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MOTION OF SEVERAL SLENDER RIGID FILAMENTS IN

A STOKES FLOW

by Richard M. Höfer, Christophe Prange & Franck Sueur

Abstract. —We investigate the dynamics of several slender rigid bodies moving in a flow driven
by the three-dimensional steady Stokes system in presence of a smooth background flow. More
precisely, we consider the limit where the thickness of these slender rigid bodies tends to zero
with a common rate ε, while their volumetric mass density is held fixed, so that the bodies shrink
into separated massless curves. While for each positive ε, the bodies’ dynamics are given by
the Newton equations and correspond to some coupled second-order ODEs for the positions of
the bodies, we prove that the limit equations are decoupled first-order ODEs whose coefficients
only depend on the limit curves and on the background flow. We also determine the limit effect
due to the limit curves on the fluid, in the spirit of the immersed boundary method.

Résumé (Mouvement de filaments rigides minces dans un fluide de Stokes)
Nous étudions la dynamique de filaments rigides minces se déplaçant dans un fluide qui est

décrit par un état de base régulier perturbé par la présence des solides selon les équations du
système de Stokes stationnaire tridimensionnel. Plus précisément, nous considérons la limite
dans laquelle l’épaisseur des corps solides tend vers zéro avec un taux commun ε, tandis que leur
densité de masse volumétrique est maintenue constante, de sorte que les solides limites occupent
des courbes que l’on suppose d’intersections deux à deux vides, et ont une masse nulle. Pour
ε ą 0, la dynamique des solides est donnée par les équations de Newton et correspondent
à des équations différentielles ordinaires du second ordre, couplées. Nous prouvons que les
équations limites sont des équations différentielles ordinaires du premier ordre, découplées,
dont les coefficients ne dépendent que des courbes limites et du flot de base. Nous déterminons
également l’effet limite des courbes limites sur le fluide, dans l’esprit de la méthode des frontières
immergées.
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1. Introduction

In view of various applications in particular in biology (considering DNA) and in
oceanography (considering sediment, plankton), the motion of rigid bodies with aniso-
tropic shapes immersed in incompressible flows requests some mathematical analysis.
In particular in view of modeling and numerics one may wish to consider asymptotic
models where one gets rid of the dimensions corresponding to small extent of the
rigid bodies. In this paper we consider the case of a finite number N of slender rigid
bodies. We will use the terminology “filaments”. Their radii have the same smallness
parameter ε in p0, 1q and shrink into curves in R3 as εÑ 0. We will call these curves
“centerline curves” or “filament centerlines”. We will assume: (i) that these filaments
are immersed into an incompressible fluid driven by the steady Stokes system in
presence of a background flow, (ii) that their dynamics is driven by the Newton
equations with forces acting on the filaments only due to the viscous stress tensor on
their boundaries and (iii) that their volumetric mass density is independent of ε, so
that their limit centerline curves are massless. This leads to a system of second-order
ODEs all coupled to each other through the Stokes equations. We refer to Section 2 for
a precise description of this so-called Newton-Stokes system, and for a straightforward
local-in-time well-posedness result, see Lemma 2.2. In particular this result establishes
the existence of smooth solutions as long as there is no collision between filaments.

The main result of this paper, Theorem 3.4 stated in Section 3.4, is the conver-
gence of this Newton-Stokes system to a limit system describing the dynamics of the
centerline curves. We will also determine the limit effect due to these centerline curves
on the fluid, in the spirit of the immersed boundary method.

To give a flavor of our result to the reader we describe below how this limit system
looks like. The precise description of the limit dynamics is given in Section 3.2. To
emphasize what concerns limit objects when εÑ 0 we use the notation ‚̂ for a quan-
tity ‚ . On the other hand, to avoid heavy notations, we will only make the dependence
on ε explicit when it is necessary in order to avoid confusion or to make precise in a
quantitative way this dependence. Otherwise it is understood that the quantities at
stake can depend on ε even if there is no corresponding index in the notation. The
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limit model drives the dynamics of the position at time t of a collection of smooth
curves Ĉiptq without any self-intersection, for 1 ď i ď N , by the following rigid motion

Ĉiptq “ ĥiptq ` Q̂iptqCi.

Here Ci denotes a reference curve. The vector ĥiptq in R3 and the matrix Q̂iptq in
SOp3q satisfy some first-order ODEs:

ĥ1iptq “ v̂iptq, Q̂1iptq “ pω̂iptq ^ ¨qQ̂iptq,(1)

and pv̂iptq, ω̂iptqq “ F rĈiptq, u
5pt, ¨q|

Ĉiptq
s,(2)

where the notation pω̂iptq ^ ¨q is used for the skew-symmetric matrix canonically
associated with the wedge product by the vector ω̂iptq in R3, u5pt, ¨q|

Ĉiptq
denotes the

trace on Ĉiptq of a smooth background flow velocity u5pt, ¨q. Moreover, F r¨, ¨s is a
universal operator acting on smooth simple curves and smooth incompressible vector
fields. This operator is given explicitly in (39). Let us highlight that, to ease the
reading, in the left hand side of (2), and several more times below, we identify pv, wq
with the corresponding column vector. We emphasize that the limit dynamics (1)–(2)
is a system of uncoupled first-order ODEs which reflects that both the mass of the
filaments and their perturbation on the fluid tends to zero as ε converges to 0.

The main novelty of our work is the mathematically study of the coupled dynamics
of a collection of slender filaments. Hydrodynamic interactions between filaments have
been extensively studied in the physics and engineering literature, in particular regard-
ing the behavior of polymers and microorganisms, see for example [8, 9, 27, 28, 29].
As far as we know, previous mathematical works on filaments in Stokes flows are
focused on static problems with only a single filament.

Related to these works, the first part of our analysis establishes approximations
for the forces and torques acting on the filaments as well as on the fluid perturbation
caused by the filaments. We show that explicit force distributions on the particle
centerlines are sufficient to capture these quantities to leading order. This part of
our analysis, carried out in Section 4, is related to so-called slender body theory, and
we believe that our results there, Theorem 4.1 and Corollary 4.2 are of independent
interest. The second part of our analysis consists in the study of a system of singularly
perturbed ODEs relying on a modulated energy argument. We refer to Sections 3.5
and 3.6 for a more extensive outline of the key elements and the structure of the
proof of the main result, to Section 3.7 for a discussion of some related results and to
Section 3.8 for some open problems.

2. Setting of the problem

This section is devoted to the description of the setting of the problem.

2.1. Geometry of the filaments. — For each index i such that 1 ď i ď N we
consider a filament Si which can be closed or non-closed. For ε P p0, 1q, the filament is
given in terms of a reference filament Si which is described by a centerline and a shape
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function for the cross section as follows. For a non-closed filament, the centerline Ci

is assumed to be a curve of length Li ą 0, parametrized by arc length without self-
intersections by a smooth function γi : r0, Lis Ñ R3. We assume, for each index i such
that 1 ď i ď N , that the curve Ci is not a straight line, i.e., γ2i ‰ 0. The shape function
is a smooth map Ψi : r0, Lis ˆ B1p0q Ñ R2, such that Ψips, 0q “ 0 and Ψips, ¨q is a
diffeomorphism to its image for all s P r0, Lis. Here, B1p0q denotes the open unit ball
in R2. Moreover, let Ri : r0, Lis Ñ SOp3q be a smooth function such that Rie3 “ γ1i,
where e3 “ p0, 0, 1q. Then, we define

(3) S
ε

i “ Si :“ tγipsq ` εRipsqpΨips,B1p0qq ˆ t0uq : 0 ď s ď Liu.

In the case of a closed filament, the definition is analogous but we replace the
interval r0, Lis by R{LiZ for γi, Ri and Ψi.

Remark 2.1. — Note that the non-closed filaments are not smooth but only Lipschitz
due to corners at their ends. With minor modifications of some arguments, our analysis
also applies to smooth non-closed filaments, which could be defined as

(4) S
ε

i “ Si :“ tγipsq ` εaεpsqRipsqpΨips,B1p0qq ˆ t0uq : 0 ď s ď Liu,

where the additional function aεpsq : r0, Lis Ñ R is given by

(5) aεpsq “

$

’

’

&

’

’

%

a

s{ε for s P r0, εs,
1 for s P rε, Li ´ εs,
a

pLi ´ sq{ε for s P rLi ´ ε, Lis.

We assume that the reference centerlines are centered at the origin in the sense
that
(6)

ˆ
Ci

x dH1 “ 0,

where dH1 is the one-dimensional Hausdorff measure. We emphasize that the center
of mass of the reference filaments Si, for 1 ď i ď N , depends on ε. For simplicity, we
assume that the mass density is constant in each of the filaments. Then, their centers
of mass are given as the following barycenters

(7) hi,ε :“

 
Si

x dx.

By (6), we have
(8) |hi,ε| ď Cε,

where the constant C depends only on the functions specifying the reference filament,
i.e., Li, γi, Ri, and Ψi.

We are interested in the limit of the dynamics (specified below) as εÑ 0 for given,
ε-independent initial data for the centerlines of the filaments. More precisely, we fix
ĥip0q P R3, Q̂ip0q P SOp3q such that

(9) Ĉip0q “ Cip0q :“ ĥip0q ` Q̂ip0qCi,

are the positions of the centerlines at time 0 for all ε ą 0.
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CiSi
γipsq

Figure 1. A closed reference filament

Then, the center of mass hi,εptq and the orientation Qi,εptq of the filament at time t
have initial data
(10) hi,εp0q “ ĥip0q ` Q̂ip0qhi,ε and Qi,εp0q “ Q̂ip0q,

and we denote the filament at time t with parameter ε by
(11) Siptq :“ Si,εptq “ hi,εptq `Qi,εptqpSi ´ hi,εq,

and similarly for the centerline Ciptq:
Ciptq :“ Ci,εptq “ hi,εptq `Qi,εptqpCi ´ hi,εq.

2.2. Kinematics of the filaments. — For any t ě 0, we denote by ωiptq in R3 the
unique angular velocity of the i-th filament such that

(12) Q1i,εptqQ
T
i,εptq “ pωiptq ^ ¨q,

where QTi,ε denotes the transpose matrix of Qi,ε and pωiptq ^ ¨q denotes the skew-
symmetric matrix canonically associated with the wedge product by vector ωiptq.
We also set
(13) viptq :“ h1i,εptq.

Accordingly, the solid velocities are given by

(14) vSipt, xq :“ viptq ` ωiptq ^ px´ hi,εptqq,

for all x P Siptq.
We highlight that all these quantities depend implicitly on ε which we usually omit

in the notation except for the quantities hi,ε, Qi,ε. For these, we will always write the ε
to avoid confusion with functions depending on variables hi, Qi that will appear later.

2.3. Inertia of the filaments. — We assume that the filaments’ volumetric density
is fixed, and we denote by ε2mi ą 0 the mass of Si and by ε2Jiptq the inertial matrix
at time t ě 0, so that mi and Ji are of order one with respect to ε. Moreover the
matrix Ji is positive definite, uniformly in ε (this only fails if γi was a straight line,
which has been explicitly excluded) and evolves in time according to Sylvester’s law:

(15) Jiptq “ Qi,εptqJ0,iQ
T
i,εptq,

where J0,i denotes the initial value J0,i :“ Jip0q.

J.É.P. — M., 2022, tome 9
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2.4. Ambient fluid. — We assume that, for any t ě 0, the open set

Fptq :“ R3 r
⋃
i

Siptq,

is occupied by a fluid whose velocity u and pressure p are given as the sums

(16) u :“ u5 ` up and p :“ p5 ` pp,

where

(17) pu5, p5q in C
`

r0,`8q; 9H1pR3qˆL2pR3qq

and in W 2,8pp0,`8q ˆ R3q ˆW 1,8pp0,`8q ˆ R3q, and satisfying div u5 “ 0,

is the background flow, and pup, ppq is the perturbation flow due to the filaments,
whose evolution is assumed to be driven by the steady Stokes equations:

´∆up `∇pp “ 0 and div up “ 0 in Fptq,(18a)

up “ vSi ´ u5 in Siptq, 1 ď i ď N,(18b)

where we recall the notation (14). Above the notation 9H1 stands for the homogeneous
Sobolev space of order 1 built on the Lebesgue space L2, while W 1,8 and W 2,8

stand for the inhomogeneous Sobolev space respectively of order 1 and 2 built on the
Lebesgue space L8.

2.5. Dynamics of the filaments. — The filaments are assumed to be only acceler-
ated, for any t ě 0, by the force exerted by the fluid on their boundaries BSiptq
according to the Newton equations:

ε2miv1iptq “ ´
ˆ
BSiptq

Σpu, pqndH2,(19a)

ε2pJiωiq
1ptq “ ´

ˆ
BSiptq

px´ hi,εptqq ^ Σpu, pqndH2,(19b)

where dH2 is the two-dimensional Hausdorff measure and n denotes the unit normal
vector on BSiptq pointing outside the fluid domain Fptq and

Σpu, pq :“ 2Dpuq ´ p Id,(20)

where Dpuq is the deformation tensor defined by

Dpuq :“
1

2
pBjui ` Biujq1ďi,jď3.(21)

2.6. The whole Newton-Stokes system at a glance. — Gathering (11), (12), (13),
(14), (15), (16), (18) and (19) we arrive at the following Newton-Stokes system.

J.É.P. — M., 2022, tome 9
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For 1 ď i ď N ,

h1i,εptq “ viptq,(22a)
Q1i,εptq “ pωiptq ^ ¨qQi,εptq,(22b)

ε2mi v1iptq “ ´
ˆ
BSiptq

Σpu5 ` up, p5 ` ppqndH2,(22c)

ε2pJiωiq
1ptq “ ´

ˆ
BSiptq

px´ hi,εptqq ^ Σpu5 ` up, p5 ` ppqndH2,(22d)

where Jiptq “ Qi,εptqJ0,iQ
T
i,εptq and Siptq “ hi,εptq `Qi,εptqpSi ´ hi,εq,(22e)

and

´∆up `∇pp “ 0 and div up “ 0 in Fptq,(22f)

up “ vSi ´ u5 for x P Siptq, for 1 ď i ď N,(22g)

where vSipt, xq :“ viptq ` ωiptq ^ px´ hi,εptqq for x P Siptq.(22h)

A reformulation of the Newton equations (22c)–(22d) into a compact form, involving
in particular the so-called Stokes resistance matrices, will be given in Section 6.1.

