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PRODUCT SET GROWTH IN BURNSIDE GROUPS

by Rémi Coulon & Markus Steenbock

Abstract. — Given a periodic quotient of a torsion-free hyperbolic group, we provide a fine lower
estimate of the growth function of any sub-semi-group. This generalizes results of Razborov
and Safin for free groups.

Résumé (Croissance des ensembles produit dans les groupes de Burnside)
Étant donné un quotient périodique d’un groupe hyperbolique sans torsion, nous donnons

une estimation inférieure fine de la fonction de croissance pour chacun de tous ses sous-semi-
groupes. Cet énoncé généralise des résultats de Razborov et Safin pour les groupes libres.
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1. Introduction

If V is a subset in a group G, we denote by V r ⊂ G the set of all group elements that
are represented by a product of exactly r elements of V . In this paper we are interested
in the growth of V r. Such a problem has a long history which goes back (at least) to the
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464 R. Coulon & M. Steenbock

study of additive combinatorics. See for instance [Nat96, TV06]. In the context of non-
abelian groups, it yields to the theory of approximate subgroups, see [Tao08, BGT12],
and relates to spectral gaps in linear groups, see [Hel08, BG08, BG12], as well as
exponential growth rates of negatively curved groups, [Kou98, AL06, BF21, FS20].

If G is a free group, Safin [Saf11], improving former results by Chang [Cha08] and
Razborov [Raz14], proves that there exists c > 0 such that for every finite subset
V ⊂ G, either V is contained in a cyclic subgroup, or for every r ∈ N, we have

|V r| > (c|V |)[(r+1)/2].

This estimate can be thought of as a quantified version of the Tits alternative in G.
A similar statement holds for SL2(Z) [Cha08], free products, limit groups [But13]
and groups acting on δ-hyperbolic spaces [DS20]. All these groups display strong
features of negative curvature, inherited from a non-elementary acylindrical action on
a hyperbolic space. Some results are also available for solvable groups [Tao10, But13],
as well as mapping class groups and right-angled Artin groups [Ker21].

By contrast, in this work, we focus on a class of groups which do not admit any
non-elementary action on a hyperbolic space, namely the set of infinite groups with
finite exponent, often referred to as of Burnside groups.

1.1. Burnside groups of odd exponent. — Given a group G and an integer n, we
denote by Gn the subgroup of G generated by all its n-th powers. We are interested
in quotients of the form G/Gn which we call Burnside groups of exponent n. If G = Fk
is the free group of rank k, then Bk(n) = G/Gn is the free Burnside group of rank k
and exponent n. The famous Burnside problem asks whether a finitely generated free
Burnside group is necessarily finite.

Here, we focus on the case that the exponent n is odd. By Novikov’s and Adian’s
solution of the Burnside problem, it is known that Bk(n) is infinite provided k > 2 and
n is a sufficiently large odd integer [Adi79]. See also [Ol’82, DG08]. More generally, if
G is a non-cyclic, torsion-free, hyperbolic group, then the quotient G/Gn is infinite
provided n is a sufficiently large odd exponent [Ol’91, DG08]. Our main theorem
extends Safin’s result to this class of Burnside groups of odd exponents.

Remark 1.1. — Note that free Burnside groups of sufficiently large even exponents are
also infinite. This was independently proved by Ivanov [Iva94] and Lysenok [Lys96].
Moreover any non-elementary hyperbolic group admits infinite Burnside quotients, see
[IO96, Cou18b]. Nevertheless in the remainder of this article we will focus on torsion-
free hyperbolic groups and odd exponents. In Section 1.4 we discuss the difficulties
to extend our results to the case of even exponents.

Theorem 1.2. — Let G be a non-cyclic, torsion-free hyperbolic group. There are num-
bers n0 > 0 and c > 0 such that for all odd integers n > n0 the following holds. Given
a finite subset V ⊂ G/Gn, either V is contained in a finite cyclic subgroup, or for all
r ∈ N, we have

|V r| > (c|V |)[(r+1)/2]
.
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Product set growth in Burnside groups 465

Observe that the constant c only depends on G and not on the exponent n. Recall
that Burnside groups do not act, at least in any useful way, on a hyperbolic space.
Indeed, any such action is either elliptic or parabolic. On the other hand, it is well-
known that any linear representation of a finitely generated Burnside group has finite
image. Thus our main theorem is not a direct application of previously known results.

Let us mention some consequences of Theorem 1.2. If V is a finite subset of a
group G, one defines its entropy by

h(V ) = lim sup
r→∞

1

r
log |V r|.

The group G has uniform exponential growth if there exists ε > 0 such that for every
finite symmetric generating subset V of G, h(V ) > ε. In addition, G has uniform
uniform exponential growth if there exists ε > 0 such that for every finite symmetric
subset V ⊂ G, either V generates a virtually nilpotent group, or h(V ) > ε.

Corollary 1.3. — Let G be a non-cyclic, torsion-free hyperbolic group. There are
numbers n0 > 0 and α > 0 such that for all odd integers n > n0, the following holds.
Given a finite subset V ⊂ G/Gn containing the identity, either V is contained in a
finite cyclic subgroup, or

h(V ) > α ln |V | > α ln 3.

In particular, G/Gn has uniform uniform exponential growth.

It was already known that free Burnside groups of sufficiently large odd exponent
have uniform exponential growth, see Osin [Osi07, Cor. 1.4] and Atabekyan [Ata09,
Cor. 3]. Note that Theorem 2.7 in [Osi07] actually shows that free Burnside groups
have uniform uniform exponential growth. Nevertheless, to the best of our knowledge,
the result was not proved for Burnside quotients of hyperbolic groups. We shall also
stress the fact that, unlike in Corollary 1.3, the growth estimates provided in [Osi07,
Ata09] depend on the exponent n. The reason is that the parameter M given for
instance by [Osi07, Th. 2.7] is a quadratic function of n.

Given a group G with uniform exponential growth, a natural question is whether or
not there exists a finite generating set that realizes the minimal growth rate. The first
inequality is a statement à la Arzhantseva-Lysenok for torsion groups, see [AL06,
Th. 1]. The philosophy is the following: if the set V has a small entropy, then it
cannot have a large cardinality. In particular, if we expect the minimal growth rate to
be achieved, we can restrict our investigation to generating sets with fixed cardinality.
Note that this is exactly the starting point of the work of Fujiwara and Sela in the
context of hyperbolic groups, [FS20].

Let us discuss now the power arising in Theorem 1.2. We claim that, as our estimate
is independent of the exponent n, the power (r+ 1)/2 is optimal. For this purpose we
adapt an example of [Saf11].

J.É.P. — M., 2022, tome 9



466 R. Coulon & M. Steenbock

Example 1.4. — Let g and h be two elements in B2(n) such that g generates a group
of order n, that does not contain h. Consider the set

VN = {1, g, g2, . . . , gN , h}.

Whenever the exponent n is sufficiently large compared to N , we have |V rN | ∼
N [(r+1)/2] while |VN | = N + 1.

Button observed the following fact. Assume that there is c > 0 and ε > 0 with
the following property: for all finite subsets V in a group G that are not contained
in a virtually nilpotent subgroup, we have |V 3| > c|V |2+ε. Then G is either virtually
nilpotent, or of bounded exponent [But13, Prop. 4.1]. We do not know if such a non-
virtually nilpotent group exists.

1.2. Groups acting on hyperbolic spaces. — In the first part of our paper, we revisit
product set growth for a group G acting on a hyperbolic space X, see [DS20, Th. 1.14].
For this purpose, we use the notion of an acylindrical action, see [Sel97, Bow08]. Given
a subset U of G, we exploit its `∞-energy defined as

λ(U) = inf
x∈X

sup
u∈U
|ux− x|.

Remark 1.5. — Unlike in [DS20], we will not make use of the `1-energy. Our motiva-
tion is mostly technical. We explain this choice in Section 1.3.

Theorem 1.6 (see Theorem 8.1). — Let G be a group acting acylindrically on a hyper-
bolic length space X. There exists a constant C > 0 such that for every finite subset
U ⊂ G with λ(U) > C,

(1) either |U | 6 C,
(2) or there is a subsetW ⊂ U2 freely generating a free sub-semigroup of cardinality

|W | > 1

C

1

λ(U)
|U |.

Remark 1.7. — For simplicity we stated here a weakened form of Theorem 8.1. Actu-
ally we prove that the constant C only depends on the hyperbolicity constant of the
space X and the acylindricity parameters of the action of G. The set W is also what
we called strongly reduced, see Definition 3.1. Roughly speaking this means that the
orbit map from the free semi-group W ∗ to X is a quasi-isometric embedding.

There is quite some literature on finding free sub-semigroups in powers of sym-
metric subsets U in groups of negative curvature, see [Kou98, AL06, BF21]. We can
for example compare Theorem 8.1 to Theorem 1.13 of [BF21]. In this theorem, under
the additional assumption that U is symmetric, the authors construct a 2-element set
in Ur that generates a free sub-semigroup, where the exponent r does only depend on
the doubling constant of the space. Let us highlight two important differences. First
we do not assume that the set U is symmetric. In particular, we cannot build the
generators of a free sub-semigroup by conjugating a given hyperbolic element. Hence
the proofs require different techniques. Moreover, for our purpose, it is important

J.É.P. — M., 2022, tome 9
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that the cardinality of W grows linearly with the one of U . For the optimality of our
estimates discussed in the previous paragraph, we require that it is contained in U2.
The price that we pay for this is the correction term of the order of the `∞-energy
of U .

As the set W constructed in Theorem 1.6 freely generates a free sub-semigroup,
we obtain the following estimate on the growth of Ur.

Corollary 1.8 (see Corollary 8.2). — Let G be a group acting acylindrically on a
hyperbolic length space X. There exists a constant C > 0 such that for every finite
U ⊂ G with λ(U) > C, and for all integers r > 0, we have

|Ur| >
( 1

Cλ(U)
|U |
)[(r+1)/2]

.

As in the previous statement, the constant C actually only depends on the param-
eters of the action of G on X. Corollary 1.8 is a variant of [DS20, Th. 1.14], where
the correction term of the order of log |U | in this theorem is replaced by a geometric
quantity, the `∞-energy of U . Note that the conclusion is void whenever |U | 6 Cλ(U).
This can be compared with Theorem 1.2 which is not relevant for small subsets V .

1.3. Strategy for Burnside groups. — Let us explain the main idea behind the proof
of Theorem 1.2. For simplicity we restrict ourselves to the case of free Burnside groups
of rank 2. Let n be a sufficiently large odd exponent. Any known strategy to prove
the infiniteness of B2(n) starts in the same way. One produces a sequence of groups

(1) F2 = G0 −→ G1 −→ G2 −→ . . . −→ Gi −→ Gi+1 −→ · · ·

that converges to B2(n) where each Gi is a hyperbolic group obtained from Gi−1 by
means of small cancellation. The approach provided by Delzant and Gromov associates
to each group Gi a hyperbolic space Xi on which it acts properly co-compactly. An
important point is that the geometry of Xi is somewhat “finer” than the one of
the Cayley graph of Gi. In particular, one controls uniformly along the sequence
(Gi, Xi), the hyperbolicity constant of Xi as well as the acylindricity parameters of
the action of Gi, see Proposition 10.1. As we stressed before the constant C involved
in Theorem 1.6 only depends on those parameters. Thus it holds, with the same
constant C, for each group Gi acting on Xi.

Consider now a subset V ⊂ B2(n) that is not contained in a finite subgroup. Our
idea is to choose a suitable step j and a pre-image Uj in Gj such that the `∞-energy
λ(Uj) is greater than C and at the same time bounded from above by a constant C ′
that does not depend on j. The strategy for choosing j is the following. The metric
spaces Xi defined above come with uniformly contracting maps Xi → Xi+1. Hence
if Ṽ stands for a finite pre-image of V in F2, then the energy of its image Vi in Gi
is a decreasing sequence converging to zero. Hence there is a smallest index j such
that V admits a pre-image Uj+1 in Gj+1 whose energy is at most C. Working with
the `∞-energy plays now an important role. Indeed we have a control of the length of
every element in Uj . This allow us to lift Uj+1 to a finite subset Uj ⊂ Gj whose energy

J.É.P. — M., 2022, tome 9



468 R. Coulon & M. Steenbock

is controlled (i.e. bounded above by some C ′). It follows from the minimality of j that
the energy of Uj is also bounded from below by C. The details of the construction
are given in Section 10.3. By Theorem 1.6, we find a “large” subset W ⊂ U2

j that
freely generates a free sub-semigroup. By large we mean that the cardinality of W is
linearly bounded from below by the cardinality of Uj (hence of V ).

At this point we get an estimate for the cardinality of W r, hence for the one
of Urj ⊂ Gj , see Corollary 1.8. However the map Gj → G/Gn is not one-to-one.
Nevertheless there is a sufficient condition to check whether two elements g and g′

in Gj have distinct images in G/Gn: roughly speaking, if none of them “contains
a subword” of the form um, with m > n/3, then g and g′ have distinct images in
G/Gn. This formulation is purposely vague here. We refer the reader to Definition 4.1
for a rigorous definition of power-free elements in Gj . In particular, the projection
Gj → G/Gn is injective when restricted to a suitable set of power-free elements.
Hence it suffices to count the number of power-free elements in W r. This is the
purpose of Sections 3 and 4. The computation is done by induction on r following the
strategy of the first author from [Cou13].

Again, we would like to draw the attention of the reader to the fact that in this
procedure, we took great care to make sure that all the involved parameters do not
depend on j.

1.4. Burnside groups of even exponent. — Burnside groups of even exponent have
a considerably different algebraic structure. For instance it turns out that the ap-
proximation groups Gj in the sequence (1) contain elementary subgroups of the form
D∞×F where F is a finite subgroup with arbitrary large cardinality that embeds in a
product of dihedral groups. In particular one cannot control acylindricity parameters
along the sequence (Gi), which means that our strategy fails here. It is very plausi-
ble that Burnside groups of large even exponents have uniform uniform exponential
growth. Nevertheless we wonder if Theorem 1.2 still holds for such groups.

