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GEOMETRIC AND PROBABILISTIC RESULTS FOR

THE OBSERVABILITY OF THE WAVE EQUATION

by Emmanuel Humbert, Yannick Privat & Emmanuel Trélat

Abstract. — Given any measurable subset ω of a closed Riemannian manifold and given any
T > 0, we define `T (ω) ∈ [0, 1] as the smallest average time over [0, T ] spent by all geodesic rays
in ω. Our first main result, which is of geometric nature, states that, under regularity assump-
tions, 1/2 is the maximal possible discrepancy of `T when taking the closure. Our second main
result is of probabilistic nature: considering a regular checkerboard on the flat two-dimensional
torus made of n2 square white cells, constructing random subsets ωn

ε by darkening cells ran-
domly with a probability ε, we prove that the random law `T (ωn

ε ) converges in probability to ε
as n → +∞. We discuss the consequences in terms of observability of the wave equation.

Résumé (Résultats géométriques et probabilistes pour l’observabilité de l’équation des ondes)
Étant donné un sous-ensemble mesurable ω d’une variété riemannienne compacte et étant

donné T > 0, on définit `T (ω) ∈ [0, 1] comme étant le plus petit temps moyen passé par
les rayons géodésiques dans ω. Notre premier résultat principal, qui est de nature géométrique,
établit que, sous des conditions de régularité, `T peut augmenter au maximum de 1/2 en passant
à l’adhérence. Notre second résultat principal est de nature probabiliste : considérant un damier
régulier sur le tore plat de dimension 2 formé de n2 carrés blancs, construisant des ensembles
aléatoires ωn

ε en noircissant les carrés de manière aléatoire avec probabilité ε, on montre que la
variable aléatoire `T (ωn

ε ) converge en probabilité vers ε lorsque n → +∞. Nous discutons les
conséquences en termes d’observabilité de l’équation des ondes.
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1. Introduction and main results

Let (M, g) be a closed connected Riemannian manifold. We denote by Γ the set of
geodesic rays, that is, the set of projections onto M of Riemannian geodesic curves in
the co-sphere bundle S∗M . Given any T > 0 and any Lebesgue measurable subset ω
of M , we define

(1) `T (ω) = inf
γ∈Γ

1

T

∫ T

0

χω(γ(t)) dt.
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432 E. Humbert, Y. Privat & E. Trélat

Here, χω is the characteristic function of ω, defined by χω(x) = 1 if x ∈ ω and
χω(x) = 0 if x ∈ M r ω. The real number `T (ω) ∈ [0, 1] is the smallest average
time over [0, T ] spent by all geodesic rays in ω. This quantity appears naturally when
studying observability properties for the wave equation onM with ω as an observation
subset.

In this article we establish two properties of the functional `T , one is geometric
and the other is probabilistic. Let us describe them in few words.

The first geometric property is on the maximal discrepancy of `T when taking the
closure. We may have `T (ω̊) < `T (ω) whenever there exist rays grazing ω and the
discrepancy between both quantities may be equal to 1 for some subsets ω. We prove
that, if the metric g is C2 and if ω satisfies a slight regularity assumption, then `T (ω) 6
1
2

(
`T (ω̊) + 1

)
. We also show that our assumptions are essentially sharp; in particular,

surprisingly the result is wrong if the metric g is not C2. As a consequence, if ω is
regular enough and if `T (ω) > 1/2 then the Geometric Control Condition is satisfied
and thus the wave equation is observable on ω in time T .

The second property is of probabilistic nature. We take M = T2, the flat two-
dimensional torus, and we consider a regular grid on it, a regular checkerboard made
of n2 square white cells. We construct random subsets ωnε by darkening each cell
in this grid with a probability ε. We prove that the random law `T (ωnε ) converges
in probability to ε as n → +∞. As a consequence, if n is large enough then the
Geometric Control Condition is satisfied almost surely and thus the wave equation is
observable on ωnε in time T .

Observability and Geometric Control Condition. — The condition

`T (ω) > 0

means that all geodesic rays, propagating inM , meet ω within time T . This condition,
usually calledGeometric Control Condition (in short, GCC), is related to observability
properties for the wave equation

(2) ∂tty −4gy = 0 in (0, T )×M,

where 4g is the Laplace-Beltrami operator onM for the metric g. More precisely, de-
noting by dxg the canonical Riemannian volume, we define the observability constant
CT (ω) > 0 as the largest possible nonnegative constant C such that the inequality

(3)
∫ T

0

∫
ω

|y(t, x)|2 dxg dt > C
(
‖y(0, ·)‖2L2(M) + ‖∂ty(0, x)‖2H−1(M)

)
is satisfied for any solution y of (2), that is,

CT (ω) = inf

{∫ T

0

∫
ω

|y(t, x)|2 dxg dt | ‖(y(0, ·), ∂ty(0, ·))‖L2(M)×H−1(M) = 1

}
.

When CT (ω) > 0, the wave equation (2) is said to be observable on ω in time T , and
when CT (ω) = 0 we say that observability does not hold for (ω, T ).
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Geometric and probabilistic results for the observability of the wave equation 433

It has been proved in [1, 9] that, for ω open, observability holds if the pair (ω, T )

satisfies GCC, i.e., if `T (ω) > 0. In other words, if ω is open and satisfies `T (ω) > 0

then the wave equation (2) is observable on ω in time T .
The converse is not true: GCC is not a necessary condition for observability. It is

shown in [8] that, if M = S2 (the unit sphere in R3 endowed with the restriction
of the Euclidean structure), if ω is the open Northern hemisphere, then `T (ω) = 0

for every T > 0, and however one has CT (ω) > 0 for every T > π. The latter fact
is established by an explicit computation exploiting symmetries of solutions. This
failure of the functional `T to capture the observability property is due, here, to the
existence of a very particular geodesic ray which is grazing the open set ω, namely, the
equator. In this example, considering the closure ω of ω, it is interesting to observe
that `T (ω) = 0 for every T 6 π (take a geodesic ray contained in the closed Southern
hemisphere) and `T (ω) > 0 for every T > π, with `T (ω) = 1

2 when T > 2π. The latter
equality is in contrast with `T (ω) = 0: there is thus a discrepancy 1/2 in the value
of `T for T > 2π when taking the closure of ω. In this specific case, this discrepancy
is caused by the equator, which is a geodesic ray grazing the open subset ω.

Our first main result below shows that 1/2 is actually the maximal possible dis-
crepancy.

1.1. A geometric result on the maximal discrepancy of `T . — In general, one can
always find subsets ω for which the difference `T (ω) − `T (ω̊) is arbitrary close to 1.
Surprisingly, under slight regularity assumptions, this maximal discrepancy is 1/2

only.

Theorem 1. — Let T > 0 be arbitrary and let ω be a measurable subset ofM . We make
the following assumptions:

(i) The metric g is at least of class C2.
(ii) ω is an embedded C1 submanifold of M with boundary if dimM > 3 and is

piecewise C1 if dimM = 2.
Then

(4) `T (ω) 6
1

2

(
`T (ω̊) + 1

)
.

We give more details and a number of comments on this theorem in Section 2.
At the opposite, as an obvious remark, if there is no geodesic ray grazing ω then
`T (ω) = `T (ω̊). Here and throughout the paper, we say that a geodesic ray γ is
grazing ω if

∫ T
0
χ∂ω(γ(t)) dt > 0, where ∂ω = ω r ω̊.

In more general, the existence of grazing rays adds a serious difficulty to the anal-
ysis of observability (see [1]). It is noticeable that, if one replaces the characteristic
function χω of ω by a continuous function a, in the integral at the left-hand side
of (3) (i.e.,

∫ T
0

∫
M
a(x)|y(t, x)|2 dxg dt) as well as in the definition (1) of the func-

tional `T , this difficulty disappears and the condition `T (a) > 0 becomes a necessary
and sufficient condition for observability of (2) on ω in time T (see [4]).

J.É.P. — M., 2022, tome 9



434 E. Humbert, Y. Privat & E. Trélat

By the way, for completeness, we provide in the appendix some semi-continuity
properties of the functional `T , which may be of interest for other purposes.

The issue of the observability on a general measurable subset ω ⊂M has remained
widely open for a long time. Recent advances have been made, which we can sum-
marize as follows. It has been established in [7] that observability on a measurable
subset ω in time T is satisfied if and only if αT (ω) > 0. The quantity αT (ω), defined
in [7] as the limit of high-frequency observability constants, is however not easy to
compute and we have, in general, the inequality `T (ω̊) 6 αT (ω) 6 `T (ω). In par-
ticular, the condition `T (ω) > 0 becomes a necessary and sufficient condition for
observability as soon as there are no geodesic rays grazing ω. It has also been shown
in [7] that limT→+∞ CT (ω)/T is the minimum of two quantities, one of them being
`T (ω) and the other being of a spectral nature.

We have the following corollary of Theorem 1, using the fact that, since ω̊ is open,
the condition `T (ω̊) > 0 implies observability for (ω̊, T ), and thus CT (ω) > CT (ω̊) > 0.

Corollary 1. — Under the assumptions of Theorem 1, if `T (ω) > 1/2 then `T (ω̊) > 0

and thus the wave equation (2) is observable on ω in time T , i.e., CT (ω) > 0.

Note that Corollary 1 does not apply to the (limit) case where M = S2 and ω

is the open Northern hemisphere. It does neither apply to the case where M is the
two-dimensional torus and ω is a half-covering open checkerboard on it, as in [3, 5]
(see next section). Indeed, in these two cases, we have `T (ω) = 0 for every T > 0 but
CT (ω) > 0 (i.e., we have observability) for T large enough. This is due to the fact
that trapped rays are the weak limit of Gaussian beams that oscillate on both sides
of the limit ray, spreading on one side and on the other a sufficient amount of energy
so that indeed observability holds true. In full generality, having information on the
way that semi-classical measures, supported on a grazing ray, can be approached by
high-frequency wave packets such as Gaussian beams, is a difficult question. In the
case of the sphere, symmetry arguments give the answer (see [8]). In the case of the
torus, a much more involved analysis is required, based on second microlocalization
arguments (see [3, 5]).

