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HYPERBOLICITY AND SPECIALNESS OF

SYMMETRIC POWERS

by Benoît Cadorel, Frédéric Campana & Erwan Rousseau

Abstract. — Inspired by the computation of the Kodaira dimension of symmetric powers Xm

of a complex projective variety X of dimension n > 2 by Arapura and Archava, we study their
analytic and algebraic hyperbolicity properties. First, we show that some (or equivalently any)
Xm is rationally connected (resp. special) if and only if so is X (except when the core of X
is a curve in the case of specialness). Then we construct dense entire curves in (sufficiently
high) symmetric powers of K3 surfaces and product of curves. We also give a criterion based
on the positivity of jet differentials bundles that implies pseudo-hyperbolicity of symmetric
powers. As an application, we obtain the Kobayashi hyperbolicity of symmetric powers of
generic projective hypersurfaces of sufficiently high degree. On the algebraic side, we give a
criterion implying that subvarieties of codimension 6 n− 2 of symmetric powers are of general
type. This applies in particular to varieties with ample cotangent bundles. Finally, we use a
metric approach to study symmetric powers of ball quotients.

Résumé (Produits symétriques de type hyperbolique et spécial). — Partant du calcul de la
dimension de Kodaira des produits symétriques Xm d’une variété projective complexe X de
dimension n > 2 par Arapura et Archava, nous étudions leurs propriétés analytiques et algé-
briques. Tout d’abord, nous montrons qu’un (ou de manière équivalente tout) Xm est ration-
nellement connexe (resp. spécial) si et seulement si X l’est (sauf lorsque le cœur de X est
une courbe dans le cas spécial). Ensuite nous construisons des courbes entières denses dans
les produits (suffisamment grands) de surfaces K3 et des produits de courbes. Nous donnons
également un critère fondé sur la positivité des fibrés de différentielles de jets qui implique la
pseudo-hyperbolicité des produits symétriques. Comme application, nous établissons l’hyper-
bolicité au sens de Kobayashi des produits symétriques des hypersurfaces projectives génériques
de degré suffisamment grand. Du côté algébrique, nous donnons un critère impliquant que les
sous-variétés de codimension 6 n − 2 des produits symétriques sont de type général. Il s’ap-
plique en particulier aux variétés à cotangent ample. Finalement, nous utilisons une approche
métrique pour l’étude des produits symétriques des quotients de la boule.
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1. Introduction

For any smooth complex projective variety X with n = dimX > 2, and an integer
m > 1, let Xm be the its m-th symmetric power, defined as the quotient of the prod-
uct Xm of m copies of X by the m-th symmetric group Sm acting by permutation of
the factors. It is shown in [AA03] that under our assumption that n > 2, the singu-
larities of Xm are canonical; this implies that if k = κ(X) is the Kodaira dimension
of X, then the Kodaira dimension of any smooth model of Xm is equal to mk. In par-
ticular, X is of general type, i.e., k = n, if and only if Xm and its smooth models are
of general type, i.e., κ(Xm) = nm. Now, the Green-Griffiths-Lang conjecture claims
that a given variety is of general type if and only if it satisfies strong hyperbolicity
properties with respect to entire curves or rational points:

Conjecture 1.1 (Green-Griffiths [GG80], Lang [Lan87], see also [Dem12, Lan91])
Let X be a smooth complex projective variety. Then the following are equivalent:
(1) X is of general type;
(2) X is pseudo-hyperbolic i.e., there exists a proper algebraic subset Z ( X that

contains the images of all entire curves, that is, all holomorphic non-constant maps
f : C→ X;

(3) if X is defined over a finitely generated field of characteristic zero k, then X

is pseudo-arithmetically hyperbolic i.e., there exists a proper algebraic subset Z ( X

such that XrZ contains finitely many K-rational points for any finite extension K/k.

Note that the three properties appearing in Conjecture 1.1 are birationally invari-
ant among smooth projective varieties. In view of the main result of [AA03], this
conjecture implies that a symmetric power of a variety of general type and of dimen-
sion higher than 2, should also be pseudo-hyperbolic. More precisely, the following
conjecture should be true.

Conjecture 1.2. — Let X be a complex projective variety with n = dimX > 2.
Then X is pseudo-hyperbolic if and only if Xm is pseudo-hyperbolic for some, or any,
m > 1.

J.É.P. — M., 2022, tome 9
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Note that it is not necessary to ask for X to be smooth in the previous conjec-
ture, since pseudo-hyperbolicity is an invariant property by resolution of singularities.
Remark also that if Xm is pseudo-hyperbolic for somem, so is Xm, and thus X, so the
interesting question is to show that Xm is pseudo-hyperbolic if X is.

The second author has proposed generalizations of the Green-Griffiths-Lang con-
jectures to any X based on the specialness property and the associated core fibration.
Special varieties are opposite to varieties of general type in the following sense: they
do not admit any fibration with (orbifold) base of general type, or equivalently their
core is of dimension 0 (see Section 3, and [Cam04] for details on special varieties and
the core map). Conjecturally, special varieties should satisfy exact opposites of the
last two points of Conjecture 1.1:

Conjecture 1.3 ([Cam04]). — Let X be a complex smooth projective variety. The
following are equivalent:

(1) X is special;
(2) X admits Zariski dense entire curves;
(3) there exists a finitely generated subfield K ⊂ C and a model X of X over K

such that X (K) is Zariski dense in X.

Our first goal will be to study the counterpart of Conjecture 1.2 for the specialness
property. Accordingly, we were able to derive the following result concerning the
specialness of symmetric powers from a study of the canonical fibrations of these
varieties (see Section 4):

Theorem 1. — Let X be a complex smooth projective variety of dimension n > 2.
If X is special then so is Xm for any m > 0. Conversely, if Xm is special for some
m > 0 then either X is special, or the core of X is an orbifold curve of general type
of genus at most m.

Theorem 1 follows from Theorem 12, Theorem 13, and Corollary 4.7 proved in
Section 4 below. We give there, more generally, a description of the core map of Xm

in terms of the core map of X.
Basic examples of special manifolds are those which are either rationally con-

nected, or with zero Kodaira dimension, generalizing rational and elliptic curves
respectively. The Kodaira dimension vanishes for X if and only if the same holds
for some (or any) Xm when dimX > 2. Similarly:

Theorem 2. — A smooth complex projective variety X with dimX > 2 is rationally
connected if so is some (or all) Xm.

Theorem 2 will be obtained as a byproduct of our more precise Corollary 4.3 in
Section 4. In view of Conjecture 1.3, this result implies that one should expect cor-
responding anti-hyperbolicity properties for their symmetric powers. The arithmetic
version has already been studied in [HT00b] where the authors prove potential den-
sity of rational points in the g-th symmetric power of generic K3 surfaces of degree g.

J.É.P. — M., 2022, tome 9
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In this article, we will focus on the analytic part, showing that these symmetric powers
contain dense entire curves, and are even dominated by C2g (see Theorem 15).

In the case of products of curves, we can also obtain the following result:

Theorem 3. — Let G and C be projective smooth curves of genus g(G) 6 1 and
g(C) > 1, and let S = G×C. Then m > g(C) if and only if Sm contains dense entire
curves.

Note that m > g(C) exactly means that Sm is special; this result will be obtained
as our Theorem 14 in Section 5. As recently observed in a manuscript sent to us
by A. Levin [Lev], such symmetric powers provide negative answers to puncturing
problems as formulated by Hassett and Tschinkel in [HT01] in the arithmetic and
geometric setting, and which can be stated in the analytic setting as follows.

Problem 1.4 (Analytic puncturing problem). — Let X be a projective variety with
canonical singularities and let Z be a subvariety of codimension at least 2. Assume
that there are Zariski dense entire curves on X. Is there a Zariski dense entire curve
on X r Z?

In the situation of Theorem 3, considering the small diagonal Z := ∆m ⊂ Sm one
easily sees (in Remark 5.2) that Zariski dense entire curves cannot avoid Z, giving
a negative answer to this problem. Notice however that no counter-example to the
analytic or arithmetic puncturing problem is known or possibly expected when X is
smooth. The intermediate case of terminal singularities seems also to be open.

In the second part of the present paper, we study hyperbolicity properties of sym-
metric powers. Conjecture 1.2 actually looks quite difficult to solve in full generality;
we chose to focus on the following particular case which seems already interesting and
nontrivial.

Problem 1.5. — Let X be a smooth complex projective variety with dimX > 2, and
let m > 2. Assume ΩX is ample. Show that any Xm is pseudo-hyperbolic.

We provide partial answers to this problem by considering instead of ΩX the more
general jet differentials bundles EGG

k,r ΩX : the sections of the latter correspond to
algebraic differential equations, or equivalently to sections of lines bundles on the jet
spaces πk : XGG

k → X (see Section 2.3 and [Dem97a] for an introduction to these
objects). First, we establish a criterion which ensures strong algebraic degeneracy of
entire curves in symmetric powers, meaning that the Zariski closure of the union of
entire curves, known as the exceptional set Exc(Xm), is a proper subvariety.

Theorem 4. — Let X be a smooth complex projective variety. Let A be a very ample
line bundle on X. Let Z ( X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that
Bs
(
H0(X,EGG

k,r ΩX ⊗ O(−dA))
)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d/r > 2m(m− 1).
Then Exc(Xm) 6= Xm.

J.É.P. — M., 2022, tome 9
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In fact, there is a precise description of a proper subvariety containing the excep-
tional locus (see Theorem 16 for details). Our criterion applies to a lot of situations
where the Green-Griffiths jet bundles are known to be sufficiently positive to satisfy
the assumption of the base locus in Theorem 4. Thanks to all the recent work around
the Kobayashi conjecture [Bro17, Den17, Dem20, RY22, BK19], we know that this
applies in particular to generic hypersurfaces of high degree in Pn+1

C :

Theorem 5. — Let n ∈ N, and let X ⊂ Pn+1
C be a generic hypersurface of degree

d > 1. Let m > 1 an integer satisfying:

d > (2n− 1)5(2m2 + 10n− 1).

The m-th symmetric power Xm of X is then hyperbolic.

This result will be obtained in Corollary 7.9. Getting back to the general case
of a smooth complex projective variety X of dimension n, we establish in Section 8
a criterion ensuring that any subvariety V ⊂ Xm of codimV 6 n − 2 is of general
type (see Theorem 20). This permits to construct manifolds satisfying a weak version
of algebraic intermediate hyperbolicity: following the terminology of Lang introduced
in [Lan91], we will say that a projective complex variety X is pseudo-k-canonical
if there exists an algebraic locus Z ( X such that all subvarieties V ⊂ X with
dimV > k and V 6⊂ Z are of general type.

Applying our criterion to varieties with ample cotangent bundle then yields the
following:

Theorem 6. — Let X be a smooth complex projective variety with n = dimX > 2,
and let m > 1 be an integer. Assume ΩX is ample. Then, Xm is pseudo-(n(m−1)+2)-
canonical: more precisely, any subvariety V ⊆ Xm such that codimV 6 n − 2 and
V 6⊂ Xsing

m is of general type.

If we believe in the Green-Griffiths-Lang conjecture 1.1, this theorem implies that
codim Exc(Xm) > n−1 for complex manifolds with ΩX ample, thus giving in principle
a strong restriction on the exceptional locus that can appear in Problem 1.5. We refer
to [EJR21] for a discussion of a stronger notion of intermediate algebraic hyperbolicity,
and related results.

The previous theorem already permits to obtain several geometric restrictions on
the exceptional locus of rational curves or subvarieties with trivial canonical bundle
in Xm. We obtain in particular the following result (see the more precise Corollary 8.8
and the subsequent discussion):

Corollary 1.6. — Let X be a smooth complex projective variety of dimension n > 2,
and assume that ΩX is ample. Then, there exist countably many proper algebraic
subsets Vk ( Xm (k ∈ N) such that codimXm(Vk) > n − 1 for all k ∈ N, and whose
union contains all the images of P1 or any projective manifold with trivial canonical
bundle.

J.É.P. — M., 2022, tome 9
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We also obtain genus estimates for curves lying on X in the spirit of [AA03,
Cor. 4]. If Y ⊂ X is a closed smooth subvariety, we say that a generic point
[y1, . . . , y`, x1, . . . , xd−`] ∈ Y` × Xd−` lies on an irreducible curve with genus g

normalization if there exist C → V a family of smooth projective curves of genus g
and a morphism f : C → X which is generically one-to-one on the fibers Ct, such
that the image Z of Y`×Xd−` → Xd is dominated by the image of Sdf : SdC → Xd.

Corollary 1.7. — Assume ΩX is ample, and let Y ⊂ X be a closed smooth subvariety.
Let 1 6 ` 6 d be integers. Assume that for a generic point [y1, . . . , y`, x1, . . . , xd−`] ∈
Y` ×Xd−`, there exists a curve of geometric genus g in X such that all xi and yj lie
in C. Then if

` · codimY 6 dimX − 2,

we have g > d.

This result will be proved in Corollary 8.10. Finally, in Section 9, we give a crite-
rion for hyperbolicity in terms of the existence of a suitable negatively curved metric;
this criterion applies in particular to symmetric powers of quotient of bounded sym-
metric domains. As an application, we obtain a hyperbolicity theorem for symmetric
products of ball quotients. Before stating it, recall that given a torsion-free lattice
with unipotent parabolic elements Γ ⊂ Aut(Bn) (n ∈ N), Mok has given a general
construction of smooth minimal compactification X of the quotient X = Γ\Bn (see
[Mok12]). The manifold X is obtained from X by adding to it a finite union of abelian
varieties, forming a boundary divisor D.

In the statement of the theorem (which will be proved as Corollary 9.8), we make
use of the following notation: ifW ⊂ X is a subvariety of a variety X, and if 1 6 i 6 m
are integers, we let di(W ) = {[x1, . . . , xm] ∈ Xm|x1, . . . , xi ∈ W} ⊂ Xm (see our
notation in Section 2.1).

Theorem 7. — Let X = Γ\Bn be a ball quotient by a torsion free lattice with only
unipotent parabolic elements, and let X = X ∪D be a smooth minimal compactifica-
tion. Let m > 1. Then :

(a) Let V ⊂ Xm be a subvariety with codimV 6 n− 6 and V 6⊂ d1(D)∪ (Xm)sing.
Then V is of general type.

(b) Let p > n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that
f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.

The paper is organized as follows. In Section 2 we collect some preliminary defini-
tions and properties of symmetric powers and jet differentials. In Section 3 we recall
the basic definitions and constructions related to special varieties. In Section 4 we
prove Theorem 1 and Theorem 2. In Section 5 we prove Theorem 3. In Section 6 we
state some basic facts on Kobayashi hyperbolicity of symmetric powers. In Section 7
we prove Theorem 4 and Theorem 5. In Section 8 we prove Theorem 6, Corollary 1.6
and Corollary 1.7. Finally, in Section 9 we prove Theorem 7.
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2. Notation and conventions

We introduce here some notation pertaining to symmetric powers of varieties, that
we will use in the entirety of the article.

2.1. Symmetric powers. — Let X be a smooth complex projective variety.
(1) For any m ∈ N∗, we will denote by Xm = Sm\Xm the m-th symmetric power

of X. We let q : Xm → Xm be the natural projection. Elements of Xm will be denoted
by [x1, x2, . . . , xm] (where (x1, . . . , xm) ∈ Xm). Also, if s > 0,m1, . . . ,ms are positive
integers such that

∑
imi = m, and x1, . . . , xs ∈ X are pairwise distinct, we write

[xm1
1 , . . . , xms

s ] := [x1, . . . , x1, . . . , xs, . . . , xs], where each xi is repeated mi times, for
i = 1, . . . , s.

(2) For any V ⊂ X and any i ∈ [[1,m]], where [[a, b]] = {a, a+ 1, . . . , b} for integers
a 6 b, we define di(V ) as the projection of V i ×Xm−i ⊂ Xm in Xm. This is the set
of elements [x1, . . . , xm] ∈ Xm with i components inside V .

(3) For any i ∈ [[1,m]], we let Di(Xm) = {[x1, . . . , xm] ∈ Xm | x1 = · · · = xi} be
the i-th diagonal locus. Note that codim Di(Xm) = n(i− 1).

(4) For any divisor A on X, we will denote by A] =
∑m
i=1 pr∗iA the associated

Sm-invariant divisor on Xm. Since A] admits Sm-invariant local defining equations,
the latter are pull-backs of equations on Xm: this means that there exists an effective
Cartier divisor A[ on Xm such that q∗A[ = A]. Note that since A[ is a Cartier divisor
on Xm, it induces a well-defined line bundle.