2.7. A local-in-time well-posedness result. — Despite its apparent complexity,
the system (22) can be considered as a system of second-order quasilinear ODEs
on the 6N degrees of freedom of the rigid bodies, the fluid state being given by an
auxiliary steady Stokes system for which time only appears as a parameter. More-
over the coefficients of this ODE, although their coefficients are given in a rather non
explicit way, are smooth as long as the filaments Siptq remain separated; this follows
from standard results on the regularity with respect to shape changes for which we
refer for example to [41, 5, 6]. Therefore it follows from the Cauchy-Lipschitz theorem
that, starting from separated positions with arbitrary velocities, we have the following
local-in-time well-posedness result.

Proposition 2.2. — For each ε in p0, 1q, given some initial disjoint positions and
some initial velocities of the filaments, there is Tmax

ε P p0,`8s and a unique smooth
solution to (22) on r0, Tmax

ε q. Moreover, if Tmax
ε ă `8, then

(23) lim
tÑTmax

ε

min
i‰j

distpSiptq, Sjptqq “ 0.

Proof. — As mentioned above, the existence, locally in time, of a smooth solution to
(22) is a straightforward consequence of the classical regularity properties of the Stokes
system and of the Cauchy-Lipschitz theorem. It remains to prove the last statement
regarding the lifetime of these solutions. To this end, we multiply, for 1 ď i ď N ,
the equation (22c) by vi and the equation (22d) by ωi. By summing the resulting
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identities, and recalling (22h), we get

(24)

ε2
ÿ

1ďiďN

´1

2
miv2

i ` Jiωi ¨ ωi

¯1

“ ´
ÿ

1ďiďN

ˆ
BSiptq

vSi ¨ Σpup ` u5, pp ` p5qndH2

“ ´
ÿ

1ďiďN

ˆ
BSiptq

up ¨ Σpup, ppqndH2

´
ÿ

1ďiďN

ˆ
BSiptq

u5 ¨ Σpup, ppqndH2

´
ÿ

1ďiďN

ˆ
BSiptq

vSi ¨ Σpu5, p5qndH2,

thanks to (22g). Hence, integrating by parts in F for the two first terms in the right
hand side of (24) taking into account (22f), and integrating by parts in

⋃
i Si for the

last term in the right hand side of (24), we arrive at

(25) ε2
ÿ

1ďiďN

´1

2
miv2

i ` Jiωi ¨ ωi

¯1

`

ˆ
F

Dup : Dup

“ ´

ˆ
F

Du5 : Dup ´
ÿ

1ďiďN

ˆ
Si

p´∆u5 `∇p5q ¨ vSi .

Above, the notation A : B, where A :“ pai,jqi,j and B :“ pbqi,j are two 3ˆ 3 matrices
stands for the scalar quantity

ř

1ďi,jď3 ai,jbi,j . The above identity holds true as long
as there is no collision. Then, by the Cauchy-Schwarz inequality, Young’s inequality
for products and a Gronwall argument, we deduce that the function

t ÞÝÑ ε2
ÿ

1ďiďN

´1

2
miv2

i ` Jiωi ¨ ωi

¯

ptq `

ˆ t

0

ˆ
F

Dup : Dup,

remains bounded as long as there is no collision. Then it follows from classical blowup
criteria for ODEs that the solution can be continued as long as there is no collision.
In particular, if the maximal lifetime Tmax

ε of the smooth solution to (22) satisfies
Tmax
ε ă `8, then (23) holds true. �

Remark 2.3. — It is worth to observe that the energy identity (25) used in the proof
above, alone, is not sufficient to obtain bounds on the filament velocities which are
uniform with respect to ε as the Op1q energy transfer with the background flow, see
the right hand side of (25), that may a priori lead to high velocities due to the factor ε2

associated with the filaments’ inertia.

3. Main results

This section is devoted to the statements of the main results of the paper. More
precisely, the main result of this paper, that is the convergence of the Newton-Stokes
system to a limit system as the thickness parameter ε goes to 0, is given in Sec-
tion 3.4, in particular in Theorem 3.4. To state this result, a few notations have to
be introduced, which is the subject to the Sections 3.1, 3.2 and 3.3. In Section 3.5
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we expose the strategy of the proof of Theorem 3.4 by considering a toy model. The
organization of the proof of Theorem 3.4 is detailed in Section 3.6. We will also draw
some comparisons with the existing literature on close issues, see Section 3.7, and we
will finally mention a few open problems, see Section 3.8.

3.1. A few general notations. — First we introduce, for 1 ď i ď N , the vector
fields:

(26) vi,αrhispxq :“

#

eα if α “ 1, 2, 3,

eα´3 ^ px´ hiq if α “ 4, 5, 6,

where eα, for α “ 1, 2, 3, denotes the α-th unit vector of the canonical basis of R3.
These vector fields are elementary rigid velocities with respect to the i-th filament.

We define, for p in R3, the 3ˆ 3 matrix

(27) kppq :“ 8π
´

Id´
1

2
pb p

¯

.

The matrix k is related to the Stokes kernel S, defined for x in R3 r t0u, by

(28) Spxq “
1

8π|x|

´

Id`
x

|x|
b

x

|x|

¯

“
1

|x|
S0

´ x

|x|

¯

,

where for p in the euclidean unit sphere S2,

(29) S0ppq :“
1

8π
pId`pb pq.

Indeed, by the Sherman-Morrison formula, see for example [40, Prop. 3.21], we observe
that for any p in S2, the matrix S0ppq is invertible and its inverse is precisely kppq
defined above. As a matter of fact, the use of the identity

(30) @p P S2, S0ppqkppq “ Id,

is crucial in our analysis below, see (99).
Next we associate with a smooth oriented curve C without self-intersections and

with two vector fields v and ṽ defined on C with values in R3, the following real-valued
functional:

(31) ICrv, ṽs :“
1

2

ˆ
C

kpτqv ¨ ṽ dH1,

where we recall that dH1 is the one-dimensional Hausdorff measure and τ denotes
the unit tangent vector field along C. Since the matrix k is symmetric, the operator
ICr¨, ¨s is bilinear symmetric.

3.2. Limit dynamics. — Now we define the objects which occur in the limit dynamics
of the filaments when the thickness parameter ε converges to 0. To do so, we will
define several functions depending on the filament positions denoted by phi, Qiq, for
1 ď i ď N .

For 1 ď α ď 6 and for 1 ď i, j ď N , we set

(32) K̂i,α,j,βphi, Qiq :“ δij ICiphi,Qiq

“

vi,αrhis, vi,βrhis
‰

,
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where δij is the Kronecker symbol, and, for α “ 1, 2, 3, for 1 ď i ď N , for t ě 0,

(33)
F̂ 5i,αpt, hi, Qiq :“ ICiphi,Qiqrvi,αrhis, u

5ptqs

T̂ 5i,αpt, hi, Qiq :“ ICiphi,Qiqrvi,α`3rhis, u
5ptqs.

Let us emphasize that the matrices K̂i,α,i,β and the vectors F̂ 5i,α and T̂ 5i,α do not depend
on ε but on the positions, considered here as variables, of the filament centerlines
denoted by Ciphi, Qiq and defined by

Ciphi, Qiq :“ hi `QiCi.

In addition, the vectors F̂ 5i,α and T̂ 5i,α depend explicitly on time through the time
dependence of u5. We refer to them respectively as the Stokes resistance matrix asso-
ciated with the filament centerline Ci, and the Faxén force and torque associated with
the filament centerline Ci and with the background flow u5.

For 1 ď i ď N , let us consider the 6ˆ 6 matrices diagonal blocks

(34) K̂i,i“ K̂i,iphi, Qiq :“ pK̂i,α,i,βq1ďα,βď6,

and, for 1 ď i ď N , the vectors of R6:

(35) f̂5i“ f̂5ipt, hi, Qiq :“ ppF̂ 5i,αq1ďαď3, pT̂
5
i,αq1ďαď3q.

By a change of coordinates, it is easy to see that K̂i,i satisfies

(36) K̂i,iphi, Qiq “

ˆ

Qi 0

0 Qi

˙

K̂i,ip0, Idq

ˆ

QTi 0

0 QTi

˙

.

Lemma 3.1. — For any phi, Qiq in R3ˆSOp3q, for 1 ď i ď N , the matrix K̂i,iphi, Qiq

is symmetric positive definite.

Proof. — By (36), it suffices to consider the case where phi, Qiq “ p0, Idq, and we will
omit to write this variable. Since for any p P S2, the matrix kppq is positive symmetric
and satisfies kppq ě 4π Id, we deduce that for all pv, ωq P R3 ˆ R3

(37) K̂i,i

ˆ

v

ω

˙

¨ pv, ωq ě 2π

ˆ
Ci

|v ` ω ^ x|2 dH1pxq.

Indeed, for ω ‰ 0, the integrand is non-constant since Ci is not a straight line. Thus,
the integral is positive for pv, ωq ‰ 0. �

With these tools in hands we can now explicitly present the system which will prove
to be the zero-thickness limit of the Newton-Stokes system (22). This system drives
the dynamics of the positions at time t of the centerline curves Ĉiptq, for 1 ď i ď N ,
by the rigid motions

(38) Ĉiptq “ ĥiptq ` Q̂iptqCi.
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Here the vector ĥiptq P R3 and the matrix Q̂iptq P SOp3q satisfy the following first-
order ODEs:

ĥ1iptq “ v̂iptq, Q̂1iptq “ pω̂iptq ^ ¨qQ̂
T
i ptq,(39)

pv̂iptq, ω̂iptqq “ K̂´1
i,i pĥiptq, Q̂iptqq f̂

5
ipt, ĥiptq, Q̂iptqq.(40)

For 1 ď i ď N , the right hand side of (40) only depends on ĥiptq and Q̂iptq, not on
the positions of the other centerline curves corresponding to j ‰ i.

On the other hand neither the matrices K̂i,i, nor their inverses, usually referred to
as mobility matrices, are diagonal, not even by 3 ˆ 3 blocks. This coupling between
translation/rotation velocities and force/torque is typical of the case of rigid bodies
with shape anisotropies. It is usually called the Jeffery effect, see [20, 23, 43].

Finally, since the coefficients of (40) are smooth and globally Lipschitz (this fol-
lows immediately from (36), (35), (31) and the smoothness assumption for u5), the
Cauchy-Lipschitz theorem applies again and guarantees the following global-in-time
well-posedness result.

Proposition 3.2. — Given some initial disjoint positions of the centerline curves,
given a smooth background flow u5 satisfying (17), there is a unique smooth global-in-
time solution to (38)–(39)–(40) on r0,`8q.

Although each of these decoupled ODEs admits a unique smooth global-in-time
solution, it could be that some of the positions of the centerline curves which they
define collide in finite time.

Definition 3.3. — Let us denote by T̂ in p0,`8s the time of the first collision in the
limit dynamics, that is the first time for which at least two of the centerline curves
Ĉiptq defined by (38)–(39)–(40) have a non-empty intersection, with the convention
that T̂ “ `8 if there is no such collision. More precisely, we define

d̂minptq :“ min
i‰j

distpĈiptq, Ĉjptqq,(41)

T̂ :“ inftt ě 0 : d̂minptq “ 0u.(42)

3.3. Asymptotic fluid behaviour. — Regarding the fluid behaviour when the thick-
ness parameter ε converges to 0, it is only a matter to understand the behaviour
of the perturbation flow pup, ppq due to the filaments, since on the other hand the
background flow pu5, p5q is fixed. Precisely, the steady Stokes system in presence of
several thin filaments has been the object of several studies usually referred to as the
slender body theory or as the immersed boundary method. It can also be viewed as
a Stokesian counterpart of the issue of Newtonian capacity, see [10].

To capture the leading term of the perturbation flow pup, ppq as ε converges to 0,
the key idea is to consider the Stokes system in the full space R3 with an appropriate
source term given as Dirac masses along the centerline curves Ci. The intensity of
these Dirac masses is related to the bilinear operator ICr¨, ¨s defined in (31) in the
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following way. Let v a divergence-free vector field in W 1,8p
⋃

1ďiďN Siq. We define
µCirvs as the vector measure, supported on Ci, defined by

(43) 〈µCirvs, φ〉 :“ ICirv, φs, for any φ P CcpR3;R3q.

Moreover we define the vector field

(44) UCirvs :“ S ˚ µCirvs,

where the symbol ˚ stands for the convolution in R3, S is the Stokes kernel defined
by (28). This reads

(45) UCi
rvspxq “

1

2

ˆ
Ci

Spx´ yqkpτpyqqvpyq dH1pyq,

for any x P R3 r Ci, where we recall that τ is the unit tangent vector defined below
(31).

Let us recall that the counterpart of the Stokes kernel S for the pressure is the
vector P pxq, defined for x in R3 r t0u, by

(46) P pxq “
x

4π|x|3
.

Notice that

(47) ´∆S `∇P “ δ0 Id and divS “ 0,

in the sense of distributions, where the differential operators are applied column-wise.
Then we associate with the operator UCi

the following counterpart for the pressure

(48) PCi
rvspxq :“ P ˚ µCi

rvs,

which reads for any x P R3 r Ci,

PCi
rvspxq “

1

2

ˆ
Ci

P px´ yq ¨ kpτpyqqvpyq dH1pyq.

Thus it follows from (47) that, in the sense of distributions in the variable x,

(49) ´∆UCi
rvs `∇PCi

rvs “ µCi
rvs and divUCi

rvs “ 0.

Our main result below, see Theorem 3.4, establishes that the vector field

(50) ûppt, ¨q :“
ÿ

1ďiďN

U
Ĉi
rv̂Sipt, ¨q ´ u5pt, ¨qs,

where

(51) v̂Sipt, xq :“ ĥ1iptq ` Q̂
1
iptqQ̂iptq

T px´ ĥiptqq,

is the leading part of the perturbation flow up up to a renormalization factor |log ε|
´1.
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3.4. Convergence result. — The main result of this paper is the following theorem,
which contains two points: (i) an estimate of the time of the first collision and (ii)
the convergence of the dynamics of the filaments and of a renormalized fluid pertur-
bation velocity as the thickness parameter ε of the filaments converges to zero. The
following statement aims at providing a simple description of our results while some
complementary more technical elements will be discussed below.