Acknowledgements. — The second author thanks Thomas Delzant for related dis-
cussion during his stay in Strasbourg. We thank the coffeeshop Bourbon d’Arsel for
welcoming us when the university was closed down during the pandemic, and for
serving a wonderful orange cake. We thank the referees for their careful reading and
helpful comments.

2. Hyperbolic geometry

We collect some facts on hyperbolic geometry in the sense of Gromov [Gro87], see
also [CDP90, GdlH90].

2.1. Hyperbolic spaces. — Let X be a metric length space. The distance of two
points x and y in X is denoted by |x − y|, or |x − y|X if we want to indicate that
we measure the distance in X. If A ⊂ X is a set and x a point, we write d(x,A) =

infa∈A |x− a| to denote the distance from x to A. Let A+α = {x ∈ X | d(x,A) 6 α}
be the α-neighborhood of A. Given x, y ∈ X, we write [x, y] for a geodesic from x

J.É.P. — M., 2022, tome 9
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to y (provided that such a path exists). Recall that there may be multiple geodesics
joining two points. We recall that the Gromov product of y and z at x is defined by

(y, z)x =
1

2
(|y − x|+ |z − x| − |y − z|) .

We will often use the following facts each of which is equivalent to the triangle in-
equality: for every x, y, z, t ∈ X,

(x, y)t 6 (x, z)t + |y − z| and (x, y)t 6 (x, y)z + |t− z|.

A similar useful inequality is

(2) (x, y)t 6 (x, y)z + (x, z)t, ∀x, y, z, t ∈ X.

Indeed, after unwrapping the definition of Gromov’s products, it boils down to the
triangle inequality.

Definition 2.1. — Let δ > 0. The space X is δ-hyperbolic if for every x, y, z and
t ∈ X, the four point inequality holds, that is

(3) (x, z)t > min {(x, y)t, (y, z)t} − δ.

If δ = 0 and X is geodesic, then X is an R-tree. From now on, we assume that δ > 0

and that X is a δ-hyperbolic metric length space. We denote by ∂X the boundary at
infinity of X. Hyperbolicity has the following consequences.

Lemma 2.2 ([Cou14, Lem. 2.2]). — Let x, y, z, s and t be five points of X.
(1) (x, y)t 6 max {|x− t| − (y, z)x, (x, z)t}+ δ,

(2) |s− t| 6 ||x− s| − |x− t||+ 2 max {(x, y)s, (x, y)t}+ 2δ,

(3) The distance |s− t| is bounded above by
max {||x− s| − |x− t||+ 2 max {(x, y)s, (x, z)t} , |x− s|+ |x− t| − 2(y, z)x}+ 4δ.

2.2. Quasi-geodesics. — A rectifiable path γ : [a, b]→ X is a (k, `)-quasi-geodesic if
for all [a′, b′] ⊂ [a, b]

length(γ[a′, b′]) 6 k|γ(a′)− γ(b′)|+ `;

and γ is a L-local (k, `)-quasi-geodesic if any subpath of γ whose length is at most L
is a (k, `)-quasi-geodesic. The next lemma is used to construct (bi-infinite) quasi-
geodesics.

Lemma 2.3 (Discrete quasi-geodesics [AL06, Lem. 1]). — Let n > 3. Let x1, . . . , xn be
n points of X. Assume that for every i ∈ {2, . . . , n− 2},

(xi−1, xi+1)xi + (xi, xi+2)xi+1 < |xi − xi+1| − 3δ.

Then the following holds

(1) |x1 − xn| >
n−1∑
i=1

|xi − xi+1| − 2

n−1∑
i=2

(xi−1, xi+1)xi − 2(n− 3)δ.

(2) (x1, xn)xj
6 (xj−1, xj+1)xj

+ 2δ, for every j ∈ {2, . . . , n− 1}.

J.É.P. — M., 2022, tome 9



470 R. Coulon & M. Steenbock

(3) If, in addition, X is geodesic, then [x1, xn] lies in the 5δ-neighborhood of the
broken geodesic γ = [x1, x2]∪· · ·∪[xn−1, xn], while γ is contained in the r-neighborhood
of [x1, xn], where

r = sup
26i6n−1

(xi−1, xi+1)xi
+ 14δ. �

Remark 2.4. — Note that the result still holds if n = 1 or n = 2. Indeed the statement
is mostly void, or follows from the definition of Gromov products. One just need to
replace the error term 2(n− 3)δ in (1) by zero. Thus in the remainder of the article,
we will invoke Lemma 2.3 regardless how points are involved.

We denote by L0 the smallest positive number larger than 500 such that for every
` ∈ [0, 105δ], the Hausdorff distance between any two L0δ-local (1, `)-quasi-geodesic
with the same endpoints is at most (2`+ 5δ). See [Cou14, Cor. 2.6 & 2.7].

2.3. Quasi-convex subsets. — A subset Y ⊂ X is α-quasi-convex if for all two points
x, y ∈ Y , and for every point z ∈ X, we have d(z, Y ) 6 (x, y)z + α. For instance,
geodesics are 2δ-quasi-convex.

If Y ⊂ X, we denote by |·|Y the length metric induced by the restriction of |·|X
to Y . A subset Y that is connected by rectifiable paths is strongly-quasi-convex if it
is 2δ-quasi-convex and if for all y, y′ ∈ Y ,

|y − y′|X 6 |y − y′|Y 6 |y − y′|X + 8δ.

2.4. Isometries. — Let G be a group that acts by isometries on X. Let g ∈ G. The
translation length of g is

‖g‖ = inf
x∈X
|gx− x|.

The stable translation length of g is

‖g‖∞ = lim
n→∞

1

n
|gnx− x|.

Those two quantities are related by the following inequality: ‖g‖∞6‖g‖6‖g‖∞+16δ.
See [CDP90, Ch. 10, Prop. 6.4]. The isometry g is hyperbolic if, and only if, its stable
translation length is positive, [CDP90, Ch. 10, Prop. 6.3].

Definition 2.5. — Let d>0 and U⊂G. The set of d-quasi-fixpoints of U is defined by

Fix(U, d) = {x ∈ X | for all u ∈ U |ux− x| < d}.

The axis of g ∈ G is the set Ag = Fix(g, ‖g‖+ 8δ).

Lemma 2.6 ([Cou18b, Lem. 2.9]). — Let U ⊂ G. If d > 7δ, then the set of d-quasi-
fixpoints of U is 10δ-quasi-convex. Moreover, assuming that Fix(U, d) is non-empty

(1) if x ∈ X r Fix(U, d), then

sup
u∈U
|ux− x| > 2d(x,Fix(U, d)) + d− 14δ.

(2) given x ∈ X and L > 0, if supu∈U |ux− x| 6 d+ 2L, then x ∈ Fix(U, d)+L+7δ.

�
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Product set growth in Burnside groups 471

Corollary 2.7 ([DG08, Prop. 2.3.3]). — Let g be an isometry of X. Then Ag is 10δ-
quasi-convex and g-invariant. Moreover, for all x ∈ X,

‖g‖+ 2d(x,Ag)− 6δ 6 |gx− x| 6 ‖g‖+ 2d(x,Ag) + 8δ. �

2.5. Acylindricity. — We recall the definition of an acylindrical action. The action
of G on X is acylindrical if there exists two functions N,κ : R+ → R+ such that for
every r > 0, for all points x and y at distance |x− y| > κ(r), there are at most N(r)

elements g ∈ G such that |x− gx| 6 r and |y − gy| 6 r.
Recall that we assumed X to be δ-hyperbolic, with δ > 0. In this context, acylin-

dricity satisfies a local-to-global phenomenon: if there exists N0, κ0 ∈ R+ such that
for all points x and y at distance |x− y| > κ0, there are at most N0 elements g ∈ G
such that |x − gx| 6 100δ and |y − gy| 6 100δ, then the action of G is acylindrical,
with the following estimates for the functions N and κ:

(4) κ(r) = κ0 + 4r + 100δ and N(r) =
( r

5δ
+ 3
)
N0.

See [DGO17, Prop. 5.31]. This motivates the next definition.

Definition 2.8. — Let N,κ ∈ R+. The action of G on X is (N,κ)-acylindrical if for
all points x and y at distance |x− y| > κ, there are at most N elements g ∈ G such
that |x− gx| 6 100δ and |y − gy| 6 100δ.

We need the following geometric invariants of the action of G on X. The limit set
of G acting on X consists of the accumulation points in the Gromov boundary ∂X
of X of the orbit of one (and hence any) point in X. By definition, a subgroup E of G
is elementary if the limit set of E consists of at most two points.

Definition 2.9. — The injectivity radius is defined as

τ(G,X) = inf{‖g‖∞ | g ∈ G is a hyperbolic isometry}.

Definition 2.10. — The acylindricity parameter is defined as

A(G,X) = sup
U

diam(Fix(U, 2L0δ)),

where U runs over the subsets of G that do not generate an elementary subgroup.

Definition 2.11. — The ν-invariant is the smallest natural number ν = ν(G,X)

such that for every g ∈ G and every hyperbolic h ∈ G the following holds: if g, hgh−1,
. . . , hνgh−ν generate an elementary subgroup, then so do g and h.

Remark 2.12. — In the above definitions we adopt the following conventions. The
diameter of the empty set is zero. If G does not contain any hyperbolic isometry, then
τ(G,X) =∞. If every subgroup of G is elementary, then A(G,X) = 0.

The parameters A(G,X) and ν(G,X) allow us to state the following version of
Margulis’ lemma.
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Proposition 2.13 ([Cou18b, Prop. 3.5]). — Let U be a subset of G. If U does not
generate an elementary subgroup, then, for every d > 0, we have

diam (Fix(U, d)) 6 [ν(G,X) + 3] d+A(G,X) + 209δ. �

If there is no ambiguity we simply write τ(G), A(G), and ν(G) for τ(G,X),
A(G,X), and ν(G,X) respectively. Sometimes, if the context is clear, we even write
τ , A, or ν.

If the action of G on X is (N,κ)-acylindrical, then τ > δ/N , while A and ν are
finite. In fact, one could express upper bounds on A and ν in terms of N , κ, δ, and L0.
See for instance [Cou16, §6]. However, for our purpose we need a finer control on these
invariants.

From now on we assume that κ > δ and that the action of G on X is (N,κ)-acylin-
drical.

2.6. Loxodromic subgroups. — An elementary subgroup is loxodromic if it contains
a hyperbolic element. Equivalently, an elementary subgroup is loxodromic if it has
exactly two points in its limit set. If h is a hyperbolic isometry, we denote by E(h)

the maximal loxodromic subgroup containing h. Let E+(h) be the maximal subgroup
of E(h) fixing pointwise the limit set of E(h). It is known that the set F of all
elliptic elements of E+(h) forms a (finite) normal subgroup of E+(h) and the quotient
E+(h)/F is isomorphic to Z. We say that h is primitive if its image in E+(h)/F

generates the quotient.

Definition 2.14 (Invariant cylinder). — Let E be a loxodromic subgroup with limit
set {ξ, η}. The E-invariant cylinder, denoted by CE , is the 20δ-neighborhood of all
L0δ-local (1, δ)-quasi-geodesics with endpoints ξ and η at infinity.

Lemma 2.15 (Invariant cylinder). — Let E be a loxodromic subgroup. Then
• CE is 2δ-quasi-convex and invariant under the action of E. If, in addition, X is

proper and geodesic, then CE is strongly quasi-convex [Cou14, Lem. 2.31],
• if g ∈ E and ‖g‖ > L0δ, then Ag ⊂ CE, [Cou14, Lem. 2.33],
• if g ∈ E is hyperbolic, then CE ⊂ A+52δ

g . In particular, if x ∈ CE, then |gx−x| 6
‖g‖+ 112δ, [Cou14, Lem. 2.32].

3. Periodic and aperiodic words

Let U be a finite subset of G containing at least two elements. We denote by U∗
the free monoid generated by U . We write π : U∗ → G for the canonical projection.
In case there is no ambiguity, we make an abuse of notations and still write w for
an element in U∗ and its image under π. We fix a base point p ∈ X. Recall that the
action of G on X is (N,κ)-acylindrical.

Definition 3.1. — Let α > 0. We say that the subset U is α-reduced (at p) if
• (u−11 p, u2p)p 6 α for every u1, u2 ∈ U ,
• |up− p| > 2α+ 300δ for every u ∈ U .

J.É.P. — M., 2022, tome 9



Product set growth in Burnside groups 473

The set U is α-strongly reduced (at p) if, in addition, for every distinct u1, u2 ∈ U ,
we have

(u1p, u2p)p < min {|u1p− p|, |u2p− p|} − α− 150δ.

We say that U is reduced at p (respectively strongly reduced at p) if there exists α > 0

such that U is α-reduced at p (respectively α-strongly reduced at p).

In practice, the base point p is fixed once and for all. Thus we simply say that U
is (α-)reduced or (α-)strongly reduced.

Lemma 3.2. — If U is α-strongly reduced, then U freely generates a free sub-semi-
group of G. Moreover U satisfies the geodesic extension property, that is if w,w′ ∈ U∗
are such that (p, w′p)wp 6 α+ 145δ, then w is a prefix of w′.

Remark 3.3. — Roughly speaking, the geodesic extension property has the following
meaning: if the geodesic [p, w′p] extends [p, wp] as a path in X, then w′ extends w as
a word over U .

Proof. — We first prove the geodesic extension property. Let w = u1 · · ·um and
w′ = u′1 · · ·u′m′ be two words in U∗ such that (p, w′p)wp 6 α+ 145δ. We denote by r
the largest integer such that ui = u′i for every i ∈ {1, . . . , r− 1}. For simplicity we let

q = u1 · · ·ur−1p = u′1 · · ·u′r−1p.