Remark that the construction X  Xm is functorial, any holomorphic map
f : X → Y inducing a natural holomorphic map fm : Xm → Ym.

2.2. The Reid-Tai-Weissauer criterion. — For later reference, we now recall an im-
portant criterion for the extension of differential forms on resolutions of quotient
singularities.

Let G be a finite group acting on a complex manifold X of dimension n. The
criterion can be stated in terms of the following condition:

Condition (Ix,d). — Let x ∈ X, and let d ∈ N. Let g ∈ G having order r > 1 and
stabilizing x. Then there exists coordinates (z1, . . . , zn), centered at x such that g
acts by

g · (z1, . . . , zn) = (ζa1z1, . . . , ζ
anzn),

where ζ = e2iπ/r, and a1, . . . , an ∈ [[0, r − 1]]. We say that the condition (Ix,d) is
satisfied, if for any such g ∈ Gr {1} stabilizing x, the following holds for any choice

J.É.P. — M., 2022, tome 9
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of d distinct elements i1, . . . , id in [[1, n]]:

ai1 + · · ·+ aid > r.

Note that it is always possible to find coordinates z1, . . . , zn as above by the classical
lemma of H.Cartan [Car54]; whether the criterion holds or not is independent on such
a choice of coordinates.

It is useful to state a weaker condition under which the differentials will extend
meromorphically to a resolution of singularities. Resume the same notation as before,
and let α > 0.

Condition (I′x,d,α). — We say that the condition (I′x,d,α) is satisfied, if the same state-
ment as in Condition (Ix,d) holds, with the inequality replaced by

ai1 + · · ·+ aid > r(1− α).

Proposition 2.1 ([Wei86, Lem. 4. p. 213]). — Let d ∈ N. Assume that the condition
(Ix,d) (resp. (I′x,d,α)) holds for any point x ∈ X. Let Y = G\X , and let Ỹ be a smooth
resolution of singularities of Y . Let Y ◦ be the smooth locus of Y .

Then, for any p > d, and for any q ∈ N, the sections of (Λp ΩY ◦)
⊗q extend to the

whole Ỹ (resp. extends as meromorphic section of (Λp ΩỸ )⊗q with a pole of order at
most bqαc).

Remark 2.2
(1) The fact that q is arbitrary in the criterion above is crucial. Note that if q = 1,

then for any p > 1, any section of Λp ΩY ◦ extends to Ỹ , e.g. by [Fre71] or [GKKP11].
The proof of [Fre71] consists essentially in remarking that (I′x,d,α) always holds for
some α < 1, so bqαc = 0 in this case.

(2) Proposition 2.1 is a generalization of well-known criterion proved independently
by Tai [Tai82] and Reid [Rei80] (which is simply the case p = dimX). The proof given
in [Wei86] is stated in the case where X = Hg is the Siegel upper half-space acted
upon by G = Sp(2g,Z), and where G is a cyclic group; by an argument of Tai [Tai82,
Prop. 3.1], the cyclic case suffices to deal with the general situation, and Weissauer’s
computations can be adapted immediately to the general case formulated above. For
more details in English, the reader can see e.g. [Cad21, §4].

2.3. Jet differentials. — We will now recall some basic facts around the notion of
jet differentials. For more details, the reader can refer to [Dem12, §7].

LetX be a complex manifold, and k,m ∈ N be integers. We will denote the unit disk
by ∆. The Green-Griffiths vector bundle of jet differentials of order k and degree m,
is the vector bundle EGG

k,mΩX → X, whose sections over a chart U ⊂ X identify
with differential equations acting on holomorphic maps f : ∆ → U , with adequate
order and degree. Writing f = (f1, . . . , fn) in local coordinates, P (f) can be written
as a holomorphic polynomial P0(f ; f ′, . . . , f (k)) in the first k derivatives of the fi,
being of degree m with respect to reparametrization, i.e., P (g)(t) = λmP (f)(λt) if
g(t) = f(λt).

J.É.P. — M., 2022, tome 9
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For any order k > 1, we can form the Green-Griffiths jet differential algebra
EGG
k,• ΩX =

⊕
m>0Ek,mΩX , and define the k-th jet space XGG

k = ProjX(EGG
k,• ΩX).

We check that the elements of XGG
k are naturally identified with classes of k-jets,

i.e., k-th order Taylor expansions of holomorphic maps f : (∆, 0) → X, up to linear
reparametrization. Each jet space is endowed with a projection map πk : XGG

k → X

and tautological sheaves OXGG
k

(m) (m > 0), such that

(πk)∗OXGG
k

(m) = EGG
k,mΩX

for any m > 1.
If C is a complex curve, any map f : C → X admit well-defined lifts f[k] : C → XGG

k

obtained by taking the k-th Taylor expansion at each point of C. The main interest
of jet differential equations in the study of complex hyperbolicity comes from the
following fundamental vanishing theorem, which permits to give strong restrictions
on the geometry of entire curves.

Theorem 8 ([SY96, Dem97b]). — Let X be a smooth complex projective variety, and
let A be an ample line bundle on X. Let k,m > 1, and let P ∈ H0(X,EGG

k,mΩ⊗O(−A)).
Let f : C→ X. Then f is a solution of the holomorphic differential equation P , i.e.,
P (f ; f ′, . . . , f (k)) = 0.

In other words, for any entire curve f : C→ X, we have f[k](C) ⊂ B+(OXGG
k

(1)),
where B+ denotes the augmented base locus.

The previous theorem has strong implications in cases where global jet differential
equations are numerous. In these notes, we will be able to produce such differential
equations using a basic variant of the orbifold jet differentials which were introduced
by the second and third authors in a joint work with L.Darondeau [CDR20]. We will
explain briefly how these objects can be defined in our context at the beginning of
Section 7.1.

Part 1. Specialness of symmetric powers

3. Special varieties

We collect here basic definitions and constructions related to special varieties, while
referring to [Cam04] for more details.

3.1. Special Manifolds via Bogomolov sheaves. — Let X be a connected complex
smooth projective variety of complex dimension n. For a rank-one coherent subsheaf
L ⊂ ΩpX , denote byH0(X,Lm) the space of sections of Symm(ΩpX) which take values
in Lm at the generic point of X (where as usual Lm := L ⊗m).

The Iitaka dimension of L is κ(X,L ) := maxm>0{dim(ΦL m(X))}, i.e., the max-
imum dimension of the image of rational maps ΦL m : X P(H0(X,Lm)) defined
at the generic point of X, where by convention dim(ΦL m(X)) := −∞ if there are no
global sections. Thus κ(X,L ) ∈ {−∞, 0, 1, . . . ,dim(X)}. In this setting, a theorem
of Bogomolov in [Bog78] shows that, if L ⊂ ΩpX , then κ(X,L ) 6 p.
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Definition 3.1. — Let X, p > 0 be as above. A rank one saturated coherent sheaf
L ⊂ ΩpX is called a Bogomolov sheaf if κ(X,L ) = p, i.e., if L has the largest possible
Iitaka dimension.

Definition 3.2 ([Cam04, Def. 2.1]). — A nonsingular complex projective(1) variety X
is said to be special (or of special type) if there is no Bogomolov sheaf on X. A pro-
jective variety is said to be special if some (or any) of its resolutions are special.

Bogomolov sheaves on X occur if f : X → Y is a fibration on Y , of general type
and dimension p > 0, indeed:

Remark 3.3. — If f : X → Y is a fibration (by which we mean a surjective morphism
with connected fibers) and Y is a variety(2) of general type of dimension p > 0, then
the saturation of f∗(KY ) in ΩpX is a Bogomolov sheaf of X.

By the previous remark if there is a fibration X → Y with Y of general type then X
is nonspecial. In particular, if X is of general type of positive dimension, X is not of
special type. However, Bogomolov sheaves occur, more generally, when f : X → Y

fibres over Y , even if Y is not of general type, provided f has enough multiple fibres.

3.2. Special Manifolds via orbifold bases. — Special varieties are alternatively
characterized using the notion of orbifolds. We briefly recall the construction.

Let Z be a normal connected compact complex variety. An orbifold divisor ∆ is a
linear combination ∆ :=

∑
{D⊂Z} c∆(D) ·D, where D ranges over all prime divisors

of Z, the orbifold coefficients are rational numbers c∆(D) := (1−1/m∆(D)) ∈ [0, 1]∩Q
such that all but finitely many are zero. Equivalently,

∆ =
∑
{D⊂Z}

(
1− 1

m∆(D)

)
·D =

∑
j∈J

(
1− 1

mj

)
·Dj ,

where only finitely orbifold multiplicities mj := m∆(Dj) ∈ Q>1 ∪ {+∞} are larger
than 1.

An orbifold pair is a pair (Z,∆) where ∆ is an orbifold divisor; they interpolate
between the compact case where ∆ = ∅ and the pair (Z,∅) = Z has no orbifold
structure, and the open, or purely-logarithmic case where cj = 1 for all j, and we
identify (Z,∆) with Z r Supp(∆).

When Z is smooth and the support Supp(∆) := ∪Dj of ∆ has normal crossings
singularities, we say that (Z,∆) is smooth. When all multiplicities mj are integral or
+∞, we say that the orbifold pair (Z,∆) is integral, and when every mj is finite it
may be thought of as a virtual ramified cover of Z ramifying at order mj over each
of the Dj ’s.

(1)Bogomolov theorem works in the compact Kähler setting as well, and so do the notions of
special variety and core map.

(2)Y normal is sufficient, by considering L := f∗(i∗(KY 0 )), where i : Y 0 → Y is the injection of
the regular locus of Y .
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Consider a fibration f : X → Z between normal connected complex projective
varieties. In general, the geometric invariants (such as π1(X), κ(X), . . .) of X do not
coincide with the ‘sum’ of those of the base (Z) and of the generic fiber (Xη) of f .
Replacing Z by the ‘orbifold base’ (Z,∆f ) of f , which encodes the multiple fibers of f ,
leads in some favorable important cases to such an additivity (on suitable birational
models at least).

Definition 3.4 (Orbifold base of a fibration). — Let f : X → Z be a fibration, and
let ∆ be an orbifold divisor on X. We then write f : (X,∆) → Z to indicate that ∆

is taken into account. We shall define the orbifold base (Z,∆f ) of (f,∆) as follows:
to each irreducible Weil divisor D ⊂ Z we assign the multiplicity m(f,∆)(D) :=

infk{tk ·m∆(Fk)}, where f∗(D) =
∑
k tk.Fk +R, R is an f -exceptional divisor of X

with f(R) ( D, and Fk are the irreducible divisors of X which map surjectively to D
via f , with fiber of multiplicity tk over the generic point of D.

Remark 3.5. — Note that the integers tk are well-defined, even if X and Z are only
assumed to be normal.

Let (Z,∆) be an orbifold pair. Assume that KZ + ∆ is Q-Cartier (this is the
case if (Z,∆) is smooth, for example): we will call it the canonical bundle of (Z,∆).
Similarly we will denote by the canonical dimension of (Z,∆) the Kodaira dimension
of KZ + ∆ i.e., κ(Z,KZ + ∆) := κ(Z,OZ(k.(KZ + ∆))), for k > 0 any integer such
that k.(KZ + ∆) is Cartier. Finally, we say that the orbifold (Z,∆) is of general type
if κ(Z,∆) = dim(Z).

Definition 3.6. — A fibration f : X → Z with X,Z projective, X smooth and Z

normal, is said to be of general type if (Z,∆f ) of general type.

If f : X Z, dim(Z) = p > 0, is only a rational fibration, we may replace X,Z, f
by birational models and assume that (Z,∆f ) is smooth. The saturated rank-one
sheaf L ⊂ ΩpX which coincides with f∗(KY ) over the regular locus of Y has then a
well-defined κ(X,L ) as said in the beginning of the present subsection, easily seen
to be independent of the birational models chosen, and can be seen to be equal to
κ(Z,KZ + ∆f ) on any suitably chosen ‘neat’ birational model of f .

The non-existence of fibrations of general type in the above sense turns out to be
equivalent to the specialness condition of Definition 3.2.

Theorem 9 (see [Cam04, Th. 2.27]). — A smooth complex projective variety X is
special if and only if it has no rational fibrations f : X Z of general type.

Let us now recall the existence of the core map (see [Cam04, §3] for details). Given
a smooth projective variety X there is a functorial fibration cX : X → C(X), called
the core of X such that the fibers of cX are special varieties and the base C(X) is
either a point (if and only if X is special) or an orbifold (C(X),∆cX ) of general type.
This ‘core map’ dominates birationally any fibration f : X Z with general type
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orbifold base, and its fibres are also the largest special subvarieties of X going through
the general point of X.

As mentioned in the introduction, the second author has proposed in [Cam04] the
following generalizations of Lang’s conjectures.

Conjecture 3.7
(1) Let X be a complex projective variety. Then, X is special if and only if there

exists an entire curve C→ X with Zariski dense image.
(2) Let X be a projective variety defined over a finitely generated field of charac-

teristic zero k. Then, the set of rational points on X is potentially dense i.e., X(K)

is dense in X for some finite extension K/k, if and only if X is special.

Finally, let us remark that previous conjectures (see [HT00a, Conj. 1.2]) proposed
to characterize potential density with the weaker notion of weak specialness.

Definition 3.8. — A projective variety X is said to be weakly special if there are no
finite étale covers u : X ′ → X admitting a dominant rational map f ′ : X ′ → Z ′ to a
positive dimensional variety Z ′ of general type.

It has been shown in [CP07] and [RTW21] that one cannot replace “special” by
“weakly-special” in Conjecture 3.7 in the analytic and function fields settings.

4. Canonical fibrations

We will now study conditions under which various canonical fibrations are preserved
by the symmetric product. In the rest of the text, a fibration will be a surjective
morphism with connected fibres. Then, if f : X→B is a fibration, so is fm : Xm→Bm.
We denote with Ym → Xm any desingularization of Xm.

We shall consider the following (bimeromorphically well-defined) fibrations for X
smooth compact of dimension n:

(1) The Moishezon-Iitaka fibration J : X → B

Assuming X to be smooth compact Kähler:
(2) The ‘rational quotient’(3) r : X → B.
(3) The ‘core map’ c : X → B.
Recall that [AA03] shows that if X is smooth, and if dimX > 2, the singularities

of Xm are canonical, and consequently, that κ(Ym) = κ(Xm) = m · κ(X). The goal is
to extend (and exploit) [AA03] in order to show the following:

Theorem 10. — Let X be smooth projective(4), and let f : X → B be any one of
the three canonical fibrations f = J, r, c respectively. Assume dimB > 2, then for
each of these 3 fibrations, the corresponding fibration of Ym is nothing but the m-th

(3)Also termed MRC fibration.
(4)For J (resp. r, c), the statement is still valid for X compact (resp. for X compact Kähler).

For J , this is simply due to the fact that [AA03] is purely local in the analytic topology. For r, c this
will be explained briefly in the next footnotes.
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symmetric product fm : Ym → Bm. Explicitly: the Moishezon-Iitaka fibration of Ym is
Jm : Ym → Bm, the rational quotient map of Ym is rm : Ym → Bm, and the core map
of Ym is cm : Ym → Bm. (When B is a curve, a simple description can be given, too.
See Theorems 11 and 12 below, as well as Remark 4.1).

Remark 4.1. — The conclusion is obviously false when dimX = 1 and g(X) > 2,
since qm : Xm → Xm then ramifies in codimension n = 1. One recovers a uniform
statement by equipping Xm with its natural orbifold structure, obtained by assigning
to each componentDj,k inXm of the diagonal locusD2(Xm) its natural multiplicity 2.
The orbifold divisor Dm :=

∑
j<k(1 − 1/2) ·Dj,k on Xm has then the property that

q∗m(KXm +Dm) = KXm . In particular, κ(Xm,KXm +Dm) = m·κ(X). The divisor Dm

will appear again when we consider the core map below. Notice however that, as soon
as m > 3, the orbifold divisor Dm is not of normal crossings (for m = 3 for example,
it is locally analytically a product of of disk by a plane cusp.)

Before starting the study of Jm, cm, rm, let us make some simple observations on
fm : Xm → Bm if f : X → B is a fibration (with connected fibres) between two
connected compact complex manifolds, with dim(B) > 1:

(1) The generic fiber of fm over a point [b1, . . . , bm] ∈ Bm is isomorphic to the
(unordered) product Xb1 × . . . Xbm if the bi are pairwise distinct. In particular, if the
generic fiber of f is rationally connected, or special, so are the generic fibres of fm.
The rational quotient map and the core map of Ym thus factorize through rm and cm
respectively.