Theorem 3.4. — We consider some initial disjoint positions of the centerline curves,
a smooth background flow u5 satisfying (17), and the solutions pĥi, Q̂iq1ďiďN given by
Proposition 3.2. Let T̂ in p0,`8s be the time of the first collision associated with this
solution as defined in Definition 3.3. For each ε in p0, 1q, the initial positions of the
filaments of thickness parameter ε are deduced from the ones for the centerline curves
by (3) and (11). Let κ in p0, 1q be such that for any ε in p0, κq the initial positions of
the filaments are disjoint. Let us consider some initial rigid velocities, all independent
of ε in p0, κq, for the N filaments. For ε in p0, κq, we denote by phi,ε, Qi,εq1ďiďN
the corresponding solutions to the Newton-Stokes system (22) up to the time Tmax

ε as
given by Proposition 2.2.

Then on the one hand,

(52) lim inf
εÑ0

Tmax
ε ě T̂ ,

and, on the other hand, for any 1 ď i ď N , for all T ă T̂ there exists C depending only
on u5, on the filaments S

κ

i with thickness κ, on inftPr0,T s d̂minptq (see Definition 3.3)
and on the initial velocities, and there exists ε0 ą 0 depending in addition on T such
that, for all ε in p0, ε0q,

(53) }phε,i, Qε,iq ´ pĥi, Q̂iq}L8p0,T q ď C
´

ε` |log ε|
´1{2

T
¯

eCT .

The perturbation flow up due to the filaments, extended by the filament velocity inside
each filament, satisfies the following estimates: for any compact subset K of R3 and
for any p in r1, 2q, for all t ă T , for all ε in p0, ε0q,

(54) }uppt, ¨q ´ |log ε|
´1

ûppt, ¨q}LppKq ď C |log ε|
´1

´

e´Ct{ε
2
|log ε| ` |log ε|

´1{2
eCt

¯

.

where ûp is given by (50) and (51).

A few comments on Theorem 3.4 are in order. Let us start with saying that Theorem
3.4 establishes the convergence of the original system (22) for the filaments to the
reduced model (40) for their centerline curves, as the thickness parameter ε converges
to zero. Let us highlight that the system (22) is a coupled system made of the Newton
equations associated with all the filaments whereas the limit equation (40) for each
filament is decoupled from the others. Such a phenomenon enters the scope of the
theme of hydrodynamic decoupling. Here it states that the main effect on each limit
centerline curve is due to the background flow and not from the other filaments. The
limit equations (40) have the advantage in view of applications to only involve the
geometry of the centerline curves rather than the one of the whole filaments.
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The system (22) is a second-order system whereas the limit equations (40) are
first-order equations. Therefore one initial data has to be dropped for the limit system
(40). Unless the initial data for the system (22) satisfies the compatibility conditions
pvip0q, ωip0qq “ pv̂ip0q, ω̂ip0qq, for all 1 ď i ď N , with pv̂iptq, ω̂iptqq given by (40), the
velocities dynamics exhibit an initial layer, which prevents uniform convergence of
the filament velocities down to the initial time. Indeed a byproduct of our analysis
is that we are able to describe the nature of the initial stage: it is an exponential
relaxation within a time interval of order Opε2 log εq. During that time, a transition
of the amplitudes of the filament velocities occurs which is of order Op1q. After this
initial stage, the dynamics of the filaments is adapted to the first-order dynamics of
the limit system and the convergence occurs at least with a rate Op|log ε|

´1{2
q. More

precisely, for any T ă T̂ there is ε0 ą 0 and C ą 0 as in Theorem 3.4 such that for
any ε in p0, ε0q, for any 1 ď i ď N , and for any t in r0, T s,

(55) |pvi, ωiqptq ´ pv̂i, ω̂iqptq|

ď |pvi, ωiqp0q ´ pv̂i, ω̂iqp0q| e´Ct{ε
2
|log ε| ` C |log ε|

´1{2
eCt.

Our analysis allows us to give an even better approximation of the solutions to
(22) when ε goes to 0, by a family of velocities, indexed by ε, given by a quasi-static
balance similar to (40), but with the Stokes resistance matrices and the Faxén force
and torque associated with the whole set of filaments rather than their sole centerlines,
see Theorem 6.5.

Regarding the fluid part of the system, Theorem 3.4 establishes that after an initial
relaxation stage the perturbation of the fluid velocity up is well-approximated in Lploc

by |log ε|
´1
ûp which is explicitly given (see (50)) in terms of the limit dynamics of the

filament centerlines only. The estimate (54) should be interpreted in the sense that,
firstly, the fluid perturbation is of order |log ε|

´1 in Lploc, p ă 2 which corresponds to
the Stokes resistance of the filaments. Secondly, the perturbation, rescaled to order 1,
is well approximated by ûp up to an error which corresponds to the sum of the errors
of the positions (53) and of the velocities (55) of the filament centerlines. As we will
see, it is possible to improve the estimate to Lploc, p ă 6 on the expense of the rate of
convergence. More precisely, for 2 ď p ă 6 and for all δ ą 0,

(56) }uppt, ¨q ´ |log ε|
´1

ûppt, ¨q}LppKq

ď C |log ε|
´1

ˆ

ÿ

1ďiďN

|pvi, ωiqp0, ¨q ´ pv̂i, ω̂iqp0, ¨q| e´Ct{ε
2
|log ε|

` |log ε|
´1{2p3{p´1{2´δq

eCt
˙

.

We observe that, at any time, the leading part ûp of the perturbation flow given
by (50) satisfies the modified Stokes equation in the sense of distributions in the
variable x, in R3,

´∆ûp `∇p̂p “
ÿ

1ďiďN

µ̂p
i and div ûp “ 0,
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where for 1 ď i ď N , the term µp
i is the vector measure given by

µ̂p
i :“ µ

Ĉi
rv̂Si ´ u5s,

where v̂Si is given by (51) and p̂p :“ P ˚ µ̂p
i , with P given by (46). Moreover, for any

1 ď i ď N , it follows from the definition of the vector fields vi,α, for α “ 1, 2, 3, in
(26), that the total mass of the measure µp

i isˆ
Ĉi

dµ̂p
i “ pK̂i,α,i,βpĥi, Q̂iqq1ďαď3;1ďβď6 pv̂i, ω̂iq ´ pF̂ 5i,αq1ďαď3,

where we also recall the definitions (32) and (33). The right hand side above is pre-
cisely the leading part of the force due to the fluid on the i-th filament, up to the
renormalization factor |log ε|

´1 and to the sign, so that its vanishing is precisely the
part of (40) which concerns the force. This is reminiscent of Newton’s third law of
motion (a.k.a. the action-reaction principle).

We emphasize that the perturbation flow up is not well approximated by
|log ε|

´1
ûp in the homogeneous Sobolev space 9H1. On the one hand, the per-

turbation in 9H1 is actually of order |log ε|
´1{2 instead of |log ε|

´1 (since the Stokes
resistance |log ε|

´1 corresponds to the square of the 9H1-norm). On the other hand,
the 9H1-norm turns out to be concentrated in a region of order ε around the filaments.
Since the errors of the positions compared to the limit system is much larger (of order
|log ε|

´1{2), |log ε|
´1

ûp is not a good approximation in 9H1. However, we will show,
see Proposition 7.1, that up is well approximated in 9H1 by

(57) |log ε|
´1

ÿ

1ďiďN

UCi
rvSipt, ¨q ´ u5pt, ¨qs.

This estimate is actually an important ingredient in the proof of our main result.

3.5. Strategy of the proof of Theorem 3.4. — Let us give here a glimpse of some
elements of the proof of Theorem 3.4, whose detailed proof is the purpose of the rest
of the paper. Let us focus first on the way we deal with the ε-dependence in the
filaments dynamics, letting aside for a while the role played by the Stokes system.

– A first ingredient is a reformulation of the Newton equations into a second-
order ODE for the 6N degrees of freedom of the filaments, see (190). This singularly
perturbed ODE looks like the following toy-model:

(58) ε2 q2 “ ´ |log ε|
´1
pkεpqqq1 ´ fεpqqq ` rε,

where the scalar unknown q stands for the variables encoding the positions of the
filaments (with a mute dependence on ε), kε are positive Lipschitz functions uniformly
with respect to ε, fε are Lipschitz functions of uniformly with respect to ε, and rε
are remainders with nice estimates.

– A second ingredient is a modulated energy argument which consists in estimating
the dynamics of

1

2
pq1 ´ V εpqqq2 with V εpqq :“ pkεpqqq´1 fεpqq.
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This leads to

(59) q1 “ V εpqq ` r̃ε,

with r̃ε satisfying some relevant estimates.
– A third ingredient is to prove that, roughly speaking,

(60) @q, V εpqq ÝÑ V̂ pqq as ε ÝÑ 0.

– This finally allows to compare q and the solution q̂ of the limit ODE:

q̂1 “ V̂ pq̂q.

Of course this protocol relies on a detailed analysis of the asymptotic behaviour on
the fluid part, to obtain the behaviour with respect to ε of the coefficients in (58),
and to prove (60). This analysis uses properties of the Stokes system in the presence
of several filaments in the zero-thickness limit, for which time only plays the role of a
parameter through the positions of the filaments. We will therefore devote a separate
section to this issue first, see Section 4. This analysis will also allow to obtain the part
of Theorem 3.4 which concerns the asymptotic behaviour of the fluid.

Remark 3.5. — The idea of using a modulated energy to deal with singular ODEs
is rather ubiquitous in nature; let us mention the paper [4] for a spectacular use in
the context of the analysis of the motion of a charged particle in a slowly varying
electromagnetic field when the particle mass converges to zero. An important differ-
ence with the case of the equation (190) is that in [4] the term without derivative is
a gyroscopic term, rather than a damping term, so that the modulation provides a
center-guide along which the exact solution oscillates.

3.6. Organization of the proof of Theorem 3.4. — In Section 4 we analyze the
asymptotic behaviour of the solution of the steady Stokes system in presence of several
thin filaments with Dirichlet data at the interface between the fluid and the filaments.
A well-known approximation consists in replacing the presence of the slender filaments
by appropriate source terms which are measures supported on the filament centerlines
in the steady Stokes system set in the whole space R3. The precise definition of this
approximation is given in Section 4 together with an error estimate of the difference
between this approximation and the exact solution in the natural energy space, see
Theorem 4.1. This analysis holds for any given configuration of the filaments as long
as there is no intersection of two or more filaments.

In Section 5, we bound the shape derivatives of the Dirichlet energy of solutions of
the steady Stokes system in presence of several thin filaments.

Section 6 is devoted to the proof of the part of Theorem 3.4 which concerns the
asymptotic behaviour of the filament centerlines.

On the other hand the part of Theorem 3.4 which concerns the fluid asymptotic
behaviour is proved in Section 7.
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3.7. Comparison with the literature. — It is well known, see for example the clas-
sical textbooks [19, 38], that the solution to the steady Stokes system in the exterior
of bodies can be written in terms of boundary integral operators over the surfaces of
the bodies. The purpose of the slender body theory is to approximate this solution in
the case where the bodies are thin filaments by replacing the integral operators over
the surfaces by integral operators over the filament centerlines. This idea dates back
to Hancock [16], Cox [7], Batchelor [3], Keller and Rubinow [24], Johnson [22] and
had a regain of interest with the numerical work by Peskin [37]; see also the more
recent papers [36, 42]. More precisely in the slender body theory, in the case where one
considers the steady Stokes equations in the exterior of a single ε-thick filament S

ε

i ,
as defined in (3), with some boundary data v on BSεi , one substitutes to the exact
solution u of this exterior problem, the solution uf to the steady Stokes equations in
the full space R3 with as source term Dirac masses along the centerline curve Ci of S

ε

i ,
that is a measure µf defined by

(61) 〈µf , φ〉 :“

ˆ
Ci

f ¨ φdH1, for any φ P CcpR3;R3q,

where the (vector) density f has to be chosen in a relevant way. Indeed uf is given
by uf :“ S ˚ µf , where the symbol ˚ stands for the convolution in R3 and S is
the Stokes kernel defined by (28), which satisfies the steady Stokes equations, with
zero source, in the exterior of the centerline curve Ci and a fortiori in the exterior of
the ε-thick filament S

ε

i . Therefore, when comparing u and uf , the key point is that
the trace of uf on BSεi , which is a linear integral operator acting on the density f ,
matches with v. However it has been shown in [15] that this operator is actually
not invertible. On the other hand, as already observed in [7], the leading order part
of the integral operator is completely local, and gives rise to the correspondence
fpyq “ 1

2kpτpyqqvpyq as in (45). To our knowledge, we provide here for the first time
rigorous quantitative error estimates for the zero order slender body approximation
given by this correspondence. Neglecting higher-order terms has the advantage of an
explicit approximation but restricts to errors of order |log ε|. However, it seems that
in the case of non-circular cross-section, errors of this order are unavoidable anyway
if one only relies on approximations through force densities on the centerline. On the
other hand, in the case of a filament with circular cross sections, one may consider
refined approximations by adding to Dirac masses along the centerline curve some
other higher-order singularities, in particular the so-called doublets which correspond
to ∆S. In this case, invertible regularizations of the integral operator mentioned above
have been studied in [32, 33]. Let us also mention the recent papers [34, 35] which
provide rigorous justifications of the slender body theory in the case where the density
of force on the centerline curve of a single filament with circular cross sections is
prescribed.

In [14], Gonzalez has tackled the zero-radius limit of the quasi-static motion of a
single massless filament. His result establishes a limit balance similar to our result,
however only under an extra assumption on the asymptotic behaviour of the density
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of forces acting on the filament. His conditional result relies on a different approach
than ours, that is on the boundary integral formulation of the Stokes equations.

The aforementioned papers are mostly concerned with the quasi-static Stokes prob-
lem in the exterior of a given filament and not with the time evolution of the filament.
On the other hand, in [23] a rigid body of arbitrary shape is considered, moving in
a viscous incompressible flow driven by the unsteady incompressible Navier-Stokes
equations. The authors provide a formal derivation of the motion in the limit where
the size of the body converges to 0 and the mass density is fixed. This asymptotic
analysis relies on the assumption that the fluid is undisturbed by the particle at the
main order and that the rotation of the rigid body is Op1q, while it results from the
analysis that at the leading order the particle behaves as a passive tracer in the fluid.
In [43] the authors have extended the analysis to other inertia regimes.