Assume now that contrary to our claim w is not a prefix of w′, that is r − 1 < m.
We claim that (wp,w′p)q < |urp− p| −α− 148δ. If r− 1 = m′, then w′p = q and the
claim holds. Hence we can suppose that r − 1 < m′. It follows from our choice of r
that ur 6= u′r. We let

t = u1 · · ·urp and t′ = u′1 · · ·u′rp.

Since U is α-strongly reduced, we have

(t, t′)q = (urp, u
′
rp)p < min {|urp− p|, |u′rp− p|} − α− 150δ.

It follows then from the four point inequality that

min {(t, wp)q, (wp,w′p)q, (w′p, t′)q} 6 (t, t′)q + 2δ

< min {|urp− p|, |u′rp− p|} − α− 148δ.
(5)

Applying Lemma 2.3(2) with the sequence of points

q = u1 · · ·ur−1p, t = u1 · · ·urp, u1 · · ·ur+1p, . . . , wp = u1 · · ·ump,

we get

(q, wp)t 6 (q, u1 · · ·ur+1p)t + 2δ = (u−1r p, ur+1p)p + 2δ 6 α+ 2δ.

(note that the last inequality follows from the fact that U is α-reduced). Hence

(t, wp)q = |q − t| − (q, wp)t > |urp− p| − α− 2δ.
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Thus the minimum in (5) cannot be achieved by (t, wp)q. Similarly, it cannot be
achieved by (w′p, t′)q either. Thus

(wp,w′p)q < min {|urp− p|, |u′rp− p|} − α− 148δ 6 |urp− p| − α− 148δ,

which completes the proof of our claim.
Using Lemma 2.3(1) with the sequence of points

q = u1 · · ·ur−1p, t = u1 · · ·urp, u1 · · ·ur+1p, . . . , wp = u1 · · ·ump,

we get

|wp− p| >
m∑
j=r

|ujp− p| − 2

m−1∑
j=r

(u−1j p, uj+1p)p − 2 max{m− r − 1, 0}δ.

Since U is α-reduced, we have
m∑
j=r

|ujp− p| > |urp− p|+ (m− r)(2α+ 300δ),

while

2

m−1∑
j=r

(u−1j p, uj+1p)p 6 2(m− r)α.

Consequently, |wp− q| > |urp− p|. Combined with the previous claim, it yields

(q, w′p)wp = |wp− q| − (wp,w′p)q > |urp− p| − (wp,w′p)q > α+ 148δ.

Applying again the four point inequality, we get

(6) min {(p, q)wp, (q, w′p)wp} 6 (p, w′p)wp + δ 6 α+ 146δ.

It follows from our previous computation that the minimum cannot be achieved by
(q, w′p)wp. We proved previously that |wp− q| > |urp− p|. Reasoning as in our first
claim, Lemma 2.3(2) yields (p, wp)q 6 α+ 2δ. Since U is α-reduced we get

(p, q)wp = |wp− q| − (p, wp)q > |urp− p| − α− 2δ > α+ 298δ.

Hence the minimum in (6) cannot be achieved by (p, q)wp either, which is a contra-
diction. Consequently, w is a prefix of w′.

Let us prove now that U freely generates a free sub-semi-group of G. Let
w1, w2 ∈ U∗ whose images in G coincide. In particular (p, w1p)w2p = 0 = (p, w2p)w1p.
It follows from the geodesic extension property that w1 is a prefix of w2 and conversely.
Thus w1 = w2 as words in U∗. �

3.1. Periodic words. — From now on, we assume that U is α-strongly reduced (in
the sense of Definition 3.1). We let λ = maxu∈U |up−p|. We denote by |w|U the word
metric of w ∈ U∗. Given an element w = u1 · · ·um in U∗, we let

[w] = {p, u1p, u1u2p, . . . , wp}.

Definition 3.4. — Letm > 0. Let E be a maximal loxodromic subgroup. We say that
a word v ∈ U∗ is m-periodic with period E if [v] ⊂ C+α+100δ

E and |p− vp| > mτ(E).
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Remark 3.5. — Note that the definition does not requirem to be an integer. Let E be
a maximal loxodromic subgroup such that p belongs to the (α+ 100δ)-neighborhood
of CE . Let v ∈ U∗ whose image in G is a hyperbolic element of E. Then for every
integer m > 0, the element vm+1 is m-periodic with period E. The converse is not
true; that is, an m-periodic word with period E is not necessarily contained in E.

If m is sufficiently large, then periods are unique in the following sense.

Proposition 3.6. — There exists m0 > 0 which only depends on δ, A, ν, τ and α such
that for every m > m0 the following holds. If v ∈ U∗ is m-periodic with periods E1

and E2, then E1 = E2.

Proof. — Let h1 ∈ E1 realize τ(E1), and h2 ∈ E2 realize τ(E2). If v is m-periodic
with period E1 and E2, then

diam
(
C+α+100δ
E1

∩ C+α+100δ
E2

)
> mmax{‖h1‖∞, ‖h2‖∞}.

Recall that CEi
⊂ A+52δ

hi
, see Lemma 2.15. By [Cou14, Lem. 2.13] we have

diam
(
C+α+100δ
E1

∩ C+α+100δ
E2

)
6 diam

(
A+13δ
h1

∩A+13δ
h2

)
+ 2α+ 308δ.

Hence there exists m0 > 0 which only depends on δ, A, ν, τ and α such that if
m > m0, we have

diam
(
A+13δ
h1

∩A+13δ
h2

)
> (ν + 2) max{‖h1‖, ‖h2‖}+A+ 680δ.

It follows from [Cou16, Prop. 3.44] that h1 and h2 generates an elementary subgroup,
hence E1 = E2. �

Remark 3.7. — For all w ∈ U∗, we have λ|w|U > |wp − p|. In particular, if w is an
m-periodic word with period E, then

|w|U > mτ(E)/λ.

Consider now a general non-empty word w = u1 · · ·ur in U∗. We claim that
|wp− p| > 2α+ 298δ|w|U . Indeed applying Lemma 2.3(1) with the sequence of points

p, u1p, u1u2p, . . . , wp = u1 · · ·urp,

we get

|wp− p| >
r∑
j=1

|ujp− p| − 2

r−1∑
j=1

(u−1j p, uj+1p)p − 2 max{r − 2, 0}δ.

Since U is α-reduced, we have
r∑
j=1

|ujp− p| > r(2α+ 300δ),

while
2

r−1∑
j=1

(u−1j p, uj+1p)p 6 2(r − 1)α.

Combining the previous inequalities we get the announced estimate. Consequently,
if [w] ⊂ C+α+100δ

E but w is not m-periodic with period E, then

|w|U < mτ(E)/δ.
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Proposition 3.8. — Let E be a maximal loxodromic subgroup. Let m > 0. There are
at most two elements in U∗ which are m-periodic with period E, but whose proper
prefixes are not m-periodic.

Proof. — Let E be a maximal loxodromic subgroup. Let PE be the set of m-periodic
words w ∈ U∗ with period E. Assume that PE is non-empty, otherwise the statement
is void. Let η− and η+ be the points of ∂X fixed by E and γ : R→ X be an L0δ-local
(1, δ)-quasi-geodesic from η− to η+. For any w ∈PE , the points p and wp lie in the
(α+ 100δ)-neighborhood of CE , hence in the (α+ 120δ)-neighborhood of γ. Without
loss of generality, we can assume that q = γ(0) is a projection of p on γ. We decompose
PE in two parts as follows: an element w ∈ PE belongs to P+

E (respectively P−
E )

if there is a projection γ(t) of wp on γ with t > 0 (respectively t 6 0). Observe that
a priori P−

E and P+
E are not disjoint, but that will not be an issue for the rest of the

proof.
We are going to prove that P+

E∩U∗ contains at most one word satisfying the propo-
sition. Let w1 and w2 be two words in P+

E ∩U∗ which are m-periodic with period E,
and whose proper prefixes are not m-periodic. We write q1 = γ(t1) and q2 = γ(t2)

for the respective projections of w1p and w2p on γ. Without loss of generality we can
assume that t1 6 t2. We are going to prove that (p, w2p)w1p 6 α+ 145δ. As a quasi-
geodesic, γ is 9δ-quasi-convex [Cou14, Cor. 2.7(2)]. According to Remark 3.7, the
word w2 is not empty and |w2p − p| > 2α + 298δ. Applying the triangle inequality
we get |q2 − q| > 19δ. Recall that q and q2 are respective projections of p and w2p on
the quasi-convex γ. Hence

|w2p− p| > |w2p− q2|+ |q2 − q|+ |q − p| − 38δ,

see [Cou14, Cor. 2.12(2)]. Since q1 lies on γ between q and q2 we also have

|q2 − q| = |q2 − q1|+ |q1 − q| − 2(q2, q)q1 > |q2 − q1|+ |q1 − q| − 12δ,

see [Cou14, Cor. 2.7(1)]. Combining the previous two inequalities, we get

|w2p− p| > |w2p− q2|+ |q2 − q1|+ |q1 − q|+ |q − p| − 50δ

> |w2p− q1|+ |q1 − p| − 50δ.

Thus (w2p, p)q1 6 25δ. According to the triangle inequality, we get

(p, w2p)w1p 6 |w1p− q1|+ (w2p, p)q1 6 α+ 145δ,

which completes the proof of our claim.
Applying the geodesic extension property (see Lemma 3.2) we get that w1 is a

prefix of w2. As w1 is m-periodic, it cannot be a proper prefix, hence w1 = w2.
Similarly, P−

E ∩ U∗ has at most one element satisfying the statement. �

3.2. The growth of aperiodic words

Definition 3.9. — Let w ∈ U∗ and let E be a maximal loxodromic subgroup. We say
that the word w contains an m-period of E if w splits as w = w0w1w2, where the
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word w1 is m-periodic with period E. If the word w does not contain any m-period,
we say that w is m-aperiodic.

Observe that containing a period is a property of the word w ∈ U∗ and not of
its image π(w) in G: one could find two words w1 and w2, where w1 is m-aperiodic
while w2 is not, and that have the same image in G. However since U is strongly
reduced, it freely generates a free sub-semigroup of G. Hence this pathology does not
arise in our context.

We denote by U∗m the set of m-aperiodic words in U∗. Recall that p is a base point
of X and the parameter λ is defined by

λ = max
u∈U
|up− p|.

Example 3.10. — If m > λ/τ , then U ⊆ U∗m. Indeed, for all u ∈ U and loxodromic
subgroups E,

|u|U 6 1 6 mτ/λ 6 mτ(E)/λ.

So, by Remark 3.7, u cannot be m-periodic.

We denote by S(r) the sphere of radius r in U∗. Similarly B(r) ⊂ U∗ stands for
the ball of radius r, that is the subset of elements w ∈ U∗ of word length |w|U 6 r.
We note that |B(r)| 6 |U |r+1, since |U | > 2.

Proposition 3.11. — Let U be a α-strongly reduced subset of G, with at least two
elements. There exists m1 which only depends on λ, α, A, ν, τ , and δ with the
following property. For all m > m1, and r > 0, we have

|U∗m ∩B(r + 1)| > |U |
2
|U∗m ∩B(r)|.

Proof. — We adapt the counting arguments of [Cou13]. We firstly fix some notations.
Let m0 be the parameter given by Proposition 3.6. Recall that m0 only depends on
α, A, ν, τ , and δ. Let U ⊂ G be an α-strongly reduced subset, with at least two
elements. Let m > m0 + 5λ/τ . We let

Z = {w ∈ U∗ | w = w0u, w0 ∈ U∗m, u ∈ U}.

We denote by E the set of all maximal loxodromic subgroups in G. For each E ∈ E ,
let ZE ⊂ Z be the subset of all w ∈ Z that split as a product w = w1w2, where
w1 ∈ U∗m and w2 ∈ U∗ is an m-periodic word with period E.

Lemma 3.12. — The set Z r
⋃
E∈E ZE is contained in U∗m.

Proof. — Let w ∈ Z contain an m-period of a loxodromic subgroup E ∈ E . By defi-
nition of Z, we have w = w0u, where u ∈ U and the prefix w0 ∈ U∗ does not contain
any m-period. On the other hand w contains a subword w2 which is an m-period with
period E. Since w2 cannot be a subword of w0, it is a suffix of w. �
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Recall that if W ⊂ U∗, then |W | stands for the cardinality of the image of W in G.
However, since U freely generates a free sub-semi-group (Lemma 3.2), we can safely
identify the elements of U∗ with their images in G. It follows from Lemma 3.12, that
for all natural numbers r,

|U∗m ∩B(r)| > |Z ∩B(r)| −
∑
E∈E

|ZE ∩B(r)|.(7)

The next step is to estimate each term in the above inequality.

Lemma 3.13. — For all real numbers r,
|Z ∩B(r + 1)| > |U ||U∗m ∩B(r)|.

Proof. — It is a direct consequence of the fact that U freely generates a free sub-
semi-group. �

Lemma 3.14. — Let E ∈ E . For all real numbers r,

|ZE ∩B(r)| 6 2|U∗m ∩B (r −mτ(E)/λ) |.

Proof. — Let w ∈ ZE ∩ B(r). By definition, w splits as a product w = w1w2, where
w1 ∈ U∗m and w2 ∈ U∗ is m-periodic with period E. By Remark 3.7, |w2|U >

mτ(E)/λ, so that w1 ∈ U∗m ∩B(r −mτ(E)/λ).
Since w also belongs to Z, the prefix consisting of all but the last letter does not

contain m-periods. Thus every proper prefix of w2 cannot be m-periodic. It follows
from Lemma 3.8 that there are at most two possible choices for w2. Hence the result.

�

Lemma 3.15. — For all real numbers r, the following inequality holds:∑
E∈E

|ZE ∩B(r)| 6 2|U |m0τ/δ+2
∑
j>1

|U∗m ∩B (r − jmτ/λ) | |U |jm0τ/δ.

Remark 3.16. — Note that the terms in the series on the right hand side are all
non-negative. Hence if the series diverges, the statement is void. Later we will apply
this lemma in a setting where the series actually converges.