(2) If the schematic fibresXbi are reduced, so is the fiber over [b1, . . . , bm], whatever
the bi.

(3) If f has a local section over a neighborhood of each of the b′is, fm has (an ob-
vious) local section over a neighborhood of [b1, . . . , bm].

For f = J , the proof is an immediate consequence of [AA03]. Indeed: the general
fiber of fm is a product of fibres of J , hence has κ = 0. On the other hand, κ(Xm) =

m · κ(X) = dim(Bm). The conclusion follows.
We shall now prove the statement for the two remaining fibrations r, c.

4.1. The ‘rational quotient’

Theorem 11. — Let X be a smooth complex projective variety, and let r : X → B

be its rational quotient map. Then rm : Xm → Bm is the rational quotient map
of Xm if dim(B) 6= 1. If B is a curve of genus g > 0, and Rm : Xm → R(m) is the
rational quotient map, there are two cases: either m < g, then Rm = rm, R(m) = Bm,
or Rm = jacmB ◦rm : Xm → Jac(B), where jacmB : Bm → Jac(B) is the natural Jacobian
map.

Proof. — We assume X to be complex projective. Recall that r is characterized by
the fact that its fibres are rationally connected and (a smooth model of) its base is
not uniruled (by [GHS03]). Since the generic fibres of rm are products of fibres of r,
hence rationally connected, it is sufficient to show that a smooth model µ : B′m → Bm
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of Bm is not uniruled if B is not a curve of positive genus. Assume B′m were uniruled,
we would then have an irreducible algebraic family of curves C ′t covering B′m and with
−KB′m .C

′
t > 0. Since the singularities of Bm are canonical, this implies KBm .Ct < 0,

where Ct := µ∗(Ct), since KB′m
= µ∗(KBm

) + E′, with E′ effective, by [AA03]. The
conclusion(5) now follows, using [MM86], from the fact that KBm = (qBm)∗(KBm

) is
pseudo-effective (i.e., has nonnegative intersection with any covering algebraic family
of generically irreducible curves(6)), by lifting to Bm the generic curve Ct.

Assume now that B is a curve of genus g > 0. Then jacmB : Bm → Jac(B) has
connected fibres generically projective spaces of dimension 0 if m 6 g, and positive
dimension if m > g. Moreover the image of jacmB is never uniruled when m > 0. This
shows the claim, by [GHS03]. �

Remark 4.2. — The previous proof still works when X is a compact Kähler manifold:
the argument can be adapted as follows. The rational quotient map (with maximally
rationally connected fibres) still exists in the compact Kähler case, by the compactness
of the components of the Chow-Barlet ‘scheme’. Assume by contradiction that B′m is
uniruled. Let then r′ : B′m → R′, the MRC fibration of B′m: its generic fiber is thus
smooth, positive-dimensional, and rationally connected. From the last part of the
preceding argument in the case when B is projective, we conclude that Bm is covered
by an analytic family of curves (images of rational curves contained in the fibres of r′)
with negative intersection with KBm

, and thus that KBm is not pseudo-effective,
contradicting the fact that KB is pseudo-effective.

We can now prove Theorem 2 as a corollary of the previous theorem:

Corollary 4.3. — A smooth projective variety X is rationally connected if and only
if so is Xm for some m, and X is uniruled if and only if so is Xm for some m,
unless X is a curve of genus g > 0, and m > g.

Proof. — Indeed: the uniruledness (resp. rational connectedness) of X is character-
ized by: dim(X) > dim(B) (resp. dim(B) = 0), and dim(Bm) = m · dim(B). We thus
see that any Xm is rationally connected (resp. uniruled) if so is X. Conversely, the
preceding Theorem 11 shows that the claim holds true if dim(R(m)) = dim(Bm) =

m · dim(X). This is the case unless possibly when r : X → B fibres over a curve B
with g(B) > 0, and m > g. In this case, Xm is uniruled, but not rationally connected.
Thus Xm rationally connected for some m > 0 implies that X rationally connected.
On the other hand, if X is not uniruled, we have X = B is a curve, and Xm is uniruled
if and only if m > g. Hence the corollary. �

Remark 4.4. — If X is unirational, so is obviously Xm, for any m > 1. It is true,
but less obvious ([Mat68], that if X is rational, then so is Xm, for any m > 1 (much

(5)One does not really need [MM86], since it is sufficient to show that KB′m
is pseudo-effective.

(6)By this, we mean an irreducible and compact complex space Γ equipped with two surjective
holomorphic maps p : Γ→ S and Γ→ X, with dim(S) + 1 = dim(Γ).
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more is to be found in [CTS07] and [Pop13]). From this, it follows that if X is stably
rational, then so isXm, form > 1 too. This naturally leads to ask about the converses.

Question 1. — Assume that Xm is unirational (resp. rational, stably rational) for
some m > 2, is then, yes or no, X unirational (resp. rational, stably rational)?
If some Xm, m > 1 is rational, is X unirational?

Some specific cases are as follows.

Example 1
(1) If X is a smooth cubic hypersurface of dimension n > 3, is Xm rational for

some large m?
(2) If X is the double cover of P3 ramified over a smooth sextic surface, X is Fano,

hence rationally connected, but its unirationality (or not) is an open problem. Is Xm

unirational for some large m? The same question arises for X a conic bundle over P2

with a smooth discriminant of large degree.
(3) Can the Brauer group of a smooth model of Xm be estimated from the one

of X? Does it vanish for m sufficiently large if X is unirational (resp. rationally
connected)? To which extent do the Brauer groups of Xm and its smooth models
differ?

4.2. The core map

Theorem 12. — Let X be a complex projective(7) manifold of dimension n > 2 and
c : X → B the core map of X. If p := dim(B) 6= 1 then cm : Xm → Bm is
(bimeromorphically) the core map of Xm.

The case where B is a curve is studied in the next subsection (see also Remark 4.1).

Corollary 4.5. — If n > 2 and p 6= 1 then X is special if and only if so is Xm for
some m.

Indeed, X (resp. Xm) is special if and only if dim(B) = 0 (resp. dim(Bm) = 0),
and dim(Bm) = m · dim(B).

Proof of Theorem 12. — Since the general fibres of cm are products of special mani-
folds they are special (it is easy to see that a product of special manifolds is special). It
is thus sufficient to show that the ‘neat orbifold base’ of cm is of general type, knowing
that so is the neat orbifold base of c. This requires some preliminary explanation.

Recall that f : X → B is neat if there exists a bimeromorphic map u : X → X0,
with X0 smooth, such that each f -exceptional divisor is also u-exceptional, and the
complement of the open set U = BrD ⊂ B over which f is submersive is a snc divisor,
as well as f−1(D) ⊂ X. Such a neat model of f0 : X0 B is obtained by flattening f0,
followed by suitable blow-ups. In this case, the support of Df , the orbifold base of f ,
is snc too, and κ(B,KB + Df ) is minimal among all bimeromorphic models of f .

(7)The proof applies directly when X is compact Kähler.
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More precisely, κ(B,KB + Df ) = κ(X,Lf ), where Lf := f∗(KB)sat ⊂ ΩpX , where
p := dim(B), and f∗(KB)sat is the saturation of f∗(KB) in ΩpX . See [Cam04] for
details. Notice also that if c : X → B is a neat model of some f0 : X0 B0, and if
x ∈ X is any point, there is another neat model f ′ : X ′ → B′ dominating(8)f : X → B

such that x does not belong to any f ′-exceptional divisor on X ′, and lies in the image
of the smooth locus of the reduction of a fiber of f ′. If this condition is not realized
on (X, f) it is then sufficient to suitably blow-up X, then flatten the resulting map
by modifying B, and finally take a smooth model of the resulting f . The claim of
Theorem 12 then holds true for (X, f) if it holds for (X ′, f ′).

Let c : X → B be neat with respect to u : X → X0, and let cm : Xm → Bm,
together with a smooth model c′m : X ′m → B′m of cm (i.e., X ′m, B′m are smooth models
of Xm, Bm).

Let us prove first that cm : Xm → Bm is the core map of Xm, with orbifold base
(Bm, Dfm) and Kodaira dimension m · κ(B,Df ). This follows inductively on m from
the following easy lemma, which also shows that Dfm =

⋃
s∈Sm

s(Df ×Xm−1).

Lemma 4.6. — Let f : X → V, g : Y → W be neat fibrations with orbifold bases
(V,Df ), (W,Dg). Then f × g : X × Y → V × W is neat, its orbifold base is
(X × Y,Df ×W + V ×Dg), and its Kodaira dimension is κ(V,Df ) + κ(W,Dg).

Proof. — If E ⊂ V ×W is an irreducible divisor mapped surjectively on both V and
W , there is only one irreducible divisor F ⊂ X×Y such that (f×g)(F ) = E, which has
multiplicity 1 in (f×g)∗(E), since over (v, w) ∈ E generic, (f×g)−1(v, w) = Xv×Yw,
reduced. The other conclusions are obtained by a similar argument. �

– We now turn to the proof of Theorem 12. Let cm : Xm → Bm be deduced by
quotient from the core map cm, and let Dcm ⊂ Xm be the direct image of Dcm under
the quotient map qB : Bm → Bm, so that Dcm = (qB)∗(Dcm). It is sufficient to
show that ρ∗(c∗m((KXm

+Dcm)⊗k)) ⊂ Symk(Ωm·pX′m
) for any (or some) k > 0 such that

k.(KXm +Dcm) is Cartier, where ρ : X ′m → Xm is a smooth model of Xm.
– If p := dim(B) = 0, there is nothing to prove.
– We thus assume that p := dim(B) > 2. The problem is local (in the analytic

topology) on Xm, Xm, B
m, Bm. By the observations made above, we shall assume

that the points (x1, . . . , xm) near which we treat the problem do not belong to any c-
exceptional divisor, and are regular points of the reduction of the fiber of c containing
them. The fibration c is thus given in suitable local coordinates on X and B by the
map c : (x1, . . . , xn) → (b1, . . . bp) with bi := xtii , ∀i = 1, . . . , p, p < n, where the
support of Dc is contained in the union of the coordinate hyperplanes bi = 0 of B,
the multiplicity of bi = 0 in Dc being an integer t′i, with 1 6 t′i 6 ti, ∀i 6 p, by the
very definition of the orbifold base.

(8)In the sense that there exists birational maps u′ : X′ → X and β′ : B′ → B such that
f ◦ u′ = β′ ◦ f ′.
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Since c∗
(
(dbi/b

1−(1/t′i)
i )⊗t

′
i

)
= t

t′i
i .x

(ti−t′i)
i · (dxi)⊗t

′
i , we see that (KB + Dc)

⊗t is
Cartier and c∗((KB +Dc)

⊗t) ⊂ Symt(ΩpX), if t = lcm{t′i}.
Thus (cm)∗((KBm +Dcm)⊗t) ⊂ Symt(ΩpmXm), this natural injection being deduced

from the description of Dcm given above (which shows that it is snc since so is Dc).
The saturation of the image of this injection inside Symt(ΩpmXm) is the line bundle
generated by T := (w1 ∧ · · · ∧ wm)⊗t, where wj := dx1,j ∧ · · · ∧ dxp,j , ∀j = 1, . . . ,m.
Here (x1,j , . . . , xn,j) are the local coordinates near the point zj ∈ X, on the j-th
component Xj

∼= X of Xm near the point (z1, . . . , zm).
It is sufficient (considering separately the distinct points of the set {z1, . . . , zm})

to deal with the case where zj = zk, ∀j, k 6 m.
The operation of Sm on the coordinates xi,j , i 6 n, j 6 m fixes the set of coor-

dinates xi,j , i 6 p, j 6 m and induces on the vector space
⊕

j Vj :=
⊕

i,j C · xi,j ,
j 6 p they generate a representation which is a direct sum of p copies of the regular
representation.

The conclusion then follows from Proposition 2.1. One checks the conditions(9)

given in [Wei86] by using the (purely algebraic) proof of Prop. 1, p. 1370, of [AA03],
which says that if ρ : Sm → Gl(

⊕j=m
j=1 V ) is a representation which is the direct

sum of p copies of the regular representation, where V is a complex vector space of
dimension p > 2, then σ(g) = (n/2) · r · (

∑k=s
k=1(rk − 1)) > r, for any g ∈ Sm which

is the product of s non-trivial disjoint cycles of lengths rk, and r := lcm((rk)′s) is
the order of g. Here σ(g) :=

∑
h ah, if the eigenvalues of ρ(g) are ζah , where ζ is any

complex primitive r-th root of the unity, and 0 6 ah < r for any h. �

4.3. The core map of Xm when the base of c is a curve. — We now assume that
p := dim(B) = 1. Let c : X → B be the core map, and (B,Dc) its orbifold base.
When Dc = 0, the situation is easy:

Theorem 13. — Assume that the core map c : X → B maps onto a curve B, and
that its orbifold-base divisor Dc = 0. Then cm : Xm → Bm is the core map if m < g,
and Xm is special if m > g.

Proof. — Since Dc = 0, the fibration c : X → B, and so cm, has everywhere local
sections, thus the same is true for cm, and hence for any smooth birational model
of cm. The conclusion thus follows from the fact that Bm is of general type if m < g,
and special if m > g. �

In the general case, we have a weaker statement:

Corollary 4.7. — If c : X → B is the core map, with B a curve, there is an integer
g(B,Dc) > 0 such that Xm is special if m > g(B,Dc). Moreover, Xm is not special
if m < g(B).

(9)The simpler form of our tensor T reduces the conditions, for a given g, in the proof-not the
statement-of Lemma 4 of [Wei86] to a single one: σ(g) > r (in loc. cit. the data `, d,N,m correspond
to t, pm, n, r here, respectively).
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Proof. — By assumption, the orbifold curve (B,Dc) is of general type, hence ‘good’,
meaning that there exists a finite Galois cover h : B̃ → B which ramifies at order t′
over each point b ∈ Dc ⊂ B, b of multiplicity t′ in Dc. The normalization H : X̃ → X

of the fiber-product X ×B B̃ comes equipped with c̃ : X̃ → B̃, which is its core map,
since this fibration has everywhere local sections.

If m > g(B̃), then X̃m, and so also Xm, is special. This shows the first claim.
The second claim follows from the fact that Bg(B)−1 is the Θ divisor on the Jacobian

of B, and so it is of general type. If we now take m 6 (g(B)−1), Bm is still of general
type, as seen inductively on m = 1, . . . , g(B)−2 by contradiction, because the images
of {a} × Bm, a ∈ B in Bm+1 by the natural addition map are injective and cover
Bm+1 when a ∈ B varies. Since Xm fibres over Bm, we get that Xm is not special for
m 6 g(B)− 1. �

Remark 4.8. — It is possible to show a more precise result (not used here): if δ :=

deg(Dc), then Xm is special for m > g(B) + δ, and non-special otherwise.

It is now easy to put all the previous results together to get Theorem 1 as a more
synthetic statement.

Proof of Theorem 1. — The direct implication follows from Corollary 4.5, while the
converse implication is a consequence of Theorem 13, and Corollary 4.7. �

5. Dense entire curves in symmetric powers

5.1. Dense entire curves in Symm(G × C). — Let G (resp. C) be a curve of genus
g(G) 6 1 (resp. g := g(C) > 1), and S = G × C, then Sm is special if and only if
m > g, which we assume from now on. Theorem 13 shows that Sm is ‘special’ (hence
‘weakly-special’), while of course, Sm is not ‘weakly special’. This section is devoted
to the proof of Theorem 3: Sm contains (lots of) entire curves h : C→ Sm with dense
(not only Zariski-dense) image if (and only if) m > g. Note indeed that if m < g,
then Sm fibres over Cm by means of its core map, which implies that the entire curves
on Sm are contained in the fibres.

The statement of Theorem 3 was suggested by Ariyan Javanpeykar as a test case
for the conjecture by the second named author, that special manifolds should contain
dense entire curves. The arithmetic counterpart were that Sm is ‘potentially dense’ if
defined over a finitely generated field of characteristic zero. Theorem 3 can be obtained
as a consequence of the following more precise result:

Theorem 14. — If S = G× C is as above, the following are equivalent:
(1) m > g,
(2) Sm is special,
(3) Sm contains dense entire curves.