Readers familiar with the vortex filament conjecture for Euler Flows may be
tempted to draw a comparison with the present work. This conjecture concerns the 3D
incompressible Euler equations in the case where the initial vorticity is concentrated
along a smooth curve. It is believed, see for instance [2, 31], that the curve evolves
in time by binormal curvature flow, to leading order. Therefore two huge differences
in this problematic, compared to the present setting, are that: (i) it concerns a single
phase problem, rather than a diphasic system where fluid and rigid bodies are con-
sidered, and (ii) the dynamics of the curve is way more intricate since it can deform
in time, which corresponds to an infinite number of degrees of freedom. An important
step toward this conjecture has recently been achieved by Jerrard and Seis in [21]
where it is shown that under the assumption that the vorticity remains concentrated
along a smooth curve when time proceeds, then this curve approximately evolves by
binormal curvature flow. Despite these important differences, the mathematical anal-
ysis shares some common features, for example in the way to deal with singular line
integral. In this respect, it is interesting to compare Lemma 4.4 with [21, §4.5].

Let us also mention another possible comparison to a setting where the fluid is also
assumed to be driven by the incompressible Euler equations: the work [13] where the
zero radius limit of the dynamics of several solids in a 2D perfect incompressible fluid
is studied. In particular it shares with the present setting the feature to deal with
the case where the inertia of some rigid bodies converges to zero in the limit so that
their limit dynamics is a first-order equation rather than a second-order equation.
Accordingly the proofs both use some modulated energy arguments, compare [13, §7]
and Section 6.2 below. However the forces which drive the limit dynamics are rather
different in both settings, on the one hand they are gyroscopic type forces in the case
of [13], similarly to the setting evoked in Remark 3.5, and on the other hand they
are viscous drag type forces in the present paper. Another difference is that in [13]
the limit dynamics of the particles are still coupled in the limit and they influence
the fluid, as point vortices. On the other hand we deal here with some 3D rigid
bodies shrinking to 1D limit rigid bodies instead of 2D rigid bodies shrinking to point
particles.
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3.8. A few possible extensions as open problems. — In this subsection, we state a
few open problems regarding some extensions of the analysis performed in this paper.

Open Problem 3.6. — We let aside the particular case of rod-like filaments whose
centerlines are line segments, which seems to require additional work due to the
degeneracy of the limit Stokes resistance matrix K̂, for which Lemma 3.1 does not
hold true. Indeed, the resistance to rotations around the orientation of the rod like
filaments scales like ε2 rather than |log ε|

´1. In the case where the cross sections of the
filaments are circular, some decoupling of the dynamics occurs and one can substitute
an orientation vector ξ in S2 to the orientation matrix Qi in SOp3q in order to describe
the filaments’ rotations. In such a case, it seems possible to adjust our arguments in
order to obtain a result similar to Theorem 3.4. However, in the case where the cross
sections are not circular, the analysis seems more delicate.

Open Problem 3.7. — In view of the quantitative convergence result obtained in The-
orem 3.4, a natural issue is to obtain, in the general case as in the case of line segments,
higher-order asymptotic expansions of the dynamics with respect to ε. In particular,
it would be interesting to analyze the influence of the cross sections on the dynamics.
As it can be seen from the toy-model (58), and from the compressed form of the New-
ton equations given in (190) where we highlight that the coefficients are related to the
fluid state and depend on ε, establishing such asymptotic expansions in time requires
to prove some precise asymptotic description of the fluid state. In this direction it
would be interesting to investigate if the analysis performed in [30, Chap. 12.2], which
overcomes the difficulties related to the boundary layers associated with non circular
cross-sections in the case of the Laplace equations with a circular centerline could
be adapted to the present setting. Let us also mention that the influence of small
scales in the cross sections can also be encoded by a different choice of the boundary
conditions at the interface between the fluid phase and the solid phase. In this paper
we concentrate on the case of the no-slip condition at the interface, but some other
conditions could be considered as well, such as the Navier slip conditions, see [17]
and the references therein. Hence, it would be interesting to investigate whether or
not the results of Theorem 3.4 can be adapted to other boundary conditions. More-
over, one may wonder how a change of shape of the centerline curve influences the
dynamics, and the convergence of the dynamics, as the thickness parameter ε goes
to zero. Another natural issue to consider is whether the asymptotic description can
be extended up to a collision. For a similar issue in a close setting let us mention the
papers [5, 6].

Open Problem 3.8. — It would be interesting to investigate the case where the num-
ber N of filaments goes to `8, while the thickness parameter ε and the length ` of
the filaments go to 0 with ε ! ` ! 1, so that at the limit the phase corresponding
to the rigid filaments is then a cloud of point particles. A first question is to identify
the limit dynamics of these particles. Moreover one may identify a case where the
density of these particles is sufficient to create a collective effect at the main order on
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the fluid. This would extend the investigations on the Brinkman force for arbitrary
shapes done in [10, 18] from a case where anisotropy corresponds to a finite ratio to
the case of an infinite ratio.

3.9. A few more notations. — For E Ă Rd and r ą 0 we denote

(62) BrpEq “ tx P Rd : distpx,Eq ă ru.

We use the convention that in our estimates the constant C might change from line
to line and might depend on the background velocity, on the number N of filaments
and on the functions specifying the reference filaments, i.e., Ψi, γi, Ri, 1 ď i ď N .
We will always specify other dependencies and will make any dependence of C on ε
explicit.

We also point out that the following convention is used throughout the paper: the
letter u always stands for the fluid velocity, while the letter v stands for the solid
velocities.

There are several smallness requirements on ε throughout the paper, typically
denoted by ε ă ε0. Similarly as for the constant C we will for simplicity allow ε0 to
change its value throughout the proofs of our results. Notice that we will usually take
ε0 smaller than κ, where κ is defined in Theorem 3.4.

4. Immersed boundary method for the steady Stokes system in presence of
several thin filaments

This section is devoted to the asymptotic behaviour, in the limit where the thick-
ness ε of the filaments pSjqj converges to zero, of the solution u in 9H1pR3q to the
problem

(63)
´∆u`∇p “ 0 and div u “ 0 in F,

upxq “ vpxq in Si,

upxq “ 0 in Sj , for j ‰ i,

where a given index i such that 1 ď i ď N has been specified, as well as the inhomo-
geneous data v on the associated filament Si which is assumed to satisfy

(64) v PW 1,8pSiq with
ˆ
Si

div v “ 0.

Here these filaments are supposed to be given and fixed in terms of the reference
filaments Sj and some translations and rotations hj , Qj as in (11) but without any
time dependence. The quantities hj , Qj are supposed to be given in such a way that
the filaments pSjqj do not overlap or touch. In fact all the results in this section
that concern several filaments will be stated under the assumption that the minimal
distance between the filament centerlines

(65) dmin :“ min
i‰j

distpCi,Cjq,

is bounded from below and under a smallness condition on ε. Together, this implies
a lower bound on the distance between the filaments Si.
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To approximate the solution u to (63) we rely on the auxiliary velocity field UCi
rvs

given in (44). This velocity field solves the Stokes system in the full space R3 with
an appropriate source term given as Dirac masses along the limit curve Ci. It follows
from (45), from the decay of the kernel S defined by (28) (and its derivative), and
from the boundedness of k from (27) that for all x P R3 r Ci

|UCi
rvspxq| ď C}v}L8 min

!

log
´

1`
1

distpx,Ciq

¯

,
1

distpx,Ciq

)

,(66)

|∇UCi
rvspxq| ď C}v}L8 min

! 1

distpx,Ciq
,

1

pdistpx,Ciqq
2

)

.(67)

The following result establishes that UCi
rvs is the leading part of the solution u

to (63), up to a renormalization factor |log ε|
´1 as long as the filaments are sufficiently

separated in terms of dmin given by (65).

Theorem 4.1. — For all d ą 0 there exists ε0pdq ą 0 and Cpdq ą 0, for all filament
configuration with dmin ě d and for all ε in p0, ε0q, for any v satisfying (64) we have
the following result. The solution u to (63) satisfies

(68) }u} 9H1pR3q
ď C |log ε|

´1{2
}v}W 1,8pSiq.

Moreover,

}u´ |log ε|
´1
UCirvs} 9H1pR3rSiq

ď C |log ε|
´1
}v}W 1,8pSiq,(69)

}u´ |log ε|
´1
UCi

rvs}W 1,qpKq ď C |log ε|
´3{2

}v}W 1,8pSiq,(70)

for any q in r1, 3{2q and any compact K Ă R3, where C in (70) depends in addition
on q and K.

To prove Theorem 4.1, we will proceed in several steps. First, in Section 4.2, we will
establish pointwise estimates of UCirvs. Then in Section 4.4, we will deduce uniform
estimates in 9H1pR3q based on Helmholtz’ minimum dissipation theorem, see Theo-
rem 4.9. This enables to tackle the very proof of Theorem 4.1 in Section 4.4.

Theorem 4.1 will be used in Section 7 to prove the part of Theorem 3.4 devoted to
the asymptotic behavior of the fluid, once the asymptotic behavior of the dynamics
of the filaments is obtained.

Theorem 4.1 is also useful to establish approximation results of the force exerted
by the fluid on the filaments. To cover the different uses which we will need, we first
show a rather general result, where we make use of the elementary rigid velocities vi,α
defined in (26). We associate with these fields, for 1 ď α ď 6 and 1 ď i ď N , the
unique solutions Vi,α in 9H1pR3q to

´∆Vi,α `∇Pi,α “ 0 and div Vi,α “ 0, in F,(71a)
Vi,α “ δi,jvi,α, in Sj .(71b)

The vector fields Vi,α are smooth, decay as 1{|x| at infinity, their first-order derivatives
and the associated pressures Pi,α decay as 1{|x|2.

The next result concerns the approximation of force and torque.
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Corollary 4.2. — For all d ą 0 there exists a constant C “ Cpdq ą 0 such that for
all ε in p0, ε0pdqq, for all filament configuration with dmin ě d, for all divergence-free
functions v PW 1,8p

⋃N
j“1 Sjq and all 1 ď i ď N , for 1 ď α ď 6,

(72)
ˇ

ˇ

ˇ

ˇ

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 ´ |log ε|

´1
ICi
rvi,α, vs

ˇ

ˇ

ˇ

ˇ

ď C |log ε|
´3{2

}v}W 1,8p
⋃N

j“1 Sjq
.

The proof of Corollary 4.2 will be given in Section 4.5. A first particular useful
application of Corollary 4.2 corresponds to the case where v “ δi,jvj,β for 1 ď β ď 6

and 1 ď i, j ď N . It entails that for 1 ď α, β ď 6 and 1 ď i, j ď N , the quantity

(73) Ki,α,j,β :“

ˆ
BSj

pΣpVi,α, Pi,αqnq ¨ vj,β dH
2,

satisfies

(74)
ˇ

ˇ

ˇ
Ki,α,j,β ´ |log ε|

´1
K̂i,α,j,β

ˇ

ˇ

ˇ
ď C |log ε|

´3{2
.

Recall that the limit Stokes resistance matrices K̂i,α,j,β are defined in (32) and are
considered here as being associated with a fixed position of the centerline curves.

We will denote by K the 6N ˆ 6N matrix whose coefficients are these quantities
Ki,α,j,β , for 1 ď α, β ď 6 and 1 ď i, j ď N . Recall that the matrix K is referred to
as the steady Stokes resistance tensor, that it depends on all the positions hi and
orientations Qi and is symmetric positive definite, as a consequence of integrations
by parts, energy and uniqueness properties of the exterior steady Stokes system. Let
us refer for example to [25, Chap. 2], [12, Chap. 5], [26, Chap. 2 & 3].

Moreover it follows immediately from (74) and the coercivity of K̂ that we observed
in (37) (recall that K̂ is block-diagonal) that

(75) K ě
1

C
|log ε|

´1
Id and |K´1| ď C|log ε|.

Another particular use of Corollary 4.2 is the case where v “ u5. It will provide
some estimates on the so-called Faxén forces and torques defined by

(76) f5 :“ ppF 5i , T
5
i qq1ďiďN .

where

(77) F 5i :“ pF 5i,αqα“1,2,3 and T 5i :“ pT 5i,αqα“1,2,3,

with, for α “ 1, 2, 3, 1 ď i ď N ,

F 5i,α :“

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ u
5 dH2,(78)

T 5i,α :“

ˆ
⋃N

j“1 BSj

pΣpVi,α`3, Pi,α`3qnq ¨ u
5 dH2.(79)

Indeed applying (72) to v “ u5, we arrive at

(80) |f5 ´ |log ε|
´1

f̂5| ď C |log ε|
´3{2

}u5}W 1,8 .
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Above
f̂5 :“ p̂f5iq1ďiďN ,

where we recall that, for 1 ď i ď N , the vector f̂5i gathering the limit Faxén forces
and torques is defined in (35) and is here considered as being associated with a fixed
position of the centerline curves.

4.1. Modified centerlines for the non-closed filaments. — To simplify the proof
of Theorem 4.1, we introduce slightly modified centerline curves in the case of non-
closed filaments, i.e., the case when γi is not periodic. In this case, we cut an ε layer
at both endpoints. More precisely, we define

(81) C
ε

i :“ γiprε, Li ´ εsq,

and correspondingly, we write Cεi for the curve which is obtained from C
ε

i through
translation and rotation. This cut-off version satisfies

(82) distpCεi , BSiq ě cε

for all ε ă ε0 and some c ą 0 independent of ε We remark that Cεi resembles the
so-called effective centerline in [35].

In the case of a closed filament, i.e., when γi is periodic, (82) is automatically
satisfied for Cεi :“ Ci.

We show the following lemma, which allows us to prove Theorem 4.1 by replac-
ing UCi in (69) by UCε

i
.

Lemma 4.3. — Let v as in (64). Then there exists C ą 0 such that for all ε in p0, ε0q,

(83) }UCε
i
rvs ´ UCirvs} 9H1pR3rSiq

ď C
?
ε }v}L8pSiq.