Proof. — Given j > 1, we define Ej as the set of all maximal loxodromic subgroups
E ∈ E , such that jτ 6 τ(E) < (j + 1)τ and U∗ contains a word that is m-periodic
with period E. We split the left-hand sum as follows∑

E∈E

|ZE ∩B(r)| =
∑
j>1

∑
E∈Ej

|ZE ∩B(r)|.

Indeed if U∗ does not contain a word that is m-periodic with period E, then the
set ZE is empty. Observe that for every E ∈ Ej we have by Lemma 3.14

|ZE ∩B(r)| 6 2|U∗m ∩B (r − jmτ/λ) |.

Thus it suffices to bound the cardinality of Ej for every j > 1.
Let j > 1. For simplicity we let dj = (j+1)m0τ/δ+1. We claim that |Ej | 6 |U |dj+1.

To that end we are going to build a one-to-one map from χ : Ej → B(dj). Indeed the
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cardinality of the ball B(dj) is at most |U |dj+1. Let E ∈ Ej . By definition there exists
w ∈ U∗ which is m-periodic with period E. Let w′ be the shortest prefix of w that
is m0-periodic with period E. Note that such prefix always exists since m > m0.
By Remark 3.7, w′ belongs to B(m0τ(E)/δ + 1) hence to B(dj). We define χ(E) to
be w′. Observe that there is at most one E such that w′ is m0-periodic with period E
(Proposition 3.6). Hence χ is one-to-one. This completes the proof of our claim and
the lemma. �

We now complete the proof of Proposition 3.11. Let us define first some auxiliary
parameters. We fix once for all an arbitrary number ε ∈ (0, 1/2). In addition we let

µ = (1− ε)|U |, γ = |U |m0τ/δ, ξ = 2|U |m0τ/δ+2, σ =
ε

2(1− ε)ξ
, and M =

⌊mτ
λ

⌋
.

Since |U | > 2, we observe that σ 6 1/2. We claim that there exists m1 > m0 which
only depends on λ, α, A, ν, τ , and δ such that

γ

µM
6 σ,

provided that m > m1. The computation shows that

ln
( γ

σµM

)
6
(2m0τ

δ
+ 3− mτ

λ

)
ln |U | − ln

( ε

4(1− ε)

)
− mτ

λ
ln(1− ε).

Recall that |U | > 2. Hence, if

m >
2m0λ

δ
+

3λ

τ
,

then the previous inequality yields

(8) ln
( γ

σµM

)
6 −mτ

λ
[ln 2 + ln(1− ε)] +

(2m0τ

δ
+ 3
)

ln 2− ln
( ε

4(1− ε)

)
.

We can see from there, that there exists m1 > m0 which only depends on λ, m0, τ ,
and δ, such that as soon as m > m1 the right hand side of Inequality (8) is non-
positive, which completes the proof of our claim. Up to increasing the value of m1,
we can assume that M > 1, provided m > m1.

Let us now estimate the number of aperiodic words in U∗. From now on we assume
that m > m1. For every integer r, we let

c(r) = |U∗m ∩B(r)|.

We claim that for every integer r, we have c(r) > µc(r − 1). The proof goes by
induction on r. In view of Example 3.10, the inequality holds true for r = 1. Assume
that our claim holds for every s 6 r. In particular for every integer t > 0, we get
c(r − t) 6 µ−tc(r). It follows from (7) that

c(r + 1) > |Z ∩B(r + 1)| −
∑
E∈E

|ZE ∩B(r + 1)|.

Applying Lemmas 3.13 and 3.15, we get

c(r + 1) > |U |c(r)− ξ
∑
j>1

c(r + 1− jM)γj .
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Note that jM − 1 > 0, for every j > 1. Thus applying the induction hypothesis we
get

c(r + 1) >

(
1− ξµ

|U |
∑
j>1

( γ

µM

)j)
|U | c(r).

We defined µ as µ = (1− ε)|U |, hence it suffices to prove that
ξµ

|U |
∑
j>1

( γ

µM

)j
6 ε.

Recall that γ/µM 6 σ 6 1/2. Hence the series converges. Moreover
ξµ

|U |
∑
j>1

( γ

µM

)j
6

ξµ

|U |
σ

1− σ
6

2ξµσ

|U |
6 ε.

This completes the proof of our claim for r + 1. �

4. Power-free elements

Let G be a group that acts (N,κ)-acylindrically on a δ-hyperbolic geodesic spaceX.
We fix a basepoint p ∈ X. Recall our convention: the diameter of the empty set is
zero, see Remark 2.12.

Definition 4.1. — Let m > 0. An element g ∈ G contains an m-power if there is a
maximal loxodromic subgroup E and a geodesic [p, gp] such that

diam
(
[p, gp]+5δ ∩ C+5δ

E

)
> mτ(E).

If g ∈ G does not contain any m-power, we say that g is m-power-free.

Let U ⊂ G be a finite subset. We recall that λ = maxu∈U |up − p| and that U∗
is the set of all words over the alphabet U . The idea of the next statement is the
following. Take a word w ∈ U∗. If w, seen as an element of G, contains a sufficiently
large power, then the word w already contains a large period.

Proposition 4.2. — Let m > (2λ + 20δ)/τ . Let U ⊂ G be a finite α-reduced subset.
Let w ∈ U∗. If w contains an m-power (as an element of G), then w contains an
m′-period (as a word over U), where m′ = m− (2λ+ 20δ)/τ .

Proof. — Let w = u1 · · ·ul. As w contains a m-power, there is a loxodromic sub-
group E and a geodesic [p, wp] such that

diam([p, wp]+5δ ∩ C+5δ
E ) > mτ(E).

Let x1, x2 in [p, wp]+5δ ∩ C+5δ
E such that |x1 − x2| > mτ(E). Let γw = [p, u1p] ∪

u1[p, u2p] ∪ · · · ∪ (u1 · · ·u`−1)[p, u`p] be a broken geodesic joining p to wp. Let p1
and p2 be the respective projections of x1 and x2 on γw. By Lemma 2.3, the geodesic
[p, wp] is contained in the 5δ-neighborhood of γw. Hence p1 and p2 are 15δ-close to CE .
Moreover,

|p1 − p2| > |x1 − x2| − 20δ > mτ(E)− 20δ.
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Up to permuting x1 and x2 we can assume that p, p1, p2 and wp are ordered in this
way along γw. In particular, there is i 6 ` − 1 such that p1 ∈ (u1 · · ·ui) · [p, ui+1p],
and j 6 ` − 1 such that p2 ∈ (u1 · · ·uj) · [p, uj+1p]. Since p1 comes before p2 on γw,
we have i 6 j. Note that actually i < j. Indeed if i = j, we would have

λ > |ui+1p− p| > |p1 − p2| > mτ(E)− 20δ > mτ − 20δ,

which contradicts our assumption. Let us set w0 = u1 · · ·ui+1 and take the word w1

such that u1 · · ·uj = w0w1. At this stage w1 could be the empty word. But we will
see that this is not the case. Indeed

|p1 − p2| 6 |p1 − w0p|+ |w0p− w0w1p|+ |w0w1p− p2| 6 |p− w1p|+ 2λ.

Thus,
|p− w1p| > mτ(E)− 2λ− 20δ > m′τ(E).

Applying Lemma 2.3 to the subpath γ′ of γw bounded by p1 and p2, we get that γ′
lies in the (α + 14δ)-neighborhood of the geodesic [p1, p2]. However p1 and p2 are
in the 15δ-neighborhood of CE which is 2δ-quasi-convex. Thus γ′ is contained in
the (α + 31δ)-neighborhood of CE . We conclude that w1 is m′-periodic with period
w−10 Ew0. �

5. Energy and quasi-center

Let G be a group acting by isometries on a δ-hyperbolic length space X. Recall
that we assume for simplicity that δ > 0. In next sections, we denote by S(x, r) the
sphere in X of radius r centered at x. (This should not be confused with the spheres
in U∗ used in the previous section.) Let U ⊂ G be a finite subset. In order to apply
the counting results from Section 3, we explain in this section and the followings how
to build a strongly reduced subset of U2. To that end we define the notion of energy
of U .

Definition 5.1. — The `∞-energy λ(U, x) of U at x is defined by λ(U, x) =

maxu∈U |ux− x|. The `∞-energy of U is given by

λ(U) = inf
x∈X

λ(U, x).

A point q ∈ X is almost-minimizing the `∞-energy if λ(U, q) 6 λ(U) + δ.

Let x ∈ X and A,B ⊆ X. Define Ux(A,B) to be the set of elements u ∈ U

satisfying the following conditions
• |x− ux| > 4 · 103δ,
• there exists a ∈ A ∩ S(x, 103δ), such that (x, ux)a 6 δ,
• there exists b ∈ B ∩ S(x, 103δ), such that (u−1x, x)b 6 δ.

We write Ux(A) = Ux(A,A), and, if there is no ambiguity, U(A,B) = Ux(A,B) for
short.
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Definition 5.2 (Quasi-centre). — A point x ∈ X is a quasi-center for U if, for all
y ∈ S(x, 103δ), we have ∣∣Ux (y+100δ

)∣∣ 6 3

4
|U |.

Proposition 5.3. — Let q be a point that almost-minimizes the `∞-energy of U . There
exists a quasi-center p for U such that |p− q| 6 λ(U).

Remark 5.4. — The existence of a quasi-center is already known by [DS20]. The
authors prove there that any point almost-minimizing the `1-energy is a quasi-center.
However such a point could be very far from any point almost-minimizing the `∞-
energy.

Proof. — We describe a recursive procedure to find a quasi-center p. The idea is to
construct a quasi-geodesic from q to a quasi-center p. Let x0 = q and suppose that
x0, . . . , xi−1, xi ∈ X are already defined. If xi is a quasi-center for U , we let p = xi
and stop the induction. Otherwise, there is a point xi+1 ∈ S(xi, 103δ) such that
|Uxi(x

+100δ
i+1 )| > 3

4 |U |.
Our idea is to apply Lemma 2.3 to the sequence of points x0, x1, . . . , xi, xi+1,

uxi+1, uxi, . . . , ux1, ux0 for some u ∈ Uxi
(x+100δ
i+1 ). Like this we can write the distance

from x0 to ux0 as a function of the index i. We will observe that this function diverges
to infinity, which forces the procedure to stop. To do this, we collect the following
observations. By construction, we have:

Lemma 5.5. — For all u ∈ Uxi−1
(x+100δ
i ), the following holds

(1) (xi−1, uxi−1)xi
6 101δ and (xi−1, uxi−1)uxi

6 101δ,
(2) (xi−1, uxi)xi 6 102δ and (xi, uxi−1)uxi 6 102δ.

Remark 5.6. — Roughly speaking, this lemma tells us that xi−1, xi, uxi and uxi−1
are aligned in the order of their listing along the neighborhood of the geodesic
[xi−1, uxi−1].

Proof
The first point is just a reformulation of the definition of the set Uxi−1

(x+100δ
i ).

Let u ∈ Uxi−1
(x+100δ
i ). By Lemma 2.2 (1) we have

(9) (xi−1, uxi)xi 6 max
{
|xi−1 − xi| − (uxi, uxi−1)xi−1 , (xi−1, uxi−1)xi

}
+ δ.

According to the triangle inequality we have

(uxi, uxi−1)xi−1 > |uxi−1 − xi−1| − |xi−1 − xi|.

However, by construction |uxi−1−xi−1| > 2|xi−1−xi|+2δ. Hence the maximum in (9)
has to be achieved by (xi−1, uxi−1)xi

. The same argument works for (xi, uxi−1)uxi
.
�

Lemma 5.7. — If xi is not a quasi-center for U , then (xi−1, xi+1)xi
6 103δ.
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Proof. — We note that |Uxi−1
(x+100δ
i )∩Uxi

(x+100δ
i+1 )| > |U |/2. Let us fix an element u

in this intersection. By Lemma 5.5, (xi−1, uxi)xi 6 102δ and (xi, uxi)xi+1 6 101δ.
According to the four point inequality we have

102δ > (xi−1, uxi)xi > min {(xi−1, xi+1)xi , (xi+1, uxi)xi} − δ.

Observe that

|xi − xi+1| = (xi+1, uxi)xi + (xi, uxi)xi+1 6 (xi+1, uxi)xi + 101δ.

Since |xi − xi+1| = 103δ, the minimum cannot be achieved by (xi+1, uxi)xi
, whence

the result. �

Lemma 5.8. — If xi is not a quasi-center, then, for all u ∈ Uxi
(x+100δ
i+1 ),

|ux0 − x0| > |xi+1 − uxi+1|+ 103(i+ 1)δ.

Proof. — Let u be in Uxi
(x+100δ
i+1 ). By Lemma 5.5,

xi, uxi+1)xi+1
6 102δ and (xi+1, uxi)uxi+1

6 102δ.

On the other hand, by Lemma 5.7, we have

(xj−1, xj+1)xj 6 103δ and (uxj−1, uxj+1)uxj 6 103δ, for all 0 < j 6 i.

The claim follows from Lemma 2.3 applied to the sequence of points x0, x1, . . . , xi,
xi+1, uxi+1, uxi, . . . , ux1, ux0. �

Suppose that xi is not a quasi-center. Fix u ∈ Uxi
(x+100δ
i+1 ). By construction

we have |xi+1 − uxi+1| > 4 · 103δ. Recall that x0 = q almost-minimizes the energy.
By Lemma 5.8, we get

λ(U) > 103(i+ 5)δ.

This means that the induction used to build the sequence (xi) stops after finitely
many steps. Moreover, when the process stops we have xi = p and λ(U) > 103(i+5)δ.
For every j 6 i− 1 we have |xj − xj+1| 6 103δ, thus |p− q| 6 λ(U). �

6. Sets of diffuse energy

In this section we assume that the action of G on X is (N,κ)-acylindrical, with
κ > 50 · 103δ. Let U ⊂ G be a finite subset. Let p be a quasi-center of U . In this
section we assume that U is of diffuse energy (at p) that is for at least 99/100 of the
elements of U ⊂ G, we have |up− p| > 2κ.