Anyway, Corollary 1 can as well be applied for instance to any kind of checkerboard
domain ω on the two-dimensional torus, as soon as the measure of ω is large enough
so that `T (ω) > 1/2.

Since the case of checkerboards (in dimension two) is interesting and challenging,
following a question by Nicolas Burq, in the next section we investigate the case of
random checkerboards on the flat torus and we establish our second main result.

1.2. A probabilistic result for random checkerboards on the flat torus

In this section, we take M = T2 = R2/Z2 (flat torus) which is identified to the
square [0, 1]2, class of equivalence of R2 under the identifications (x, y) ∼ (x+ 1, y) ∼
(x, y + 1), inheriting of the Euclidean metric. Given any subset A of M , we denote
by |A| the (two-dimensional) Lebesgue measure of A.
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We consider a regular grid Gn = (cnij)16i,j6n in the square, like a checkerboard,
made of n× n closed squares:

[0, 1]2 =
n⋃

i,j=1

cnij with cnij = [(i−1)/n, i/n]× [(j−1)/n, j/n] ∀(i, j) ∈ {1, . . . , n}2.

Defining ci′j′ in the same way for all (i′, j′) ∈ Z2, we identify the square ci′j′ to the
square cnij of the above grid with (i, j) ∈ {1, . . . , n}2 such that i = i′ mod n and
j = j′ mod n.

Construction of random checkerboards. — Let ε ∈ [0, 1] be arbitrary. Considering that
all squares in the grid are initially white, we construct a random checkerboard by
randomly darkening some squares in the checkerboard as follows: for every (i, j) ∈
{1, . . . , n}2, we darken the square cnij of the grid with a probability ε. All choices are
assumed to be mutually independent. In other words, we make a selection of squares
(that are paint in black) in the grid by considering n2 independent Bernoulli random
variables denoted (Xn

ij)16i,j6n, each of them with parameter ε. The total number of
black squares follows therefore the binomial law B(n2, ε).

We denote by ωnε the resulting closed subset of [0, 1]2 that is the union of all (closed)
black squares (see Figure 1).

Figure 1. Some examples of random checkerboards. The random
(closed) subset ωnε ⊂ [0, 1]2 is the union of (closed) black squares.

Given any fixed T > 0 and ε ∈ (0, 1], our objective is to understand how well the
random set ωnε is able to capture all geodesic rays propagating inM ' [0, 1]2, in finite
time T . In other words, we want to study the random variable `T (ωnε ). Of course,
the random variable |ωnε | follows the law (1/n2)B(n2, ε) and thus its expectation is
equal to ε, and so, when ε is small, ωnε covers only a small area in [0, 1]2. And yet, our
second main result below shows that, for n large, almost all such random sets meet
all geodesic rays within time T .

J.É.P. — M., 2022, tome 9



436 E. Humbert, Y. Privat & E. Trélat

Theorem 2. — Given any T > 0 and any ε ∈ [0, 1], the random variable `T (ωnε )

converges in probability to ε as n→ +∞, i.e.,

lim
n→+∞

P
(
|`T (ωnε )− ε| > δ

)
= 0 ∀δ > 0.

Theorem 2 is proved in Section 3. As mentioned above, this issue has emerged
following a question by Nicolas Burq. In [3, 5], the authors also consider checkerboard
domains, as above, but not in a random framework. As a consequence of their analysis,
given any T > 0, any ε ∈ [0, 1] and any n ∈ N∗ fixed, if all geodesic rays of length T ,
either meet the interior of ωnε (i.e., the interior of some black square), or follow for some
positive time one of the sides of a black square on the left and for some positive time
one of the sides of a black square (possibly the same) on the right, then CT (ωnε ) > 0,
i.e., the wave equation on the torus M = T2 is observable on ωnε in time T .

Let T > 0 and let ε ∈ (0, 1] be arbitrary. According to Theorem 2, for n large
enough, almost every subset ωnε (constructed randomly as above) is such that
`T (ωnε ) > 0. This implies that every geodesic ray, that is neither horizontal nor
vertical, meets the interior of ωnε within time T , and that every horizontal or vertical
geodesic ray meets the closed subset ωnε within time T (for some positive time, not
less than `T (ωnε )). In the latter case, moreover, by construction of the random set ωnε ,
the probability that vertical grazing rays follow for some positive time one of the
sides of a black square on the left and for some positive time one of the sides of a
black square on the right, converges to 1 as n→ +∞.

All in all, combining Theorem 2, the result of [3, 5] and the above reasoning, we
have the following consequence in terms of observability of the wave equation.

Corollary 2. — Given any T > 0 and ε ∈ (0, 1], may they be arbitrarily small, the
probability that the wave equation on the torus M = T2 be observable on ωnε in time T
tends to 1 as n→ +∞.

In other words, observability in (any) finite time is almost surely true for large n,
despite the fact that the measure of ωnε may be very small!

Note that, for ε > 1/2, almost sure observability follows from Corollary 1 (indeed,
the random sets constructed above are piecewise C1 and thus Theorem 1 can be
applied). But the result is more striking when |ωnε | is small.

Note also Theorem 2 provides an answer to an issue raised in [6], which we formulate
in terms of an optimal shape design problem in the next corollary.

Corollary 3. — For every ε ∈ [0, 1], we have

sup
|ω|6ε

`T (ω) = ε,

where the supremum is taken over all possible measurable subsets ω of M = T2 having
a Lipschitz boundary.

Corollary 3 is proved in Section 3.4.
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We finish this section by a comment on possible generalizations of Theorem 2. Some
of the steps of its proof remain valid for any closed Riemannian manifold, like the fact
that it suffices to prove the theorem for T small and thus, we expect that, to some
extent, the result is purely local. However, in some other steps we instrumentally use
the fact that we are dealing with a regular checkerboard in the square. Extending the
result to general manifolds, even in dimension two, is an open issue.

Acknowledgments. — The authors are indebted to the referees for their very careful
reading and comments, and for having pointed out a mistake in a proof in a first
version.

2. Additional comments and proof of Theorem 1

2.1. Comments on Theorem 1. — Theorem 1 states that, given any T > 0 and any
measurable subset ω of M , we have

`T (ω) 6
1

2

(
`T (ω̊) + 1

)
under the two following sufficient assumptions: (i) the metric g is C2; (ii) ω is an
embedded C1 submanifold of M with boundary if dimM > 3 and is piecewise C1

if dimM = 2.

Remark 1. — Assumption (ii) may be weakened as follows:
• IfM is of dimension 2, it suffices to assume that ω is piecewise C1. More precisely,

we assume that ω is a C1 stratified submanifold of M (in the sense of Whitney).
• In any dimension, the following much more general assumption is sufficient: given

any grazing ray γ, for almost every t ∈ [0, T ] such that γ(t) ∈ ∂ω, the subdifferential at
γ(t) of ∂ω∩γ(·)⊥ is a singleton. This is the case under the (much stronger) assumption
that ω be geodesically convex.

Comments. — It is interesting to note that the assumptions made in Theorem 1 are
essentially sharp. Remarks are in order.
• The inequality (4) gives a quantitative measure of the discrepancy that can hap-

pen for `T when we take the closure of a measurable subset ω or, conversely, when we
take the interior (this is the sense of Corollary 1). The inequality is sharp, as shown
by the example already discussed above: takeM = S2 and ω the open Northern hemi-
sphere; then `T (ω) = 0 for every T > 0 and `2π(ω) = 1/2 for T = 2π. Hence, here,
(4) is an equality.
• As a variant, take ω which is the union of the open Northern hemisphere and

of a Southern spherical cap, i.e., a portion of the open Southern hemisphere limited
by a given latitude −ε < 0. Then we have as well `T (ω) = 0 for every T > 0 and
`2π(ω) = 1/2 for T = 2π.
• Note that, taking ε = 0 in the previous example (i.e., ω is the unit sphere

M = S2 minus the equator), we have `T (ω) = 0 and `T (ω) = 1 for every T > 0 and
thus (4) fails. But here, ω is not an embedded C1 submanifold of M with boundary:
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438 E. Humbert, Y. Privat & E. Trélat

Assumption (ii) (which implies local separation between ω̊ andMrω) is not satisfied.
More generally, the result does not apply to any subset ω that isM minus a countable
number of rays. This is as well the case when one considers any subset ω that is dense
and of empty interior (one has `T (ω̊) = 0 and `T (ω) = 1 for every T > 0). This shows
that the discrepancy 1/2 is only valid under some regularity assumptions on ω.
• There is no discrepancy in the absence of geodesic rays grazing ω, i.e., `T (ω) =

`T (ω̊).
• The result fails in general if ∂ω is piecewise C1 only, on a manifold M is of

dimension n > 3. Here is a counterexample.
Let γ be a geodesic ray. If T > 0 is small enough, it has no conjugate point. In a

local chart, we have γ(t) = (t, 0, . . . , 0) (see the proof of Theorem 1). Now, using this
local chart we define a subset ω of M as follows: the section of ∂ω with the vertical
hyperplane γ(·)⊥ is locally equal to this entire hyperplane minus a cone of vertex γ(t)

with small angle 2πε > 0, less than π/4 for instance (see Figure 2).

∂ω ∩ γ(·)⊥

γ(0)

γ(t)

γ(T )

∂ω ∩ γ(·)⊥
∂ω ∩ γ(·)⊥

Figure 2. Locally around γ(t), ∂ω ∩ γ(t)⊥ is the complement of the
hatched area.

Now, we assume that, as t > 0 increases, these sections rotate with such a speed
that, along [0, T ], the entire vertical hyperplane is scanned by the section with ω.
If the speed of rotation is exactly T/2π then it can be proved that `T (ω̊) = 0 and
`T (ω) = 1− 2ε.

This example shows that Assumption (ii), or its generalization given in Remark 1,
cannot be weakened too much. The idea here is to consider a subset ω such that
the section of ∂ω with the vertical hyperplane γ(·)⊥ has locally the shape of the
hypograph of an absolute value, which is rotating along γ(·).

Similar examples can as well be designed with checkerboard-shaped domains ω,
thus underlining that in [3, 5] it was important to consider checkerboards in dimen-
sion 2.
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Geometric and probabilistic results for the observability of the wave equation 439

• Surprisingly, the result is wrong if the metric g is not C2. A counterexample is
the following.