Proof. — By linearity, UCi
rvs ´ UCε

i
rvs “ UCirCε

i
rvs. Similarly to the pointwise esti-

mate (67), we observe that for all x P R3 r Ci,

(84) |∇UCirCε
i
rvspxq| ď }v}L8pSiqmin

! 1

distpx,Ci r Cεi q
,

ε

pdistpx,Ci r Cεi qq
2

)

.

Denote by BCi the two endpoints of the curve Ci. Then, using that for all x P R3 r Si

(85) distpx,Ci r Cεi q ě cdistpx, BCiq,

the estimate (84) yields (83). �

4.2. Pointwise estimates. — This section is devoted to the analysis of the behavior
of UCε

i
rvs on the boundary of the filament Si.

We introduce ξi as the orthogonal projection from BSi to Ci which is well-defined
for ε sufficiently small since, by assumption, γi has no self-intersections. Moreover,
we denote by BCεi the boundary of the 1-dimensional manifold Cεi Ă R3, which is
empty if γi is a closed curve (as we defined Cεi “ Ci in this case) and contains precisely
2 points otherwise.
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Lemma 4.4. — Let v as in (64). Then there exists C ą 0 such that for all ε in p0, ε0q,

|UCirvs ´ |log ε| v ˝ ξi|pxq ď C}v}W 1,8pSiqp1` |logpdistpx, BCεi qq|q,(86)

on BSi. Moreover,

(87) }UCi
rvs} 9H1pR3rSiq

ď C |log ε|
1{2
}v}L8pSiq,

and

(88) }UCirvs}W 1,ppKq ď CK,p}v}L8pSiq,

for all p in r1, 2q and all compact K Ă R3. Furthermore, for all d ą 0, there exists C
depending on d such that

(89) }UCi
rvs}W 1,8pR3rBdpCiqq ď C}v}L8pSiq for j ‰ i.

Proof. — The estimates in (87), (88) and (89) are direct consequences of the pointwise
estimates (66) and (67).

It remains to prove (86). We will assume that the filament is non-closed. The
case of a closed filament is slightly easier. Since the statement concerns only a single
filament, we might assume that Ci “ Ci, and in particular Cεi “ γiprε, Li ´ εsq. Then,
we introduce the function s from BSi to r0, Lis by the formula γipspxqq “ ξipxq for
any x in BSi. In the rest of the proof, we will drop the index i.

Fix x P BS. Note that spxq P r0, εsYrL´ε, Ls implies distpx, BCεq ď Cε. In this case,
(86) follows immediately (66) applied to Cε and (82). Therefore, we might assume in
the following that spxq P pε, L´ εq.

Let us denote the straight line approximation at s “ spxq by

γ0psq :“ γpsq ` ps´ sqγ1psq.

We observe that for all s P rε, L´ εs we have

|γpsq ´ γ0psq| ď C|s´ s|2, |γ1psq ´ γ10psq| ď C|s´ s|,(90)
|x´ γpsq| ě c|s´ s| and |x´ γ0psq| ě |s´ s|.(91)

Then, we split the integral

UCi
rvspxq “

1

2

ˆ L´ε

ε

Spx´ γpsqqkpγ1psqqvpγpsqq ds

“
1

2

`

U1pxq ` U2pxq
˘

,(92)

where

U1pxq :“

ˆ L´ε

ε

Spx´ γ0psqqkpγ
1psqqvpγpsqq ds,(93)

U2pxq :“

ˆ L´ε

ε

`

Spx´ γpsqqkpγ1psqqvpγpsqq ´ Spx´ γ0psqqkpγ
1psqqvpγpsqq

˘

ds.(94)

We decompose U1pxq further by observing the following. By definition of S,

(95) Spx´ γ0psqq “
1

8π

1

|x´ γ0psq|

`

Id`Apx´ γ0psqq
˘

,
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where, for p in R3 r t0u,
Appq :“

p

|p|
b

p

|p|
.

Moreover,

(96) Id “ 8πS0pγ
1psqq ´ γ1psq b γ1psq “ 8πS0pγ

1psqq ´Apps´ sqγ1psqq,

where S0 is defined in (29), so that

(97) Spx´ γ0psqq “
1

8π

1

|x´ γ0psq|

`

8πS0pγ
1psqq `Apx´ γ0psqq ´Apps´ sqγ

1psqq
˘

.

This leads to

(98) U1pxq “ U1,apxq ` U1,bpxq,

with

U1,apxq :“

ˆˆ L´ε

ε

1

|x´ γ0psq|
ds

˙

S0pγ
1psqqkpγ1psqqvpγpsqq,

U1,bpxq :“
1

8π

ˆˆ L´ε

ε

Apx´ γ0psqq ´Apps´ sqγ
1psq

|x´ γ0psq|
ds

˙

kpγ1psqqvpγpsqq.

Then, thanks to the identity (30), to the fact that γpsq is the orthogonal projection
of x on Ci, to the change of variables z “ ps ´ sqγ1psq and to the fact that γ is
a parametrization by arc length, we obtain

U1,apxq “

ˆˆ L´ε

ε

1

|x´ γ0psq|
ds

˙

vpγpsqq

“

ˆˆ L´s´ε

´s`ε

1

p|x´ γpsq|2 ` z2q1{2
dz

˙

vpγpsqq(99)

“ psinh´1
p|x´ γpsq|´1pL´ s´ εqq ´ sinh´1

p´|x´ γps´ εq|´1sqqvpγpsqq.

Using that sinh´1
pzq “ logpz`

?
1` z2q, for any real z, and that cε ď |x´γpsq| ď Cε,

elementary but tedious estimates show that

(100)
ˇ

ˇU1,apxq ´ 2 |log ε| vpγpsqq
ˇ

ˇ ď C|vpγpsqq|
`

1` |logpdistpx, BCεqq|
˘

,

where we used that BCε “ tγpεq, γpL´ εqu.
To estimate U1,bpxq, we use

(101) |Appq ´Apqq| ď C min
!

1, |p´ q|max
 

1{|p|, 1{|q|
(

)

.

Thus, |U1,bpxq| is bounded by

C|vpγpsqq|

ˆ L´ε

ε

1

|x´ γ0psq|
min

!

1, |x´ γpsq|max
! 1

|x´ γ0psq|
,

1

|s´ s|

))

ds,

and therefore by

C|vpγpsqq|

ˆˆ s`ε

s´ε

1

pε2 ` ps´ sq2q1{2
ds`

ˆ
rε,L´εsrrs´ε,s`εs

ε

ps´ sq2
ds

˙

,
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so that finally

|U1,bpxq| ď C|vpγpsqq|.(102)

We now estimate U2pxq. Using that

(103) |Spx1q ´ Spx2q| ď C|x1 ´ x2|max
! 1

|x1|
2
,

1

|x2|
2

)

,

we deduce that

|Spx´ γpsqqkpγ1psqqvpγpsqq ´ Spx´ γ0psqqkpγ
1psqqvpγpsqq| ď C}v}W 1,8pSiq.

Therefore,

(104) |U2pxq| ď C}v}W 1,8pSiq.

Combining (92), (98), (100), (102) and (104), we arrive at (86). �

4.3. Bogovskiı̆ and extension operators with some uniformity with respect to the
domain. — A second ingredient of the proof of Corollary 4.2 is the use of some Bo-
govskĭı operators with some natural norms that are bounded uniformly with respect
to the domain.

We will make use of a statement regarding Bogovskĭı operators associated with
John domains. Roughly speaking, an open bounded domain Ω is a John domain with
respect to a point x0 if each point y in Ω can be reached by a Lipschitz curve beginning
at x0 and contained in Ω in such a way that, for every point x in the curve, the distance
from x to y is proportional to the distance from x to the boundary of Ω. This class
strictly contains the Lipschitz domains. Notice nevertheless that external cusps are
not allowed. Let us now give the precise definition of John domains following the
definition of [1].

Definition 4.5. — Let Ω Ă Rn be an open bounded domain. Then, Ω is called a
John domain with constant Z ą 0 if there exists x0 P Ω such that for all x P Ω there
is an Z-Lipschitz map ρ : r0, |x ´ x0|s Ñ Ω such that ρp0q “ x, ρp|x ´ x0|q “ x0 and
for all t P r0, |x´ x0|s,

(105) distpρptq, BΩq ě t{Z.

The filaments Si are Lipschitz domains and therefore any smooth neighborhood
of Si is a John domain. In the next Lemma, we prove that suitable neighborhoods are
John domains uniformly in ε.

Lemma 4.6. — Let d ą 0. Then, there exists ε0 ą 0 such that for all ε ă ε0, BdpCiqrSi

is a John domain with a constant Z independent of ε.

Proof. — We first consider the case of a closed filaments. The necessary adaptations
for non-closed filaments will be discussed at the end of the proof.

Fix c ă d such that the projection ξi : BcpCiq Ñ Ci as in Lemma 4.4 is well defined.
We will consider ε0 in p0, cq.
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γipsq
CiSi

BcpCiq

BεRpCiq E

x
x1

ρ1

x1

x2
ρ2

x2x0 ρ3

Figure 2. Illustration of the construction of the curve ρ from x to x0

via x1 and x2

Choose any reference point x0 P BdpCiq r BcpCiq. To construct a curve from
x P BdpCiq r Si to x0, we proceed in three steps: we construct three curves ρ1, ρ2

and ρ3 that once pasted together connect x to x0. We parametrize the curves by arc
length and reparametrize at the end to obtain a curve ρ : r0, |y ´ x0|s Ñ BdpCiqr Si

connecting x to x0. In the following construction, the constants η, C ą 0 will be
independent of ε. The construction is visualized in Figure 2.

Let R :“ 2}Ψi}8, where we recall from (3) that Ψi specifies the cross section of
the reference filament. In particular, we have Si Ă BεR{2pCiq.

First, if x P BεRpCiq, we construct a Lipschitz curve ρ1 : r0, T1s from x to x1 P

BBεRpCiq which satisfies T1 ď CεR and distpρ1ptq, BSiq ě ηt. If x R BεRpCiq, we set
x1 “ x. To construct ρ1, we consider ξipxq the projection of x on Ci and s such
that γipsq “ ξipxq. Let A be the plane through ξipxq perpendicular to γ1ipsq. Note
that x P A. Then, for ε sufficiently small, E “ A X pBεRpCiq r Siq is a smooth two
dimensional domain, and Ê :“ p1{εqE is independent of ε and depends smoothly
on ξipxq. Therefore, we may construct ρ̂1 in Ê in order to obtain an appropriate
curve ρ1 by rescaling.

Second, we construct a Lipschitz curve ρ2 : r0, T2s Ñ BdpCiqr Si from x1 to some
x2 P BdpCiqrBcpCiq such that T2 “ pc´ pεR` distpx1, BεRpCiqqq` and

(106) distpρ2ptq, Siq ě distpρ2ptq, BεRpCiqq `
1

2
εR “ t` distpx1, BεRpCiqq `

1

2
εR.

To construct ρ2, we just move along the gradient of distp¨, BBεRpCiqq. The gradient
of distp¨, BBεRpCiqq coincides with the gradient of distp¨,Ciq outside of BεRpCiq. The
gradient is well defined through our choice of c, and (106) holds.

Third, we construct a Lipschitz curve ρ3 : r0, T3s Ñ BdpCiqrBcpCiq from x2 to x0

such that |T3| ď C|x2´x0|. The existence of ρ3 is straightforward since BdpCiqrBcpCiq
is a Lipschitz domain independent of ε which contains x0. In particular observe that
the part of the condition (105) which concerns the distance to the external boundary
BBdpCiq of the domain BdpCiqr Si is clear.
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Now, we glue the three curves together and rescale to obtain ρ : r0, |x ´ x0|s Ñ

BdpCiqr Si which has a Lipschitz constant

(107) Z0 “
T

|x´ x0|
“:

T1 ` T2 ` T3

|x´ x0|
.

Moreover, ρ satisfies
(108)

distpρptq, BSiq ě

$

’

’

’

’

’

&

’

’

’

’

’

%

ηt|x´ x0|

T
0 ď t ď

T1|x´ x0|

T
,

c
´

t´
T1|x´ x0|

T

¯

`
1

2
εR

T1|x´ x0|

T
ď t ď

pT1 ` T2q|x´ x0|

T
,

c
pT1 ` T2q|x´ x0|

T
ď t ď |x´ x0|.

Note that the additional constant c in the second line above arises because the distance
to BSi is considered instead of the distance to Ci. We claim that

(109) T ď C|x´ x0|.

which implies that Z0 is bounded independently of ε and x.
To prove the claim note that

(110) T ď CεR1xPBεRpCiq ` pc´ pεR` distpx1, BεRpCiqqq` ` C|x2 ´ x0|,

where the notation 1 is used for the indicator function of the set written as an index.
Consider first the case x P BεRpCiq. Then, for ε sufficiently small, εR ď c ď 2|x´x0|.
Moreover, x1 P BBεRpCiq. Thus

(111) pc´ pεR` distpx1, BεRpCiqqq` “ |x1 ´ x2| ď c ď 2|x´ x0|,

and finally

(112) |x2 ´ x0| ď |x´ x0| ` |x´ x1| ´ |x1 ´ x2| ď |x´ x0| ` 2c ď C|x´ x0|

such that we conclude (109).
If x R BεRpCiq but x P BcpCiq, then we use that x2 is the orthogonal projection of

x “ x1 to BBcpCiq. Thus

(113) T2 “ |x´ x2| “ distpx, BBcpCiqq ď |x´ x0|

and we deduce again (109) by the triangle inequality. In the case x R BcpCiq, the claim
is also trivially satisfied since T1 “ T2 “ 0.

It remains to verify that distpρptq, BSiq ě t{Z, for some Z independent of x and ε.
By (108), we see that this is satisfied on the first and on the third part of the curve.
Recalling |T1| ď CεR, the same holds for the second part of the curve. This finishes
the proof.

In the case of a non-closed filament, the proof works almost the same. The only
necessary change is due to the fact that the plane A as defined in the construction
of ρ1 above does not always contain x. Indeed x R A if the segment rx, ξpxqs is not
perpendicular to γipsq which can only happen if ξpxq P BCi. Fix such an x P BcpCiq
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and let P pxq be the projection of x to BSi. Then, since the faces of BSi, i.e., the
surfaces ty P BSi : ξpyq P BCiu, are flat, the straight curve

(114) ρ1,2ptq :“ x` t
x´ P pxq

|x´ P pxq|
satisfies distpρ1,2ptq, BSiq ě t,

for all t ď T2 which we again take to be the time where ρ1,2ptq P BBcpCiq. From there,
we can continue with the curve ρ3 as above. �

Now the statement that we will use is the following particular case of [1, Th. 4.1],
where L2

0 denotes the space of L2-functions with vanishing mean.