Proof. — We shall assume here that G = P1, the proof when G is an elliptic curve
being completely similar (just replacing C ⊂ P1 by C → G the universal cover).
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Observe that Cm contains dense entire curves, since it fibres surjectively over Jac(C)

as a Pr-bundle, with r := m − g, over the complement in Jac(C) of a Zariski-closed
subset of codimension at least 2.

Take a dense entire curve f : C → Cm, let V ⊂ C× C be the graph of the family
of m-tuples of points of C parameterized by C via f , i.e.,

V := {w := (z, c) | c ∈ C, c ∈ f(z)}.

The map π : V → C sending w = (z, c) to z is thus proper, open and of geometric
generic degree m. In particular, V is a Stein curve (not necessarily irreducible). Let
F : V → C be the projection on the second factor. Let g : V → C ⊂ P1 = G be
any holomorphic map. The product map g × F : V → C × C ⊂ G × C = S is thus
well-defined. We now define the map h : C → Sm by sending z ∈ C to the m-tuple
of S defined by: (g × F )(π−1(z)) ⊂ S.

We now just need to check that the map g : V → C can be chosen such that
h(C) ⊂ Sm is dense there. Note first that if (zn)n>0 is any discrete sequence of
pairwise distinct complex numbers such that π : V → C is unramified over each zn,
and if, for each n > 0, (tn,1, . . . , tn,m) is an m-tuple of complex numbers, there exists
a holomorphic map g : V → C such that g(wn,i) = tn,i, ∀n > 0, i = 1, . . . ,m, where
(wn,1 = (zn, cn,1), . . . , wn,m= (zn, cn,m)) =π−1(zn), and (cn,1, . . . , cn,m) :=f(zn)∈Cm
(the ordering being arbitrarily chosen).

It is now an elementary topological fact that the sequences (tn,1, . . . , tn,m), n > 0

can be chosen in such a way that the sequence (sn,1, . . . , sn,m)n>0 ∈ Sm is dense
in Sm, where sn,i := (tn,i, cn,i) ∈ S, ∀n > 0, i = 1, . . . ,m. �

Remark 5.1. — The preceding arguments work more generally for X = G×C, when
C,m are as above, but G enjoys the following property: for any smooth complex Stein
curve V → C proper over C, and any sequence of distinct points wn ∈ W , tn ∈ G,
there exists a holomorphic map g : V → G such that g(wn) = tn, ∀n.

This property is satisfied for G a complex torus or a unirational manifold. The
same arguments would show the same result for G rationally connected if one could
answer positively the following question, answered positively in [CW19], when V = C:

Question 2. — For m, C, π : V → C defined as above, let wn ∈ V , tn ∈ G, n ∈ Z>0

be a sequence of points. Assume that the points π(wn) ∈ C are all pairwise distinct.
Does there exist a holomorphic map g : V → G such that g(wn) = tn, ∀n if G is
rationally connected?

Remark 5.2. — Let now ∆(m) ⊂ Sm be the ‘small diagonal’, consisting of m-tuple
of points of which 2 at least coincide. Thus (Sm)∗ := Sm r ∆(m) admits a surjective
(but non-proper) map to Cm.

Let ∆m ⊂ Sm be defined as: ∆m := D2(Sm) = q(∆(m)). We thus have, too:
∆(m) = q−1(∆m). The restricted map q : (Sm)∗ → (Sm)∗ := Sm r ∆m is thus proper
and étale.
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Let d(Sm)∗ := dSm|(Sm)∗ (by [Kob98]) be the Kobayashi pseudometric on (Sm)∗.
Since the Kobayashi pseudometric on Sm is the inverse image of that on Cm by the
natural projection γm : Sm → Cm, any entire curve h : C → Sm (and so even
more in (Sm)∗) has to be contained in some fiber of γm. Moreover, the Kobayashi
pseudometric on (Sm)∗ is comparable to its inverse image in (Sm)∗ (and can be
explicitly described). This shows that any entire curve in (Sm)∗ is contained in the
image by q of a fiber of γm, and is in particular algebraically degenerate (although
there are lots of dense entire curves on Sm, none of these avoids ∆m).

This gives a counterexample to an analytic version of the ‘puncture problem’ of
[HT01], similar to the arithmetic one of [Lev].

5.2. C2g-dominability of S[g], the g-th symmetric product of generic projective
K3-surfaces. — Let S be a smooth projective K3-surface with(10) Pic(S) ∼= Z, gen-
erated by an ample line bundle L of degree 2(g − 1), g > 1. Such K3-surfaces are
thus generic among projective K3-surfaces admitting a primitive ample line bundle of
degree 2 · (g − 1).

The objective is to prove the following

Theorem 15. — For any such S, there is a (transcendental) meromorphic map
h : C2g Sg whose image contains a nonempty Zariski open subset U of Sg (we say
that Sg is “C2g-dominable”). In particular, for any countable subset P of U , there is
an entire curve on Sg whose image contains P . If P is dense in Sg, so is the image
of this entire curve.

Remark 5.3
(1) The proof rests on a suitable abelian fibration Sg Pg. Our result may thus

be seen as analog to the case when S is an elliptic K3 surface (over P1) and g = 1,
shown in [BL00].

(2) Our result is analogous to the arithmetic situation treated by [HT01].
(3) Since Sg is special, Theorem 15 solves in a stronger form one of the conjectures

of [Cam04] in this particular case.
(4) One may expect the conclusion of Theorem 15 to hold for S[k], any k > 1 and

any K3-surface (projective or not).

Before starting the proof, we recall some of the objects which have been attached
to such a pair (S,L).

The Hilbert scheme of g points. — The Hilbert scheme S[g] of points of length g on S,
equipped with the Hilbert to Chow birational morphism δ : S[g] → Sg, is known to
be smooth ([Fog68], Theorem 2.4) and holomorphically symplectic [Bea83]).

(10)with some more work, it is probably possible to extend the next result to any projective
K3-surface, by taking for L an ample and primitive line bundle with g minimal.
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The relative Jacobian. — The line bundle L determines P(H0(S,L))∗) := Pg, the
g-dimensional projective space (by Riemann-Roch and Kodaira vanishing). The linear
system |L| is base-point free and the associated map ϕ : S → Pg is an embedding
for g > 3 (a double cover ramified over a sextic for g = 2). For each t ∈ Pg, the
corresponding zero locus of a non-zero section of |L| is an irreducible and reduced
(by the cyclicity of Pic(S) assumption) curve of genus g denoted Ct. The incidence
graph of this family of curves is denoted by γ : C → Pg. For d ∈ Z, the relative
Jacobian fibration jd : Jd → Pg has fiber over t the Jacobian Jdt of degree d line
bundles on Ct. The Jacobian J0

t of degree 0 line bundles on Ct (isomorphic to Jdt by
tensoring with any given line bundle of degree d) is a complex Hausdorff Lie group
of dimension g quotient of H1(Ct,OCt) by the (closed) discrete subgroup H1(Ct,Z)

([BPVdV84, II.2, Prop. (2.)]). Thus, denoting with j0 : J0 → Pg the relative Jacobian
of degree 0 (instead of d) line bundles on the C ′ts, and V := R1γ∗(OC ) → Pg, this
sheaf is locally free and thus a vector bundle w : V → Pg of rank g on Pg. By [Gro62,
Th. 3.1], the relative Picard scheme is separated(11), and so the relative discrete group
R1γ∗(Z)→ Pg is closed in V . Taking the quotient, we get:

Lemma 5.4. — There is a holomorphic and surjective unramified map H : V → J0

over Pg.

The compactified Jacobian. — For d ∈ Z, this is the compactification j
d

: Jd → Pg

of Jd over Pg obtained as a component of the moduli space of simple sheaves on S

([Muk84]). This variety is compact smooth, holomorphically symplectic and, for d = g,
birational to S[g] ([Bea91, Prop. 3]). We denote with σ : S[g] Jg this birational
equivalence.

The covering by singular elliptic curves. — By [BPVdV84, VIII, Th. 23.1] (see refer-
ences there for the original proofs), there is a nonempty curve in Pg parametrizing
(singular) curves C ′ts with elliptic normalizations. This family (and each of its com-
ponents) covers S. Choosing g generic (normalised) members E1, . . . , Eg of such an
irreducible family provides a product ε : E := E1×· · ·×Eg ⊂ Sg. By [HT01, proof of
Th. 6.1], the composed projection jg ◦σ ◦ ε : E → Pg is a (meromorphic) multisection
of the (meromorphic) fibration τ := (j

g
) ◦ σ : S[g] → Pg. This fact is actually easy to

prove, since if Ct is smooth, it cuts each of the E′is in finitely many distinct points,
and so the intersection of E with Cgt is finite, and surjective on the fiber of Sg over Pg.

Proof. — We can now prove Theorem 15. For any complex manifolds M,R equipped
with a holomorphic map µ : M → Pg, r : R→ Pg, we denote with R(M) := R×Pg M ,
equipped with the projections µM : R(M) → M, rM : R(M) → R . This, applied to
R = V , R = Jd, R = S[g](M), gives the fiber products V (M), Jd(M), S[g](M).

We have two meromorphic and generically finite maps ε : E S[g], and σ ◦ ε :

E Jg. Denote with Et the fiber of E over t ∈ Pg. We get a birational map

(11)We thank D.Markushevich for this reference and helpful comments.
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β : Jg(E) J0(E) over E by sending a generic pair (j, (e1, . . . , eg)t) ∈ Jgt × Et to
j ⊗ λ−1, if λ ∈ Jgt is the line bundle on Ct with a nonzero section vanishing on the g
points ei.

Let π : E′ → E be a modification making these maps holomorphic. Let wE :

V (E′)→ E′ be the rank-g vector bundle on E′ lifted from w : V → Pg. We get also a
natural holomorphic map, unramified and surjective HE : V (E′) → J0(E′) over E′.
Let E := π∗(V ):this is a rank-g coherent sheaf on E, and there is a natural evaluation
map: π∗(E )→ V over E′.

Let now ρ : E → E be the universal cover, so that E ∼= Cg. Let π′ : E′ ×E E → E

be deduced from π : E′ → E by the base change ρ. Hence π′ is a proper modi-
fication. The sheaf ρ∗(E ) on E is coherent, hence generated by its global sections
since E is Stein. Let W ⊂ H0(E, ρ∗(E )) be a vector subspace of dimension g which
generates ρ∗(E ) at the generic point of E, and let ev : W × E ∼= C2g → V (E′)

be the resulting meromorphic and bimeromorphic map, obtained from the injection
π′∗ : H0(E, ρ∗(E ))→ H0(E′ ×E E, V (E′)).

We thus obtain a dominating meromorphic map C2g → S[g] by composing ev

with the bimeromorphic maps between J0(E′), Jg(E′), S[g](E′), and finally projecting
S[g](E′) onto S[g].

This completes the proof of Theorem 15. �

Part 2. Hyperbolicity of symmetric powers

6. A remark on the Kobayashi pseudometric

For any (irreducible) complex space Z, let dZ be its Kobayashi pseudo-distance
(see [Dem12, §1.A] for the proper definition). We say that Z is pseudo-Kobayashi
hyperbolic if dZ is a distance on some nonempty Zariski open subset of Z.

Question 3. — AssumeX is smooth, compact and pseudo-Kobayashi hyperbolic with
n > 1. Is then Xm is pseudo-Kobayashi hyperbolic for any m > 0?

Let us make one remark in this context. Let (Xm)∗ ⊂ Xm be the Zariski open
subset consisting of ordered m-tuples of distinct points of X. The complement of
(Xm)∗ has codimension n > 2 in Xm. By [Kob98, Th. 3.2.22], we have dXm|(Xm)∗ =

d(Xm)∗ . Let qm : Xm → Xm denote the quotient map, and X∗m := qm((Xm)∗), so
that X∗m has a complement of codimension n in Xm as well, which is the singular set
of Xm. Moreover, (Xm)∗ = q−1

m (X∗m). From [Kob98, 3.1.9 & 3.2.8], we get:

dX∗m([x1, . . . , xm], [y1, . . . , ym]) = inf
s∈Sm

{maxi=1,...,m{dX(xi, ys(i))}}.

Although the complement Xsing
m of X∗m in Xm has codimension n > 2 (and the

singularities are canonical quotient), it is not true that dXm|X∗m = dX∗m in general,
as the following example shows. Even more, the pseudometric may degenerate away
from Xsing

m , so the problem is not a local one near Xsing
m .
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Example 2. — Let C ⊂ X be an irreducible curve of geometric genus g with normal-
ization Ĉ on X, and take m > g. Then Ĉm → Alb(C) is a surjective morphism with
generic fibres Pm−g, and there is then a natural generically injective map from Ĉm to
Xm showing that dXm

vanishes identically on its image.

If the answer to Question 3 is affirmative (as it should be if and only if X is
of general type, after S. Lang’s conjectures), the vanishing locus of dXm

appears to
have an involved structure. In particular, it should contain the union of all the Ĉm
whenever g(Ĉ) 6 m, and this union should not be Zariski dense.

Example 3. — The simplest possible example might be a surface S := C ×C ′, where
C,C ′ are smooth projective curves of genus 2, andm = 2. In this case, the natural map
S2 → C2×C ′2 is a ramified cover of degree 2 branched over R := (2C)×C ′2∪C2×(2C ′),
where (2C) ⊂ C2 is the divisor of double points (and similarly for (2C ′)). Notice
that C2 identifies naturally with the Pic2(C), the Picard variety of line bundles of
degree 2 on C, isomorphic to Jac(C), blown-up over the point {KC}, and 2C embeds C
in C2, its image meeting the exceptional divisor of C2 in the 6 ramification points of
the map C → P1 given by the linear system |KC |. Thus 2C ⊂ C2 is an ample divisor
(similarly for C ′).

As a first step towards Question 3, let us show the following result which in par-
ticular implies that entire curves in the above example cannot be Zariski dense.

Proposition 6.1. — Let X be a complex projective variety of dimension n with irreg-
ularity q := h0(X,ΩX).

(1) If m · n < q then entire curves in Xm are not Zariski dense.
(2) If X is of general type, n > 2 and m · n 6 q then entire curves in Xm are not

Zariski dense.

We will make use of the following simple lemma.

Lemma 6.2. — Let X be a smooth projective variety, and let x0 ∈ X be a base point.
Let α : X → A be its Albanese map, normalized so that α(x0) = 0. Then the Abel-
Jacobi map βm : [x1, · · · , xm] ∈ Xm 7→

∑
i α(xi) ∈ A is the Albanese map of Xm.

Proof. — Note first that since Xm has at worst canonical singularities, the fibers of
any resolution of singularities X̃m → Xm are rationally chain connected (see [HM07]),
so the Albanese map of X̃m factors through Xm. We get a map from Xm to an abelian
variety that satisfies the standard universal property, thus the Albanese map of Xm

is well defined.
Let now φ : Xm → B be a morphism towards an abelian variety such that

φ([x0, . . . , x0]) = 0. By the universal property of α, the restriction of φ to
[x0, . . . , x0] × X ∼= X factors via α through a morphism of abelian varieties
ψ : A → B. We will show that φ = ψ ◦ βm. We may assume by induction that the
result has been proved for m− 1 since ψ is independent of m.
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Let y ∈ Xm−1. The restriction of φ to X ∼= {y} ×X ⊂ Xm factorizes through α,
so there exists a morphism of abelian varieties ψy : A→ B such that

(1) ∀x ∈ X, ψy(α(x)) = φ([y, x])− φ([y, x0])

(the second translation term is needed to ensure that ψy(0) = 0).
The morphisms ψy depend continuously on y ∈ Xm−1: since Xm−1 is connected,

the rigidity property of morphisms of abelian varieties implies that ψy=ψ[x0,··· ,x0] =ψ.
Thus, for any x ∈ X, ψy(α(x)) = ψ(α(x)).

Also, using the induction hypothesis, to the composition of φ with the morphism
{x0} ×Xm−1 → Xm, one gets has

φ([y, x0]) = φ([x0, y]) = ψ(
∑m−1
i=1 α(yi))

for any y ∈ Xm−1.
Inserting this back inside (1), one gets φ([y, x]) = ψ(

∑m−1
i=1 α(yi) + α(x)) =

ψ(βm([y, x])) as was to be shown. Thus βm : Xm → A satisfies the universal property
of Albanese varieties, which gives the result. �

Proof of Proposition 6.1. — Let α : X → A be the Albanese map. It induces the
Albanese map βm : Xm → A as in the previous lemma. If dimXm = m·n < q = dimA

then by the classical Bloch-Ochiai’s Theorem, entire curves in Xm are not Zariski
dense. If X is of general type, by [AA03], Xm is of general type. Therefore by [Yam04,
Cor. 3.1.14], if dimXm = m · n 6 q = dimA, entire curves in Xm are not Zariski
dense. �

7. Jet differentials over symmetric powers

In this section, we will present our main criterion for hyperbolicity of symmetric
powers Xm, in terms of the existence of jet differentials on X (see Theorem 16).

