

Lemma A.17. — For 0 6 i 6 m − 1, with a fixed choice of σ0, β1, . . . , βi such that
dimWj,i 6 m − i, the proportion of βi+1 in H0(Y,L ⊗kd) such that dimWj,i+1 6
m − i − 1 is 1 − O(di · q2−d/(N0+1)N1p), where p is the characteristic of Fq and the
constant involved is independent of d, q.

Proof. — Let V1, . . . Vs be the (m−i)-dimensional Fq-irreducible components of the re-
duced scheme (Wj.i)red. The closure of the Vi’s in Y are contained in the set of (m−i)-
dimensional Fq-irreducible components of X ∩div gj,1τ

d+N1+1 ∩ · · · ∩div gj,iτ
d+N1+1.

Since the sections gj,`τd+N1+1 are global sections of H0(Y,L ⊗(N0+1)(d+N1+1)), and
that L ⊗(N0+1) induces a closed embedding of Y into P(H0(Y,L ⊗(N0+1))∨), the sec-
tions gj,`τd+N1+1 can be extended uniquely to sections of

H0(P(H0(Y,L ⊗(N0+1))∨),O(d+N1 + 1)).
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Applying refined Bézout’s theorem (see [Ful84, Th. 12.3] for a precise statement),
we get

s 6 (degX)(deg gj,1τ
d+N1+1) · · · (deg gj,iτ

d+N1+1) = (degX)(d+N1 + 1)i = O(di),

where coefficients involved in O(di) only depends on degX. Since for 1 6 e 6 s

we have dimVe > 1, so for each Ve there exists a ti such that ti|Ve is not constant.
We want to bound

Gbad
e,j :=

{
βi+1 ∈ H0(Y,L ⊗kd) ; gj,i+1(σ0, βi+1) is identically 0 on Ve

}
.

Note that if βi+1, β
′
i+1∈Gbad

e,j , then βi+1−β′i+1 is identically 0 on Ve. In fact, as on Ve
gj,i+1(σ0, βi+1)− gj,i+1(σ0, β

′
i+1) = Φj(βi+1)pΦj(τ)`d − Φj(β

′
i+1)pΦj(τ)`d

= Φj(βi+1 − β′i+1)pΦj(τ)`d ,

and Φj(τ) is everywhere non-zero, we have that if Gbad
e,j 6= ∅, then it is a coset of

the subspace of sections of H0(Y,L ⊗kd) which vanishes on Ve. When d is large, we
can decompose kd by kd = kd,1(N0 + 1) + kd,2N0 with kd,1, kd,2 > 0 and kd,2 minimal
among all the decompositions. Note that if kd,2 > N0 + 1, we can replace kd,2 by
kd,2 − (N0 + 1) and kd,1 by kd,1 + N0, which gives another decomposition of kd.
So when kd,2 is minimal, we have kd,2 6 N0 and therefore

kd,1 >
kd −N2

0

N0 + 1
.

Then the sections

τkd,1τ
kd,2
j , tiτ

kd,1τ
kd,2
j , . . . , t

bkd,1/N1c
i τkd,1τ

kd,2
j ∈ H0(Y,L ⊗kd)

restricting to Ve are linearly independent. So the codimension of the subspace of
sections in H0(Y,L ⊗kd) vanishing on Ve is bigger than or equal to bkd,1/N1c + 1.
As bkd,1/N1c+ 1 > kd,1/N1, this implies that the probability that gj,i+1 vanishes on
one of the Ve’s is at most

s · q−bkd,1/N1c−1 6 s · q−kd,1/N1 .

As kd,1 > (kd −N2
0 )/(N0 + 1), N1 > N0 and

kd = (1/p)[d− (N0 + 1)`d] > (1/p)[d− (N0 + 1)(N1 + p)],

we get

s · q−kd,1/N1 6 s · q−(kd−N2
0 )/((N0+1)N1)

6 s · q(N2
0 /(N0+1)N1)−((d−(N0+1)(N1+p))/(N0+1)N1p)

6 s · q(N0/N1)+((N1+p)/N1p)−(d/(N0+1)N1p)