Let M be a pill-shaped two-dimensional manifold given by the union of a cylinder
of finite length, at the extremities of which we glue two hemispheres (domain also
obtained by rotating a 2D stadium in R3 around its longest symmetry axis; or, take
the unit sphere in R3, cut it at the equator, separate the two hemispheres and glue
them with, in between, a cylinder of arbitrary length), and endow it with the induced
Euclidean metric (see Figure 3).

γ(·) ω

Figure 3. M is pill-shaped and ω is the complement of the hatched area.

Then the metric is not C2 at the gluing circles. Now, take ω defined as the union of
the open cylinder with two open spherical caps (i.e., the union of the two hemispheres
of which we remove latitudes between 0 and some ε > 0). Then `T (ω) = 0 for every
T > 0, because ω does not contain the rays consisting of the circles at the extremities
of the cylinder. In contrast, `T (ω) may be arbitrarily close to 1 as T is large enough
and ε is small enough, and thus (4) fails. This is because any ray of M spending
a time π in M r ω spends then much time over the cylinder.

This shows that Assumption (i) is sharp. In the above example, the metric is only
C1,1.

The example above is rather counter-intuitive. The assumption of a C2 metric
implies in some sense a global result on geodesic rays.

Our proof, given in Section 2.2 hereafter, uses only elementary arguments of Rie-
mannian geometry. It essentially relies on Lemma 2, in which we establish that, given
a grazing ray (i.e., a ray propagating in ∂ω), thanks to our assumption on ω, we can
always construct neighbor rays, one of which being inside ω and the other being
outside of ω for all times.

2.2. Proof of Theorem 1. — Without loss of generality, we take ω ⊂ M open.
We will use several well known facts of Riemannian geometry, for which we refer
to [2].
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440 E. Humbert, Y. Privat & E. Trélat

Lemma 1. — There exists γ ∈ Γ such that `T (ω) = 1
T

∫ T
0
χω(γ(t)) dt, i.e., the infimum

in the definition (1) of `T (ω) is reached.

Proof. — Let (γk)k∈N be a sequence of geodesic rays such that 1
T

∫ T
0
χω(γk(t)) dt →

`T (ω). By compactness of geodesics, taking a subsequence if necessary, γk(·) converges
uniformly to some geodesic ray γ(·) on [0, T ].

Let t ∈ [0, T ] be arbitrary. If γ(t) ∈ ω then for k large enough we have γk(t) ∈ ω, and
thus 1 = χω(γ(t)) 6 χω(γk(t)) = 1. If γ(t) ∈ M r ω then 0 = χω(γ(t)) 6 χω(γk(t))

for any k. In all cases, we have obtained the inequality

χω(γ(t)) 6 lim inf
k→+∞

χω(γk(t))

for every t ∈ [0, T ]. By the Fatou lemma, we infer that

`T (ω) 6
1

T

∫ T

0

χω(γ(t)) dt 6
1

T

∫ T

0

lim inf
k→+∞

χω(γk(t)) dt

6 lim inf
k→+∞

1

T

∫ T

0

χω(γk(t)) dt = `T (ω).

The lemma follows. �

If the ray γ given by Lemma 1 is not grazing ω, i.e., if
∫ T

0
χ∂ω(γ(t)) dt = 0, then∫ T

0
χω(γ(t)) dt =

∫ T
0
χω(γ(t)) dt and thus `T (ω) 6 1

T

∫ T
0
χω(γ(t)) dt 6 `T (ω) and

hence `T (ω) = `T (ω). So in this case there is nothing to prove.
In what follows we assume that the ray γ given by Lemma 1 is grazing, i.e.,∫ T

0
χ∂ω(γ(t)) dt > 0. Assume that γ(t) = π ◦ ϕt(x0, ξ0) with x0 ∈M and ξ0 ∈ S∗x0

M .
Here, S∗x0

M denotes the unit cotangent bundle at x0 (i.e., ‖ξ0‖g? = 1, where g∗ is the
cometric), (ϕt)t∈R is the geodesic flow on S∗M and π : S∗M → M is the canonical
projection.

Lemma 2. — There exists a continuous path of points s 7→ xs ∈M , passing through x0

at s = 0, such that, setting γs(t) = π ◦ ϕt(xs, ξ0), we have

(5) lim
s→0

(χω(γs(t)) + χω(γ−s(t))) = 1

for almost every t ∈ [0, T ] such that γ(t) ∈ ∂ω.

Proof. — To prove this fact, we assume that, in a local chart, γ(t) = (t, 0, . . . , 0). This
is true at least in a neighborhood of x0 = γ(0) = 0, and this holds true along γ(·)
as long as there is no conjugate point. We also assume that, in this chart, any other
geodesic ray starting at (0, x0

2, . . . , x
0
n) in a neighborhood of γ(0) = (0, . . . , 0), with

codirection ξ0, is given by (t, x0
2, . . . , x

0
d) (projection onto M of the extremal field).

Here, we have set d = dimM . This classical construction of the so-called extremal field
can actually be done on any subinterval of [0, T ] along which there is no conjugate
point. Note that the set of conjugate times along [0, T ] is of Lebesgue measure zero.(1)

(1)This is a general fact in Riemannian geometry. Indeed, a conjugate time is a time at which a
non-zero Jacobi field vanishes. Since Jacobi fields are solutions of a second-order ordinary differential
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Let us search an appropriate (d − 1)-tuple (x0
2, . . . , x

0
d) ∈ Rd−1 r {0} such that the

family of points xs = (0, sx0
2, . . . , sx

0
d), s ∈ (−1, 1), gives (5). Note that the geodesic

ray starting at (xs, ξ0) is γs(t) = (t, sx0
2, . . . , sx

0
d) in the local chart.

In what follows, we set N = ∂ω = ω r ω̊ = ω r ω (ω is open). By assumption,
ω is an embedded C1 submanifold of M with boundary and one has dimN = d− 1.
By assumption, in a neighborhood U of any point of N , the set N∩U is a codimension-
one hypersurface of M , written as F = 0 with F : U → R of class C1, which is
separating ω and M r ω in the sense that ω ∩ U = {F < 0}, N = {F = 0} and
M r ω = {F > 0}.

It suffices to prove that, for almost every time t at which γ0(t) = γ(t) ∈ N and
γ̇(t) ∈ Tγ(t)N , the points γs(t) and γ−s(t) are on different sides with respect to the
(locally) separating manifold N for s small enough.

This is obvious when γ is transverse to N . We set

Ω = {t ∈ [0, T ] | γ(t) ∈ N, γ̇(t) ∈ Tγ(t)N}.

It is a closed subset of [0, T ]. Let t ∈ Ω. In the local chart the tangent space Tγ(t)N is
an hyperplane of Rn containing the line R(1, 0, . . . , 0). Its projection onto {0}×Rd−1

(the hyperplane orthogonal to the line γ(·)) is an hyperplane of {0}×Rd−1, of normal
vector (0, v(t)) with v(t) ∈ Rd−1 of Euclidean norm 1. Since only the direction of v(t)

is important, we assume that v(t) ∈ Pd−2(R), the projective space.
We claim that:

There exists V ∈ Pd−2(R) such that 〈V, v(t)〉 6= 0 for almost every t ∈ Ω.
With this result, setting V = (x0

2, . . . , x
0
d), the points xs defined above give the lemma.

Let us now prove the claim. We define A = {(t, V ) ∈ Ω× Pd−2(R) | 〈V, v(t)〉 = 0}.
By definition, given (t, V ) ∈ Ω×Pd−2(R) we have χA(t, V ) = 1 when V ∈ v(t)⊥. Since
v(t)⊥∩Pd−2(R) is of codimension one in Pd−2(R), we have

∫
Pd−2(R)

χA(t, V ) dHd−2 = 0

for every t ∈ Ω, where we have endowed Pd−2(R) with the Hausdorff measure Hn−2.
Therefore, by the Fubini theorem,

0 =

∫
Ω

∫
Pd−2(R)

χA(t, V ) dHd−2 dt =

∫
Pd−2(R)

∫
Ω

χA(t, V ) dt dHd−2

and thus
∫

Ω
χA(t, V ) dt = 0 for almost every V ∈ Pd−2(R). Fixing such a V , it follows

that χA(t, V ) = 0 for almost every t ∈ Ω, and the claim is proved. �

In view of proving Remark 1, note that the argument above still works in dimen-
sion 2 with ω piecewise C1 (but not in dimension greater than or equal to 3: see the
counterexample given in Section 1). In more general, in any dimension, the argument
above still works if ω is such that, for almost every time t, the subdifferential at γ(t)

of ∂ω ∩ γ(·)⊥ is a singleton.

equation, such times must be isolated, for otherwise the Jacobi field would vanish at the second order
and thus would be identically zero.
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At this step, we have embedded the ray γ given by Lemma 1 into a family of rays γs
which enjoy a kind of transversality property with respect to N = ∂ω. Let us consider
the partition

[0, T ] = A1 ∪A2 ∪A3

into three disjoint measurable sets, with
A1 = {t ∈ [0, T ] | γ(t) ∈ ω},
A2 = {t ∈ [0, T ] | γ(t) ∈M r ω},
A3 = {t ∈ [0, T ] | γ(t) ∈ ∂ω}.

Since γs(·) converges uniformly to γ(·) as s → 0 and since ω and M r ω are open,
we have:

lim
s→0

(χω(γs(t)) + χω(γ−s(t))) = 2 for every t ∈ A1;

lim
s→0

(χω(γs(t)) + χω(γ−s(t))) = 0 for every t ∈ A2;

lim
s→0

(χω(γs(t)) + χω(γ−s(t))) = 1 for almost every t ∈ A3 (by Lemma 2).

By the Lebesgue dominated convergence theorem, we infer that

lim
s→0

∫ T

0

(χω(γs(t)) + χω(γ−s(t))) dt = 2|A1|+ |A3|.

Now, on the one part, by the first step we have 1
T |A1| = 1

T

∫ T
0
χω(γ(t)) = `T (ω).

On the other part, since A1 and A3 are disjoint we have 1
T (|A1|+ |A3|) 6 1. Hence

lim
s→0

1

T

∫ T

0

(χω(γs(t)) + χω(γ−s(t))) dt 6 `
T (ω) + 1.