Theorem 4.7 ([1, Th. 4.1]). — Let Ω Ă R3 be a John domain with constant Z. Then
there exists a bounded linear operator Bog : L2

0pΩqÑH1
0 pΩq such that for all f PL2

0pΩq

(115) div Bog f “ f,

and the operator norm }Bog }L2
0pΩqÑH

1
0 pΩq

depends only on Z and diampΩq.

Relying on this result, we prove the following lemmas about extending functions
defined on BSj .

Lemma 4.8. — Let d ą 0. Then, there exists ε0pdq ą 0 and Cpdq ą 0 such that for all
ε in p0, ε0q the following holds. Let χ in H1pBSjq satisfyingˆ

BSj

χ ¨ ndH2 “ 0.

Then, there exists a divergence-free function ψ P 9H1pR3rSjq such that ψ “ χ on BSj,
suppψ Ă BdpCjq and

(116) }ψ}29H1pR3rSjq
ď
C

ε
}χ}2L2pBSjq

` Cε}∇χ}2L2pBSjq
.

Proof. — We consider first the case of a closed filament Sj . The necessary adaptations
for a non-closed filament will be discussed at the end of the proof. Let c ą 0 and
Tε “ BεcpSjq r Sj . Denote by Pε the projection from Tε to BSj . Then, there exists
pc, ε0q (depending only on Cj) such that for all ε ă ε0, Pε is well-defined, smooth and
|∇Pε| ď C. By further reducing ε0 (depending on d), we ensure that Tε Ă BdpCjq.
Let θε be a smooth cutoff function supported in Tε such that θε “ 1 on BSj and
|∇θε| ď C{ε.

Consider the function

(117) ψpxq “ θεpxqχpPεpxqq ´ Bogpdivpθεp¨qχpPεp¨qqqpxq,

where Bog denotes suitable Bogovskĭı operators on BdpCjq r Sj , provided by Theo-
rem 4.7. We readily check the condition

(118)
ˆ
BdpCjqrSj

divpθεpxqχpPεpxqq “

ˆ
BSj

χ ¨ ndH2 “ 0.
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Therefore, we have

}ψ}29H1pR3rSjq
ď C}∇pθεχ ˝ Pεq}2L2pR3rSjq

(119)

ď Cε´2 }χ ˝ Pε}
2
L2pTεq

` C}∇χ ˝ Pε}2L2pTεq
.(120)

Finally, we observe that, by a change of coordinates and Fubini’s principle,

(121) }χ ˝ Pε}
2
L2pTεq

ď ε}χ}2L2pBSjq
,

and analogously for the gradient. This implies the result. For the change of coordinates
we used that for each r P p0, εcq, Pε is a diffeomorphism (uniformly in r and ε) from
BBrpSjq to BSj for c, ε0 sufficiently small.

This is not the case for a non-closed filament Sj which is only Lipschitz. Thus,
we need to slightly modify the definition of Pε. To this end, we first define P̃ε as the
projection from Tε to

(122) Zj :“ tx P Sj : distpx, BSjq ě cεu.

After possibly reducing c and ε0, Zj satisfies an exterior sphere condition with Rě4cε,
which makes this projection well-defined and also Pε : Tε Ñ BSj ,

(123) Pεpxq :“ P̃εpxq ` cε
x´ P̃εpxq

|x´ P̃εpxq|
.

Then, Pε is again a diffeomorphism (uniformly in r and ε) from BBrpSjq to BSj .
Indeed, the exterior sphere condition yields for all x, y P Tε
(124) |P̃εpxq ´ P̃εpyq| ď 2|x´ y|.

Thus, for all x, y P BBrpSjq

|Pεpxq ´ Pεpyq| ď 2|x´ y| ` cε
|x´ y| ` |P̃εpxq ´ P̃εpyq|

r ` cε
ď 5|x´ y|.

It remains to check that

(125) |Pεpxq ´ Pεpyq| ě c0|x´ y|.

To this end, we distinguish two cases: in the first case, |P̃εpxq ´ P̃εpyq| ě |x ´ y|{8.
In this case (125) follows from (124) applied to Pεpxq, Pεpyq instead of x, y and using
that P̃εpPεpxqq “ P̃εpxq. In the opposite case, |P̃εpxq´ P̃εpyq| ď |x´y|{8. Then, using
r ď cε, (123) implies

|Pεpxq ´ Pεpyq| ě
|x´ y|

2
´ 2|P̃εpxq ´ P̃εpyq| ě

|x´ y|

4
. �

4.4. Proof of Theorem 4.1. — Let us first focus on proving (69), observing that the
estimate (68) will follow from (69), (87) and (89).

By Lemma 4.3 it suffices to show (69) with UCi
replaced by UCε

i
, namely

(126) }u´ |log ε|
´1
UCε

i
rvs} 9H1pR3rSiq

ď C |log ε|
´1
}v}W 1,8pSiq,

Let
ur :“ u´ |log ε|

´1
UCε

i
rvs.
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Using (89) for inside Sj , for j ‰ i, and the definition of u, we observe that, to prove
the estimate (126), it suffices to show that

(127) }ur} 9H1pFq ď C |log ε|
´1
}v}W 1,8pSiq.

We apply Lemma 4.8 with χ “ ur, which satisfies the condition

(128)
ˆ
BSj

ur ¨ ndH
2 “

ˆ
Sj

div ur “ 0,

for 1 ď j ď N .
By (86), since ˆ

BSi

|logpdistpx, BCεi qq|
2
dH2 ď Cε,

we have

(129) }ur}
2
L2pBSiq

ď Cε |log ε|
´2
}v}2W 1,8pSiq

.

Moreover from the pointwise estimate (67) applied to UCε
i
and recalling (82), we find

(130) }∇τur}
2
L2pBSiq

ď
C

ε
|log ε|

´2
}v}2W 1,8pSiq

,

where ∇τ denotes the tangential part of the gradient. Finally, for j ‰ i, we observe
that (89) implies

}ur}
2
L2pBSjq

ď Cε |log ε|
´2
}v}2W 1,8pSiq

,(131)

}∇τur}
2
L2pBSiq

ď Cε |log ε|
´2
}v}2W 1,8pSjq

,(132)

for some constant depending on d.
Thus, Lemma 4.8 yields a divergence-free function ũr “

ř

ψi P H
1pFq with ũr “ ur

on BF and

(133) }ũr} 9H1pFq ď C |log ε|
´1
}v}W 1,8 .

We conclude by recalling that ur solves the Stokes equations in F. Thus, it minimizes
the 9H1-norm among all divergence-free functions which satisfy the same boundary
conditions according to the Helmholtz minimum dissipation theorem which we now
recall.

Theorem 4.9. — If u in 9H1pFq satisfies

´∆u`∇p “ 0, and div u “ 0 in F,

and ũ in 9H1pFq satisfies

div ũ “ 0 in F and ũ “ u on BF,

then
}u} 9H1pFq ď }ũ} 9H1pFq.

Proof. — Using ũ ´ u as a test function in the weak formulation of the PDE for u,
we find pũ´ u, uq 9H1pFq “ 0 and thus }ũ}29H1pFq

“ }ũ´ u}29H1pFq
` }u}29H1pFq

. �
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For the proof of Theorem 4.1, it remains to show (70). This estimate follows directly
from (69), (88) and the following lemma.

Lemma 4.10. — For all d ą 0 and p ă 3{2 there exists ε0pdq ą 0 and Cppdq ą 0

such that for all ε ă ε0 and all dmin ě d the following holds. Let q P rp,8s and let
v P 9H1pFq XW 1,q

loc pR3q be divergence-free and solve the homogeneous Stokes equations
in F, that is

´∆v `∇p “ 0 and div v “ 0 in F.

Then,

(134) }v}W 1,p
loc
ď Cp |log ε|

´1{2
}∇v}L2pFq ` ε

2{q1´2{p1}∇v}Lqp
⋃

i Siq.

Proof. — Let K be compact, g P Lp1 , supp g Ă K and let w solve

´∆w `∇π “ div g and divw “ 0 in R3.

Then, by standard regularity theory and Sobolev embedding with 1{p1 “ 1{r ´ 1{3

(135) }∇w}Lp1 pR3q ` }w}L8pR3q ď Cpp}∇w}Lp1 pR3q ` }∇w}LrpR3qq ď CK,p}g}Lp1 pR3q,

where we used in the last step that g P LrpR3q due to its compact support. Thus the
desired estimate for }∇v}LppKq will follow by duality once we have shown

(136)
ˆ
R3

∇v ¨ g “ 2

ˆ
R3

Dw : Dv

ď Cp

´

|log ε|
´1{2

}∇v}L2pFq ` ε
2{q1´2{p1}∇v}Lqp

⋃
i Siq

¯´

}∇w}Lp1 pR3q ` }w}L8pR3q

¯

,

where we recall that D is the deformation tensor, see (21). The estimate for }v}LppKq

follows along the same lines by considering the problem ´∆w1`∇π1 “ g and the fact
that ˆ

v ¨ g “ 2

ˆ
R3

Dw1 : Dv.

Note that the regularity of w1 is even better than the regularity of w.
To show (136), we split the left hand side into

(137) 2

ˆ
R3

Dw : Dv “ 2

ˆ
YSi

Dw : Dv ` 2

ˆ
F

Dw : Dv “: I1 ` I2.

By Hölder’s inequality, we estimate

(138) I1 ď Cε2{q1´2{p1}∇v}Lqp
⋃

i Siq}∇w}Lp1 ,

where we used |
⋃
Si| ď Cε2. Moreover, by some integrations by parts, we have that

(139) I2 “
ÿ

1ďiďN

ˆ
BSi

Σpv, pqn ¨ w “ 2

ˆ
R3rF

Dϕ : Dv ď 2}v} 9H1pFq}ϕ} 9H1pFq

for all divergence-free functions ϕ P 9H1pR3q with ϕ “ w in Si.
Therefore, it remains to show that such a function ϕ exists which satisfies

(140) }ϕ} 9H1 ď C |log ε|
´1{2 `

}∇w}Lp1 pR3q ` }w}L8pR3q

˘

.
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The construction of such a function ϕ is similar to the construction in the proof of
Lemma 4.8. However, since we have better control of the function which we want to
extend, we will see that using a different cut-off function yields better estimates than
in Lemma 4.8. More precisely, we consider R ě 0 (independent of ε) and ε0 sufficiently
small, such that Si Ă BεRpCiq Ă BdpCiq for all 1 ď i ď N . Then, we define

(141) θεpxq :“

$

’

’

’

&

’

’

’

%

logpdistpx,
⋃
i Ciqq ´ log d

logpεRq ´ log d
in

⋃
ipBdpCiqrBεRpCiqq,

1 in
⋃
iBεRpCiq,

0 in R3 r p
⋃
iBdpCqq.

Note that this cut-off function corresponds to the 2-dimensional capacitary function
of a ball Bεpxq within Bdpxq.

Now we define

(142) ϕ :“ θεw ´ Bogp∇θε ¨ wq.

Note that supp∇θε Ă YBdpCiqrBεRpCiq. We may apply Lemma 4.6 to this domain
to estimate the Bogovskĭı operator since BεRpCiq just corresponds to a filament with
centerline Ci and circular cross section.

Thus, we can estimate

(143)
}ϕ} 9H1 ď }w∇θε}L2pR3q ` }θε∇w}L2pR3q

ď }w}L8pR3q}∇θε}L2pR3q ` }θε}LrpR3q}∇w}Lp1 pR3q,

where 1{r ` 1{p1 “ 1{2. To conclude, we assume that ε0 is chosen small enough such
that log d´ logpεRq ě 1

2 |log ε|. Then,

(144) }∇θε}2L2pR3q ď C |log ε|
´2

ÿ

1ďiďN

ˆ
BdpCiqrBεRpCiq

1

dist2
px,Ciq

dx ď C |log ε|
´1
,

and for all r ă 8,

(145) }θε}
r
LrpR3q

ď C |log ε|
´r

ÿ

1ďiďN

ˆ
BdpCiq

|logpdistpx,Ciqq|
r
` |log d|

r
dx ď Cr |log ε|

´r
.

Inserting (144) and (145) in (143) yields (140). This concludes the proof. �

4.5. Proof of Corollary 4.2. — This subsection is devoted to the proof of Corollary
4.2. Let us therefore consider a vector field v in W 1,8p

⋃N
j“1 Sjq and divergence-free.

Our aim is to establish the inequality (72) regarding the approximation of

(146)
ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 by |log ε|

´1
ICi
rvi,α, vs,

where the functions pVi,α, Pi,αq are defined in (71). Let

(147) ui,α :“ |log ε|
´1
UCi

rvi,αs and pi,α :“ |log ε|
´1
PCi
rvi,αs,
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where UCi
and PCi

are the operators respectively defined in (44) and (48). By (49),

(148) ´∆ui,α `∇pi,α “ |log ε|
´1
µCirvi,αs, div ui,α “ 0,

in the sense of distributions in R3. Let us decompose

(149)
ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 ´ |log ε|

´1
ICi
rvi,α, vs

“

ˆ
BSi

Σpui,α, pi,αqn ¨ v dH
2 ´ |log ε|

´1
ICi
rvi,α, vs

`

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 ´

ˆ
BSi

Σpui,α, pi,αqn ¨ v dH
2.

By an integration by parts inside the filament Si and recalling the definition (31),
we deduce from (148) that

(150)

ˆ
BSi

Σpui,α, pi,αqn ¨ v dH
2 “

ˆ
Si

p´∆ui,α `∇pi,αq ¨ v `
ˆ
Si

Σpui,α, pi,αq : Dpvq

“ |log ε|
´1
ICirvi,α, vs `

ˆ
Si

Σpui,α, pi,αq : Dpvq.