7.1. Jet differentials on resolutions of quotient singularities. — We recall here
some basic definitions related, on the one hand, to natural orbifold structures on
resolution of quotients singularities (see [CRT19, Cad21, CDG19]), and on the other
hand, to orbifold jet differentials (see [CDR20]). The basic result we will need is given
by Proposition 7.1.

7.1.1. Jet differentials on orbifolds. — Let us give some details about the very basic
notion of orbifold jet differentials that we will use in the following. For our purposes,
it will be enough to consider only orbifolds of the form (X,∆ =

∑
i(1 − 1/mi)Di),

with mi ∈ N>1. Also, rather than using the geometric orbifold jet differentials de-
fined in [CDR20], it will also suffice to consider jet differentials adapted to divisible
holomorphic curves in the sense of [CDR20, Def. 1.1]. The latter jet differentials ad-
mit a very simple description. For any k, r ∈ N, we will denote by EGG

k,r Ωdiv
(X,∆) the

vector bundle of divisible orbifold jet differentials of order k and degree r, whose
sections in orbifold local charts adapted to ∆ can be described as follows. Assume
that (t1, . . . , tp, tp+1, . . . , tn) ∈ U 7−→ (tm1

1 , . . . , t
mp
p , tp+1, . . . , tn) ∈ V is such a chart.
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Then, the local sections of EGG
k,r Ωdiv

(X,∆) corresponds to the regular sections of EGG
k,r ΩU

on U , which are invariant under the deck transform group. Remark that we could
also have defined EGG

k,r Ωdiv
(X,∆) in terms of a global adapted covering instead of local

orbifold charts.

7.1.2. Natural orbifold structure on resolutions of a quotient singularity. — Consider
now a quotient Y = G\X where X is smooth, and G finite. If Ỹ → Y is a reso-
lution of singularities, we can endow it with a natural orbifold structure, by assigning
to every exceptional divisor E ⊂ Ỹ the rational multiplicity 1− 1/m, where m is the
order of the element γ ∈ G associated with the meridional loop around the generic
point of E (see [CDG19, Cad21]).

With this notation, the following proposition is then essentially tautological.

Proposition 7.1. — Let X be a complex manifold, and let G ⊂ Aut(X) be a finite
subgroup. Let p : X → Y = G\X be the quotient map, and Ỹ π−→ Y be a resolution of
singularities. Let (Ỹ ,∆) be the natural orbifold structure on Ỹ . Let A be a G-invariant
divisor on X, and B the associated Cartier divisor on Y such that p∗B = A.

For k, r ∈ N, we let σ ∈ H0(X,EGG
k,r ΩX ⊗O(−A)) be a G-invariant section. Then

π∗p∗σ induces an element of H0(Ỹ , EGG
k,r Ωdiv

(Ỹ ,∆)
⊗ O(−π∗B)).

Remark 7.2. — With the notation of the previous proposition, we see that if r is
divisible enough, and if f is a local section of OỸ (−r∆) ⊂ OỸ , then f · π∗p∗σ is a
holomorphic section of EGG

k,r ΩỸ ⊗ O(−π∗B).

7.2. A first criterion for the hyperbolicity of symmetric powers. — Before pre-
senting our next hyperbolicity result, let us first prove a proposition that will allow
us later on to compensate for the divergence of natural orbifold objects on resolutions
of Xm. We resume the notation introduced in Section 2.1.

Proposition 7.3. — Let X be a smooth complex projective variety, and let A be a
very ample divisor on X. Let π : X̃m → Xm be a log-resolution of singularities, and
let ∆ be the exceptional divisor with its reduced structure. Then

B(π∗A[ −
1

2(m− 1)
∆) ⊂ |∆|,

where B denotes the stable base locus.

We break the proof of this proposition into several lemmas.

Lemma 7.4. — Let U be a complex manifold, let G ⊂ Aut(U) be a finite group,
and let p : U → G\U = V be the quotient map. Let A be a divisor on X, and
let A] =

∑
γ∈G γ

∗A. Note that A] is G-invariant, so there exists a Cartier effective
divisor A[ on V such that p∗A[ = A]. Let W ⊂ U be an irreducible component of the
subset of points stabilized by some element of G. Let s ∈ Γ(U,A]) be a G-invariant
section vanishing at order r along W , for some r > 1. Then, we have the following.

(1) s descends to a section σ ∈ Γ(V,A[);
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(2) let X̃ π−→ X be a resolution of singularities, and let E ⊂ X̃ be an exceptional
divisor such that π(E) ⊂ p(W ). Let m be the multiplicity of E for the natural orbifold
structure on X̃. Then, π∗σ, seen as a section of π∗A[, vanishes at order > r/m

along E.

Proof. — (1) is trivial, by definition of A[. Let us prove (2). Let H ⊂ G be the
stabilizer of the generic point of π(E). By definition of A], we may find an H-invariant
trivialization e of A] near this generic point. Besides, s = f e for some H-invariant
holomorphic function f vanishing at order r along W . Consider a polydisk D ∼= ∆n

centered around a generic point of E, and let D′ be the normalization of the fibered
product of D and U over V . We obtain the following diagram:

D′ ∼= ∆×∆n−1 U

(∆n ∩ E) = {0} ×∆n−1 D ∼= ∆×∆n−1 V

π′

p′ p

π

Since f is H-invariant, f ◦ π′ = f ′ ◦ p′ for some holomorphic function f ′ on D ∼=
∆ ×∆n−1. Moreover, we have σ = f ′ e[, where e[ is the section of A[ induced by e.
The holomorphic function f vanishes at order r > 0 along V , so f ◦ π′ vanishes at
order > r along {0}×∆n−1. Since p′(w, z) = (wm, z), this implies that f ′ vanishes at
order > r/m > 0 along {0} ×∆n−1 ⊂ ∆n. This ends the proof. �

Lemma 7.5. — Let N,m > 1. We define V = PN × · · · × PN to be a product of m
copies of PN . Let D = {(z1, . . . , zm) ∈ V | ∃i 6= j, xi = xj} ⊂ V be the diagonal
locus. Let A ⊂ PN be a hyperplane section, and let A] =

∑m
i=1 pr∗iA.

Then, for any z ∈ V rD, there exists a Sm-invariant section

s ∈ Γ(V,OV (2(m− 1)A])),

with s(x) 6= 0, and such that s vanishes at order 2 along D.

Proof. — Let z = (z1, . . . , zm) ∈ V rD. Write (PN )i to denote the i-th factor of V . For
any i < j, we have zi 6= zj , so for two generic hyperplane linear sections X,Y ∈ |A|,
we have

(2) X(zi)Y (zj)−X(zj)Y (zi) 6= 0.

Indeed, we can choose X, Y so that X(zi) 6= 0 and X(zj) = 0 (resp. Y (zi) = 0 and
Y (zj) 6= 0).

Now, choose two generic linear sections X,Y in |A|, and for each i ∈ [[1,m]], let Xi

and Yi be the corresponding section on the copy (PN )i. We let

s =
∏
i<j

(XiYj −XjYi)
2
.

This is a section of
⊗m

i=1 p
∗
iO(2(m− 1)) = O(2(m− 1)A]). By the argument above,

we can pick s so that s(z) 6= 0, and s vanishes on D at order 2 by Lemma 7.6.
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We check that s is invariant under all transpositions (i j) ∈ Sm. This proves that s
is Sm-invariant. �

Lemma 7.6. — Let X1, Y1 be two generic hyperplane sections on PN , and let X2, Y2

denote the same sections on a second copy of PN . Then the homogeneous polynomial
X1Y2 −X2Y1 vanishes at order 1 along the diagonal of PN × PN .

Proof. — We let 2u = X1 +X2, 2v = X1 −X2 (resp. 2u′ = Y1 + Y2, 2v′ = Y1 − Y2).
Then, we can write

X1Y2 −X2Y1 = (u+ v)(u′ − v′)− (u− v)(u′ + v′)

= −2uv′ + 2u′v.

This expression is of degree 1 in v′ and v, so for generic u, u′, it vanishes at order one
along the diagonal. �

The proof of Proposition 7.3 is now straightforward.

Proof of Proposition 7.3. — Let x ∈ X̃mr |∆|, and let x0 ∈ Xm be such that p(x0) =

π(x). Since x is not in |∆|, x0 is not in the diagonal locus of Xm. Using the embedding
X ⊂ PN provided by the very ample divisor A, Lemma 7.5 gives a Sm-invariant
section s ∈ H0(Xm, 2(m − 1)A]) such that s(x0) 6= 0, and such that s vanishes at
order 2 along the diagonal locus.

We may now see s as a a section σ of 2(m−1)A[. Applying Lemma 7.4 to s, we see
that the induced section

π∗σ ∈ H0(X̃m, 2(m− 1)π∗A[)

vanishes along |∆|. Moreover, we have π∗σ(x) 6= 0, which gives the result. �

We are ready to state our hyperbolicity criterion (announced in Theorem 4), in
terms of the existence of sufficiently many jet differentials of bounded order on X.
Again, we refer to [Dem12] for the basic definitions related to jet differentials. Let
us simply recall that the locus of singular jets XGG,sing

k ⊂ XGG
k is the subset of all

classes of k-jets [f : ∆ → X]k such that f ′(0) = 0. Also, if V ⊂ H0(X,EGG
k,r ΩX) is a

vector subspace, then Bs(V ) ⊂ XGG
k is the subsets of classes of the k-jets which are

solutions to every equation in V .

Theorem 16. — Let X be a smooth complex projective variety. Let A be a very ample
line bundle on X. Let Z ⊂ X, and k, r, d ∈ N∗. We make the following hypotheses.

(1) Assume that

Bs
(
H0(X,EGG

k,r ΩX ⊗ O(−dA))
)
⊂ XGG,sing

k ∪ π−1
k (Z).

(2) Assume that d/r > 2m(m− 1).
Then, Exc(X̃m) ⊂ |∆| ∪ π−1(d1(Z)).
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Proof. — Let f : C → X̃m be an entire curve such that f(C) 6⊂ |∆|. Let U =

C r f−1(|∆|), and, as before D =
⋃
i 6=j{xi = xj} ⊂ Xm . We consider the following

diagram:

Ũ Xm rD X

U (Xm)reg

g

q p

pri

f

where q is the universal covering map, and g is an arbitrary lift of f . Without loss
of generality, we can assume that all pri ◦ g are non-constant (1 6 i 6 m). Indeed,
if one of these maps is constant, it suffices to replace Xm (resp. Xm) by the product
Y = X × · · · ×X over a number m′ < m of factors (resp. by Xm′ = Sm′\Y ).

We may assume that Im(pri ◦ g) 6⊂ Z for all i ∈ [[1,m]], otherwise the proof is
finished. Thus, there exists t ∈ Ũ such that (pri ◦ g)(t) 6∈ Z, and (pri ◦ g)′(t) 6= 0 for
all i ∈ [[1,m]]. By the hypothesis (1), there exists σ ∈ H0(X,EGG

k,mΩX⊗O(−dA)) such
that for all i ∈ [[1,m]], we have σg(t) · (pri ◦ g) 6= 0, and in particular

σ(pri ◦ g) 6≡ 0

for all i.
Thus, σ] :=

⊗m
i=1 pr∗i (σ) is a Sm-invariant jet differential in

H0(Xm, EGG
k,rmΩX ⊗ O(−dA]))

such that σ](g) 6≡ 0. By Proposition 7.1, σ] induces a section

σ[ ∈ H0(X̃m, E
GG
k,rmΩdiv

(X̃m,∆)
⊗ O(−dπ∗A[)).

We have moreover σ[(f) 6≡ 0. Now, by Proposition 7.3, for a > 1 divisible enough,
there exists s ∈ H0(X̃m, a(π∗A[ − 1

2(m−1)∆)) such that s|f(C) 6≡ 0. Thus, by the
remark following Proposition 7.1, s2rm(m−1)σa[ induces a non-orbifold section

σ′ ∈ H0
(
X̃m, E

GG
k,armΩX̃m

⊗ O (a(2rm(m− 1)− d)π∗A[)
)
,

and σ′(f) 6≡ 0.
Since A] is ample, and p is finite, the divisor A[ is ample, so π∗A[ is big on X̃m.

But now, since 2rm(m − 1) < d, the existence of σ′ is absurd by the fundamental
vanishing theorem of Demailly-Siu-Yeung (see [Dem12]). �

7.3. Applications

7.3.1. Hypersurfaces of large degree. — Using Theorem 16, we can now obtain hyper-
bolicity results for the varieties Xm when X ⊂ Pn+1 is a generic hypersurface of large
degree. To do this, we will make use of several important recent results concerning
the base loci of jet differentials on such hypersurfaces. Let us begin with the algebraic
degeneracy of entire curves.

J.É.P. — M., 2022, tome 9



Hyperbolicity and specialness of symmetric powers 409

The recent work of Bérczi and Kirwan [BK19] gives new effective degrees for which
a generic hypersurface has enough jet differentials to ensure the degeneracy of entire
curves. This improvement of [DMR10] yields the following result.

Theorem 17 ([BK19]). — Let X ⊂ Pn+1 be a generic hypersurface of degree

d > 16n5(5n+ 4).

Then, if r � 0 is divisible enough, we have

(3) Bs
[
H0
(
X,EGG

n,r ΩX ⊗ O
(
−r d− n− 2

16n5
+ r(5n+ 3)

))]
⊂ XGG,sing

k ∪ π−1
k (Z)

for some algebraic subset Z ( X.

Remark 7.7. — As explained in [BK19], the coefficient 5n+3 comes from Darondeau’s
improvements [Dar16] for the pole order of slanted vector fields on the universal
hypersurface. It seems to us by reading [Dar16] that we should actually expect the
slightly better value 5n− 2.

We deduce immediately from Theorem 16 the following consequence of this result.

Corollary 7.8. — Let m,n ∈ N∗. Let X ⊂ Pn+1 be a generic hypersurface of degree

d > 16n5(5n+ 2m2 + 4).

Then there exists Z ( X such that Exc(Xm) ⊂ d1(Z).

Proof. — Because of (3), the conditions of Theorem 16 will be satisfied if(d− n− 2

16n5
− (5n+ 3)

)
> 2m(m− 1),

which is implied by our hypothesis. We have then Exc(Xm) ⊂ (Xm)sing ∪ d1(Z) for
some Z ( X. Since (Xm)sing is a union of Xm′ form′ < m, an induction onm permits
to conclude. �

It is also possible to obtain the hyperbolicity of Xm when X has large enough
degree, using all the recent work around the Kobayashi conjecture (cf. [Bro17, Den17,
Dem20, RY22]). The main result of [RY22] permits to reduce the proof of the hyper-
bolicity of X to results such as Theorem 17, and gives in particular the following.

Theorem 18 ([RY22]). — Let d, n, c, p ∈ N. Suppose that for a generic hypersurface
X ′ ⊂ Pn+1+p of degree d, we have

Bs
(
H0(X ′, EGG

k,r ΩX′ ⊗ O(−1))
)
⊂ X ′kGG,sing ∪ π−1

k (Z ′),

for some algebraic subset Z ′ ⊂ X ′ satisfying codim(Z ′) > c. Then, for a generic
hypersurface X ⊂ Pn+1 of degree d, we have

Bs
(
H0(X,EGG

k,r ΩX ⊗ O(−1))
)
⊂ XGG,sing

k ∪ π−1
k (Z),

for some subset Z ⊂ X with codim(Z) > c+ p.

Letting d = n− 1, we can give a proof of Theorem 5 as a corollary of Theorem 18
and Theorem 16, combined with Theorem 17:
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Corollary 7.9. — Let X ⊂ Pn+1 be a generic hypersurface of degree

d > (2n− 1)5(2m2 + 10n− 1).

Then Xm is hyperbolic.