Since `T (ω) 6 1
T

∫ T
0
χω(γ±s(t))dt for every s by definition, we infer that 2`T (ω) 6

`T (ω) + 1. Theorem 1 is proved.

3. Proof of Theorem 2

Theorem 2 states that, given any T > 0 and any ε ∈ [0, 1], the random variable
`T (ωnε ) converges in probability to ε as n→ +∞, i.e.,

lim
n→+∞

P
(
|`T (ωnε )− ε| > δ

)
= 0 ∀δ > 0.

This section is organized as follows. We make a preliminary remark in Section 3.1. In
Section 3.2, we give the successive steps of the proof, involving intermediate lemmas
that are proved. One of the main ingredients of the proof of Theorem 2 is a large
deviation property which is established in Section 3.3. In Section 3.4, we also provide
a proof of Corollary 3.

3.1. Preliminaries. — For any geodesic ray γ∈Γ and any measurable subset ω⊂M ,
we set

mT
γ (ω) =

1

T

∫ T

0

χω(γ(t)) dt,

so that
(6) `T (ω) = inf

γ∈Γ
mT
γ (ω).
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Lemma 3. — Given any measurable closed subset ω ⊂ M , the mapping Γ 3 γ 7→
mT
γ (ω) is upper semi-continuous.
Given any ω that is a union of closed squares from the grid Gn with n fixed, the

mapping Γ 3 γ 7→ mT
γ (ω) is continuous at every γ ∈ Γ that is neither horizontal nor

vertical, or, that is horizontal or vertical but meets no corner (by definition, a corner
is a point (i/n, j/n) in [0, 1]2, for some (i, j) ∈ {0, . . . , n}2).

Proof. — Let γ ∈ Γ and let (γk)k∈N be a sequence of Γ converging to γ. Let us prove
that

(7) mT
γ (ω) > lim sup

k→+∞
mT
γk

(ω).

Let t ∈ [0, T ]. If γ(t) ∈ ω then χω(γ(t)) > χω(γk(t)) for every k. If γ(t) ∈ M r ω

then, since M r ω is open, γk(t) ∈ M r ω for k large enough and thus χω(γ(t)) =

χω(γk(t)) = 0. Now (7) follows.
Let us prove the second part of the lemma. Let γ ∈ Γ that is neither horizontal

nor vertical, or, that is horizontal or vertical but meets no corner. Let (γk)k∈N be a
sequence of geodesic rays converging to γ ∈ Γ. Writing

χω =

n∑
i,j=1

τ(i, j)χcnij ,

where τ(i, j) = 1 if cnij ⊂ ω and τ(i, j) = 0 otherwise, and noting that

mT
γk

(ω) =

n∑
i,j=1

τ(i, j)mT
γk

(cnij),

we have to prove that mT
γk

(cnij) converges to mT
γ (cnij) as k → +∞. This follows from

the dominated convergence theorem and from the fact that (χcnij (γk))k∈N converges
almost everywhere to χcnij (γ). The latter claim can be shown by distinguishing between
two cases: if γ(t) ∈ c̊nij then for k large enough we have γk(t) ∈ c̊nij and χcnij (γk(t)) =

χcnij (γ(t)) = 1. The same conclusion remains true if γ(t) /∈ cnij . Since the set of t
such that γ(t) ∈ ∂cnij is finite (this follows from the assumptions on γ), the lemma
follows. �

Note that γ 7→ mT
γ may fail to be continuous at some γ ∈ Γ that is horizontal or

vertical and meets a corner. For such geodesic rays γ, we will see that it is relevant to
define the following quantity. Given any γ ∈ Γ, we set m̃T

γ (ω) = mT
γ (ω) if γ is neither

horizontal nor vertical, or is horizontal or vertical but meets no corner. When γ is
horizontal or vertical and meets a corner, we set

(8) m̃T
γ (ω) = inf

(γ′k)k∈N
lim inf
k→+∞

mT
γ′k

(ω),

where the infimum is taken over the set of sequences of geodesic rays (γ′k)k∈N converg-
ing to γ such that, for every k ∈ N, γ′k([0, T ]) is obtained by rotating γ([0, T ]) around
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a corner of the grid through which γ passes. Of course, we have `T (ω) 6 m̃T
γ (ω) 6

mT
γ (ω) and thus

`T (ω) = inf
γ∈Γ

m̃T
γ (ω).

Note that γ 7→ m̃T
γ (ω) may also fail to be continuous. We will see that this quantity

m̃T
γ (ω) is important to obtain the inequality (25) in the proof of Lemma 5, item (b),

and in order to treat the case of horizontal or vertical rays in the proof of Lemma 6.

3.2. Proof of Theorem 2. — For every (i, j) ∈ {1, . . . , n}2, let Xn
ij be the random

variable equal to 1 whenever cnij ⊂ ωnε and 0 otherwise. Recall that, assuming that all
square cells of the grid are initially white, when ranging over the grid, for each cell
we randomly darken the cell with a probability ε (Bernoulli law) and in this case we
set Xn

ij = 1; otherwise we let Xn
ij = 0. By construction, the random laws (Xn

ij)16i,j6n

are independent and identically distributed (i.i.d.), of expectation ε and of variance
ε(1− ε).

Given any fixed geodesic ray γ ∈ Γ, we denote by tnij(γ) the time spent by γ in
the square cell cnij . We have

∑n
i,j=1 t

n
ij(γ) = T . It may happen that γ crosses several

times (at most T + 1 times) the square cell cnij , and in this case tnij(γ) is the sum of
several passage times; since the maximal time spent in cnij by a ray in one passage is√

2/n, we have tnij(γ) 6 (T + 1)
√

2/n. Summing up, we have

(9) ∀(i, j) ∈ {1, . . . , n}2
tnij(γ)

T
6
T + 1

T

√
2

n
and

n∑
i,j=1

tnij(γ)

T
= 1

and we also note that

(10) mT
γ (ωnε ) =

1

T

∫ T

0

χωnε (γ(t)) dt =

n∑
i,j=1

tnij(γ)

T
Xn
ij .

In particular, the random variablemT
γ (ωnε ) is a weighted sum of independent Bernoulli

laws, and thus its expectation is

(11) EmT
γ (ωnε ) = ε

and its variance is

(12) VarmT
γ (ωnε ) =

n∑
i,j=1

( tnij(γ)

T

)2

ε(1− ε) 6 T + 1

T

√
2

n
ε(1− ε),

where we have used (9) and the fact that 0 6 tnij(γ)/T 6 1.
To prove Theorem 2, we have to prove that, given any T > 0 and any ε ∈ [0, 1],

for every δ > 0 we have

(i) lim
n→+∞

P
(
`T (ωnε ) 6 ε+ δ

)
= 1,

(ii) lim
n→+∞

P
(
`T (ωnε ) > ε− δ

)
= 1, or equivalently, lim

n→+∞
P
(
`T (ωnε ) 6 ε− δ

)
= 0.

J.É.P. — M., 2022, tome 9



Geometric and probabilistic results for the observability of the wave equation 445

Proof of (i). — Using (6) and (10), we have

(13) `T (ωnε ) 6 mT
γ (ωnε ).

Applying the Bienaymé-Tchebychev inequality to the random variable mT
γ (ωnε ),

we have

P
(
|mT

γ (ωnε )− ε| > δ
)
6
T + 1

T

√
2

n

ε(1− ε)
δ2

∀γ ∈ Γ

and thus, using (11) and (12),

(14) lim
n→+∞

P
(
mT
γ (ωnε ) 6 ε+ δ

)
= 1.

Finally, (i) follows from (13) and (14).

Proof of (ii). — Establishing (ii) is much more difficult. We proceed in several steps,
by proving the following successive lemmas that are in order.

Lemma 4. — If (ii) is true for every T ∈ (0, 1), then it is true for every T > 0.

Thanks to Lemma 4 (proved below), we now assume that 0 < T < 1. This has the
following pleasant consequence: any geodesic ray γ ∈ Γ crosses a given cell cij at most
one time over [0, T ], i.e., {t ∈ [0, T ] | γ(t) ∈ cij} is connected. This will make easier
the computation of crossing times, in the proofs of the forthcoming lemmas.

Let us introduce some notations. Let Γ0, Γ1 and Γ2 be the sets of geodesic rays of
M = T2 meeting respectively zero, at least one and at least two corners of the grid Gn
(by definition, a corner is a point (i/n, j/n) in [0, 1]2, for some (i, j) ∈ {0, . . . , n}2).
Note that Γ2 ⊂ Γ1.

Given any ω ⊂M that is the union of disjoint closed square cells of Gn, we have

`T (ω) = inf
γ∈Γ0∪Γ1

mT
γ (ω).

We also define

`TΓ1(ω) = inf
γ∈Γ1

mT
γ (ω), `TΓ2(ω) = inf

γ∈Γ2
mT
γ (ω).

Of course, we have
`T (ω) 6 `TΓ1(ω) 6 `TΓ2(ω).

Lemma 5. — There exists C > 0 such that, for every n ∈ N∗, for every subset ω of
[0, 1]2 that is a union of square cells of the grid Gn, we have:

(a) `TΓ1(ω) 6 `T (ω) + C/n;
(b) `TΓ2(ω) 6 `TΓ1(ω) + C/n.

Lemma 6. — We have lim
n→+∞

P
(
`TΓ2(ωnε ) 6 ε− δ

)
= 0.

Finally, (ii) follows from the above lemmas, that are proved hereafter.
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3.2.1. Proof of Lemma 4. — Let T >1 and let m∈N∗ be such that T ′=T/m∈(0, 1).
Let us prove that

(15) `T (ωnε ) > `T
′
(ωnε ).

Given any ρ > 0, let γ be a geodesic ray such that

`T (ωnε ) + ρ >
1

T

∫ T

0

χωnε (γ(t)) dt.

Setting γk(·) = γ(kT ′ + ·) for every k ∈ {0, . . . ,m− 1}, we have

`T (ωnε ) + ρ >
1

T

∫ T

0

χωnε (γ(t)) dt =
1

T

m−1∑
k=0

∫ T ′

0

χωnε (γk(t)) dt

>
1

T

m−1∑
k=0

T ′`T
′
(ωnε ) = `T

′
(ωnε ).