By (67), and by observing that the pressure PCi
satisfies the same pointwise decay

estimates as the velocity gradient ∇UCi

(151)
ˇ

ˇ

ˇ

ˇ

ˆ
Si

Σpui,α, pi,αq : Dpvq

ˇ

ˇ

ˇ

ˇ

ď C}v}W 1,8pSiq

ˆ
Si

1

distpx,Ciq
dx ď Cε}v}W 1,8pSiq.

Let w :“
řN
i“1 wi, where wi is the solution to (63). Then w “ v in

⋃N
j“1 Sj and thus,

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 “

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ w dH
2

“

ˆ
F

DpVi,αq : Dpwq

“

ˆ
R3rSi

DpVi,αq : Dpwq,

since DpVi,αq “ 0 in
⋃
j‰i Sj . On the other hand, it follows from (148) that

ˆ
BSi

Σpui,α, pi,αqn ¨ vdH
2 “

ˆ
BSi

Σpui,α, pi,αqn ¨ w dH2

“

ˆ
R3rSi

Dpui,αq : Dpwq dH2,

so thatˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ v dH
2 ´

ˆ
BSi

Σpui,α, pi,αqn ¨ wdH
2

“

ˆ
R3rSi

DpVi,α ´ ui,αq : Dpwq.
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Therefore, by Theorem 4.1, we deduce that

(152)
ˇ

ˇ

ˇ

ˇ

ˆ
⋃N

j“1 BSj

pΣpVi,α, Pi,αqnq ¨ h dH
2 ´

ˆ
BSi

Σpui,α, pi,αqn ¨ vdH
2

ˇ

ˇ

ˇ

ˇ

ď }ui,α ´ Vi,α} 9H1pR3rSiq
}w} 9H1pR3q

ď C |log ε|
´3{2

}v}W 1,8p
⋃

j Sjq.

Gathering (149), (150), (151) and (152) we arrive at (72) and this finishes the proof
of Corollary 4.2.

5. Shape derivatives

Since the filaments evolve in time, it is necessary to tackle the behaviour of the
solutions to the Stokes system with Dirichlet data in the filaments under rigid dis-
placements of the filaments. To this end we establish the following bound on the shape
derivatives, with respect to rigid motions of the filaments, of the interaction energy of
two solutions to the Stokes system with fixed values in the filaments. This bound is
uniform with respect to ε and to the positions for which a positive minimal distance
between the centerlines is guaranteed.

Proposition 5.1. — For all d ą 0, there are Cpdq ą 0 and ε0pdq ą 0 such that for
all ε in p0, ε0q, for all ph,Qq in R3N ˆ SOp3qN such that the corresponding minimal
distance dmin between the centerlines defined in (65), satisfies dmin ě d, and for all
divergence-free vector fields ϕ1 and ϕ2 in W 2,8pR3q, the following holds true. The
corresponding solutions ψ1 and ψ2 in 9H1pFq to the Stokes problem

(153)
´∆ψi `∇pi “ 0 and divψi “ 0 in F,

ψi “ ϕi on
N⋃
j“1

BSj ,

where the position Sj of the filaments are deduced from their original positions by
ph,Qq as in (11), satisfy

(154) |∇h,Q

`

Dpψ1q, Dpψ2q
˘

L2pFq
|

ď C |log ε|
´1

´

}ϕ1}W 1,8pR3q}ϕ2}W 2,8pR3q ` }ϕ1}W 2,8pR3q}ϕ2}W 1,8pR3q

¯

.

Above the notation p¨, ¨qL2pFq stands for the inner product in L2pFq.

Proof of Proposition 5.1. — To establish the bound (154) of the shape derivative of
the interaction energy

`

Dpψ1q, Dpψ2q
˘

L2pFq
,

we estimate the difference of such interaction energies corresponding to two close
configurations of the filaments. To this end, let d ą 0, let ϕ1, ϕ2 divergence-free
vector fields in W 2,8pR3q. Let ph,Qq P R3N ˆSOp3qN with dmin ě d and let pqh, qQq P
R3N ˆ SOp3qN such that |ph,Qq ´ pqh, qQq| ď δ small enough, to be chosen later. For
i “ 1, 2, let ψi and qψi, the solutions to (153) corresponding to the same boundary
data ϕi, and to the filaments’ positions ph,Qq and pqh, qQq, respectively. Corresponding
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pressures are denoted by pi and qpi. Thus, for i “ 1, 2, on the one hand pψi, piq satisfies
(153) and on the other hand p qψi, qpiq satisfies

(155)
´∆ qψi `∇qpi “ 0 and div qψi “ 0 in qF,

qψi “ ϕi on
N⋃
j“1

BqSj ,

where F and qF denote the fluid domain respectively corresponding to ph,Qq and
pqh, qQq, while the sets Sj and qSj are the positions respectively occupied by the filaments
in the two configurations.

To prove Proposition 5.1 we are going to prove that there are Cpdq ą 0 and
ε0pdq ą 0 such that for all ε in p0, ε0q,

(156) |pDpψ1q, Dpψ2qqL2pFq ´ pDp qψ1q, Dp qψ2qqL2pqFq
|

ď Cδ |log ε|
´1

´

}ϕ1}W 1,8pR3q}ϕ2}W 2,8pR3q ` }ϕ1}W 2,8pR3q}ϕ2}W 1,8pR3q

¯

.

Without loss of generality, we may restrict the proof to the case where only one
filament is displaced, say the first one, so that the positions of the other filaments is
the same for the two configurations, that is pqhj , qQjq “ phj , Qjq for all 2 ď j ď N .
As a consequence,

(157) Sj “ qSj , for all j such that 2 ď j ď N.

Moreover, up to a change of frame, we may also assume without loss of generality
that the position of the first filament satisfies ph1, Q1q “ p0, Idq, and we recall that
the position pqh1, qQ1q of the first filament in the second configuration is in general
different from p0, Idq but δ-close so that

(158) |qh1| ` | qQ1 ´ Id | ď δ.

Step 1: Construction of a suitable deformation. — In this first step we introduce an
auxiliary vector field associated with qψi, see (167) for the definition, but which solves
a Stokes system in F, see (174) for the exact system.

We choose a neighborhood T1 defined by T1 “ S2ε
1 (i.e., the filament corresponding

to 2ε instead of ε). Lemma 4.6 ensures that the set

(159) J :“ Bd{4pC1qr T1

is a John domain with a constant Z independent of ε for ε sufficiently small. Let
η P C8c pBd{4pC1qq be a nonnegative cut-off function such that η “ 1 in T1.

Let φ be the function from R3 to R3 such that for all x in R3,

(160) φpxq :“ x`
`

p qQ1 ´ Idqx` qh1

˘

ηpxq.

By construction,

(161) φpFq “ qF, in particular φpS1q “
qS1,

and

(162) φ|R3rpBd{4pC1qq “ IdR3rpBd{4pC1qq .
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Moreover φ and φ´1 are diffeomorphisms from R3 to R3 with

(163) |∇φ| ` |∇φ´1| ď C,

for a constant C independent of d for δ sufficiently small. To see that φ is injective
for δ sufficiently small, and to estimate ∇φ´1, we estimate |φpx1q´φpx2q| from below
for all x1, x2 P R3. Clearly, if xi R supp η for i “ 1, 2, the estimate is trivial. Let us
assume x2 P supp η and note that since h1 “ 0 this implies |x2| ď C ` d, where the
constant C depends only on the reference filament S1. Thus, using (160) and (158),
we have that

|φpx1q ´ φpx2q|

ě |x1 ´ x2| ´
ˇ

ˇ

`

p qQ1 ´ Idqx1 ` qh1

˘

ηpx1q ´
`

p qQ1 ´ Idqx2 ` qh1

˘

ηpx2q
ˇ

ˇ

ě |x1 ´ x2| ´ | qQ1 ´ Id ||x1 ´ x2|ηpx1q ´
ˇ

ˇp qQ1 ´ Idqx2 ` qh1

ˇ

ˇ|ηpx1q ´ ηpx2q|

ě
1

2
|x1 ´ x2|,

for δ sufficiently small.
Furthermore, for all x in R3, we set

(164) Φpxq :“ ∇φpxq “ Id`p qQT1 ´ Idqηpxq `
`

p qQ1 ´ Idqx` qh1

˘

b∇η,

with the convention that ∇φ “ pBiφjqi,j . From the definition of φ and Φ in (160) and
(164) it follows that

(165) |p∇φT q∇φ´ Id | ` |∇Φ| ` |∇2Φ| ď Cδ 1J,

where 1J is the indicator function of the set J defined in (159).
Since η “ 1 in T1,

(166) for allx P T1, pΦ qψi ˝ φqpxq “ qQT1 ψip
qQ1x` qh1q.

In particular the vector field Φ qψi ˝ φ is divergence-free in T1. We define

(167) ψ̃i :“ Φ qψi ˝ φ´ BogpdivpΦ qψi ˝ φqq and p̃i “ qpi ˝ φ,

where Bog denotes a Bogovskĭı operator provided by Theorem 4.7 in the domain J,
which satisfies

(168) supppdivpΦ qψi ˝ φqq Ă J.

Recall that, according to Theorem 4.7 and the fact that J is a John domain with
a constant Z independent of ε for ε sufficiently small, the operator Bog mentioned
above satisfies that there exists C ą 0 such that for ε sufficiently small,

(169) for all f P L2
0pJq, }Bog f}H1pJq ď C}f}L2pJq.
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Step 2: The divergence of Φ qψi˝φ. — In this step, we prove the following identity, which
in combination with (165), is helpful below, see (178), to prove that in J, divpΦ qψi ˝φq

is a Opδq:

(170) divpΦ qψi ˝ φq “ pdiv Φq ¨ pψi ˝ φq `
´

p∇φqT∇φ´ Id
¯

: pp∇ qψiq ˝ φq.

Let us first recall that for some regular enough fields of matrices A and of vectors
v, the following identity holds true:

(171) divpAvq “ pdivAq ¨ v `A : ∇v,

where the operator div has to be applied row-wise to A.
In particular, by applying (171) to the case where A “ Φ and v “ qψi ˝ φ, and

recalling that Φ “ ∇φ, we obtain that

(172)
divpΦ qψi ˝ φq “ pdiv Φq ¨ pψi ˝ φq `∇φ : ∇p qψi ˝ φq

“ pdiv Φq ¨ pψi ˝ φq ` p∇φqT∇φ : pp∇ qψiq ˝ φq,

where we used in the last identity that A : BC “ BTA : C for any A,B,C P R3ˆ3.
Finally, by definition div qψi “ Id : ∇ qψ “ 0. Using this in (172) yields (170).

Step 3: The Stokes system solved by ψ̃i, for i “ 1, 2. — Observe the following fact:

(173) for allx P T1, ψ̃ipxq “ qQT1
qψip qQ1x` qh1q and p̃ipxq “ qpip qQ1x` qh1q.

Using Φ“p∇φqT and some tensor calculus similar as in the previous step, we find in F

´∆ψ̃i `∇p̃i “ ´p∆Φq qψi ˝ φ`∆ BogpdivpΦ qψi ˝ φqq ´ 2∇Φ∇p qψi ˝ φq

´ Φ
´

p∇φqT∇φ : ∇2
qψi ˝ φ

¯

` Φ∇qpi ˝ φ

“ ´p∆Φq qψi ˝ φ`∆ BogpdivpΦ qψi ˝ φqq ´ 2∇Φ∇p qψi ˝ φq

` ΦpId´p∇φqT∇φq : ∇2
qψi ˝ φ,

where we used that ∇qpi “ ∆ qψi in F.
Concerning the last term, a further manipulation leads to

ΦpId´p∇φqT∇φq : ∇2
qψi ˝ φ “ ΦpId´p∇φqT∇φq : p∇φq´T∇p∇ qψi ˝ φq

“ div
´

ΦpId´p∇φqT∇φqp∇φq´T : ∇ qψi ˝ φ
¯

´ div
`

ΦpId´p∇φqT∇φq : p∇φq´T
˘

∇ qψi ˝ φ.

Therefore, and relying on (155), (160), (167), (173) and (161), we obtain that ψ̃i
solves the following Stokes system:

´∆ψ̃i `∇p̃i “ div gi ` fi and div ψ̃i “ 0 in F,(174a)

ψ̃ipxq “ qQT1 ϕ1p qQ1x` qh1q in S1,(174b)

ψ̃i “ ϕi in Sj for all j ‰ 1.(174c)
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where

gi :“´∇BogpdivpΦ qψi ˝ φqq ` ΦpId´p∇φqT∇φqp∇φq´T∇ qψi ˝ φ,(175)

fi :“´p∆Φq qψi ˝ φ´ 2∇Φ∇p qψi ˝ φq ` div
`

ΦpId´p∇φqT∇φqp∇φq´T
˘

∇ qψi ˝ φ.(176)

We observe that gi and fi are compactly supported in J, see (165).

Step 4: Estimate of gi and fi, for i “ 1, 2. — We start with estimating the term of gi
involving the Bogovskĭı operator. First, using that φ is a diffeomorphism satisfy-
ing (163), we obtain that

(177) }∇ qψi ˝ φ}L2pR3q ď C}∇ qψi}L2pR3q ď C |log ε|
´1{2

}ϕi}W 1,8pR3q,

by applying Theorem 4.1. Moreover, by applying (171), it follows

(178)
ˇ

ˇdivpΦ qψi ˝ φq
ˇ

ˇ ď Cδ
`

| qψi ˝ φ| ` |∇ qψi ˝ φ|
˘

.

Therefore, by using (169)

}∇pBogpdivpΦ qψi ˝ φqqq}L2 ď C
›

›divpΦ qψi ˝ φq
›

›

L2 ď Cδ |log ε|
´1{2

}ϕi}W 1,8pR3q,

where we used (177) to get the last inequality.
Similarly, we can estimate all the other terms on the right hand sides of (176)

and (175) by

(179) }gi}L2pFq ` }fi}L6{5pFq ď Cδ |log ε|
´1{2

}ϕi}W 1,8pR3q.

Step 5: The interaction energy 2pDpψ̃1q, Dpψ̃2qqL2pFq. — By (162) and (157), for
2 ď j ď N , ˆ

BqSj

Σp qψ1, qp1qn ¨ qψ2 “

ˆ
BSj

Σpψ̃1, p̃1qn ¨ ψ̃2.