6.1. Reduction lemma. — We first prove the following variant of the reduction lem-
mas in [DS20].

Proposition 6.1 (Reduction). — There is v ∈ U , and U1 ⊂ U of cardinality |U1| >
1

100 |U | such that for all u1 ∈ U1,
• (u−11 p, vp)p 6 103δ and (v−1p, u1p)p 6 103δ, and
• 2κ 6 |u1p− p| 6 |vp− p|.
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Remark 6.2. — In the case of trees, Proposition 6.1 follows directly from [DS20,
Lem. 6.4], and the proof of this lemma is due to Button [But13]. The situation is
different in the case of hyperbolic spaces. Indeed, in contrast to the reduction lemmas
in [DS20, §6.1], the cardinality of U1 in Proposition 6.1 does not depend the cardinality
of balls in X, as in [DS20, Lem. 6.3], and the estimates on the Gromov products do
not depend on the logarithm of the cardinality of U , as in [DS20, Lem. 6.8].

Proof. — For simplicity we let η = 1/100. Let U ′ = {u ∈ U | |up− p| > 2κ}. As the
energy of U is diffuse at p, we have |U ′| > (1 − η)|U |. Let us fix u0 ∈ U ′ such that
|u0p− p| is maximal. We claim the following result.

Lemma 6.3. — At least one of the following holds:
(1) there is U1 ⊂ U ′ of cardinality |U1| > η|U | such that for all u1 ∈ U1,

(u−11 p, u0p)p 6 103δ and (u−10 p, u1p)p 6 103δ;

(2) there are U1, U2 ⊂ U ′ of cardinalities |U1| > η|U | and |U2| > η|U | such that
for all u1 ∈ U1, u2 ∈ U2,

(u−11 p, u2p)p 6 103δ and (u−12 p, u1p)p 6 103δ.

We postpone for the moment the proof of this lemma and complete first the demon-
stration of Proposition 6.1. In case (1) of Lemma 6.3, we set v = u0. In case (2) of
Lemma 6.3, we may assume, up to exchanging the roles of U1 and U2, that there is
v ∈ U2 such that for all u1 ∈ U1, |u1p− p| 6 |vp− p|. This yields Proposition 6.1. �

Proof of Lemma 6.3. — We write S = S(p, 103δ) for short. For simplicity, in this proof
we write

U ′(A,B) = U ′ ∩ Up(A,B).

See Section 5 for the definition or Up(A,B).
The definition of hyperbolicity implies the following useful lemma.

Lemma 6.4 ([DS20, Lem. 6.1]). — Let y1, z1, y2, z2 ∈ S. If |z1 − y2| > 6δ, then for
every u1 ∈ U(y1, z1) and u2 ∈ U(y2, z2), we have (u−11 p, u2p)p 6 103δ. �

By construction |u0p − p| > 4 · 103δ. Thus there exists y0 and z0 ∈ S such
that (u0p, p)y0 6 δ and (p, u−10 p)z0 6 δ, so that u0 ∈ U ′(y0, z0). Assume first that
|U ′(S r z+6δ

0 , S r y+6δ
0 )| > η|U |. Then we let U1 = U ′(S r z+6δ

0 , S r y+6δ
0 ). Using

Lemma 6.4 we conclude that (1) holds.
Observe that the complement in U ′ of the previous set is the union of U ′(z+6δ

0 , S)

and U ′(S, y+6δ
0 ). Recall that |U ′| > (1− η)|U |. Thus we can now assume that

(10)
∣∣U ′(z+6δ

0 , S) ∪ U ′(S, y+6δ
0 )

∣∣ > (1− 2η)|U |.

Let us now assume that |U ′(z+6δ
0 , S r z+12δ

0 ) > η|U |. In this case we let U1 = U2 =

U ′(z+6δ
0 , S r z+12δ

0 ). Using Lemma 6.4 we conclude that (2) holds. The same argu-
ment works if |U ′(S r y+12δ

0 , y+6δ
0 )| > η|U |. Suppose now that the cardinality of
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U ′(z+6δ
0 , S r z+12δ

0 ) and U ′(Sry+12δ
0 , y+6δ

0 ) are both bounded above by η|U |. It follows
from (10) that

(11) |U1 ∪ U2| > (1−4η)|U |, where U1 =U ′(z+6δ
0 , z+12δ

0 ) and U2 =U ′(y+12δ
0 , y+6δ

0 ).

Since p is a quasi-center, the cardinality of both U1 and U2 is bounded above by 3|U |/4.
It follows from (11) that each of them contains at least (1/4−4η)|U | elements. Observe
also that |y0−z0| > 30δ. Indeed otherwise both U1 and U2 are contained in U(y+100δ

0 ).
Hence (11) contradicts the fact that p is a quasi-center. Applying Lemma 6.4 we
conclude that U1 and U2 satisfy (2). �

6.2. Construction of free sub-semi-groups. — We recall that λ(U) denotes the
`∞-energy of the finite subset U ⊂ G. By Proposition 5.3, we can assume that the
quasi-center p, which we fixed at the beginning of this section, is at distance at most
λ(U) from a point almost-minimizing the `∞-energy of U . We still assume that the
energy of U is diffuse (at p). We treat p as the base point of X.

Remark 6.5. — According to the triangle inequality, we have |up − p| 6 3λ(U) + δ,
for every u ∈ U . Since the energy of U is diffuse at p, there is an element u ∈ U that
moves p by a large distance. As a consequence λ(U) > δ, and thus |up− p| 6 4λ(U),
for every u ∈ U . This estimates are far from being optimal, but sharp enough for our
purpose.

Proposition 6.6. — There exists v ∈ U and a subset W ⊂ Uv such that W is 1002δ-
strongly reduced and

|W | > 1

106N

δ

λ(U)
|U |.

Proof. — For simplicity we let α = 1002δ. We fix U1 and v given by Proposition 6.1.
We set T = U1v.

Lemma 6.7. — For every t, t′ ∈ T , we have (t−1p, t′p)p 6 α and |tp− p| > 2α+ 300δ.

Proof. — We write t = uv and t′ = u′v with u, u′ ∈ U1. Applying twice the four point
inequality (3) we have

(12) min
{

(v−1p, t−1p)p, (t
−1p, t′p)p, (t

′p, u′p)p
}
6 (v−1p, u′p)p + 2δ 6 α.

Observe that

(v−1p, t−1p)p = |p− v−1p| − (p, t−1p)v−1p = |p− vp| − (vp, u−1p)p > 2κ− 1000δ > α.

Similarly we prove that (t′p, u′p)p > α. Hence the minimum in (12) is achieved by
(t−1p, t′p)p which proves the first point. By definition of Gromov products we have

|tp− p| = |up− p|+ |vp− p| − 2(u−1p, vp)p > 4κ− 2000δ. �

For every w ∈ T , we set

Aw = {t ∈ T | |p− tp| 6 |p− wp| and (wp, p)tp 6 α+ 150δ}.

Note that w ∈ Aw.
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In order to define W , we construct by induction an increasing sequence (Wi) of
subsets of T . We first let W0 = ∅. Assume that now that Wi has been defined for
some integer i > 0. If the set

T r
⋃

w∈Wi

Aw

is empty, then the process stops and we let W = Wi (note that this will ineluctably
happen as T is finite). Otherwise, we choose an element wi+1 in this set for which
|p− wi+1p| is maximal and let Wi+1 = Wi ∪ {wi+1}.

Lemma 6.8. — The set W is α-strongly reduced.

Proof. — By Lemma 6.7, the set T (hence W ) is α-reduced. It suffices to prove that
for every distinct w,w′ ∈W we have

(wp,w′p)p 6 min{|wp− p|, |w′p− p|} − α− 150δ.

Using the notation above, we write, w1, w2, . . . , wn for the elements W in the order
they have been constructed. Let i, j ∈ {1, . . . , n} such that |p − wjp| 6 |p − wip|.
If i < j, then wj does not belong to Awi

, thus

(wip, wjp)p = |wjp− p| − (wip, p)wjp < |wjp− p| − α− 150δ

6 min{|wip− p|, |wjp− p|} − α− 150δ.

Assume now that j < i. Note that the sequence {|p− wkp|} is non-increasing, hence
|p− wjp| = |p− wip|. Since wi does not belong to Awj

, thus

(wip, wjp)p = |wip− p| − (wjp, p)wip < |wip− p| − α− 150δ

6 min{|wip− p|, |wjp− p|} − α− 150δ. �

Lemma 6.9. — For every w ∈ T , we have

|Aw| 6
2065N

δ
λ(U).

Proof. — Let w ∈ T . The proof goes in two steps. First we give an upper bound for
subsets of sparse elements in Aw. Let m > 0 be an integer. Let t0 = u0v, t1 = u1v,
. . . , tm = umv be m pairwise distinct elements in Aw. We assume in addition that
|uip−ujp| > 6 ·103δ, for every distinct i, j ∈ {0, . . . ,m}. Let γ : [a, b]→ X be a (1, δ)-
quasi-geodesic from p to wp. We are going to give an upper bound for m. To that end
we claim that the points u0p, . . . , ump lie close to γ. Since the points uip are sparse,
this will roughly say thatm . |wp−p|/max{|uip−ujp|}. More precisely, the argument
goes as follows. For every i ∈ {0, . . . ,m}, we write pi for a projection of uip onto γ.
Up to reindexing the elements we can suppose that the points p, p0, p1, . . . , pm, wp are
aligned in this order along γ.

Since ti belongs to Aw, we have

(wp, p)tip 6 α+ 150δ 6 1152δ.
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On the other hand, we know by construction of U1 and v that (p, tip)uip = (u−1i p, vp)p
is at most 103δ, see Proposition 6.1. Hence the triangle inequality yields, see (2),

(p, wp)uip 6 (wp, p)tip + (p, tip)uip 6 2152δ.

Since γ is (1, δ)-quasi-geodesic, it is 9δ-quasi-convex, see [Cou14, Cor. 2.7(2)]. It follows
that |uip−pi| = d(uip, γ) is at most 2161δ. According to the triangle inequality we get

|pi − pj | > 1678δ, ∀i 6= j.

Observe now that

1678mδ 6
m−1∑
i=0

|pi − pi+1| 6 length(γ) 6 |p− wp|+ δ.

Recall that w is a two letter word in U , while λ(U) is very large compare to δ. Hence
1678mδ 6 9λ(U). To simply the rest of the computations, we will use the following
generous estimate

m 6
λ(U)

δ
.

We now start the second step of the proof. Using acylindricity we reduce the
counting of elements in Aw to the case of a sparse subset. Any element t ∈ Aw
can be written t = utv with ut ∈ U1. Consider now t, t′ ∈ Aw.

We claim that |utvp − ut′vp| 6 |utp − ut′p| + 4306δ. Indeed, by definition of Aw,
we have (wp, p)utvp 6 α+150δ and (wp, p)ut′vp 6 α+150δ. By Lemma 2.2(2) we have

|utvp− ut′vp| 6
∣∣|p− utvp|−|p− ut′vp|∣∣+2 max{(wp, p)utvp, (wp, p)ut′vp}+2δ

6
∣∣|p− utvp|−|p− ut′vp|∣∣+2306δ.

(13)

Note that

|p− utp|+ |vp− p| − 2 · 103δ 6 |p− utvp| 6 |p− utp|+ |vp− p|.

Indeed the second inequality is just the triangle inequality, while the first one is
equivalent to the following known fact (u−1t p, vp)p 6 103δ. Similarly we have

|p− ut′p|+ |vp− p| − 2 · 103δ 6 |p− ut′vp| 6 |p− ut′p|+ |vp− p|.

The difference of the previous two inequalities yields∣∣|p− utvp| − |p− ut′vp|∣∣ 6 ∣∣|p− utp| − |p− ut′p|∣∣+ 2 · 103δ.

Plugging this inequality in (13) we obtain

|utvp− ut′vp| 6
∣∣|p− utp| − |p− ut′p|∣∣+ 4306δ.

Finally, by the triangle inequality
∣∣|p− utp| − |p− ut′p|∣∣ 6 |utp− ut′p|. This implies

the claim.
We can now take advantage of acylindricity. Recall that |vp − p| > 2κ, with κ >

50 · 103δ. In particular,
|vp− p| > κ+ 41324δ.
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We let M = 2065N . According to acylindricity – see (4) applied with r = 10306δ –
the set

F = {g ∈ G | |gp− p| 6 6000δ and |gvp− vp| 6 10306δ}
contains at most M elements. It follows that for every t ∈ Aw, there are at most M
elements t′ ∈ Aw such that |utp − ut′p| 6 6 · 103δ. Indeed, if |utp − ut′p| 6 6 · 103δ,
our previous claim implies that u−1t ut′ belongs to F .

So we can extract a subset B ⊂ Aw containing m > |Aw|/M elements such that
for every distinct t, t′ ∈ B we have |utp−ut′p| > 6 · 103δ. It follows from the previous
discussion that m 6 λ(U)/δ. Consequently,

|Aw| 6
2065N

δ
λ(U). �

Lemma 6.10. — The cardinality of W is bounded from below as follows:

|W | > 1

2065N

δ

λ(U)
|T |.

Proof. — Recall that w ∈ Aw for every w ∈ T . Thus, by construction, the collection
of sets {Aw}w∈W covers T . We have seen in Lemma 6.9 that the cardinality of each
of them is at most 2065Nλ(U)/δ. Hence the result. �

The previous lemma completes the proof of Proposition 6.6. �

7. Sets of concentrated energy

We still assume here that the action of G on X is (N,κ)-acylindrical, with κ >

50 · 103δ. Let U ⊂ G be a finite subset and p ∈ X a base point. In this section
we also assume that U has concentrated energy (at p) that is, there exists U1 ⊂ U

with |U1| > |U |/100 such that |up− p| 6 2κ, for all u ∈ U1. The goal of the section is
to prove the following statement.