Letting ρ tend to 0, we obtain (15).
Since 0 < T ′ < 1, (ii) is true for this final time T ′, i.e.,

lim
n→+∞

P
(
`T
′
(ωnε ) > ε− δ

)
= 1.

Therefore, using (15), we obtain (ii) for the final time T .

3.2.2. Proof of Lemma 5

Proof of item (a). — Let γ ∈ Γ be such that

(16) `T (ω) 6 mT
γ (ω) < `T (ω) +

1

nT
.

If γ ∈ Γ1 then we are done. Hence, in what follows we assume that γ ∈ Γ0, i.e., that γ
meets no corner of the grid.

Without loss of generality, we can assume that the ray γ is neither horizontal nor
vertical. Indeed, if γ is horizontal or vertical, since γ meets no corner, it follows from
Lemma 3 that mT

γ is continuous at γ. Hence, it is possible to rotate slightly γ so
that γ is neither horizontal nor vertical and still satisfies (16).

Let n ∈ R2 be a unit vector orthogonal to γ′(0). For every s ∈ R, we denote by Tsn
the translation of vector sn and we define the translated geodesic ray γs = Tsn ◦ γ
(which is neither horizontal nor vertical). By continuity, γs meets the same square cells
as γ if |s| is small enough. Let I(γ) denote the subset of all pairs (i, j) ∈ {1, . . . , n}2
such that γ crosses the cell squares cnij . For |s| small enough, we have

mT
γs(ω) =

∑
(i,j)∈I(γ)

tnij(γs)

T
Xn
ij ,

where tnij(γs) is the time spent by γs in cnij . Denoting by I ′(γ) the set of (i, j) ∈ I(γ)

such that γ(0), γ(T ) /∈ c̊nij (note that #I(γ) − 2 6 #I ′(γ) 6 #I(γ) and that these
conditions do not depend on s for |s| small enough, hence I ′(γs) = I ′(γ)), an easy
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geometric argument shows that, for (i, j) ∈ I ′(γ), the function s 7→ tnij(γs) is affine
and nonconstant with respect to s. Hence,

(17) Mγs(ω) =
∑

(i,j)∈I′(γ)

tnij(γs)

T
Xn
ij

is also an affine function of s. Replacing s by −s if necessary, we infer the existence
of a threshold s0 > 0 such that γs ∈ Γ0 for s ∈ [0, s0) and γs0 ∈ Γ1, and the mapping
s 7→ Mγs(ω) is continuous and nonincreasing on [0, s0] (continuity is because, for
every s, γs is neither vertical nor horizontal since it is a translation of γ). Since
γs0 ∈ Γ1, we have

(18) `TΓ1(ω) 6 mT
γs0

(ω).

Besides, we have, for every s ∈ [0, s0],

(19) Mγs(ω) 6 mT
γs(ω) 6Mγs(ω) +

∑
(i,j)∈I(γ)rI′(γ)

tnij(γs)

T
Xn
ij 6Mγs(ω) +

2
√

2

nT
.

Hence, in particular, using that (by Lemma 3) s 7→ mT
γs(ω) is continuous because γs

is neither horizontal nor vertical,

(20) mT
γs0

(ω) 6Mγs0
(ω) +

2
√

2

nT
.

Since the mapping s 7→ Mγs(ω) is nonincreasing on [0, s0] and γ0 = γ, we have
Mγs0

(ω) 6Mγ(ω) and thus, using (19),

(21) Mγs0
(ω) 6 mT

γ (ω).

We finally infer from (16), (18), (20) and (21) that

`TΓ1(ω) < `T (ω) +
2
√

2 + 1

nT
.

The conclusion follows.

Proof of item (b). — Let γ ∈ Γ1 be such that

(22) `TΓ1(ω) 6 mT
γ (ω) < `TΓ1(ω) +

1

n
.

If γ ∈ Γ2 then we are done. Hence, in what follows we assume that γ ∈ Γ1 r Γ2.
It suffices to find γ′ ∈ Γ2 such that

(23) mT
γ′(ω) 6 mT

γ (ω) +
C

n

for some C > 0 not depending on γ and n. Indeed, then, it follows from (22) and (23)
that

`TΓ2(ω) 6 mT
γ′(ω) 6 mT

γ (ω) +
C

n
< `TΓ1(ω) +

C + 1

n
and the item is proved.

Let us establish (23). By definition, the geodesic ray γ meets exactly one corner of
the grid, denoted by O. Let Rθ be the rotation centered at O with angle θ and let
γθ = rθ ◦ γ ∈ Γ. Recall that I ′(γ) stands for the set of all pairs (i, j) ∈ {1, . . . , n}2
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such that γθ crosses cnij and γ(0), γ(T ) /∈ c̊nij : these conditions do not depend on
θ ∈ J = (θ−, θ+), where θ− < 0 and θ+ > 0 are thresholds such that γθ /∈ Γ2 for every
θ ∈ J and γθ± ∈ Γ2. We define the continuous function f on J by f(θ) = Mγθ (ω),
defined as in (17) but where γθ is obtained by rotation of γ and not by translation.
We extend f by continuity on J . The inequality (19) is valid as well for every θ ∈ J .

Note, however, that the functions θ 7→ mT
γθ

(ω) and θ 7→ Mγθ (ω) may fail to be
continuous at θ± (i.e., we may have f(θ±) 6= Mγθ (ω±)) whenever γθ± is horizontal or
vertical and meets a corner.

We claim that

(24) min(f(θ−), f(θ+)) 6 min
θ∈J

f(θ) +
K

n

for some K > 0 not depending on n nor on γ. Admitting temporarily (24), without
loss of generality we assume that f(θ−) 6 f(θ+). Let us prove that

(25) m̃T
γθ−

(ω) 6 f(θ−) +
2
√

2

nT
,

where m̃T
γ (ω) is defined by (8) in Section 3.1. When γθ− is neither horizontal nor

vertical, or is horizontal or vertical but meets no corner, we have m̃T
γθ−

(ω) = mT
γθ−

(ω)

and (25) follows from (19) and from the fact that f(θ−) = Mγθ (ω−) (actually, (25) is
an equality in this case). When γθ− is horizontal or vertical and meets a corner, it is
the limit of γ′k = γθ−+ 1

k
and then, by definition, m̃T

γθ−
(ω) 6 mT

γ′k
(ω); but, using (19),

we have

mT
γ′k

(ω) 6Mγ′k
(ω) +

2
√

2

nT
= f(θ− + 1/k) +

2
√

2

nT
,

whence (25) by continuity of f .
We infer from (24) and (25) that

m̃T
γθ−

(ω) 6 min
θ∈J

f(θ) +
K

n
+

2
√

2

nT
.

Since minθ∈J f(θ) 6 f(0) = Mγ(ω) 6 mT
γ (ω), we obtain m̃T

γθ−
(ω) 6 mT

γ (ω) + K ′/n

with K ′ = K+ 2
√

2/T . By definition of m̃T
γθ−

(ω) in (8), there exists a geodesic ray γ′

such that m̃T
γθ−

(ω) + 1/n > mT
γ′(ω). Therefore, (23) is proved by setting C = K ′ + 1.

It remains to prove (24). Let us first compute f by deriving an explicit expression
of tnij(γθ). We claim that, for (i, j) ∈ I(γ), there exists (aij , bij) ∈ {−n, . . . , n}2 such
that

(26) tnij(γθ) =
aij

n sin(θ0 + θ)
+

bij
n cos(θ0 + θ)

,

where θ0 is the angle between the horizontal axis and the geodesic ray γ. Without loss
of generality we assume that θ0 ∈ [0, π/2]. Note that θ0 ∈ (0, π/2), because otherwise
the two conditions γ ∈ Γ1 and θ0 ∈ {0, π/2} (i.e., γ is horizontal or vertical) would
imply that γ ∈ Γ2, which is not true. This also implies that J ⊂ (0, π/2).
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Figure 4. Particular geodesics issued from O and meeting the square
with bold boundary.

Using the notations of Figure 4 where the corner O is assimilated to the origin,
and focusing on the square cnij of vertices

(α/n, β/n), (α/n+ 1/n, β/n), (α/n+ 1/n, β/n+ 1/n) and (α/n, β/n+ 1/n),

an elementary geometric reasoning gives

tnij(γθ) =



α+ 1

n cos (θ0 + θ)
− β

n sin (θ0 + θ)
if θ0 + θ ∈ [θ1, θ2],

1

n sin (θ0 + θ)
if θ0 + θ ∈ [θ2, θ3],

β + 1

n sin (θ0 + θ)
− α

n cos (θ0 + θ)
if θ0 + θ ∈ [θ3, θ4],

where 0 < θ1 < θ2 < θ3 < θ4 < π/2 are the angles between the horizontal axis and
the particular geodesics passing through the corners of cnij (see Figure 4). Note that
this formula is still satisfied when θ1 = 0 or θ4 = π/2. In such cases, either α or β
vanishes. The claim (26) is then proved.

Note that the rotation Rθ can be applied to γ until the geodesic ray γθ meets a
new corner. It is then easy to see that

(27) − θ− 6
C

n
, θ+ 6

C

n
,

for some C > 0 neither depending on n nor on γ.
According to (26), we have

(28) Mγθ (ω) =
X1

sin(θ0 + θ)
+

X2

cos(θ0 + θ)
,
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with
X1 =

1

n

∑
(i,j)∈I′(γ)

aijMγθ (c
n
ij) and X2 =

1

n

∑
(i,j)∈I′(γ)

bijMγθ (c
n
ij),

for θ ∈ J . Moreover, we have

max(|X1|, |X2|) 6
1

n
#I ′(γ)n

√
2

nT
6 3

because max(|aij |, |bij |) 6 n, Mγθ (c
n
ij) 6

√
2/nT and #I ′(γ) 6 2n, the latter inequal-

ity following from the obvious observation that, when γ leaves a square cnij , then the
next square that γ enters must be of the form ci′j′ with i′ = i+ 1 or j′ = j + 1.