6 s · q2−d/(N0+1)N1p = O(diq2−d/(N0+1)N1p),

where the constant involved in only depends on the degree of X as a closed subscheme
of P(H0(Y,L ⊗(N0+1))∨), hence is independent of d and q. Since dimWj,i+1 6 m−i−1

if and only if gj,i+1 does not vanishing on any Ve, we get that the proportion of βi+1

in H0(Y,L ⊗kd) such that dimWj,i+1 6 m− i− 1 is 1−O(di · q2−d/(N0+1)N1p). �
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Lemma A.18. — With a fixed choice of σ0, β1, . . . , βm such thatWj,m is finite, we have
for d sufficiently large, the proportion of γ in H0(Y,L ⊗kd) such that

div σ ∩Wj,m ∩ {x ∈ |X| ; deg x > d/(m+ 1)N} = ∅

is
1−O(dmq−d/(m+1)N ),

where σ = σ0 +
∑m
i=1 β

p
i tiτ

`d + γpτ `d and the constant involved only depends on the
degree of X as a closed subscheme of P(H0(Y,L ⊗(N0+1))∨), hence is independent
of d, q.

Proof. — Applying once more Bézout’s theorem, we obtain that

#Wj,m = O(dm)

with constant involved independent of q. For any x ∈ Wj,m, the set Hbad of sections
γ ∈ H0(Y,L ⊗kd) such that x is contained in div σ with σ = σ0 +

∑m
i=1 β

p
i tiτ

`d +γpτ `d

is a coset of
Ker

(
evx ◦ Φj : H0(Y,L ⊗kd) −→ κ(x)

)
,

where κ(x) is the residual field of x and evx is the evaluation at x. If moreover
deg x > d/(m+ 1)N , Lemma A.8 tells us that

#Hbad

#H0(Y,L ⊗kd)
6 q−min(bkd/N0c,d/(m+1)N).

Thus when d tends to infinity, the proportion of sections γ ∈ H0(Y,L ⊗kd) such that
for σ = σ0 +

∑m
i=1 β

p
i tiτ

`d + γpτ `d ,

div σ ∩Wj,m ∩
{
x ∈ |X| ; deg x > d/(m+ 1)N

}
6= ∅,

is bounded above by

#Wj,m · q−min(bkd/N0c,d/(m+1)N) = O(dmq−min(bkd/N0c,d/(m+1)N)),

where the constant involved is independent of d, q. Since kd = (1/p)[d − (N0 + 1)`d]

with N1 6 `d < N1 + p, we have kd > (1/p)[d− (N0 + 1)(N1 + p)]. Then⌊ kd
N0

⌋
>
d− (N0 + 1)(N1 + p)

N0p
− 1 >

d− (N0 + 1)(N1 + 2p)

N0p
>

d

2N0p

for large d. However, since N = (N0 + 1)(N1 + p− 1) + p, we have
d

(m+ 1)N
=

d

(m+ 1)
[
(N0 + 1)(N1 + p− 1) + p

] 6 d

2(N0 + 1)(N1 + p− 1)
.

When d is large, clearly
d

2(N0 + 1)(N1 + p− 1)
6

d

2N0p
.

Therefore bkd/N0c > d/(m+ 1)N , and the proportion of sections γ ∈ H0(Y,L ⊗kd)

such that for σ = σ0 +
∑m
i=1 β

p
i tiτ

`d + γpτ `d ,

div σ ∩Wj,m ∩ {x ∈ |X| ; deg x > d/(m+ 1)N} = ∅
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is
1−O(dmq−d/(m+1)N ),

where the constant involved is independent of d, q. �

Proof of Proposition A.9. — Choose(
σ0, (β1, . . . , βm), γ

)
∈ H0(Y,L ⊗d)×

( m∏
i=1

H0(Y,L ⊗kd)

)
×H0(Y,L ⊗kd)

uniformly at random. Lemma A.17 and A.18 show that as d→∞, writing

σ = σ0 +

m∑
i=1

βpi tiτ
`d + γpτ `d ,

the proportion of (σ0, (β1, . . . , βm), γ) such that

dimWj,i = m− i, 0 6 i 6 m

and
div σ ∩Wj,m ∩ {x ∈ |X| ; deg x > d/(m+ 1)N} = ∅,

is[m−1∏
i=0

(
1−O(di · q2−d/(N0+1)N1p)

)]
·
(
1−O(dmq−d/(m+1)N )

)
=
(
1−O(dm−1 · q2−d/(N0+1)N1p)

)
·
(
1−O(dmq−d/(m+1)N )

)
.