Proposition 7.1. — Let M = 2κN/δ. If λ(U, p) > 100κ, then one of the following
holds:

(1) either |U | 6 100M ;
(2) or there exists v ∈ U and a subset W ⊂ Uv such that W is 25κ-strongly reduced

and
|W | > |U |/100M − 1.

Proof. — We assume that |U | > 100M , so that |U1| > M . The proof follows the exact
same ideas as Lemmas 5.2 and 5.3 of [DS20]. Since the energy λ(U, p) at p is larger
than 100κ, there exists v ∈ U satisfying |vp− p| > 100κ. For every u ∈ U1, we let

Bu = {u′ ∈ U1 | (uvp, u′vp)p > 23κ− δ}.

Note that by the triangle inequality, |uvp − p| > |vp − p| − |up − p| > 98κ, for every
u ∈ U1. Hence u ∈ Bu.

Let us fix first an element u ∈ U1. We claim that the cardinality of Bu is
at most M . Recall that X is a a length space, hence there is a point m in X such
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that |p−m| = 21κ− δ and (p, vp)m 6 δ. Let u′ ∈ Bu. The element u′u−1 moves the
point up by at most 4κ. We now show that u′u−1 moves um by at most 4κ + 8δ.
By Lemma 2.2(1) we have

(p, uvp)um 6 max {|uvp− um| − (p, up)uvp, (up, uvp)um}+ δ

6 max {|vp−m| − (p, up)uvp, (p, vp)m}+ δ.
(14)

On the one hand, we have

|vp−m| = |p− vp| − |p−m|+ 2(p, vp)m 6 |p− vp| − 21κ+ 3δ.

On the other hand, the triangle inequality yields

(p, up)uvp > |up− uvp| − |p− up| > |p− vp| − 2κ.

If we plug in the last two inequalities in (14) we get (p, uvp)um 6 2δ. Now observe
that ∣∣|p− um| − |p−m|∣∣ =

∣∣|p− um| − |up− um|∣∣ 6 |p− up| 6 2κ.

Similarly (p, u′vp)u′m 6 2δ and
∣∣|p−u′m|− |p−m|∣∣ 6 2κ. In particular both |p−um|

and |p− u′m| are at most (uvp, u′vp)p. By Lemma 2.2(3) we have

|um− u′m| 6 max
{∣∣|p− um| − |p− u′m|∣∣+ 4δ, 0

}
+ 4δ 6 4κ+ 8δ,

which corresponds to our announcement.
Note that the point up and um, which are “hardly” moved by u′u−1, are far away.

More precisely
|up− um| = |p−m| = 21κ− δ.

Recall that M = 2κN/δ. Using acylindricity – see (4) with r = 4κ + 8δ – we get
that Bu contains at most M elements, which completes the proof of our claim.

Recall that u ∈ Bu, for every u ∈ U1. We now fix a maximal subset U2 ⊂ U1

such that for every u ∈ U1, any two distinct u1, u2 ∈ U2 never belong to the same
subset Bu. The cardinality of U2 is at least |U2| > |U1|/M . Indeed by maximality
of U2, the U1 is covered by the collection (Bu)u∈U2

.
We claim that there is at most one element u ∈ U2 such that (v−1p, uvp)p > 23κ.

Assume on the contrary that it is not the case. We can find two distinct element
u, u′ ∈ U2 such that

(uvp, u′vp)p > min{(v−1p, uvp)p, (v−1p, u′vp)p} − δ > 23κ− δ.

Thus u′ belongs to Bu which contradicts the definition of U2. Recall that |U1| > M ,
hence U2 contains at least 2 elements. We define then U3 from U2 by removing if
necessary the element u ∈ U2 such that (v−1p, uvp)p > 23κ. Note that

|U3| >
|U1|
M
− 1 >

|U |
100M

− 1.

We now let W = U3v. We are going to prove that W is 25κ-strongly reduced. Note
first that

|wp− p| > |vp− p| − 2κ > 98κ > 50κ+ 300δ
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for every w ∈W . Let w = uv and w′ = u′v be two elements in W . It follows from the
triangle inequality that

(w−1p, w′p)p 6 (v−1p, w′p)p + |up− p| 6 (v−1p, w′p)p + 2κ.

By construction of U3, no element w′ ∈ W has a large Gromov product with v−1.
Hence (w−1p, w′p)p 6 25κ. Thus the set W is 25κ-reduced. By choice of U2 we also
have (wp,w′p)p < 23κ− δ for every distinct w,w′ ∈W . Recall that

min {|wp− p|, |w′p− p|} > |vp− p| − 2κ > 98κ.

Consequently, W is 25κ-strongly reduced. �

8. Growth in groups acting on hyperbolic spaces

As a warm-up for the study of Burnside groups we first prove the following state-
ment.

Theorem 8.1. — Let δ > 0, κ > 50 · 103δ, and N > 0. Assume that the group G acts
(N,κ)-acylindrically on a δ-hyperbolic length space. For every finite U ⊂ G such that
λ(U) > 100κ, one of the following holds.

(1) |U | 6 400κN/δ.
(2) There exists v ∈ U and a subset W ⊂ Uv such that W is α-strongly reduced,

with α 6 25κ, and
|W | > 1

106N

δ

λ(U)
|U |.

Proof of Theorem 8.1. — Let U ⊂ G be a finite subset such that λ(U) > 100κ.

Choice of the base-point. — Let q be a point almost-minimizing the `∞-energy of U .
We now fix the base-point p to be a quasi-center for U . By Proposition 5.3, we can
assume that |p− q| 6 λ(U).

Case 1: diffuse energy. — Let us first assume that U is of diffuse energy at p. That is,
there is a subset U ′ ⊂ U such that |U ′| > 99|U |/100 and such that for all u′ ∈ U ′
we have |u′p − p| > 2κ. Then, by Proposition 6.6, there exists v ∈ U and a subset
W ⊂ Uv such that W is α-strongly reduced (with α = 1002δ) and whose cardinality
satisfies

|W | > 1

106N

δ

λ(U)
|U |.

Case 2: concentrated energy. — Otherwise U is of concentrated energy at p. Indeed,
there is a subset U ′ ⊂ U of cardinality |U ′| > |U |/100 such that |u′p − p| 6 2κ,
for all u′ ∈ U ′. Recall that λ(U) > 100κ. Assume that |U | > 400κN/δ. By Proposi-
tion 7.1, there exists v ∈ U and a subset W ⊂ Uv such that W is α-strongly reduced
(with α = 25κ) and whose cardinality satisfies

|W | > 1

200N

δ

κ
|U | − 1 >

1

106N

δ

λ(U)
|U |.

This completes the proof of Theorem 8.1. �
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Corollary 8.2. — Let δ > 0, κ > 50 · 103δ, and N > 0. Assume that the group G
acts (N,κ)-acylindrically on a δ-hyperbolic length space. For every finite U ⊂ G such
that λ(U) > 100κ and for all integers r > 0, we have

|Ur| >
( 1

106N

δ

λ(U)
|U |
)[(r+1)/2]

.

Proof. — Without loss of generality we can assume that |U | > 400κN/δ. Indeed
otherwise the base of the exponential function on the right hand side of the stated
inequality is less than one, hence the statement is void. According to Theorem 8.1,
there exists v ∈ U and a subset W ⊂ Uv such that W is α-strongly reduced and

|W | > 1

106N

δ

λ(U)
|U |.

Let s > 0 be an integer. On the one hand, (Uv)s is contained in U2s, hence |U2s| >
|(Uv)s|. On the other hand (Uv)sU is contained in U2s+1. Right multiplication by v
induces a bijection from G to itself. Hence

|U2s+1| > |(Uv)sU | = |(Uv)s+1|.

Recall that W is contained in Uv and freely generates a free-sub-semigroup of G by
Lemma 3.2. It follows that for every integer r > 0,

|Ur| > |(Uv)[(r+1)/2]| > |W |[(r+1)/2] >
( 1

106N

δ

λ(U)
|U |
)[(r+1)/2]

. �

We now combine Theorem 8.1 with our estimates on the growth of aperiodic words,
see Proposition 3.11. If we use Proposition 4.2 to compare the notion of aperiodic
words and power-free elements we obtain the following useful growth estimate.

Corollary 8.3. — Let δ > 0, κ > 50 · 103δ, N > 0 and λ0 > 0. There exists a
parameter m2 > 0 with the following properties. Assume that the group G acts (N,κ)-
acylindrically on a δ-hyperbolic geodesic space. Let U ⊂ G such that 100κ<λ(U)6λ0.
One of the following holds.

(1) |U | 6 max{4κN/δ, 4 · 106Nλ(U)/δ}.
(2) There is v ∈ U with the following property. For every r > 0 and m > m2,

denote by K(m, r) the set of all m-power-free elements in (Uv)r. Then,

|K(m, r)| >
( 1

4 · 106N

δ

λ(U)
|U |
)r
.

Proof. — Let U ⊂ G be a finite subset such that λ(U) > 100κ. Without loss of
generality we can assume that |U | > max{4κN/δ, 4 · 106Nλ(U)/δ}. By Theorem 8.1
there exists v ∈ U and a subset W ⊂ Uv such that W is α-strongly reduced with
α 6 25κ and

|W | > 1

106N

δ

λ(U)
|U |.

It follows from our choice that |W | > 4 and λ(W ) 6 2λ(U).
Before moving on, let us recall some notations from Section 3. For every integer m,

the set W ∗m stands for the collection of m-aperiodic words in W ∗. In addition S(r)
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and B(r) are respectively the sphere and the ball of radius r in W ∗ (for the word
metric with respect to W ).

In view of Proposition 3.11, there exists m1 > 0, which only depends on δ, N , κ
and λ0 such that for every m > m1, for every r > 0, we have,

(15) |W ∗m ∩B(r + 1)| > |W |
2
|W ∗m ∩B(r)|.

Let us now focus on the cardinality of spheres. AsW is α-strongly reduced, it generates
a free sub-semi-group (Lemma 3.2). Thus

|W ∗m ∩ S(r + 1)| = |W ∗m ∩B(r + 1)| − |W ∗m ∩B(r)|.

If we combine this inequality with (15) and the fact that |W |/4 > 1, we obtain that

|W ∗m ∩ S(r + 1)| > |W |
2
|W ∗m ∩B(r)| − |W ∗m ∩B(r)| >

( |W |
2
− 1
)
|W ∗m ∩B(r)|

>
|W |

4
|W ∗m ∩B(r)|

>
|W |

4
|W ∗m ∩ S(r)|.

By an inductive argument, we obtain that, for all r > 0,

|W ∗m ∩ S(r)| > (|W |/4)r.

Now let m2 = m1 + (2λ(S) + 20δ)/τ and let m > m2. Then, by Proposition 4.2,
every element in W ∗m′ (seen as an element of G) is m-power-free, where m′ = m −
(2λ(S) + 20δ)/τ is larger than m1. Thus,

|K(m, r)| > |W ∗m′ ∩ S(r)| > (|W |/4)r.

This completes the proof. �

9. Small cancellation groups

In this section we recall the necessary background on small cancellation theory
with a special attention on acylindricity, see Proposition 9.9. The presentation follows
[Cou14] in content and notations.

9.1. Cones. — Let Y be a metric length space and let ρ > 0. The cone of radius ρ
over Y is the set

Z(Y ) = Y × [0, ρ]/ ∼,
where ∼ is the equivalence relation which identifies all the points of the form (y, 0)

for y ∈ Y . If x ∈ Z(Y ), we write x = (y, r) to say that (y, r) represents x. We let
v = (y, 0) be the apex of the cone.

If y, y′ are in Y , we let θ(y, y′) = min {π, |y − y′|/ sinh ρ} be their angle at v. There
is a metric on Z(Y ) that is characterized as follows, see [BH99, Ch. I.5]. Let x = (y, r)

and x′ = (y′, r′) in Z(Y ). Then

cosh |x− x′| = cosh r cosh r′ − sinh r sinh r′ cos θ(y, y′).

It turns out that Z(Y ) is a hyperbolic space [Cou14, Prop. 4.6].
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We let ι : Y → Z(Y ) be the embedding defined as ι(y) = (y, ρ). The metric
distortion of ι is controlled by a function µ : R+ → [0, 2ρ] that is characterized as
follows: for every t ∈ R+,

coshµ(t) = cosh2 ρ− sinh2 ρ cos(min{π, t/sinh ρ}).

For all y, y′ ∈ Y , we have

(16) |ι(y)− ι(y′)|Z(Y ) = µ(|y − y′|Y ).

Let us mention some properties of µ for later use.

Proposition 9.1 ([Cou14, Prop. 4.4]). — The map µ is continuous, concave, non-
decreasing. Moreover, if µ(t) < 2ρ, then t 6 π sinh(µ(t)/2). �

Let H be a group that acts by isometries on Y . Then H acts by isometries on Z(Y )

by hx = (hy, r). We note that H fixes the apex of the cone.

9.2. The cone off space. — From now, we assume that X is a proper, geodesic,
δ-hyperbolic space, where δ > 0. We fix a parameter ρ > 0, whose value will be made
precise later. In addition, we consider a group G that acts properly co-compactly by
isometries on X. We assume that this action is (N,κ)-acylindrical.

We let Q be a collection of pairs (H,Y ) such that Y is closed strongly-quasi-convex
in X and H is a subgroup of Stab(Y ) acting co-compactly on Y . Suppose that Q is
closed under the action of G given by the rule g(H,Y ) = (gHg−1, gY ). In addition
we assume that Q/G is finite. Furthermore, we let

∆(Q) = sup
{

diam
(
Y +5δ
1 ∩ Y +5δ

2

)
| (H1, Y1) 6= (H2, Y2) ∈ Q

}
and

T (Q) = inf{‖h‖ | h ∈ H r {1}, (H,Y ) ∈ Q}.
Observe that if ∆(Q) is finite, then H is normal in Stab(Y ), for every (H,Y ) ∈ Q.