We are now in a position to establish (24). It is obvious if minJ f is reached
at θ− or θ+. Let us then assume that f reaches its minimum in (θ−, θ+); without
loss of generality, we assume that the minimum is reached at θ = 0. In particular,
d
dθ

∣∣
θ=0

Mγθ (ω) = 0 which, using (28), yields

cos(θ0)

sin2(θ0)
X1 =

sin(θ0)

cos2(θ0)
X2.

From (28), we also have f(0) = X1/sin θ0 + X2/cos θ0 and thus X1 = f(0) sin3(θ0)

and X2 = f(0) cos3(θ0), so that

f(θ) = Mγθ (ω) = f(0)
( sin3(θ0)

sin(θ0 + θ)
+

cos3(θ0)

cos(θ0 + θ)

)
.

Now,

f(θ)− f(0) = f(0)
(

sin3 θ0

( 1

sin(θ0 + θ)
− 1

sin θ0

)
+ cos3 θ0

( 1

cos(θ0 + θ)
− 1

cos θ0

))
.

This computation shows that θ0 + θ+ 6= π/2 and θ0 + θ− 6= 0. Otherwise, since
θ0 /∈ {0, π/2}, f would be not bounded on J when θ tends to θ0 + θ+ or θ0 + θ−,
which is not true by definition of f . This implies that

(29) arcsin(1/nT ) 6 θ0 + θ− < θ0 + θ+ 6
π

2
− arcsin(1/nT ).

Indeed, set γ− = γθ0+θ− . We know that γ−([0, T ]) contains at least two corners and
is not horizontal (since θ0 + θ− > 0). This means that its second coordinate (in R2)
increases at least of 1/n between 0 and T and hence T sin(θ0 + θ−) > 1/n. A similar
argument gives the right-hand inequality in (29).

From now on, we let n tend to +∞. In particular, θ0 depends on n. Let us prove
that

(30) f(θ−)−min
J
f = f(θ−)− f(0) 6

C

n
.

A similar argument will show that f(θ+) − minJ f 6 C/n. These two estimates
imply (24) and hence complete the proof of the item b. It thus remains to prove (30).
By the mean value theorem, there exists θ̃ ∈ (0, |θ−|) such that

1

sin(θ0 + θ−)
− 1

sin θ0
=

cos(θ0 − θ̃)
sin2(θ0 − θ̃)

θ−.
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Since 0 6 θ̃ 6 |θ−|, using that | sin(θ0) cos(θ0 − θ̃)| 6 1, we get from (27) that

sin3(θ0)
∣∣∣ 1

sin(θ0 + θ−)
− 1

sin θ0

∣∣∣ 6 C

n

( sin(θ0)

sin(θ0 − θ̃)

)2

.

Now, by the mean value theorem,

sin(θ0)

sin(θ0 − θ̃)
= 1 +

sin(θ0)− sin(θ0 − θ̃)
sin(θ0 − θ̃)

6 1 +
O(1/n)

sin(θ0 − θ̃)
.

Using (29), there exists C ′ > 0 neither depending on γ nor on n such that
O(1/n)/sin(θ0 − θ̃) = O(1). This implies that

sin3(θ0)
( 1

sin(θ0 − θ̃)
− 1

sin θ0

)
= O(1/n).

Following the same reasoning, we prove that

cos3(θ0)
( 1

cos(θ0 − θ̃)
− 1

cos θ0

)
= O(1/n).

Actually, this last estimate is much easier since | cos(θ0)| 6 C cos(θ0 + θ−). This leads
to (30).

3.2.3. Proof of Lemma 6. — Let (i1, j1), (i2, j2) ∈ {1, . . . , n}2 be such that the two
square cells ci1j1 and ci2j2 of Gn are distinct and let x1 and x2 be two distinct corners
of the grid Gn. Any geodesic ray such that

γ(0) ∈ ci1j1 , γ(T ) ∈ ci2j2 and xi ∈ γ([0, T ]), i = 1, 2,

will be denoted by γci1j1 ,ci2j2 ,x1,x2 . The set of all geodesic rays γci1j1 ,ci2j2 ,x1,x2 is
denoted by Γci1j1 ,ci2j2 ,x1,x2 . Given any T ∈ (0, 1), this set is nonempty as soon as n
is large enough. In order to obtain a finite set, we make the following observation.
Considering a ray γci1j1 ,ci2j2 ,x1,x2

, any other ray γ passing through x1 and x2 and
such that γ(0) ∈ ci1j1 and γ(T ) ∈ ci2j2 is obtained from γci1j1 ,ci2j2 ,x1,x2 by a time
translation. This creates an equivalence relation and we define Γ̂ as the quotient of Γ

by this equivalence relation. Any element γ̂ of Γ̂ is uniquely determined by a choice
of distinct pairs (i1, j1), (i2, j2) ∈ {1, . . . , n}2 and of distinct x1, x2 ∈ Gn. Therefore,
by construction, we have #Γ̂ = O(n8).

Let γ̂ ∈ Γ̂. If γ̂ is neither horizontal nor vertical then mT
γ̂ (ωnε ) can be expressed

by (10) and, using (9) and applying the large deviation result established in Proposi-
tion 1 in Section 3.3, we get

P(mT
γ̂ (ωnε ) 6 ε− δ) 6 Cε,δ e−mδ

2T/(T+1)
√

2,

where m is the number of square cells having a nontrivial intersection with γ̂([0, T ]).
Indeed, m 6 n because T < 1 and thus, by (9),

λi =
tnij(γ)

T
6
T + 1

T

√
2

n
6

c

m
with c =

T + 1

T

√
2 > 1.
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If γ̂ is horizontal or vertical, the argument is more complicated. We consider
m̃T
γ̂ (ωnε ) defined by (8) in Section 3.1. Obviously, we have

m̃T
γ̂ (ωnε ) = inf L,

where L is the set of all possible limits (closure points) of mT
γ′k

(ωnε ) as k → +∞ over
all sequences (γ′k)k∈N of geodesic rays converging to γ̂ such that, for every k ∈ N,
γ′k is obtained by rotating γ̂ around a corner of the grid through which γ̂ passes,
with angle ±1/k. There are at most bn/T c + 1 corners belonging to γ̂([0, T ]) and
thus 2(bn/T c + 1) possible limits of mT

γ′k
(ωnε ) by considering positive and negative

rotations. Hence #L 6 2 bn/T c+ 2.
We claim that any m∞ ∈ L can be expressed by (10) so that we can still apply

Proposition 1. Indeed, assume for instance that γ′k is obtained from γ̂ by a rotation
of angle 1/k around a corner c of the grid through which γ̂ passes. Then, it is easy to
see that

m∞ =

n∑
i,j=1

tnij(γ̂)

T
Xn
ij ,

where tnij(γ̂) is the time spent by γ̂ in cnij if γ′k crosses cnij (it does not depend
on k for k large enough) and 0 otherwise. More precisely, by Proposition 1, we have
P(m∞ 6 ε− δ) 6 Cε,δ e−mδ

2T/(T+1)
√

2. Hence, using that #L 6 2 bn/T c+2 and mod-
ifying the constant Cε,δ, we obtain

P
(
m̃T
γ̂ (ωnε ) 6 ε− δ

)
6

∑
m∞∈L

P (m∞ 6 ε− δ) 6 Cε,δ n e−mδ
2T/(T+1)

√
2.

In all cases, let us estimate m, the number of square cells met by γ̂. Since the
diagonal length of each square cell cnij is

√
2/n, the length of γ̂([0, T ]) (which is equal

to T because the speed of the geodesic is 1) is bounded above by m
√

2/n. Therefore
m > nT/

√
2.

We have therefore proved that, for every geodesic ray γ̂ ∈ Γ̂ (horizontal or vertical
or not),

(31) P
(
m̃T
γ̂ (ωnε ) 6 ε− δ

)
6 Cε,δ n e

−nT 2δ2/2(T+1).

Now, let γ ∈ Γ2. Assuming that n is large enough, there exist distinct pairs
(i1, j1), (i2, j2) ∈ {1, . . . , n}2 and two distinct corners x1, x2 in Gn such that γ(0) ∈
ci1j1 , γ(T ) ∈ ci2j2 and x1, x2 ∈ γ([0, T ]). Since γ and γci1j1 ,ci2j2 ,x1,x2 are in the same
equivalence class, and since the diagonal length of a square cell of Gn is

√
2/n, we have∣∣mT

γ (ωnε )−mT
γci1j1 ,ci2j2 ,x1,x2

(ωnε )
∣∣ 6 2

√
2

n
.

We infer that
inf
γ̂∈Γ̂

mT
γ̂ (ωnε ) = `TΓ2(ωnε ) + O(1/n).
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Therefore, recalling that m̃T
γ (ωnε ) 6 mT

γ (ωnε ) (see (8)), there exists C > 0 (not depen-
ding on n) such that, if n is large enough, then

P
(
`TΓ2(ωnε ) 6 ε− δ

)
6 P

(
infγ∈Γ̂m

T
γ (ωnε ) 6 ε− 2δ/3

)
6
∑
γ̂∈Γ̂

P
(
mT
γ̂ (ωnε ) 6 ε− 2δ/3

)
6 Cn9e−2nT 2δ2/9(T+1)

because #Γ̂ = O(n8). The conclusion follows.

3.3. Large deviations for triangular arrays of i.i.d. Bernoulli variables

Proposition 1. — Let m > 3 be an integer and let (λ1, . . . , λm) be a m-tuple of
nonnegative real numbers satisfying

∑m
i=1 λi = 1 and λi 6 c/m for every i, for some

c > 1. We set Ym =
∑m
i=1 λiXi, where (X1, . . . , Xm) is a m-tuple of i.i.d. Bernoulli

variables with expectation ε ∈ [0, 1]. Then, for every δ > 0, there exists Cε,δ > 0 such
that

(32) P(|Ym − ε| > δ) 6 Cε,δ e−δ
2m/c.

Remark 2. — The assumptions that c > 1 and m > 3 are not restrictive. They allow
us to provide a sharp estimate of the right-hand side of (32), by solving an auxiliary
optimization problem.