Since for d sufficiently large,
d

(m+ 1)N
=

d

(m+ 1)
[
(N0 + 1)(N1 + p− 1) + p

]
>

d

(m+ 1)
[
(N0 + 2)(N1 + p− 1)

] > d

(m+ 1)(N0 + 2)N1p

and
d

(N0 + 1)N1p
− 2 >

d

2(N0 + 2)N1p
>

d

(m+ 1)(N0 + 2)N1p

the probability above can be written as(
1−O

(
dm−1 · q−d/(m+1)(N0+2)N1p

))
·
(
1−O

(
dm · q−d/(m+1)(N0+2)N1p

))
= 1−O

(
dm · q−d/(m+1)(N0+2)N1p

)
.

On the other hand, for σ = σ0 +
∑m
i=1 β

p
i tiτ

`d + γpτ `d , as

gj,i(σ0, βi)|div Φj(σ) = ∂iΦj(σ)|div Φj(σ),

we have

Sing(div(Φj(σ)) ∩X) ∩ Uj = div(Φj(σ)) ∩ Uj ∩ {∂1Φj(σ) = · · · = ∂mΦj(σ) = 0}
= div(Φj(σ)) ∩ Uj ∩ {gj,1(σ0, β1) = · · · = gj,m(σ0, βm) = 0}
= div(Φj(σ)) ∩Wj,m.
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Since σ = σ0 +
∑m
i=1 β

p
i tiτ

`d + γpτ `d defines a surjective homomorphism of groups

H0(Y,L ⊗d)×
( m∏
i=1

H0(Y,L ⊗kd)

)
×H0(Y,L ⊗kd) −→ H0(Y,L ⊗d),

we obtain that when d→∞, the proportion of σ ∈ H0(Y,L ⊗d) such that

Sing
(
div
(
Φj(σ)

)
∩X

)
∩ Uj ∩ {x ∈ |X| ; deg x > d/(m+ 1)N} = ∅

is
1−O

(
dm · q−d/(m+1)(N0+2)N1p

)
.

Since
Sing(div σ ∩X) ⊂

⋃
j

(
Uj ∩ Sing(div(Φj(σ)) ∩X)

)
,

setting c = 1/(m+ 1)(N0 + 2)N1, we have when d → ∞, the proportion of σ ∈
H0(Y,L ⊗d) such that

Sing(div(σ) ∩X) ∩ {x ∈ |X| ; deg x > d/(m+ 1)N} = ∅

is
1−O(dm · q−cd/p),

which finishes the proof of Proposition A.9. �

Corollary A.19. — In the same setting as in Proposition A.9, there exists a constant
c > 0 independent of d, q such that

#
{
σ ∈ H0(Y,L ⊗d) ; dim(Sing(div σ ∩X)) > 0

}
#H0(Y,L ⊗d)

= O(dm · q−cd/p),

the constant involved is independent of d, q.

Proof. — This follows directly from Proposition A.9 once we notice that{
σ ∈ H0(Y,L ⊗d) ; dim(Sing(div σ ∩X)) > 0

}
⊂ Qhigh

d . �

A.4. Proof of Bertini smoothness theorem over finite fields

Proof of Theorem A.1. — The zeta function ζX(s) is convergent for s > dimX. So in
particular ζX(m+1)−1 =

∏
x∈|X|(1−q−(m+1) deg x) is convergent. By Proposition A.4,

lim
r→∞

µ(P6r) = ζX(m+ 1)−1.

On the other hand, by construction of Pd,6r,Qmed
d,>r,Q

high
d , we have

Pd ⊂Pd,6r ⊂Pd ∪Qmed
d,>r ∪Qhigh

d .

Hence ∣∣∣∣ #Pd

#H0(Y,L ⊗d)
− #Pd,6r

#H0(Y,L ⊗d)

∣∣∣∣ 6 #Qmed
d,>r

#H0(Y,L ⊗d)
+

#Qhigh
d

#H0(Y,L ⊗d)
.

When d→∞, by Proposition A.6 and A.9 we have
#Qmed

d,>r

#H0(Y,L ⊗d)
+

#Qhigh
d

#H0(Y,L ⊗d)
= O(q−r) +O(dm · q−cd/p).
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Hence µ(P) and µ(P) differ from µ(P6r) by at most µ(Qmed
>r )+µ(Qhigh

d ) = O(q−r).
So letting r tend to ∞, we get

µ(P) = lim
r→∞

µ(P6r) = ζX(m+ 1)−1. �
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