Let (H,Y ) ∈ Q. We denote by | · |Y the length metric on Y induced by the
restriction of | · | to Y . As Y is strongly quasi-convex, for all y, y′ ∈ Y ,

|y − y′|X 6 |y − y′|Y 6 |y − y′|X + 8δ.

We write Z(Y ) for the cone of radius ρ over the metric space (Y, | · |Y ).
We let the cone-off space Ẋ = Ẋ(Y, ρ) be the space obtained by gluing, for each

pair (H,Y ) ∈ Q, the cone Z(Y ) on Y along the natural embedding ι : Y → Z(Y ).
We let V denote the set of apices of Ẋ. We endow Ẋ with the largest metric | · |Ẋ
such that the map X → Ẋ and the maps Z(Y ) → Ẋ are 1-Lipschitz, see [Cou14,
§5.1]. It has the following properties.

Lemma 9.2 ([Cou14, Lem. 5.7]). — Let (H,Y ) ∈ Q. Let x ∈ Z(Y ) and x′ ∈ Ẋ. Let
d(x, Y ) be the distance from x to ι(Y ) computed in Z(Y ). If |x−x′|Ẋ < d(x, Y ), then
x′ ∈ Z(Y ) and |x− x′|Ẋ = |x− x′|Z(Y ).

We recall that µ is the map that controls the distortion of the embedding ι of Y
in its cone, see (16). It also controls the distortion of the map X → Ẋ.
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Lemma 9.3 ([Cou14, Lem. 5.8]). — For all x, x′ ∈ X, we have

µ(|x− x′|X) 6 |x− x′|Ẋ 6 |x− x
′|X . �

The action of G on X then extends to an action by isometries on Ẋ: given any
g ∈ G, a point x = (y, r) in Z(Y ) is sent to the point gx = (gy, r) in Z(gY ). We denote
by K the normal subgroup generated by the subgroups H such that (H,Y ) ∈ Q.

9.3. The quotient space. — We let X = Ẋ/K and G = G/K. We denote by ζ the
projection of Ẋ onto X and write x for ζ(x) for short. Furthermore, we denote by V

the image in X of the apices V . We consider X as a metric space equipped with the
quotient metric, that is for every x, x′ ∈ Ẋ

|x− x′|X = inf
h∈K
|hx− x′|Ẋ .

We note that the action of G on Ẋ induces an action by isometries of G on X. The
following theorem summarizes Proposition 3.15 and Theorem 6.11 of [Cou14].

Theorem 9.4 (Small Cancellation Theorem [Cou14]). — There are distances δ0, δ1,
∆0 and ρ0 (that do not depend on X or Q) such that, if δ 6 δ0, ρ > ρ0, ∆(Q) 6 ∆0,
and T (Q) > 4π sinh ρ, then the following holds:

(1) X is a proper geodesic δ1-hyperbolic space on which G acts properly co-
compactly.

(2) Let r ∈ (0, ρ/20]. If for all v ∈ V , the distance |x− v| > 2r then the projection
ζ : Ẋ → X induces an isometry from B(x, r) onto B(x, r).

(3) Let (H,Y ) ∈ Q. If v ∈ V stands for the apex of the cone Z(Y ), then the
projection from G onto G induces an isomorphism from Stab(Y )/H onto Stab(v). �

Let us now fix δ0, δ1, ∆0 and ρ0 as in Theorem 9.4. We assume that δ 6 δ0,
∆(Q) 6 ∆0, T (Q) > 4π sinh ρ, and ρ > ρ0, so that X is δ-hyperbolic, with δ 6 δ1.

We use point (2) of Theorem 9.4 to compare the local geometry of Ẋ and X.
To compare the global geometry, we use the following proposition.

Proposition 9.5 ([Cou14, Prop. 3.21]). — Let Z⊂X be 10δ-quasi-convex and d>10δ.
If, for all v ∈ V , we have Z ∩ B(v, ρ/5 + d + 1210δ) = ∅, then there is a pre-image
Z ⊂ Ẋ such that the projection ζ induces an isometry from Z onto Z.

In addition, if S ⊂ G such that S Z ⊆ Z+d, then there is a pre-image S ⊂ G such
that for every g ∈ S, z, z′ ∈ Z , we have |g z − z′| = |gz − z′|Ẋ . �

9.4. Group action on X. — We collect some properties of the action of G.

Lemma 9.6 (Lemma 6.8 of [Cou14]). — If v ∈ V and g ∈ Gr Stab(v), then for every
x ∈ X we have

|g x− x| > 2(ρ− |x− v|).

�
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In combination with assertion (2) of Theorem 9.4, the previous lemma implies that
local properties of the action are often inherited from the action of G on the cone-off
space. For example, if F is an elliptic subgroup of G, then either F ⊆ Stab(v) for
some v ∈ V or it is the image of an elliptic subgroup of G, see [Cou14, Prop. 6.12].

There is a lower bound on the injectivity radius of the action on X, and an upper
bound on the acylindricity parameter.

Proposition 9.7 ([Cou14, Prop. 6.13]). — Let `=inf{‖g‖∞ | g 6∈Stab(Y ), (H,Y )∈Q}.
Then

τ(G,X) > min
{ ρ`

4π sinh ρ
, δ
}
. �

We recall that L0 is the number fixed in Section 2.2 using stability of quasi-
geodesics.

Proposition 9.8 ([Cou14, Cor. 6.15]). — Assume that all elementary subgroups
of G are cyclic infinite or finite with odd order. If Stab(Y ) is elementary for every
(H,Y ) ∈ Q, then A(G,X) 6 A(G,X) + 5π sinh(2L0δ). �

Note that the proposition actually does not require that finite subgroups of G have
odd order. This assumption in [Cou14, Prop. 6.15] was mainly made to simplify the
overall exposition in this paper. The error of the order of π sinh(2L0δ) in the above
estimates is reminiscent of the distortion of the embedding of X into Ẋ, measured by
the map µ, see Proposition 9.1.

9.5. Acylindricity. — Let us assume that all elementary subgroups of G are cyclic
(finite or infinite). In particular, it follows that ν(G,X) = 1, see for instance [Cou14,
Lem. 2.40]. Moreover, we assume that for every pair (H,Y ) ∈ Q, there is a primitive
hyperbolic element h ∈ G and a number n such that H = 〈hn〉 and Y is the cylinder
CH of H.

Proposition 9.9. — The action of G on X is (N,κ)-acylindrical, where

N 6 max
{
N,

3π sinh ρ

τ(G,X)
+ 1
}

and κ = max{A(G,X), κ}+ 5π sinh(150δ).

Remark 9.10. — It is already known that if G acts acylindrically on X, then so
does G on X, see Dahmani-Guirardel-Osin [DGO17, Prop. 2.17, 5.33]. However in
their proof κ is much larger than ρ. For our purpose we need a sharper control on the
acylindricity parameters. With our statement, we will be able to ensure that κ� ρ.

Later we will use this statement during an induction process for which we also
need to control uniformly the value of N . Unlike in [DGO17], if N is very large, our
estimates tells us that N 6 N .

Proof. — Let S ⊂ G, let
Z = Fix(S, 100δ)

and let us assume that diamZ > κ. We are going to prove that S contains at most
N elements. We distinguish two cases: either S fixes an apex v ∈ V or not.
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Lemma 9.11. — If there is v ∈ V , such that S ⊂ Stab(v), then

|S| 6 3π sinh ρ/τ(G,X) + 1.

Proof. — If S ⊂ Stab(v), then v ∈ Z. As diam(Z) > κ, there is a point x ∈ Z such
that |v−x| > κ−δ. Recall that κ > 100δ. Denote by z the point on the geodesic [v, x]

at distance 100δ from v, so that z ∈ B(v, ρ/2). Since Z is 10δ-quasi-convex, z lies in
the the 10δ-neighborhood of Z. In particular, for all s ∈ S, we have |s z − z| 6 120δ.
Let v be a pre-image of v and z a pre-image of z in the ball B(v, ρ/2). For every s ∈ S,
we choose a pre-image s ∈ G such that |sz− z|Ẋ 6 120δ and write S for the set of all
pre-images obtained in this way. Observe that by the triangle inequality, |sv− v|Ẋ 6
ρ+ 120δ, for every s ∈ S. However any two distinct apices in Ẋ are at a distance at
least 2ρ. Thus S is contained in Stab(v). If (H,Y ) ∈ Q is such that v is the apex of
the cone Z(Y ), then, by Lemma 9.2, |sz− z|Z(Y ) 6 120δ < |z− v|Z(Y ) + |sz− v|Z(Y ).
Let y be a radial projection of z on Y . By the very definition of the metric on Z(Y ),
we get that |sy − y| < π sinh ρ. Recall that every elementary subgroup is cyclic, in
particular so is Stab(Y ). Consequently, the number of elements g ∈ Stab(Y ) such
that |gy − y| 6 r is linear in r. More precisely, using Lemma 2.15, we have

|S| 6 2(π sinh ρ+ 112δ)

τ(G,X)
+ 1 6

3π sinh ρ

τ(G,X)
+ 1,

which yields the claim. �

Lemma 9.12. — If S does not stabilize any v ∈ V , then |S| 6 N .

Proof. — By Lemma 9.6, Z ∩ B(v, ρ − 100δ) = ∅, for every v ∈ V . By Lemma 2.6,
Z is 10δ-quasi-convex. By Lemma 9.5, there exists pre-images Z ⊂ Ẋ and S ⊂ G

such that diam(Z) > κ and for all s ∈ S and all z ∈ Z, we have |sz − z|Ẋ 6 100δ.
Let us write d = π sinh(150δ). We now focus on the subset Fix(S, d) ⊂ X.

Let x, y ∈ Z such that |x − y| > κ. Let p, q be projections of x, y in X. Then,
as |p−x|Ẋ 6 100δ and |q−y|Ẋ 6 100δ, |p−q|Ẋ > κ−200δ. As |p−q|X > |p−q|Ẋ , the
distance |p−q|X > κ−200δ. On the other hand, µ(|sp−p|X) 6 |sp−p|Ẋ < 300δ < 2ρ.
Thus, by Proposition 9.1, |sp−p|X < d. Similarly, |sq− q|X < d. This means that the
diameter of Fix(S, d) ⊂ X is at least κ−200δ, hence, larger than A(G,X)+4d+209δ.
It follows by Proposition 2.13 that S generates an elementary subgroup E.

Suppose first that this subgroup E is loxodromic. It is infinite cyclic by assumption.
Recall that the translation length of any element in S is at most d. Hence, as previously
we get

|S| 6 2(d+ 112δ)

τ(G,X)
+ 1 6

3π sinh ρ

τ(G,X)
+ 1.

Suppose now that E is an elliptic subgroup. In particular, the set Fix(S, 14δ) ⊂ X

is non-empty, and by Lemma 2.6, Fix(S, d) is contained in the d/2-neighborhood of
Fix(S, 14δ). In particular the diameter of Fix(S, 14δ) is larger that κ−200δ−d, hence,
larger than κ. Consequently, by acylindricity, |S| 6 N . �

This completes the proof of Proposition 9.9. �
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9.6. `∞-energy. — In this section we compare the `∞-energy of finite subset U ⊂ G
and its image U ⊂ G respectively.

Proposition 9.13. — Let U ⊂ G be a finite set such that λ(U) 6 ρ/5. If, for all
v ∈ V , the set U is not contained in Stab(v), then there is a pre-image U ⊂ G of U
of energy λ(U) 6 π sinhλ(U).

Proof. — Let ε > 0. Let q ∈ X such that λ(U, q) 6 λ(U)+ε. By Lemma 9.6, |q−v| >
ρ − (λ(U) + ε)/2 > 4ρ/5, for all v ∈ V . Let q be a pre-image of q in Ẋ. We choose
a pre-image U ⊂ G of U such that for every u ∈ U , we have |uq − q|Ẋ = |uq − q|.
Let x ∈ X be a projection of q onto X. We note that µ(|ux − x|X) 6 |ux − x|Ẋ 6
2(λ(U) + ε) < 2ρ. Thus |ux − x|X 6 π sinh(λ(U) + ε), see Proposition 9.1. We just
proved that λ(U) 6 π sinh(λ(U) + ε) for every ε > 0, whence the result. �

10. Product set growth in Burnside groups of odd exponent

We finally prove Theorem 1.2.

10.1. The induction step. — We will use the following.

Proposition 10.1 (cf. [Cou14, Prop. 6.18]). — There are distances ρ0, δ1 > 0, and
A0 ∈ [50 ·103δ1, ρ0/500], as well as natural numbers L0 and n0 such that the following
holds.

Let n1 > n0 and n > n1 be an odd integer. Let G act properly co-compactly by
isometries on a proper geodesic δ1-hyperbolic space X such that

(1) the elementary subgroups of G are cyclic or finite of odd order n,
(2) A(G,X) 6 A0 and τ(G,X) >

√
ρ0L0δ1/4n1, and

(3) the action of G is (N,A0)-acylindrical, for some integer N .
Let P be the set of primitive hyperbolic elements h of translation length ‖h‖ 6 L0δ1.
Let K be the normal closure of the set {hn | h ∈ P} in G.

Then there is proper geodesic δ1-hyperbolic space X on which G = G/K acts prop-
erly co-compactly by isometries. Moreover,
• (1) and (2) hold for the action of G on X;
• the action of G on X is (N,A0)-acylindrical where N = max {N,n1};
• if U is a subset of G with λ(U) 6 ρ0/5 that does not generated a finite subgroup,

then there exists a pre-image U ⊂ G of U such that λ(U) 6
√
n1 sinhλ(U).

Remark 10.2. — Note that Assumptions (2) and (3) are somewhat redundant. Indeed,
if the action of G on X is (N,κ)-acylindrical, then the parameters A(G,X) and
τ(G,X) can be estimated in terms of δ, N and κ only. However, we chose to keep
them both, to make it easier to apply existing results in the literature.