Proof. — Under the assumption on the degree, we can apply Theorem 18 with p = n,
using Theorem 17 to obtain the first hypothesis on hypersurfaces X ′ ⊂ P2n+1. This
shows that the conclusion of Theorem 18 holds for degree d hypersurfaces X ⊂ Pn,
with Z = ∅. Finally, Theorem 16 shows that any entire curve on Xm must have its
image in the big diagonal Xm−1 ⊂ Xm. A simple decreasing induction on m then
permits to conclude that Exc(Xm) = ∅. �

7.3.2. Complete intersections of large degree. — We can also obtain a hyperbolicity
result for symmetric products of generic complete intersections of large multidegree,
using the work of Brotbek-Darondeau and Xie on Debarre’s conjecture (see [BD18,
Xie18]). The effective bound in the theorem below is provided by [Xie18].

Theorem 19 ([BD18, Xie18]). — Let n, n′, d > 1, and assume that n′ > n. Let X ⊂
Pn+n′ be a complete intersection of multidegrees

d1, . . . , dn′ > (n+ n′)(n+n′)2

· d.

Then ΩX ⊗ O(−d) is ample. In particular

Bs(H0(X,EGG
1,r ⊗ O(−rd)) = ∅

for r � 1.

By Theorem 16 and the same induction argument on m as above, the following
corollary is immediate.

Corollary 7.10. — Let m,n ∈ N∗ and let n′ > n. Let X ⊂ Pn+n′ be a generic
complete intersection of multidegrees

d1, . . . , dn1
> (n+ n′)(n+n′)2

(2m(m− 1)).

Then Xm is hyperbolic.

Remark 7.11. — For d1 large enough, Corollary 7.10 is trivially implied by Corol-
lary 7.9. Indeed, if X ⊂ H, where H is a degree d1 hypersurface, Xm embeds in Hm.

8. Higher dimensional subvarieties

In this section, we gather several results related to the subvarieties of Xm, when X
is a “sufficiently hyperbolic” manifold. In particular, when ΩX is ample, we will show
that a generic subvariety of Xm of codimension higher than n − 1 is of general type
(see Theorem 20).
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Lemma 8.1. — Assume that X is a complex manifold of dimension n, with n > 2,
and let Sm act on Xm. Let α ∈ [0, 1]. If

d > n(m− 1) + 2− α
(n− 2)(m− 2)

2
,

then the condition (I′x,d,α) of Section 2.2 is satisfied for every x ∈ Xm. In particular,
if d > n(m− 1) + 2, then the condition (Ix,d) is satisfied for any x ∈ Xm.

Proof. — Let σ ∈ Sm r {1}, and let σ = σ1 · · ·σt be a decomposition of σ into
cycles with disjoint supports. For each σi, let ri = ord(σi), and assume that r1 >
· · · > r` > 1, and r`+1 = · · · = r`+s = 1, with s = t − `. Then, the order of σ is
r = lcm(r1, . . . , r`), and the ai appearing in condition (Ix,d) are the integers jr/rk
(1 6 k 6 s, 0 6 j < rk), each one repeated n times. We see in particular that 0

appears with multiplicity nt = n(s + `), and that each non-zero ai is larger than
r/max16j6` rj .

We need to check that for any choice of d distinct elements ai1 , . . . , aid among
the ai, the sum is larger than (1 − α)r. The lowest possible sum is reached when all
the 0 appear in it. Thus, the sum of the aij is larger than

(d− n(s+ `))
r

max16j6` rj
.

The last quantity is larger than r(1− α) if the following inequality is satisfied:

(4) n(s+ `) + (1− α) max
16j6`

rj 6 d.

Now, we have max16j6` rj 6
∑

16j6` rj = m− s, and 2`+ s 6
∑

16j6` rj + s = m

hence ` 6 (m− s)/2. Putting everything together, we see that the following is always
satisfied:

n(s+ `) + max
16j6`

rj 6
(n

2
+ 1
)
m+ (1− α)

(n
2
− 1
)
s.

Since n > 2 and 1 − α > 0, the right hand side is maximal if s is maximal, equal to
m− 2; this right hand side is then equal to n(m− 1) + 2− α(n− 2)(m− 2)/2 (thus
the maximum is reached for r1 = 2, r2 = · · · = rt = 1, i.e., when σ is a transposition).
Thus, if d > n(m− 1) + 2− α(n− 2)(m− 2)/2, the inequality (4) is satisfied, which
gives the result. �

In the next definition, we state a condition that will later imply that a generic
subvariety of Xm of high enough dimension is of general type (see Theorem 20).

Definition 8.2. — Let X be a smooth complex projective variety, let Σ ( X be a
proper algebraic subset, and let A be an effective divisor on X. We say that X satisfies
the property (HΣ,A), if the following holds.

Let V ⊂ X be a subvariety of arbitrary dimension d, not included in Σ and A. Then,
there exists q, r > 1, and a section σ ∈ H0(X, (Λd ΩX)⊗q), with non-zero restriction

σ|(Λd TV reg )⊗q ∈ H0(V reg, (Λd ΩV )⊗q ⊗ O(−rA|V )) r {0}.
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Under suitable positivity hypotheses on the cotangent bundle of a complex mani-
fold, it is not hard to check that the previous condition is satisfied, as we will show
in the next proposition.

Recall that if E → X is a vector bundle, its augmented base locus is the algebraic
subset B+(E) ⊂ X defined as follows. Let p : P(E) → X be projectivized bundle of
rank one quotients of E, and O(1) be the tautological line bundle on P(E). Then, if A
is any ample line bundle on X, we let

B+(E) = p(B+(O(1))),

where B+(O(1)) =
⋂
`>1 Bs(O(`) ⊗ p∗A−1). The ample locus of E is the (possibly

empty) open subset X r B+(E).

Proposition 8.3. — Let X be a smooth complex projective variety such that ΩX is
big. Let A be any very ample divisor on X.

(1) If B+(ΩX) 6= X, then X satisfies the property (HB+(ΩX),A).
(2) If ΩX is ample, then X satisfies the property (H∅,A).

Proof
(1) Let V ⊂ X be a d-dimensional subvariety such that V 6⊂ B+(ΩX) and

V 6⊂ A. By general properties of ampleness of vector bundles, we have the inclusion
B+(Λd ΩX) ⊂ B+(ΩX) (this can be seen easily e.g. from [Laz04, Cor. 6.1.16])

Thus, if x ∈ V rB+(Λd ΩX) is a smooth point of V , and w = Λd TV,x, there exists
σ ∈ H0(X,Sm(Λd ΩX) ⊗ O(−A)) such that σx(w⊗m) 6= 0. In particular, since σ
vanishes along A, the restriction σ|V vanishes along A∩V . The section σ satisfies our
requirements.

(2) If ΩX is ample, we have B+(ΩX) = ∅, so the result comes from the first
point. �

In the next proposition, we show that the property (HΣ,A) is stable under products.

Proposition 8.4. — Let Xi (i = 1, 2) be a smooth complex projective variety, and
denote by p1, p2 : X1 × X2 → X the canonical projections. Assume that each Xi

satisfies the property (HΣi,Ai
) for some subvariety Σi(Xi and some divisor Ai on X.

Then X1 × X2 satisfies the property (HΣ,A), where Σ = p−1
1 (Σ1) ∪ p−1

2 (Σ2), and
A = p∗1A1 + p∗2A2.

Proof. — Let V ⊂ X1 × X2 be a d-dimensional subvariety such that V 6⊂ Σ. Let
d2 = dim p2(V ), and let d1 be the dimension of the generic fiber of p2 : V → p2(V ).
We have d1 + d2 = d.

(1) We deal first with the case d2 = 0. Then, we have dim p1(V ) = d, and p1(V ) 6⊂
Σ1 because V 6⊂ Σ. Since X1 satisfies (HΣ1

), there exists integers q, r > 1, and a
section σ ∈ H0(X1, (Λ

d ΩX1
)⊗q) such that σ|Λd Tp1(V )reg vanishes at order r along A1.

Thus, (p1)∗σ ∈ H0(X1 ×X2, (Λ
d ΩX1)⊗q). We also have (p1)∗σ|Λd TV reg 6≡ 0, and this

section vanishes at order r along p∗1A1 + p∗2A2|V = p∗1A1|V . This ends the proof in
this case.
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(2) Assume now that d2 > 0. Let x2 ∈ X2 be generic so that dim(Vx2
) = d1 and

p1(Vx2) 6⊂ Σ1, where Vx2 = p−1
2 (x2) ∩ V . Let V2 = p2(V ), and V1 = p1(Vx2).

For each i, we have Vi 6⊂ Σi, so there exists integers qi, ri > 1, and a section
σi ∈ H0(Xi, (Λ

di ΩXi
)⊗di) whose restriction to (Λdi TV reg

i
)⊗qi vanishes at order ri

along Ai|Vi
. Then,

σ = (p∗1σ1)⊗q2 ⊗ (p∗2σ2)⊗q1

can be identified to a section in H0(X1 × X2, (Λ
d1 p∗1ΩX1 ⊗ Λd2 p∗2ΩX2)⊗q1q2). Since

Λd1 p∗1ΩX1
⊗Λd2 p∗2ΩX2

is a direct factor of Λd ΩX ∼= Λd1+d2(p∗1ΩX1
⊕p∗2ΩX2

), we have
obtained a section σ∈H0(X1×X2, (Λ

d ΩX1×X2
)⊗q1q2) which does not vanish along V .

Moreover, by construction, the restriction of σ to (Λd TV reg)⊗q1q2 vanishes along
B|V , where B = q2r1 p

∗
1A1 + q1r2 p

∗
2A2. Since q2r1, q1r2 > 0, this restriction vanishes

along A. This gives the result. �

In the case where X1 = X2, it is not hard to strengthen the property (HΣ) to
obtain sections σ invariant by permutation of X1 and X2. More precisely, we have the
following:

Proposition 8.5. — Let X be a smooth complex projective variety satisfying the prop-
erty (HΣ,A) for some Σ ( X and some ample divisor A on X. Let Σ′ ⊂ Xm

the subset of points with at least a coordinate in Σ. Let Sm act on Xm by per-
mutation of the factors. Then, for any subvariety V ⊂ Xm of dimension d and
such that V 6⊂ Σ′, there exists an integer q > 1, and a Sm-invariant section σ ∈
H0(Xm, (Λd ΩX)⊗q ⊗ O(−A]))Sm such that σ|Λd TV reg 6≡ 0.

Proof. — Let us recall that A] =
∑m
i=1 pr∗iA. By Proposition 8.4, Xm satisfies the

property (HΣ′,A]) so there exists q0 > 1 and a section σ0 ∈ H0(Xm, (Λd ΩX)⊗q0),
such that σ0|(Λd TV reg )⊗q0 vanishes at order r0 along A]|V .

Now, we let
σ =

⊗
s∈Sm

s · σ0 ∈ H0(Xm, (Λd ΩX)⊗m! q0).

The section σ is Sm-invariant and vanishes along A], hence satisfies our requirements.
�

We now show the main hyperbolicity result of this section which implies Theorem 6
as an immediate corollary.

Theorem 20. — Let X be a smooth complex projective variety with dimX > 2. Assu-
me X satisfies (HΣ,A) for some Σ ( X and some ample divisor A on X.

Then, any subvariety V ⊆ Xm such that codimV 6 n− 2 and V 6⊂ Xsing
m ∪ d1(Σ)

is of general type.

Proof. — Let V ⊂ Xm be a d-dimensional variety satisfying the hypotheses above. We
have then d > (m− 1)n+ 2. Let Xm p−→ Xm be the canonical projection. We do not
lose generality in replacing A by a high multiple (the condition (HΣ,A) is preserved),
and then moving it in its linear equivalence class, so we can assume that V 6⊂ |A|.
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By Proposition 8.5, for q � 0, there exists a section σ ∈ Γ(Xm, (Λp ΩXm)⊗q)Sm ,
whose restriction to (Λd Tp−1(V reg))

⊗q vanishes along the Sm-invariant ample divi-
sor A]. This section descends to Xm; moreover, for any resolution of singularities X̃m,
Lemma 8.1 shows that the Reid-Tai-Weissauer criterion of Proposition 2.1 is applica-
ble. Hence, σ induces a section

σ̃ ∈ H0(X̃m, (Λ
d ΩX̃m

)⊗q).

Moreover, the restriction of σ̃ to Λd TV reg vanishes on the ample Cartier divisor A[
defined so that p∗A[ = A]|V .

Consider now a resolution of singularities Ṽ ϕ→ V . The pullback ϕ∗σ induces a
section of KṼ that vanishes on the big divisor ϕ∗A[. This implies that KṼ is big,
so V is of general type. �

Remark 8.6. — The bound on dimV in Theorem 20 is sharp, as we can see from the
following example. Let C be a genus 2 curve, and let Y be any (n − 1)-dimensional
variety with ΩY ample. Let X = C × Y . This manifold satisfies property (H∅,A) for
some ample divisor A by Propositions 8.3 and 8.4.

(1) In the case m = 2: let f : S2C × Y → S2(C × Y ) = S2X be the generically
injective map

f( [c1, c2], y1, . . . , yn−1) = [(c1, y1, . . . , yn−1), (c2, y1, . . . , yn−1)].

Since g(C) = 2, the variety S2(C) is birational to Jac(C) and thus S2C × Y is not
of general type.

(2) In the casem > 2, consider the composition of f×IdXm−2 : S2C×Y ×Xm−2 →
S2X×Xm−2 (where f is as above) and of the natural map g : S2X×Xm−2 → SmX.

We have dimS2C × Y ×Xm−2 = n(m− 1) + 1, and the image

V = (g ◦ f)(S2C × Y ×Xm−2)

in Xm is not of general type, since S2C × Y ×Xm−2 is not.

Note that if the Green-Griffiths-Lang conjecture were true, then Theorem 20 would
imply the following result.

Conjecture 8.7. — Let X be a smooth complex projective variety with ΩX ample.
Then, codim Exc(Xm) > n− 1.

We can use Theorem 20 to prove a weaker statement, which will allow us to give
geometric restrictions on the exceptional locus of rational curves, or of varieties with
trivial canonical bundle. To formulate the next result, we will say that a class of
varieties M has countable variation if there exists a countable union B of smooth
varieties and a smooth projective morphism X → B with fibers in M , such that any
V ∈M is isomorphic to a fiber in X .

Corollary 8.8. — Let M be a class of special varieties with countable variation.
Assume that ΩX is ample. Then, there exist countably many proper algebraic subsets
Vk ( Xm (k ∈ N) containing the image of any non constant morphism f : M → Xm,
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where M ∈ M . Moreover, the Vk can be chosen so that for any component W of
Di(Xm) (0 6 i 6 n) containing Vk (k ∈ N), we have codimW (V ) > n− 1.

In particular (letting i = 0 and W = Xm), we have codimXm(Vk) > n − 1 for all
k ∈ N.

Proof. — As the irreducible components of each Di(Xm) identify to copies of Xm−i,
an increasing induction on m shows that it suffices to prove the claim for i = 0.

Let X → B be a family exhausting the elements of M , where B is a countable
union of varieties. Consider the homomorphism scheme H := HomB(X , Xm) (see
[ACG11, Ch. I, §7]). There is a natural morphism H → B such that for each b ∈ B,
the points of the fiber Hb identify with the set of morphisms in Hom(Xb, Xm). Also,
H → B is such that the inverse images of affine open subsets of B are countable
union of schemes of finite type, so H itself is such a countable union. This permits
to write (H ×B X )red =

⋃
k∈NWk as a countable union of varieties. By the universal

property of H, there are natural morphisms π : Wk → Xm, and for each k ∈ N, there
are two possibilities: either the generic fiber of Wk → Hred is sent to a point in X, or
not. Let (W ′k) be the subsequence of (Wk) of varieties such that this is not the case,
and let Vk = π(W ′k) be the associated images in Xm. We claim that the Vk satisfy
our requirements.

Since a non-constant image of a special variety by a dominant morphism is special
(see [Cam04, Lem. 2.9]), each Vk is covered by a dominant family of special subvari-
eties, hence is not of general type. Theorem 20 shows that codimXm

(Vk) > n− 1 for
all k ∈ N.

Finally, if f : M → Xm is a non-constant morphism with M ∈ M , then f(M)

appears as the image in Xm of some fiber of a morphism Wk → B for some k ∈ N.
Also, since f is not constant, we have Wk = W ′` for some ` ∈ N. This implies that
f(M) ⊂ V` and we get the result. �

The previous corollary of course applies to any single special variety (e.g. P1). The
following proposition will show that it also applies to manifolds with trivial canonical
bundle, thus completing the proof of Corollary 1.6.