Proof of Proposition 1.. — We have

P(|Ym − ε| > δ) = P (Ym > ε+ δ) + P (−Ym > −ε+ δ)

and it suffices to prove that

P(Ym > ε+ δ) 6 Cε,δ e
−δ2m/c

because the estimate on P (−Ym > −ε+ δ) is obtained similarly.
Let s > 0 to be chosen later. By the Markov inequality, we have

P(Ym > ε+ δ) = P
(
esm(Ym−ε−δ) > 1

)
6 E

(
esm(Ym−ε−δ)

)
= e−sm(δ+ε)E

(
esmYm

)
.

Using and the independence of the Bernoulli variables Xi (whose expectation is ε),
we infer that

(33) P(Ym > ε+ δ) 6 e−sm(δ+ε)
m∏
i=1

E
(
esmλiXi

)
= e−sm(δ+ε)

m∏
i=1

(
1− ε+ εesmλi

)
= e−sm(δ+ε)F (λ1, . . . , λm) 6 e−sm(δ+ε) max

Σm
F,

where

F (λ1, . . . , λm) =

m∏
i=1

(
1− ε+ εesmλi

)
and

Σm =
{

(λ1, · · · , λm) ∈ [0, c/m]
m |

∑m
i=1 λi = 1

}
.
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Lemma 7. — We have

max
Σm

F = (1− ε+ εesc)bm/cc
(
1− ε+ εes(m−cbm/cc)

)
,

where b·c denotes the floor function.

Proof of Lemma 7. — Let (a1, . . . , am) ∈ Σm be a point at which the continuous func-
tion F reaches its maximum over the compact set Σm. Let (j, k) ∈ {1, . . . ,m}2 be
such that j 6= k. We define the function α on R by

α(u) = F (a1, . . . , aj + u, . . . , ak − u, . . . , am).

Setting Ij,k = [max(−aj , ak − c/m),min(ak, c/m − aj)], for every u ∈ Ij,k (i.e., 0 6
aj + u 6 c/m and 0 6 ak − u 6 c/m, we have (a1, . . . , aj + u, . . . , ak − u, . . . , am) ∈
Σm. Note that 0 ∈ Ij,k and that, since (a1, . . . , am) is a maximizer of F , we have
α(u) 6 α(0) for every u ∈ Ij,k. We have two possible cases:

(i) aj = 0 or aj = c/m or ak = 0 or ak = c/m;
(ii) 0 < aj < c/m and 0 < am < c/m.

In the case (ii), we must have α′(0) = 0, and since, by computing this derivative,
we have

α′(0) = smε(1− ε) (esmaj − esmak)
∏

16i6m
i 6=j, i 6=k

(1− ε+ εesmai),

it follows that aj = ak.
Since the pair (j, k) of distinct integers was arbitrary, we conclude that there exists

λ ∈ (0, c/m) such that aj ∈ {0, λ, c/m} for every j ∈ {1, . . . ,m}. Let J be the set of
indices such that aj = λ for every j ∈ J . Denote by FJ the restriction of F to the
set of all (λ1, . . . , λm) ∈ Σm such that λi = ai for every i /∈ J . Observing that FJ
is the product of separate variables positive strictly convex functions, its Hessian
d2FJ(a1, . . . , am) must be positive definite. But, by maximality of (a1, . . . , am) and
since

∑m
i=1 ai = 1, d2FJ(a1, . . . , am) has at most one positive eigenvalue. Therefore J

contains at most one element.
Noting that F is invariant under permutations, we infer that, performing a permu-

tation of variables if necessary, there exists N ∈ {1, . . . ,m− 2} such that

ai =
c

m
∀i ∈ {1, . . . , N} and aj = 0 ∀j ∈ {N + 1, . . . ,m− 1}

and am = 1−Nc/m because
∑m
i=1 ai = 1. Since am > 0, we must have

N 6 min(bm/cc ,m− 2) = bm/cc

because c > 1 and m > 3. Therefore

max
Σm

F = eϕ(N) with ϕ(x) = x ln(1− ε+ εesc) + ln(1− ε+ εes(m−cx)).
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It remains to determine the best possible integer N ∈ {1, . . . , bm/cc}. We have

ϕ′(N) = ln(1− ε+ εesc)− scεes(m−cN)

1− ε+ εes(m−cN)

>
scε(1− ε)

1− ε+ εes(m−cN)
(1− es(m−cN)) > 0,

where we have used that 1−ε+εes(m−cN) > 1 and ln(1−ε+εesc) > εsc by concavity
of the logarithm. Hence, the best integer N is N = bm/cc. The result follows. �

Using (33), Lemma 7 and the inequalitiesm−c bm/cc 6 c and 1 < 1−ε+εesc 6 esc,
we obtain

(34)
P(Ym>ε+ δ) 6 e−sm(δ+ε)(1−ε+εesc)bm/cc+16e−sm(δ+ε)(1−ε+εesc)(m/c)+1

6 (1− ε+ εesc)e−m(cs(ε+δ)−ln(1−ε+εecs))/c 6 esce−mϕε,δ(cs)/c,

where
ϕε,δ(u) = u(ε+ δ)− ln(1− ε+ εeu).

In order to choose adequately the parameter s, we will use the following result.

Lemma 8. — For every δ > 0, we have

inf
u>0

ϕε,δ(u) < δ2 < sup
u>0

ϕε,δ(u).

Moreover, there exists ûε,δ > 0 such that ϕε,δ(ûε,δ) = δ2, and ûε,δ 6 Uε,δ, where

Uε,δ =


δ2/(ε+ δ − 1) if δ > 1− ε,
ln
(
(1− ε)eδ2/(1− εeδ2)

)
if δ = 1− ε,

ln ((1− ε)(ε+ δ)/ε(1− ε− δ)) if δ < 1− ε.

Proof of Lemma 8. — We distinguish between several cases:
• If δ > 1 − ε, using that ln(1 − ε + εeu) 6 u for every u > 0, it follows that

ϕε,δ(u) > (ε+ δ − 1)u and hence

sup
u>0

ϕε,δ(u) > ϕε,δ
( δ2

ε+ δ − 1

)
> δ2.

Moreover, since ϕε,δ(0) = 0, by continuity of ϕε,δ, there exists ûε,δ ∈ (0, δ2/ε+ δ− 1)

such that ϕε,δ(ûε,δ) = δ2.
• If δ = 1− ε, since ϕε,δ is monotone increasing and ϕε,δ(u) 6 limu→+∞ ϕε,δ(u) =

− ln ε, we obtain
sup
u>0

ϕε,δ(u) = − ln(1− δ) > δ > δ2.

Moreover, noting that ϕε,δ(u) = ln
(
eu/(1− ε+ εeu)

)
, ûε,δ can be computed and we

obtain the formula stated in Lemma 8.
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• If δ < 1 − ε, we set uε,δ = ln
(
(ε+ δ)(1− ε)/ε(1− ε− δ)

)
. A straightforward

study shows that ϕε,δ is monotone increasing on [0, uε,δ] and monotone decreasing on
[uε,δ,+∞) and then

sup
u>0

ϕε,δ(u) = (ε+ δ) ln
( (ε+ δ)(1− ε)
ε(1− ε− δ)

)
− ln

( 1− ε
1− ε− δ

)
= (ε+ δ) ln

(ε+ δ

ε

)
+ (ε+ δ − 1) ln

( 1− ε
1− ε− δ

)
.

Setting a = ε+ δ ∈ (ε, 1), we get that

sup
u>0

ϕε,δ(u) = f(a) with f(a) = a ln
(a
ε

)
+ (1− a) ln

(1− a
1− ε

)
.

We compute

f ′(a) = ln
(a
ε

)
− ln

(1− a
1− ε

)
and f ′′(a) =

1

a(1− a)
.

Note that f ′′(a) > 4 for every a ∈ (0, 1). Integrating two times this inequality and
using that f(ε) = f ′(ε) = 0, we get f(a) > 2δ2 and therefore

sup
u>0

ϕε,δ(u) > 2δ2 > δ2.

The lemma is proved. �

We choose s such that cs = ûε,δ, where ûε,δ is given by Lemma 8, and we set
Cε,δ = eûε,δ . The inequality (34) yields P(Ym > ε + δ) 6 Cε,δ e

−mδ2/c. Proposition 1
is proved. �

3.4. Proof of Corollary 3. — It is proved in [6] that `T (ω) 6 |ω| for every Riemann
integrable subset ω of M = T2. Let δ > 0 be arbitrary. Let us apply Theorem 2 by
changing the parameter ε of the Bernoulli law to ε′ = ε− δ. Noting that the random
variable |ωnε′ | follows the law (1/n2)B(n2, ε′), we obtain

lim
n→+∞

P(|ωnε′ | 6 ε′ + δ) = lim
n→+∞

P(|ωnε′ | 6 ε) = 1

and
lim

n→+∞
P(`T (ωnε′) > ε

′ − δ) = lim
n→+∞

P(`T (ωnε′) > ε− 2δ) = 1.

As a consequence,

lim
n→+∞

P(`T (ωnε′) 6 ε− 2δ or |ωnε′ | > ε)

6 lim
n→+∞

P(`T (ωnε′) 6 ε− 2δ) + lim
n→+∞

P(|ωnε′ | > ε) = 0

and therefore,
lim

n→+∞
P
(
`T (ωnε′) > ε− 2δ and |ωnε′ | 6 ε

)
= 1,

which yields the existence of a domain ω that is a union of subsquares of a grid Gn
for some n ∈ N∗ such that `T (ω) > ε − 2δ and |ω| 6 ε. We then infer that ε − 2δ 6
sup|ω|6ε `

T (ω) = ε and we conclude since δ has been chosen arbitrarily. Corollary 3
is proved.
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Appendix. Some properties of the functional `T

Recall that, given any T > 0 and any Lebesgue measurable subset ω ofM , denoting
by χω the characteristic function of ω, we have defined

`T (ω) = inf
γ∈Γ

1

T

∫ T

0

χω(γ(t)) dt.