Proof. — This is essentially [Cou14, Prop. 7.1]. The only additional observation is
point (3). For details of the proof, we refer the reader to [Cou14]. Here, we only give
a rough idea of the proof and fix some notation for later use.
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We choose for δ0, ∆0, δ1, and ρ0 the constants given by the Small Cancellation
Theorem, see Theorem 9.4. We fix

A0 = max{6π sinh(2L0δ1), 50 · 103δ1}.

Without loss of generality we can assume that δ0,∆0 � δ1 while ρ0 � L0δ1. In par-
ticular A0 6 ρ0/500. Following [Cou14, pp. 319], we define a rescaling constant as
follows. Let

εn =
8π sinh ρ0√
ρ0L0δ1

1√
n
.

We note for later use that if ρ0 is sufficiently large (which we assume here) we have
εn > 1/

√
n, for every n > 0. We then choose n0 such that for all n > n0, the following

holds

εnδ1 6 δ0,(17)
εn(A0 + 118δ1) 6 min{∆0, π sinh(2L0δ1)},(18)

εnρ0L0δ1
16π sinh ρ0

6 δ1,(19)

εn < 1.(20)

These are the same conditions as in [Cou14, p. 319] (in this reference, ε is denoted
by λ). We now fix n1 > n0 and an odd integer n > n1. For simplicity we let ε = εn1

.
Moreover, let

Q =
{(
〈hn〉 , CE(h)

)
| h ∈ P

}
.

As explained in [Cou14, Lem. 7.2], the small cancellation hypothesis needed to apply
Theorem 9.4 are satisfied by Q for the action of G on εX. We let G and X as in
Section 9.3 (applied to G acting on εX). Observe, for later use, that the map

X −→ εX
ζ−−→ X

is ε-Lipschitz. Assertions (1) and (2) follows from Lemmas 7.3 and 7.4 in [Cou14].
By Proposition 9.9 the action of G on X is (N,κ)-acylindrical where

N 6 max
{
N,

3π sinh ρ

τ(G, εX)
+ 1
}

and κ = max{A(G, εX), εA0}+ 5π sinh(150δ1).

It follows from the definition of ε and our hypothesis on τ(G,X) that N 6
max{N,n1}. On the other hand by (18) we have

κ 6 εA0 + 5π sinh(150δ1) 6 A0.

Hence the action of the G on X is (N,A0)-acylindrical as we announced.
Consider now a subset U of G such that λ(U) 6 ρ0/5 and U does not generate a

finite subgroup. Hence, applying Proposition 9.13, we see that there exists a pre-image
U ⊂ G of U such that the `∞-energy of U for the action of G on εX is bounded above
by π sinhλ(U). Thus, for the action of G on X, we obtain that

λ(U) 6 ε−1π sinhλ(U) <
√
n1 sinhλ(U).

This is the lifting property stated at the end of Proposition 10.1. �
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Assume now that G is a non-elementary, torsion-free hyperbolic group. Proposi-
tion 10.1 can be used as the induction step to build from G a sequence of hyperbolic
groups (Gi) that converges to the infinite periodic quotient G/Gn, provided n is a
sufficiently large odd exponent. For our purpose, we need a sufficient condition to
detect whenever an element g ∈ G has a trivial image in G/Gn. This is the goal of the
next statement, see [Cou18a, Th. 4.13]. The result is reminiscence of the key argument
used by Ol’shanskĭı in [Ol’91, §10]. Recall that the definition of containing a (large)
power (Definition 4.1) involves the choice of a basepoint p ∈ X.

Theorem 10.3. — Let G be a non-elementary torsion-free group acting properly co-
compactly by isometries on a hyperbolic geodesic space X. We fix a basepoint p ∈ X.
There are n0 and ξ such that for all odd integers n > n0 the following holds. If g1
and g2 are two elements of G whose images in G/Gn coincide, then one of them
contains a (n/2− ξ)-power. �

Here, we need a stronger result. Indeed we will have to apply this criterion for any
group (Gi) approximating G/Gn. In particular we need to make sure that the critical
exponent n0 appearing in Theorem 10.3 does not depend on i. For this reason, we use
instead the following statement.

Theorem 10.4. — There are distances ρ0, δ1 > 0, and A0 ∈ [50 · 103δ1, ρ0/500], as
well as natural numbers L0, n0 such that the following holds.

Let n1 > n0 and set ξ = n1 + 1. Fix an odd integer n > max{100, 50n1}. Let G be
a group acting properly, co-compactly by isometries on a proper, geodesic, δ1-hyperbolic
space X with a basepoint p ∈ X, such that

(1) the elementary subgroups of G are cyclic or finite of odd order n,
(2) A(G,X) 6 A0 and τ(G,X) >

√
ρ0L0δ1/4n1.

If g1 and g2 are two elements of G whose images in G/Gn coincide, then one of them
contains a (n/2− ξ)-power.

Remark 10.5. — The “novelty” of Theorem 10.4 compared to Theorem 10.3 is that
the critical exponent n0 does not depend on G but only on the parameters of the
action of G onX (acylindricity, injectivity radius, etc). Note that the critical exponent
given by Ol’shanskĭı in [Ol’91] only depends on the hyperbolicity constant of the
Cayley graph of G. However this parameter will explode along the sequence (Gi).
Thus we cannot formally apply this result. Although it is certainly possible to adapt
Ol’shanskĭı’s method, we rely here on the material of [Cou18a].

Sketch of proof. — The arguments follow verbatim the ones of [Cou18a, §4]. Observe
first that the parameters δ1, L0, ρ0, A0 and n0 in [Cou18a, p. 797] are chosen in
a similar way as we did in the proof of Proposition 10.1 (note that the rescaling
parameter that denote εn is called λn there). Once n1 > n0 has been fixed, we set,
exactly as in [Cou18a, p. 797], ξ = n1+1 and n2 = max{100, 50n1}. We now fix an odd
integer n > n2. At this point in the proof of [Cou18a] one chooses a non-elementary
torsion-free group G acting properly co-compactly on a hyperbolic space X with
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a basepoint p ∈ X. Note in particular that the base point p is chosen after fixing
all the other parameters. Next one uses an analogue of Proposition 10.1 to build
a sequence of hyperbolic groups (Gi) converging to G/Gn. The final statement, that
is Theorem 10.3, is then proved using an induction on i, see [Cou18a, Prop. 4.6].

Observe that the fact that G is torsion-free is not necessary here. We only need
that the initial group G satisfies the induction hypothesis, that is:

(1) X is a geodesic δ1-hyperbolic space on which G acts properly co-compactly by
isometries.

(2) the elementary subgroups of G are cyclic or finite of odd order n,
(3) A(G,X) 6 A0 and τ(G,X) >

√
ρ0L0δ1/4n1.

These are exactly the assumptions stated in Theorem 10.4. In particular, we can
build as in [Cou18a] a sequence of hyperbolic (Gi) converging to G/Gn. The theorem
is proved using an induction on i just as in [Cou18a]. Actually the proof is even
easier, since we only need a sufficient condition to detect elements of G which are not
trivial in G/Gn, while [Cou18a] provides a sufficient and necessary condition for this
property. �

10.2. The approximating sequence. — Let G be a non-elementary torsion-free hyper-
bolic group. The periodic quotient G/Gn is the direct limit of a sequence of infinite
hyperbolic groups Gi that can be recursively constructed as follows. We let δ1, ρ0,
L0, n0, and A0 > 50 · 103δ1 be the parameters given by Proposition 10.1.

Let G0 = G and let X0 be its Cayley graph. Up to rescaling X0 we can assume
that X0 is a δ1-hyperbolic metric geodesic space and A(G0, X0) 6 A0. We choose
n1 > n0 such that

τ(G0, X0) >

√
ρ0L0δ1

4n1
.

Recall that the action of G0 on X0 is proper and co-compact. Thus there exists
N > n1, such that every subset S ⊂ G0 for which Fix(S, 100δ1) is non-empty contains
at most N elements. Consequently, the action is (N,A0)-acylindrical. For simplicity
we let λ0 =

√
n1π sinh (100A0) and denote by m2 = m2(δ1, N,A0, λ0) the parameter

given by Corollary 8.3. In addition, we set ξ = n1 + 1 and

n2 = max{100, 50n1, 2(m2 + ξ)}.

Let n > n2 be an odd integer. It follows from our choices that the assumptions of
Proposition 10.1 are then satisfied for the action of G0 on X0.

Let us suppose that Gi is already given, and acts on a δ1-hyperbolic space Xi

such that the assumptions of Proposition 10.1 are satisfied. Then Gi+1 = Gi and
Xi+1 = Xi are given by Proposition 10.1. In particular, the action of Gi+1 on Xi+1

is (N,A0)-acylindrical, with N = max{N,n1}. However we chose N > n1. Hence the
action of Gi+1 on Xi+1 is (N,A0)-acylindrical. It follows from the construction that
G/Gn is the direct limit of the sequence (Gi). Compare with [Cou14, Th. 7.7].
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Remark 10.6. — As the quotient G/Gn is a direct limit of non-elementary hyperbolic
groups, it is an infinite group itself. In fact, for the same reason, it is not finitely
presented either, see [Cou14, Th. 7.7].

10.3. Growth estimates. — As before, we write ε = εn1
for the renormalisation

parameter that we used in the proof of Proposition 10.1. The action of G0 on X0 is
proper and co-compact, hence there exists an integer M0 such that for every x ∈ X0,

|{g ∈ G0 | |gx− x| 6 100A0}| 6M0.

We now let
M = max

{
M0,

4A0N

δ1
,

4 · 106Nλ0
δ1

}
, and a =

1

M
.

Let V ⊂ G/Gn be finite and not contained in a finite subgroup. Recall that if
Ui ⊂ Gi is a pre-image of V , its energy measured in Xi is defined by

λ(Ui) = inf
x∈Xi

max
u∈Ui

|ux− x|Xi
.

We now let

(21) j = inf{i ∈ N | there is a pre-image U ⊂ Gi of V such that λ(U) 6 100A0}.

Recall that the map Xi → Xi+1 is ε-Lipschitz. Hence, if Ui+1 ⊂ Gi+1 is the image of
a subset Ui ⊂ Gi, we have λ(Ui+1) 6 ελ(Ui). Since ε < 1, the index j is well-defined.
Let us fix a pre-image Uj of V in Gj such that λ(Uj) 6 100A0. We now distinguish
two cases.

Case 1. — Assume that j = 0. It follows from our choice ofM0, that |V | 6 |U0| 6M0.
Thus for every r > 0 we have

|V r| > 1 >
( 1

M0
|V |
)[(r+1)/2]

> (a|V |)[(r+1)/2]
.

Case 2. — Assume that j > 0. Note that Uj cannot generate a finite subgroup Gj ,
otherwise so would V in G/Gn. Recall that 100A0 6 ρ0/5. By Proposition 10.1,
there exists a pre-image Uj−1 ⊂ Gj−1 of Uj such that the energy of Uj−1 satisfies
λ(Uj−1) 6 λ0. By definition of j, we also have λ(Uj−1) > 100A0. For simplicity we
let m = n/2 − ξ. It follows from our choice of n that m > m2. Hence we can apply
Corollary 8.3 so that one of the following holds.
• The cardinality of Uj−1 is at most max{4A0N/δ1, 4 · 106Nλ0/δ1}, which is by

definition bounded above by M . In particular, the same holds for V and we prove as
in Case 1 that for every r > 0,

|V r| > (a|V |)[(r+1)/2]
.

• There is v ∈ Uj−1 such that if K(m, r) stands for the set of all m-power elements
in (Uj−1v)r, then

|K(m, r)| >
( 1

4 · 106N

δ1
λ(Uj−1)

|Uj−1|
)r
.
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On the one hand λ(Uj−1) 6 λ0. On the other hand, M > 4 · 106Nλ0/δ1, while
a = 1/M . Consequently,

|K(m, r)| >
( 1

4 · 106N

δ1
λ0
|Uj−1|

)r
> (a|V |)r.

According to our choice of n, we have n > max{100, 50n1}. Moreover, by construction
Gj−1 satisfies the assumptions of Theorem 10.4. Hence, the projection π : Gj−1 →
G/Gn induces an embedding from K(m, r) into (V π(v))r. Consequently, |(V π(v))r| >
(a|V |)r .

The proof now goes as in Corollary 8.2. Let s > 0 be an integer. On the one hand,
(V π(v))s is contained in V 2s, hence |V 2s| > |(V π(v))s|. On the other hand (V π(v))sV

is contained in V 2s+1. Right multiplication by π(v) induces a bijection from G/Gn to
itself. Hence

|V 2s+1| > |(V π(v))sV | = |(V π(v))s+1| > (a|V |)s+1
.

It follows that |V r| > (a|V |)[(r+1)/2], for every integer r > 0.
This completes the proof of Theorem 1.2. �

Proof of Corollary 1.3. — Let n0 > 0 and a > 0 be the constants given by Theo-
rem 1.2. We fix N such that a3N > 1. Let n > n0. Let us take a subset V ⊂ G/Gn

that is not contained in a finite subgroup and that contains the identity. Then, for all
k > 1, we have V k−1 ⊆ V k. As V is not contained in a finite subgroup, this implies
that |V k| > |V k−1|. Thus a3|V N | > 1. We now apply twice Theorem 1.2, first with
the set V 3N , and second with V N . For every integer r > 0, we have

|V 3rN | >
(
a|V 3N |

)[(r+1)/2]
>
(
a
(
a|V N |

)2)[(r+1)/2]
>
(
a3|V N | · |V N |

)[(r+1)/2]
.

Recall that a3|V N | > 1. Hence, for every integer r > 0,

|V 3rN | > |V N |[(r+1)/2] > |V |[(r+1)/2].

Taking the logarithm and passing to the limit we get

h(V ) >
1

6N
ln(|V |).

Since V does not lie in a cyclic subgroup and contains the identity, it has at least
three elements, whence the second inequality in our statement. �
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