Proposition 8.9. — The projective smooth varieties with trivial canonical bundle form
a class of special manifolds with countable variation.

Proof. — First of all, manifolds with c1 = 0 are special by [Cam04, Cor. 2.28]. Let us
now show that the projective manifolds Y with KY trivial have countable variation.
Let n ∈ N and let χ be a fixed Hilbert polynomial of degree n. Consider the open
subset H◦ ⊂ Hilbχ(Pn)red parametrizing smooth subvarieties of Pn. Let now Y → H◦

be the universal family: inside Y , the fibers with trivial canonical bundle are char-
acterized by the condition h0(Yt,KYt) = h0(Yt,K

−1
Yt

) = 1. This is a constructible
condition by upper semicontinuity of h0, so there exists a finite union of open sub-
varieties Wn,χ ⊂ H◦ supporting all the submanifolds Y ⊂ Pn with KY trivial and
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Hilbert polynomial χ. Taking the union of the Wn,χ for all possible n and χ gives the
result. �

We can also prove Corollary 1.7, as the following statement, similar to [AA03,
Cor. 4].

Corollary 8.10. — Assume that ΩX is ample, and let Y ⊂ X be a closed submanifold.
Let 1 6 ` 6 d be integers. Assume that for a generic point p ∈ Y`×Xd−`, there exists
a curve of geometric genus g in X such that all d coordinate points of p lie in C.
Then if

` · codimY 6 dimX − 2,

we have g > d.

Proof. — Assume that g 6 d. By hypothesis, there exist C → V a family of curves
and a morphism f : C → X, such that the image Z of Y` ×Xd−` → Xd is dominated
by the image of Sdf : SdC → Xd. As in [AA03], we may replace V be a hyperplane
section to assume that Sdf is generically finite.

Since g 6 d, the family S dC → V is a family of varieties which are not of general
type (the fiber over t is a Pd−g-bundle over Jac(Ct)), and hence Z is not of general
type as well. Since dimZ = dimY` × Xd−`, Theorem 20 implies dim(Y` × Xd−`) <

(d− 1) dimX + 2, hence

dimY <
1

`
((`− 1) dimX + 2) ,

which gives the result. �

9. Metric methods

We will now present a metric point of view on these symmetric products of varieties,
which will permit to give several applications to quotients of bounded symmetric
domains.

We will use a metric hyperbolicity criterion similar to the one of [Cad21]. To express
this criterion, we need first to introduce several constants bounding the Ricci curvature
on subvarieties of the domain. Let us recall how to define these constants.

Let Ω be a bounded symmetric domain of dimension n, and let hΩ be the Bergman
metric on this domain. If X,Y ∈ TΩ,x (x ∈ Ω), we can define the bisectional curvature
of hΩ as

B(X,Y ) =
iΘ(hΩ)(X,X, Y, Y )

‖X‖2hΩ
‖Y ‖2hΩ

.

Fix p ∈ N. Then, we define

(5) Cp = − max
X∈TΩ,x

max
V 3X,dimV=p

p∑
i=1

B(X, ei),

where V ⊂ TΩ,x runs among the p-dimensional subspaces containing X, and (ei)16i6p

is any unitary basis of V . Since Ω is homogeneous, this constant does not depend on
x ∈ Ω.

J.É.P. — M., 2022, tome 9



Hyperbolicity and specialness of symmetric powers 417

Then, if we normalize the Bergman metric so that Cn = 1, we have a sequence of
positive constants

0 < C1 6 C2 6 · · · 6 Cn = 1.

These constants can be used to state the following criterion for the p-hyperbolicity
of compactification of a quotient of Ω.

Proposition 9.1 (see [Cad21]). — Let M be a complex smooth projective variety, and
D, E =

∑
i(1−αi)Ei be Q-divisors on X such that the support |E| ∪ |D| has normal

crossings. Let U = Mr(|D|∪|E|), and let h be a smooth Kähler metric on U , possibly
degenerate. Let p ∈ [[1,dimM ]] and let α > 1/Cp be a rational number. We make the
following assumptions.

(i) h is non-degenerate outside an algebraic subset Z ⊂ M , and is modeled after
hΩ on U r Z;

(ii) the metric induced by h on Λd TM has singularities near any point of |Ei| r
(|D| ∪ Z) with coefficients of order at most O(|z|2(αi−1));

(iii) there exists an integer ` > 1 and a non-zero section s of K⊗`U such that
‖s‖2/`

(deth∗)`
extends as a continuous function u on M , vanishing along E + D at an

order strictly larger than 1/Cp. If z is a local equation for a component of weight β
in D + E, this means that u = O(|z|β(1+ε)/Cp) for some ε > 0 (recall that β = 1 for
the components of D, and β = 1− αi for the Ei).

Then,
(a) For any subvariety V ⊂M with V 6⊂ Z(s) ∪E ∪D ∪ Z and dimV > p, dimV

is of general type.
(b) For any holomorphic map f : Cp → M with Jac(f) generically of maximal

rank, we have f(Cp) ⊂ Z(s) ∪ E ∪D ∪ Z.

Proof. — The metric h satisfies all the assumptions permitting to apply the proof of
Theorem 2 and Theorem 8 of [Cad21]. Let us recall that the technique of this proof
consists in forming the metric h̃ = ‖s‖2β(deth∗)mh for an adequate β > 0. We then
check that h̃ induces a positively curved singular metric on the canonical bundle of
a desingularization of any subvariety V as in the hypotheses. In the case of a map
f : Cp → M , we apply the Ahlfors-Schwarz lemma (see [Dem12, 4.2]) to this metric
to obtain a contradiction if f(Cp) 6⊂ Z(s) ∪ E ∪D ∪ Z. �

Remark 9.2. — Assume that X = Γ\Ω is a quotient by an arithmetic lattice, and let
q : M → X

BB be a log-resolution of the singularities of the Baily-Borel compactifica-
tion of X. Let U ⊂ X be the smooth locus, and Ei (resp. Dj) be the components of
the exceptional divisor whose projection intersects Xsing (resp. whose projection lies
in XBB r X). For each i, let xi be a generic point of the projection of Ei on X

BB.
Let Hi ⊂ Γ be the isotropy group of xi, and let αi be such that the action of Hi on Ω

satisfies the condition (I′x,d,αi
) of Section 2.1. We associate the multiplicity αi to Ei

by putting E =
∑
i(1− αi)Ei. We also let D =

∑
iDi.
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With this notation, as explained in [Cad21, §4], the hypotheses (i) and (ii) of
Proposition 9.1 are satisfied. The condition (iii) is implied by the following more
algebraic condition.

(iii′) For α ∈ Q∗+, let Lα = q∗K
X

BB ⊗ O(−α(D + E)). Then Lα is effective for
some α > 1/Cp.

Moreover, Z(s) in (a) and (b) can then be replaced by the stable base locus B(Lα).

Remark 9.3. — We can generalize the conclusion (b) of Proposition 9.1 to the fol-
lowing situation. Assume that there exists a proper birational holomorphic map
q : M → M0, where M0 is a possibly singular complex variety. Then, under the
assumption of the theorem, we can state the following:

(b′) Let W = q(Z(s) ∪ E ∪D ∪ Z). Then for any holomorphic map f : Cp → M0

with Jac(f) generically of maximal rank, we have f(Cp) ⊂W ∪ (M0)sing.

To prove this statement, assume by contradiction that there exists a f : Cp →M0

that fails to satisfy the conclusion of (b′). Let C be a resolution of singularities of
the main component of the fiber product Cp ×(f,q) M . Then, there exists a proper
morphism g : C → Cp, birational outside a locally finite union of analytic subvarieties
of Cp, and there exists a natural map h : C →M , generically non-degenerate, whose
image intersects U r (Z ∪ Z(s) ∪ E). Construct h̃ is as the proof of Proposition 9.1.
Then, the metric g∗h̃ on C is subject to the following version of the Ahlfors-Schwarz
lemma.

Lemma 9.4. — Let g : C → Cp be a proper holomorphic map, realizing an isomorphism
outside a countable union of analytic subvarieties of Cp. Then TC cannot admit any
singular metric h, with deth everywhere locally bounded, smooth on a dense open
Zariski subset U , and satisfying the following inequality on U :

(6) ddc log deth > εωh (ε > 0).

Proof. — Assume by contradiction that there exists such a metric. We may assume
that g is an isomorphism on some open subset V ⊂ C containing U . We may then
see h as a metric on V ⊂ Cp, satisfying (6) on U . As deth is everywhere locally
bounded on V , and since ddc log deth > 0 on U ⊂ V , the function log deth is psh
on V . Besides, as Cp is normal, we have codim(Cp r V ) > 2, so log deth extends to
the whole Cp as a psh function, satisfying (6) in the sense of currents. This case is
however ruled out by the standard Ahlfors-Schwarz lemma stated in [Dem12]. �

Our plan is to use the previous proposition in the case where X is a resolution of
singularities of a symmetric product of a quotient of a bounded symmetric domain.
To do so, we will need some estimates on the Cp when the domain is of the form Ωm

(m ∈ N). The case p = 1 is fairly easy to settle: in this case, −C1 is just the maximum
of the holomorphic sectional curvature, and we have the following well-known result.
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Proposition 9.5. — Let Ω be a bounded symmetric domain, and denote by −γ the
maximum of the holomorphic sectional curvature on Ω. Then we have

C1(Ωm) =
1

m
C1(Ω) =

γ

m
.

This can be checked directly by writing the formula for the bisectional curvature
of Ωm, or by remarking that by the polydisk theorem (see [Mok89]), it suffices to
deal with the case where Ω = ∆n. In this case the holomorphic sectional curvature is
maximal in the direction of the long diagonals, and the formula can be easily derived.

We can use now use this result to study the case of ramified coverings of smooth
compact quotients of bounded symmetric domains.

Proposition 9.6. — Let Y = Γ\Ω be a smooth compact quotient, let p : X → Y be
a Block-Gieseker covering, and let δ = s/r be a positive rational number such that be
such that p∗K⊗rY = A⊗s for some very ample line bundle A. Let W ⊂ X be the locus
where p is non-étale.

Then if m ∈ N is such that

γ δ > 2m(m− 1),

the variety Xm is Brody hyperbolic modulo d1(W ).

Proof. — Let q : M → Xm be a log-resolution of singularities, let E ⊂ M be the
exceptional locus, and Z be the preimage of d1(W ). Let hY be the pullback of the
Bergman metric on Y . This metric is smooth on Y , and non degenerate on Y rW .
This metric induces in turn a natural metric on the smooth locus of Ym, and by
pullback, a smooth metric h on M r E.

Let us check that the conditions of Proposition 9.1 are satisfied for p = 1. Since hY
is non-degenerate and modeled on hΩ on X rW , the metric h is non-degenerate and
modeled on hΩm on M r (E ∪ Z), so the condition (i) is satisfied.

It follows directly from the discussion of Section 2.2 that the condition (I′x,1,1) is
satisfied for every x ∈ Xm. Hence, the condition (ii) holds for E =

∑
iEi.

Let x ∈ M r E. By Proposition 7.3, for some N ∈ N, there exists a section σ of
q∗A⊗sN[ ⊗ ( − Ns/2(m− 1)|E|) that does not vanish at x. By hypothesis, the line
bundles (A[)

⊗s|Xreg
m

and K⊗r
Xreg

m
coincide. Thus, if N is divisible enough, σ can be

seen as a section of the line bundle (q∗KXm
⊗ O(−δ/2(m− 1)E))⊗rN . Finally, the

holomorphic sections of q∗K⊗rNXm
have bounded norm for the norm induced by h,

which shows that (iii) is satisfied if δ > 2(m− 1)/C1(Ωm) = 2m(m− 1)/γ. This is
precisely our hypothesis. Moreover, since x ∈ M r E is arbitrary, the locus cut out
by the sections σ is included in M r E. The conclusion follows as announced from
Proposition 9.1. �

The following result of Hwang-To can be used to give a more explicit constant δ
in the proposition above.
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Theorem 21 ([HT00]). — For any smooth compact quotient of a bounded symmetric
domain X, there exists a finite étale cover X ′ such that 2KX′ is very ample.

This gives immediately the following series of examples.

Example 4. — Let Y0 = Γ\Ω be a smooth compact quotient, and let Y1 → Y0 be
the étale cover provided by [HT00]. Let m ∈ N∗, and let q be an integer such that
q > 4m(m− 1)/γ.

Now let X p−→ Y1 be a Bloch-Gieseker covering such that p∗(K⊗2
Y1

) = A⊗q, with A
very ample. Then, we have δγ = qγ/2 > 2m(m− 1), so that Xm is Brody hyperbolic
modulo d1(Sing(p)).

Example 5. — For i ∈ [[1, n]], let Xi be a smooth projective curve of genus g > 2,
and fix some integer q. For all i, since 3KXi is very ample, we can perform a q-fold
Bloch-Gieseker covering pi : X ′i → Xi, so that p∗i (3KXi

) = A⊗qi , with Ai very ample
on X ′i.

Letting X = X ′1 × · · · ×X ′n
p−→ X1 × · · · ×Xn = Y , we have then p∗K⊗3

Y = A⊗q,
where A =

⊗
16j6n p

∗
jKXj

is very ample on X. The manifold Y is a smooth compact
quotient of ∆n, and γ = 1/n for this domain. Proposition 9.6 shows then Xm is Brody
hyperbolic modulo (Xm)sing as soon as

q > 6m(m− 1)n.

9.1. Non-compact ball quotients. — In the case where the domain is the ball, it is
possible to give explicit values for the constants Cp. The result can be stated as follows
when dim Ω > 5.

Proposition 9.7. — We let Ω = Bn for some n > 5. Let m ∈ N, and fix p ∈ [[1,mn]].
Let k ∈ N (resp. d ∈ [[0, n− 1]]) be the quotient (resp. the remainder) in the Euclidean
division of p− 1 by n. Then the value of Cp(Ωm) is given by the table of Figure 1.

m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k > 5

d = 0

d+2
n+1

2
(m−k)(n+1)

d = 1 23
16

1
n+1

11
12

1
n+1

21
32

1
n+1

d = 2 7
4

1
n+1

d = 3 31
16

1
n+1

2
m−k−1

1
n+1

d > 4

Figure 1. Values of Cp for the domain (Bn)m

Note the similarity with the case where Ω is the Siegel upper half-space (see [Cad21,
Prop. 1.4]). We will prove Proposition 9.7 in Section 9.2. As an application, we can
derive a proof of Theorem 7 as a corollary of our metric criterion:
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Corollary 9.8. — Let X = Γ\Bn be a ball quotient by a torsion free lattice with only
unipotent parabolic elements, and let X = X∪D be a smooth minimal compactification
as constructed in [Mok12]. Let m > 1. Then :

(a) Let V ⊂ Xm be a subvariety with codimV 6 n− 6 and V 6⊂ d1(D)∪ (Xm)sing.
Then V is of general type.

(b) Let p > n(m − 1) + 6, and f : Cp → Xm be a holomorphic map such that
f(Cp) 6⊂ d1(D) ∪ (Xm)sing. Then Jac(f) is identically degenerate.

Proof. — Let q : X̃ → Xm be a resolution of singularities. We may assume that
F = q−1(d1(D)∪ (Xm)sing) is a simple normal crossing divisor. Let D̃ denote the sum
of components of F that project in d1(D), and E the sum of all other components.

Let p>n(m−1)+6 be an integer. By Proposition 9.7, since p>n(m−1)+6, the con-
stant Cp is given by the first column of Figure 1, and Cp=p− n(m− 1) + 1/n+ 1>

2π/n+ 1.
Let h be the metric induced on U = X̃r(E+D). Let us check that the assumptions

of Proposition 9.1 are satisfied, with Ω = (Bn)m. (i) is obvious, taking Z = ∅.
By Lemma 8.1, since p > n(m − 1) + 2, the condition (Ix,p) is satisfied above any
singular point of Xm, so Remark 9.2 implies that the hypothesis (ii) is satisfied with
αi = 1 for any component Ei ⊂ E.