The functional `T can be extended by replacing χω by any measurable function a

on M . It can even be extended further: any geodesic ray γ ∈ Γ is the projection
onto M of a geodesic curve on S∗M , that is, γ(t) = π ◦ ϕt(z) for some z ∈ S∗M .
Here, we denote by (ϕt)t∈R the Riemannian geodesic flow, where, for every t ∈ R, ϕt is
a symplectomorphism on (T ∗M,ω) which preserves S∗M . Now, given any bounded
measurable function a on (S∗M,µL) and given any T > 0, we define

`T (a) = inf
z∈S∗M

1

T

∫ T

0

a ◦ ϕt(z) dt = inf
z∈S∗M

aT (z),

where aT (z) = 1
T

∫ T
0
a◦ϕt(z) dt and where the unit cotangent bundle S∗M is endowed

with the Liouville measure µL. Note that `T (a) = `T (a◦ϕt), i.e., `T is invariant under
the geodesic flow.

It can also be noted that for a fixed the function T 7→ T`T (a) is superadditive.
Of course, we recover the initial definition of `T by pushforward to M under the
canonical projection π : S∗M → M : given any bounded measurable function f on
(M,dxg), we have

(π∗`
T )(f) = `T (π∗f) = `T (f ◦π) = inf

z∈S∗M

1

T

∫ T

0

f ◦π◦ϕt(z) dt = inf
γ∈Γ

1

T

∫ T

0

f(γ(t)) dt

that we simply denote by `T (f). When f = χω, we recover `T (ω).

Remark 3. — Setting at = a ◦ ϕt, and assuming that a ∈ C∞(S∗M) is the principal
symbol of a pseudo-differential operator A ∈ Ψ0(M) (of order 0), that is, a = σP (A),
we have, by the Egorov theorem (see [10]),

at = a ◦ ϕt = σP (At) with At = e−it
√
4Aeit

√
4

where σP (·) is the principal symbol. Accordingly, we have aT = σP (AT ) with

AT =
1

T

∫ T

0

At dt =
1

T

∫ T

0

e−it
√
4Aeit

√
4 dt.

We provide hereafter a microlocal interpretation of the functionals `T and we give a
relationship with the wave observability constant.

Microlocal interpretation of `T and of the wave observability constant. — Let fT be such
that f̂T (t) = (1/T )χ[0,T ](t), i.e.,

fT (t) =
1

2π
ieiT t/2 sinc(Tt/2).

Note that
∫
R f̂T = 1, i.e., equivalently, fT (0) = 1. We denote by X the Hamiltonian

vector field on S∗M of the geodesic flow (we have etX = ϕt for every t ∈ R), and we
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define the selfadjoint operator S = X/i. Using that a◦etX = (etX)∗a = etLXa = eitSa,
we get

`T (a) = inf
z∈S∗M

1

T

∫ T

0

a ◦ etX(z) dt = inf
z∈S∗M

∫
R
f̂T (t)eitSa dt (z) = inf fT (S)a.

Besides, setting A = Op(a) (where Op is a quantization), we have

AT (a) =
1

T

∫ T

0

e−it
√
4Op(a)eit

√
4 dt =

∫
R
f̂T (t)e−it

√
4Op(a)eit

√
4 dt

= AfT =
∑
λ,µ

fT (λ− µ)PλAPµ,

where Pλ is the projection onto the eigenspace corresponding to the eigenvalue λ of√
4, i.e.,

√
4 =

∑
λ∈Spec(

√
4) λPλ. Restricting to half-waves, the wave observability

constant is therefore given (see [7]) by

CT (a) = inf
‖y‖=1

〈AT (a)y, y〉 = inf
‖y‖=1

〈AfT y, y〉.

Note that, for every y =
∑
λ Pλy =

∑
λ yλφλ ∈ L2(M), where φλ is an eigenfunction

of norm 1 associated with λ, for every smooth function a onM (i.e., A is the operator
of multiplication by a), we have

〈AfT y, y〉 =
∑
λ,µ

fT (λ− µ)〈APλy, Pµy〉 =
∑
λ,µ

fT (λ− µ)

∫
M

aPλy Pµy

=
∑
λ,µ

fT (λ− µ)yλyµ

∫
M

aφλφµ

and we thus recover the expression of CT (a) by series expansion (see [7]).
Note also that, as said before, the principal symbol of AfT = AT (a) is

σP (AfT ) = σP (AT (a)) = afT =

∫
R
f̂T (t)a ◦ etX dt = fT (S)a

and thus
`T (a) = inf σP (AT (a)).

Semi-continuity properties of `T . — Note the obvious fact that if a and b are functions
such that a 6 b and for which the following quantities make sense, then `T (a) 6 `T (b).
In other words, the functional `T is nondecreasing.

Lemma 9. — Let ω be a subset of M , let T > 0 be arbitrary and let (hk)k∈N∗ be
a uniformly bounded sequence of Borel measurable functions on M . If hk converges
pointwise to χω, then

lim sup
k→+∞

`T (hk) 6 `T (ω)

and if moreover χω 6 hk for every k ∈ N∗, then

`T (ω) = lim
k→+∞

`T (hk) = inf
k∈N∗

`T (hk).
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Proof. — Let γ ∈ Γ be arbitrary. By pointwise convergence, we have hk(γ(t)) →
χω(γ(t)) for every t ∈ [0, T ], and it follows from the dominated convergence theorem
that `T (hk) 6 1

T

∫ T
0
hk(γ(t)) dt→ 1

T

∫ T
0
χω(γ(t)) dt, and thus lim supk→+∞ `T (hk) 6

1
T

∫ T
0
χω(γ(t)) dt. Since this inequality is valid for any γ ∈ Γ, the first inequality

follows.
If moreover χω 6 hk then lim supk→+∞ `T (hk) 6 `T (ω) 6 `T (hk) and the result

follows. �

Note that, in the above proof, we use the fact that hk(x) → χω(x) for every x.
Almost everywhere convergence (in the Lebesgue sense) would not be enough.

Remark 4. — We denote by d the geodesic distance on (M, g). It is interesting to
note that, given any subset ω of M :
• ω is open if and only if there exists a sequence of continuous functions hk on M

satisfying 0 6 hk 6 hk+1 6 χω for every k ∈ N∗ and converging pointwise to χω.
Indeed, if ω is open, then one can take for instance hk(x) = min(1, k d(x, ωc)).

Conversely, since hk(x) = 0 for every x ∈ ωc, by continuity of hk it follows that
hk(x) = 0 for every x ∈ ωc = (ω̊)c. Now take x ∈ ω r ω̊. We have hk(x) = 0, and
hk(x)→ χω(x), hence χω(x) = 0 and therefore x ∈ ωc. Hence ω is open.
• ω is closed if and only if there exists a sequence of continuous functions hk on M

satisfying 0 6 χω 6 hk+1 6 hk 6 1 for every k ∈ N∗ and converging pointwise to χω.
Indeed, if ω is closed, then one can take hk(x) = max(0, 1− k d(x, ω)). Conversely,

since hk(x) = 1 for every x ∈ ω, by continuity of hk it follows that hk(x) = 1 for
every x ∈ ω, and thus χω 6 hk 6 1. Now take x ∈ ω r ω. We have hk(x) = 1 and
hk(x)→ χω(x), hence χω(x) = 1 and therefore x ∈ ω. Hence ω is closed.

Lemma 10. — Let ω be an open subset of M and let T > 0 be arbitrary. For every
sequence of continuous functions hk on M converging pointwise to χω, satisfying
moreover 0 6 hk 6 hk+1 6 χω for every k ∈ N∗, we have

`T (ω) = lim
k→+∞

`T (hk) = sup
k∈N∗

`T (hk).

Proof. — Since hk 6 χω, we have `T (hk) 6 `T (ω). By continuity of hk and
by compactness of geodesics, there exists a geodesic ray γk such that `T (hk) =
1
T

∫ T
0
hk(γk(t)) dt. Again by compactness of geodesics, up to some subsequence γk

converges to a ray γ in C0([0, T ],M). We claim that

lim inf
k→+∞

hk(γk(t)) > χω(γ(t)) ∀t ∈ [0, T ].

Indeed, either γ(t) /∈ ω and then χω(γ(t)) = 0 and the inequality is obviously satisfied,
or γ(t) ∈ ω and then, using that ω is open, for k large enough we have γk(t) ∈ U ,
where U ⊂ ω is a compact neighborhood of γ(t). Since hk is monotonically nonde-
creasing and χω is continuous on U , it follows from the Dini theorem that hk converges
uniformly to χω on U , and then we infer that hk(γk(t)) → 1 = χω(γ(t)). The claim
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is proved. Now, we infer from the Fatou lemma that

`T (ω) 6
1

T

∫ T

0

χω(γ(t)) dt 6
1

T

∫ T

0

lim inf
k→+∞

hk(γk(t)) dt

6 lim inf
k→+∞

1

T

∫ T

0

hk(γk(t)) dt = lim inf
k→+∞

`T (hk) 6 `T (ω)

and we get the equality. �

Remark 5. — The results of Lemmas 9 and 10 are valid as well for subsets of S∗M
(which is a metric space).

Lemma 11. — Let ω be an open subset of M and let T > 0 be arbitrary. There exists
γ ∈ Γ such that `T (ω) = 1

T

∫ T
0
χω(γ(t)) dt, i.e., the infimum in the definition of `T (ω)

is reached.

Proof. — The argument is almost contained in the proof of Lemma 10, but for
completeness we give the detail. Let (γk)k∈N∗ be a sequence of rays such that
1
T

∫ T
0
χω(γk(t)) dt → `T (ω). By compactness of geodesics, γk(·) converges uniformly

to some ray γ(·) on [0, T ].
Let t ∈ [0, T ] be arbitrary. If γ(t) ∈ ω then for k large enough we have γk(t) ∈ ω, and

thus 1 = χω(γ(t)) 6 χω(γk(t)) = 1. If γ(t) ∈ M r ω then 0 = χω(γ(t)) 6 χω(γk(t))

for any k. In all cases, we have obtained the inequality

χω(γ(t)) 6 lim inf
k→+∞

χω(γk(t)) ∀t ∈ [0, T ].

By the Fatou lemma, we infer that

`T (ω) 6
1

T

∫ T

0

χω(γ(t)) dt 6
1

T

∫ T

0

lim inf
k→+∞

χω(γk(t)) dt

6 lim inf
k→+∞

1

T

∫ T

0

χω(γk(t)) dt = `T (ω)

and the equality follows. �
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