To prove (iii), we make use of [BT18], whose main result shows that the line
bundle KX + (1 − α)D is ample for any α > (n+ 1)/2π. Let α ∈]1/Cp, (n+ 1)/2π[.
Thus, for ` ∈ N large enough, and any x = (x1, . . . , xm) ∈ Xm r

⋃
i=1 pr−1

i (D), we
can find a section σ of ` (KX + (1− α)D), such that σ(xi) 6= 0 (1 6 i 6 m). Let
s] =

⊗
16j6m pr∗jσ. This is a Sm-invariant section of K⊗`Xm , which descends to a

section s of K⊗`U . Let u = ‖s‖2/`
(deth∗)`

.
We need to check the conditions on the growth of u near E+D̃. First, u is bounded

near any point of E since ‖s]‖(deth∗Ω)` is continuous on the manifold Xm. Besides,
by [Mum77, Th. 3.1 & Prop. 3.4(b)], the determinant of the Bergman metric onKX+D

has logarithmic growth nearD. Hence, since σ, seen as a section of `(KX+D), vanishes
at order `α alongD, then the function ‖s]‖2deth∗Ω

=
∏
i pr∗i ‖s‖hBn vanishes at any order

< `α near pr∗iD. Now ‖s]‖2/`
(deth∗Ω)`

= u ◦ π, where π : X
m → Xm is the projection,

so u vanishes at order α near any point of D̃rE. As α > 1/Cp, the section s satisfies
the condition (iii).

Finally, since x was arbitrary outside
⋃

16i6m pr∗iD, we conclude from Proposi-
tion 9.1 that all p-dimensional varieties V ⊂ X̃, not included in E+ D̃, are of general
type. This proves (a).

The proof of (b) follows from the conclusion (b′) in Remark 9.3, applied with
M = X̃, and M0 = Xm. �

9.2. Computation of the curvature constants for the domain (Bn)m. — We now
prove Proposition 9.7. We will proceed as in [Cad21], and introduce a certain combi-
natorial functional whose minimum will give us the value of Cp(Ωm).
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Definition 9.9. — Let

∆m = {(r1, . . . , rm) ∈ (R+)m |
∑

16j6m rj = 1 and r1 > r2 > · · · > rm}.

Let r = (r1, . . . , rm) ∈ ∆m and Γ ⊂ [[1,m]] × [[1, n]]. Denote by k the number of
elements of Γ in the first column. We assume that k 6 m− 1. We define:

F (r,Γ) =

2 +
∑

(i,j)∈Γ, i>2 ri if k = m− 1,

2
∑

16i6m r
2
i + 2

∑
(i,1)∈Γ ri +

∑
(i,j)∈Γ, j>2 ri if k 6 m− 2.

From now on, we fix a given minimizer (r,Γ) for F , where r ∈ ∆m, and Γ runs
among cardinal p− 1 subsets of [[1,m]]× [[1, n]] with less than m− 1 elements on the
first column. Let k be the number of these elements. We will assume that (r,Γ) is
chosen among all the minimizers so that

(1) r = (r1, . . . , rm) has the maximal number of zero components;
(2) among all minimizing pairs (r,Γ) satisfying (2), Γ is chosen so that k is maxi-

mal.
We can make a simple remark on the geometry of Γ. Let

Π = Γ ∩ ([[1,m]]× [[2, n]])

be the set of elements of Γ which are outside of the first column. For each i ∈ [[1,m]],
denote by bi the number of elements of Π which are on the i-th line. Then, since
r1 > · · · > rm, we see from the formula for F that we may suppose that the elements
of Π are the largest possible in the lexicographic order. This implies that for some
q ∈ [[0,m]], d ∈ [[0, n − 2]], we have bm−j = n − 1 (0 6 j 6 q − 1), bm−q = d, and
bm−j = 0 (m 6 j 6 q + 1).

Lemma 9.10. — Let ` be the maximal integer such that rm−`+1 = · · · = rm = 0.
We have ` = k.

Proof. — The proof is exactly the same as the one of [Cad21, Lem. 3.8], replacing g
by m, Γ0 by Γ, and “off-diagonal” by “off the first column”. �

The previous proof relies on the following lemma, which will be used frequently in
the following.

Lemma 9.11 (see [Cad21, Lem. 3.9]). — Let a1 6 · · · 6 am be non-negative integers,
and let t be the smallest integer such that

∑t
i=1(at− ai) > 4 (let t = m+ 1 if there is

no such integer). Let r ∈ ∆m be a minimizer for the quadratic form

Q(r1, . . . , rm) = 2

m∑
i=1

r2
i +

m∑
i=1

airi.

Then rt = · · · = rm = 0.

We will now compute the several possible values for the minimum F (r,Γ). We will
proceed by distinguishing along the value of k. There is one simple first case.
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Lemma 9.12. — If k = m− 1, then

F (r,Γ) = 2 + b1.

Proof. — In this case, we have

F (r,Γ) = 2 +
∑

16i6m

biri.

Recall that the bi are non-decreasing. Since r must be an extremum of the function
F (·,Γ), we see that we may chose r = (1, 0, . . . , 0), which gives the result. �

We will now assume that k 6 m− 2, and distinguish several subcases.

Case 0. q < k. — In this situation, since rm−k+1 = · · · = rm = 0, we simply
have F (r,Γ) = 2

∑m−k
i=1 r2

i . The minimum is then reached for (r1, . . . , rm) =

( 1
m−k , . . . ,

1
m−k , 0, . . . , 0), and the value of the minimum is

F (r,Γ) =
2

m− k
.

Assumption. — In the remaining cases 1 and 2 below, we will assume that q > k,
which means that rm−q 6= 0.

Case 1. d > 1. — By our previous description of the shape of Π, this implies that two
subcases are a priori possible.

Case 1a. — q > k + 1, i.e., the line {m− k} × [[2, n− 1]] is included in Γ.

Case 1b. — q = k i.e., the only elements of [[1,m− k]]× [[2, n− 1]] in Γ are the d last
elements of {m− k} × [[2, n− 1]].

Lemma 9.13. — The case 1a. cannot occur.

Proof. — In the case 1a, since rm−k 6= 0, Lemma 9.11 shows that∑
i6m−k

(bm−k − bi) 6 3.

Hence, all elements of [[1,m− k]]× [[2, n− 1]] are in Γ, except δ elements on the first
line, with 1 6 δ 6 3. (If δ = 0, we would have d = 0).

This shows that b1 = n− 1− δ, with 1 6 δ 6 3, and bj = n− 1 (2 6 j 6 m− k).
In this setting, the minimizer r is of the form (x, y, . . . , y, 0, . . . , 0) where y is repeated
m− k − 1 times, and x+ (m− k − 1)y = 1. Let b = m− k − 1.

The minimum then equals

F (r,Γ) = 2x2 + 2by2 + (n− 1)− δx.

We claim that b 6 2. Indeed, if b > 3, since n−1 > 4, we can remove 4−δ elements
on the first line of Γ, to get a new set Γ′. If r′ ∈ ∆m is a minimizer for the functional
F (·,Γ′), we have r′2 = · · · = r′m = 0 by Lemma 9.11. Since b > 3, there is enough
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room on the first column of Γ′ to add back the 4 − δ elements, which gives a new
set Γ′′ with strictly more elements on the first column than Γ. Now

F (r′,Γ′′) = F (r′,Γ′) 6 F (r,Γ′) 6 F (r,Γ).

(The first equality comes from the fact the r′2 = · · · = r′m = 0, and the inequalities
are obvious since all ri are non-negative). This gives a contradiction with our choice
of (r,Γ).

The same computation as in [Cad21, Lem. 3.14] shows that the case b = 1 is
impossible.

Let us finally exclude the case b = 2. In this situation r = (x, y, y, 0, . . . , 0) mini-
mizes F (r,Γ) = 2x2 + 4y2 + (n− 1)− δx, with the constraint x+ 2y = 1. We check
that the minimum is equal to

n− (2 + δ)2

12
.

Since b = 2, there are two elements of [[1,m]] × {1} which are not in Γ, and we can
move two elements of the first row Γ to get a new set Γ′ with m− 1 elements in the
first column. Letting r′ = (1, 0, . . . , 0), we have

F (r′,Γ′) = 2 + (n− 1)− (δ + 2)

= n− 1− δ

< n− (2 + δ)2

12
= F (r,Γ),

since δ ∈ {1, 2, 3}. This is a contradiction. �

Lemma 9.14. — In the case 1b, there are only 5 possibilities, which are given in the
table of Figure 2.

Proof. — In this case, we have bm−q = d, and this is the only non-zero bj with
j 6 m − l. By Lemma 9.11 again, we have d(m − k − 1) 6 3 since rm−k 6= 0. Since
d 6= 0 and m − k > 2 in the case under study, this gives only only five possibilities.
The corresponding values for the minimum of F (r,Γ) = 2

∑m−k
j=1 r2

j + drm−k were
computed in [Cad21, Case 2]. �

m− k = 2 m− k = 3 m− k = 4

d = 1 23
16

11
12

21
32

d = 2 7
4

d = 3 31
16

Figure 2. Possible values of the minimum of F in the case 1b

There is only one remaining case.
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Case 2. d = 0.

Lemma 9.15. — Case 2 cannot occur unless Γ is of the form [[m− k + 1,m]]× [[1, n]].
The value of the minimum is then

F (r,Γ) =
2

m− k
.

Proof. — If Γ is not of the prescribed form, we have

F (r,Γ) = 2
∑

16j6m−k

r2
j + (n− 1)

m−k∑
j=m−q+1

rj ,

with q < k. Applying another time Lemma 9.11, since rm−k 6= 0, we have
(n − 1)(m − q) 6 3 for all t > 1. As we assumed that n > 5, this implies that
q = m, i.e., Γ contains all the elements which are not on the first column. The
minimum is then reached for r of the form r = ( 1

m−k , . . . ,
1

m−k , 0, . . . , 0) (1/(m − k)

repeated m− k times), and its value is

F (r,Γ) =
2

m− k
+ (n− 1).

However, this is absurd. Indeed, let Γ′ be obtained from Γ by moving elements to its
m− k − 1 empty slots on the first column (recall that we consider sets with at most
m− 1 elements on the first column).

If m − k > 3, we may then assume that Γ′ has less than (n − 1) − 2 elements on
the first line. Letting r′ = (1, 0, . . . , 0), we get

F (r′,Γ′) 6 2 + (n− 3) <
2

m− k
+ (n− 1) = F (r,Γ),

which is a contradiction.
If m − k = 2, we may move one element, and assume that Γ′ has n − 2 elements

on the first line. Then, letting again r′ = (1, 0, . . . , 0), we get

F (r′,Γ′) = 2 + (n− 2) =
2

m− k
+ (n− 1) = F (r,Γ).

This is again a contradiction, since we assumed that Γ had the maximal number of
elements on the first column. �

Putting everything together, we have proved the following.

Proposition 9.16. — Let p ∈ [[1,mn]]. Let k = b(p− 1)/nc, and d = p− 1− kn. Let
(r,Γ) be a minimizer for F , where r ∈ ∆m, and Γ ⊂ [[1,m]]× [[1, n]] is a cardinal p−1

subset with less that m− 1 elements on the first column. Then
(1) the value of F (r,Γ) is given by the table of Figure 3;
(2) we may choose (r,Γ) so that the elements of Γ in the first column are the (j, 1)

with j > m− k + 1, and so that rm−k+1 = · · · = rm = 0.

We will now show that the previously computed maxima permit to give the con-
stant Cp. Let us recall how this constant can be computed.
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m− k = 1 m− k = 2 m− k = 3 m− k = 4 m− k > 5

r = 0

d+ 2

2
m−k

d = 1 23
16

11
12

21
32

d = 2 7
4

r = 3 31
16

2
m−k−1

d > 4

Figure 3. Values of the maxima of F

In the following, if Ω is a bounded symmetric domain, and X is a vector tangent
to Ω, we will denote by BΩ

0 (X, ·) the following bilinear form:

BΩ
0 (X, ·) : Y 7−→ iΘ(hΩ)(X,X, Y, Y ).

Let X ∈ TΩ,0 be a unitary vector. Let V ⊂ TΩm,0 be a d-dimensional vector space
containing X. We now assume that the pair (X,V ) realizes the maximum of (5).
We let Aut(Bn)m act on Ω so that X decomposes in the direct sum TΩ,0 = (TBn,0)⊕m

as X = (α1e
1
1, . . . , αme

m
1 ), where (ei1, . . . , e

i
n) denotes a unitary basis of the i-th

factor TBn . We let ri = α2
i (1 6 i 6 m), so that

∑
16i6m ri = 1. We may assume that

r1 > r2 > · · · > rm.
By our choice of (X,V ), we have

(7) Cp = −B0(X,X) +
∑

λ∈S(V )

λ,

where S(V ) is the set of the p− 1 eigenvalues of the restriction of the hermitian form
−B0(X, ·) to X⊥ ∩ V (with multiplicities). We let W ⊂ V be a (p − 1)-dimensional
vector subspace, spanned by corresponding eigenvectors, so that V = CX ⊕⊥W .

Let us now explain how to compute the eigenvalues of the hermitian form BΩ
0 (X, ·)

on the space TΩ,0. First, it is easy to show that for U = (U1, . . . , Um), V = (V1, . . . , Vm)

in TΩ,0, we have
BΩ

0 (U, V ) =
∑
16m

BBn

0 (Ui, Vi).

To simplify the computation, we will temporarily adopt a new normalization
on hBn , so that for any U ∈ TBn,0, the eigenspaces of −BBn

0 (U, ·) are{
C · U for the eigenvalue 2‖U‖2;

U⊥ ⊂ TBn for the eigenvalue ‖U‖.

Thus, with this normalization, the eigenvalues of BΩ
0 (X, ·) are 2ri (with multiplic-

ity 1, and eigenvector ei1) and ri (with multiplicity n−1, with eigenvectors ei2, . . . , ein),
for i ∈ [[1,m]].
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Proposition 9.17. — With the above normalization, the constant Cp is equal to the
minimum of F .

The proof is the same as in [Cad21], so we will only sketch it briefly.

Lemma 9.18. — We have Cp > minr,Γ F (r,Γ), where r ∈ ∆m, and Γ ⊂ [[1,m]]× [[1, n]]

runs among the cardinal p−1 subsets with less that m−1 elements on the first column.

Proof. — We can decompose W = W1 ⊕⊥W2, where

W1 ⊂
⊥⊕

16i6m
Cei1, andW2 ⊂

⊥⊕
16i6m

Vect(ei2, . . . , e
i
n).

Let k = dimW1. By the description above of the eigenvalues of BΩ
0 (X, ·), we see

that W2 is spanned by p − 1 − k eigenvectors corresponding to the eigenvalues ri
(1 6 i 6 m).

Let S1 be the sum of the k smallest of the 2ri, and S2 be the sum of the k-th
smallest of the eigenvalues of −B0(X, ·) on W2. Then

Cp = −B0(X,X)− TrB0(X, ·)|W1 − TrB0(X, ·)|W2

> −B0(X,X) + S1 + S2 = 2
∑
i>i

r2
i + S1 + S2.

The eigenvalues appearing in S1 and S2 can be indexed by a subset Γ ⊂ [[1,m]]×[[1, n]],
with k-elements of the first column corresponding to the k-th smallest 2ri, and the
elements (i, j) to the rj if j > 2.

There are two cases to distinguish. First, if k 6 m − 1, what has just been said
shows that Cp > F (r,Γ).

Now, if k = m− 1, then CX ⊕⊥W1 =
⊕m

i=1 C · ei1, so

−B0(X,X)− TrB0(X, ·)|W1 = Tr
(
−B0(X, ·)|⊕m

i=1 C·ei1

)
= 2.

Cp is equal to the first case of the definition of F in Definition 9.9, so Cp = F (r,Γ).
�

Lemma 9.19. — We have minr,Γ F (r,Γ) > Cp.

Proof. — Let r and Γ realizing this minimum. Let W be the (p − 1)-dimensional
space spanned by the eigenvectors corresponding to the elements of Γ, and let X =

(
√
r1 e

1
1, . . . ,

√
rm e

m
1 ). By Proposition 9.16 (2), we see that W ⊂ X⊥, so if we let

V = C⊕W , we have
−TrB0(X, ·)|V = −B0(X,X)− TrB0(X, ·)|W

= F (r,Γ).

As Cp is defined to be the minimum of the left hand side for all X and V with
dimV = p and X ∈ V unitary, this shows that F (r,Γ) > Cp. �
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Thus, Figure 3 gives the constants Cp with our simplifying normalization. To obtain
the table 1, for which the normalization is chosen so that Cnm = 1, we must replace
Cp by Cp/Cnm. In our current normalization, we have Cnm = n+ 1 according to the
first column of Table 3. This ends the proof of Proposition 9.7. �
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