On the other hand, by (173), (160) and (161), the chain rule and a change of variable
(observe that the normal is also rotated),

ˆ
BqS1

Σp qψ1, qp1qn ¨ qψ2 “

ˆ
BS1

Σpψ̃1, p̃1qn ¨ ψ̃2.

Therefore, by some integrations by parts, from the two previous identities, (155)
and (174), we arrive at

2pDp qψ1q, Dp qψ2qqL2pqFq
“

N
ÿ

j“1

ˆ
BqSj

Σp qψ1, qp1qn ¨ qψ2

“

N
ÿ

j“1

ˆ
BSj

Σpψ̃1, p̃1qn ¨ ψ̃2

“ 2pDpψ̃1q, Dpψ̃2qqL2pFq ` pg1,∇ψ̃2qL2pFq ` pf1, ψ̃2qL2pFq.
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Therefore,

2pDp qψ1q, Dp qψ2qqL2pqFq
´ 2pDpψ1q, Dpψ2qqL2pFq

“ 2pDpψ̃1q, Dpψ̃2qqL2pFq ´ 2pDpψ1q, Dpψ2qqL2pFq ` pg1,∇ψ̃2qL2pFq ` pf1, ψ̃2qL2pFq

“ 2pDpψ̃1 ´ ψ1q, Dpψ̃2qqL2pFq ´ 2pDpψ1q, Dpψ2 ´ ψ̃2qqL2pFq

` pg1,∇ψ̃2qL2pFq ` pf1, ψ̃2qL2pFq.

Thus, by the Cauchy-Schwarz inequality, the Hölder inequality and the Sobolev em-
bedding of 9H1pR3q into L6pR3q, we obtain that

(180) |2pDp qψ1q, Dp qψ2qqL2pqFq
´ 2pDpψ1q, Dpψ2qqL2pFq|

ď }ψ̃1 ´ ψ1} 9H1pFq}ψ̃2} 9H1pFq ` }ψ̃1} 9H1pFq}ψ̃2 ´ ψ2} 9H1pFq

`
`

}g1}L2pFq ` C}f1}L6{5pFq

˘

}ψ̃2} 9H1pR3q
,

recalling that g1 and f1 are compactly supported in J Ă F.

Step 6: Estimates of ψ̃i and of ψ̃i ´ ψi, for i “ 1, 2. — First, we decompose ψ̃i, for
i “ 1, 2, into

ψ̃i “ wIi ` w
B
i ,

where wIi and wBi are the solutions to the following Stokes systems respectively cor-
responding to the interior source term and to the boundary data in (174):

´∆wIi `∇pIi “ ´div gi ` fi and divwIi “ 0 in F,

wIi “ 0 in
N⋃
j“1

Sj ,

and

´∆wBi `∇pBi “ 0 and divwBi “ 0 in F,

wBi pxq “
qQT1 ϕip

qQ1x` qhjq in S1,

wBi pxq “ ϕipxq in
⋃

2ďjďN

Sj .

On the one hand, by a straightforward energy estimate, we have that

}wIi } 9H1pR3q
ď }g1}L2pFq ` C}f1}L6{5pFq.

On the other hand, by Theorem 4.1 we have that

}wBi } 9H1pR3q
ď C |log ε|

´1{2
}ϕi}W 1,8pR3q.

Thus, we arrive at

(181) }ψ̃i} 9H1pR3q
ď C |log ε|

´1{2
}ϕi}W 1,8pR3q ` }gi}L2pFq ` C}fi}L6{5pFq.

Similarly, for i “ 1, 2, using (153) and (174), we decompose ψ̃i ´ ψi into

ψ̃i ´ ψi “ wIi ` w
B,diff
i ,
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with, this time, the boundary term wB,diffi satisfying the following Stokes system:

´∆wB,diffi `∇pB,diffi “ 0 and divwB,diffi “ 0 in F,

wB,diffi pxq “ qQT1 ϕip
qQ1x` qh1q ´ ϕipxq in S1,

wB,diffi pxq “ 0 in
⋃

2ďjďN

Sj .

By Theorem 4.1 and (158), we have that

}wB,diffi } 9H1pR3q
ď Cδ |log ε|

´1{2
}ϕi}W 2,8pR3q.

Thus we obtain that

(182) }ψ̃i ´ ψi} 9H1pR3q
ď Cδ |log ε|

´1{2
}ϕi}W 2,8pR3q ` C}gi}L2pFq ` C}fi}L6{5pFq.

Step 7: Conclusion. — Gathering (180), (181), (182) and (179), we arrive at (156).
This finishes the proof of Proposition 5.1. �

6. Asymptotic behaviour of the filament centerlines

This section is devoted to the proof of the part of Theorem 3.4 devoted to the
asymptotic behaviour of the filament centerlines, that is to the proof of (53), (55) and
of Theorem 6.5, which, as mentioned in the comments after Theorem 3.4, provides
a more precise approximation of the asymptotic behaviour of the filament velocities
than the one in Theorem 3.4, at the expense of ε-dependent positions. This section is
divided into three subsections.

First Section 6.1 is devoted to reformulation of the Newton equations (19) into a
system of second-order quasilinear ODEs on the 6N degrees of freedom of the rigid
bodies, which does not involve the fluid pressure anymore and reveals the role played
by the Stokes resistance matrices.

In Section 6.2 we consider the time evolution of a modulated energy which mea-
sures, for each positive ε, the difference between the filaments velocities for positive ε
and the so-called “Faxén” velocities, which are given by the quasi-static balance of
the Stokes resistance force and torque with the force and torque due to the back-
ground flow. The latter are a family of velocities which depend on the positions of the
filaments velocities of ε-thickness. Unlike the total energy of the system considered in
(25), this modulated energy has the advantage to circumvent the part of the energy
corresponding to the motion of the filaments, under the influence of the fluid.

Finally in Section 6.3 we take advantage of the previous subsections to prove the
part of Theorem 3.4 which concerns the filaments.

6.1. Reformulation of the Newton equations. — This subsection is devoted to re-
formulation of the Newton equations into a compressed form which does not involve
the fluid pressure anymore, and reveals the role played by the Stokes resistance ma-
trices.

We introduce first a few notations. Let us emphasize that all quantities here are
defined with respect to the filaments of ε-thickness at time t. Indeed the result below
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concerns the solutions phi,ε, Qi,εq1ďiďN to the Newton-Stokes system (22) up to the
time Tmax

ε as given by Proposition 2.2.
– Let us first gather all the translation and rotation velocities corresponding to the

motions of the N filaments into the following vector of R6N :

(183) Y :“

ˆ

vi
ωi

˙

1ďiďN

“ pYj,βq1ďjďN, 1ďβď6.

– Similarly let

(184) Y5 :“

ˆ

v5i
ω5i

˙

1ďiďN

such that Y5 “ K´1f5,

recalling that K is the 6N ˆ 6N matrix defined in (73) and that f5 is defined by (76).
These are the so-called “Faxén” velocities. Let us observe that it follows from (75)
and (80) that

(185) |Y5| ď C

with a constant depending only on dmin (see (65)) for all ε sufficiently small. We will
also use the following notations, where on the one hand translation velocities are
gathered, and on the other hand rotation velocities are gathered:

(186) v5 :“ pv5iq1ďiďN and ω5 :“ pω5iq1ďiďN .

– Let

(187) fa :“

ˆ

F a

T a

˙

,

where
F a :“ pF ai q1ďiďN and T a :“ pT ai q1ďiďN ,

with for 1 ď i ď N ,

F ai :“

ˆ
BSi

Σpu5, p5qndH2 and T ai :“

ˆ
BSi

px´ hi,εq ^ Σpu5, p5qndH2.

The choice of the index “a” is for Archimedes, because, as one proceeds in the usual
computation of gravity buoyancy, see [11, (4.18)] or [39, p. 105], one may use integra-
tion by parts inside the filaments to arrive at

F ai “

ˆ
Si

p∆u5 `∇p5q dx and T ai “

ˆ
Si

px´ hi,εq ^ p∆u
5 `∇p5q dx.(188)

– Finally let us gather the inertia of the N filaments into the 6N ˆ 6N block
diagonal matrix M whose 6ˆ 6 blocks are

(189) M :“ pmi Id3, Jiq1ďiďN .

We can now state the main result of this subsection.
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Proposition 6.1. — As long as the filaments are separated, the Newton equations
(22c)–(22d) are equivalent to the following compressed form:

(190) ε2 d

dt
pMYq “ ´KpY´Y5q ` fa,

Let us highlight that M, K, Y5 and fa depend on the positions of the filaments,
that is to the solution Y through its time antiderivative, so that the ODE (190) is
quasilinear.

Proof. — Since the left hand sides of (22c)–(22d) clearly correspond to the left hand
side of (190) according to the definitions (183) and (189), it is sufficient to consider
the right hand sides of (22c)–(22d), which we decompose intoˆ

BSi

Σpu, pqndH2 “ F ai `

ˆ
BSi

Σpup, ppqndH2,(191a)
ˆ
BSi

px´ hi,εq ^ Σpu, pqndH2 “ T ai `

ˆ
BSi

px´ hi,εq ^ Σpup, ppqndH2.(191b)

The second terms in the right hand sides of (191) can be computed as follows. For
1 ď i ď N , by (71b),

˜ ´
BSi

Σpup, ppqndH2´
BSi
px´ hi,εq ^ Σpup, ppqndH2

¸

“

ˆˆ
⋃N

j“1 BSj

Σpup, ppqn ¨ Vi,α dH
2

˙

1ďαď6

“

ˆˆ
⋃N

j“1 BSj

ΣpVi,α, Pi,αqn ¨ u
p dH2

˙

1ďαď6

,

by Lorentz’s reciprocity theorem, using that up and Vi,α are both solutions of the
steady Stokes system in F, see (22f) and (71). Then, using the boundary condition
(22g)–(22h) and the definition (26) of vj,β , we have that in Sj ,

(192) up “

ˆ

ÿ

1ďβď6

Yj,β vj,β

˙

´ u5.

We deduce that, for 1 ď α ď 6,ˆ
⋃N

j“1 BSj

Σpup, ppqn ¨ Vi,α dH
2 “

ÿ

1ďjďN

ÿ

1ďβď6

Yj,β

ˆ
BSj

ΣpVi,α, Pi,αqn ¨ vj,β dH
2

´

ˆ
⋃N

j“1 BSj

ΣpVi,α, Pi,αqn ¨ u
5 dH2.

Thus,

(193)
ˆ

˜ ´
BSi

Σpup, ppqndH2´
BSi
px´ hi,εq ^ Σpup, ppqndH2

¸

˙

1ďiďN

“ ´KY`f5.

Thus combining (193), (184) and (191) we find (190). �

One difficulty associated with the equation (190) is the factor ε2 in front of the left
hand side which makes the asymptotic analysis of this ordinary differential system
belong to the class of singular perturbations, i.e., degeneracy at the main order.

J.É.P. — M., 2022, tome 9



370 R. M. Höfer, C. Prange & F. Sueur

However the matrix K is positive definite symmetric which guarantees that the effect
of the associated term is to damp the velocities when time proceeds, or more exactly
that they relax to the Faxén velocities. Indeed to tackle the asymptotic behaviour of
the solutions to (190) one key point is the behaviour of Stokes’ resistance matrix K

with respect to ε, that is to quantify the damping effect in the limit of zero thickness.

6.2. Modulated energy and lifetime. — To estimate the relaxation of the exact
solution Y of (190) to the time-dependent vector Y5 for small ε, we consider the
modulated energy:

(194) E :“
1

2
pY´Y5q ¨MpY´Y5q.

Thanks to the assumptions on the inertia of the filaments in Section 2, the matrix M

defined in (189) is symmetric positive definite uniformly in ε, and it is also uniformly
bounded. Thus the modulated energy E is ε-uniformly equivalent to |Y´Y5 |2.

As mentioned in Proposition 2.2, for each ε there is a positive time interval during
which the filaments remain separated. Below we will perform some computations
which are valid as long as the filaments remain well separated uniformly with respect
to ε. By a bootstrap argument in Section 6.3 we then derive uniform estimates of this
time with respect to ε and show that it extends until T̂ in the sense of Theorem 3.4.

More precisely, for d ą 0, we define

(195) Tε,d :“ inf
!

t ě 0 : dminptq ą d, Z ď
cd

Cdε2 |log ε|

)

,

where Z :“
?
E and dmin is the minimal distance between the centerlines as de-

fined in (65). Since mini‰j distpSi, Sjq ě dmin ´ Cε, Proposition 2.2 implies that for
ε ď ε0pdq we have Tε,d ă Tmax

ε and thus that the dynamics is well-posed on p0, Tε,dq.
Note that Z “

?
E ď C|Y´Y5 |. Thus, since Z is continuous, decreasing the value

of ε0pdq if necessary, we have for all ε P p0, ε0q that Tε,d ą 0. In the following we
consider only t ă Tε,d.

Proposition 6.2. — For all d ą 0, there exists Cpdq ą 0 and ε0pdq ą 0 independent
of ε such that for all ε P p0, ε0q, for all t P p0, Tε,dq,

(196)
ˇ

ˇYptq ´Y5ptq
ˇ

ˇ ď
ˇ

ˇYp0q ´Y5p0q
ˇ

ˇe´cdt{ε
2
|log ε| ` Cdε

2|log ε|.

To prove Proposition 6.2 we will use the following lemma.

Lemma 6.3. — For all d ą 0, there exists Cpdq ą 0 and ε0pdq ą 0 independent of ε
such that if the minimal distance dmin between the centerlines satisfies dmin ě d and
ε P p0, ε0q, we have the following estimate:

(197) |pY5q1| ď Cp1` |Y|q.

Proof of Lemma 6.3. — First, by (184),

(198) pY5q1 “ ´K´1K1K´1 f5 `K´1 pf5q1.
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Let u5 the solution to

´∆u5 `∇p5 “ 0 and div u5 “ 0 in F

u5 “ u5 in
⋃

1ďiďN

Si,

and let
v :“ pVi,αq1ďiďN,1ďαď6,

where we recall that the Vi,α are the unique solutions to the steady Stokes equations
associated with the rigid velocities in the filaments, see (71). Recalling the definition
of f5 in (76)–(77)–(78)–(79) we obtain by an integration by parts that

f5 “
´

pDpVi,αq, Dpu
5qqL2pFq

¯

1ďiďN,1ďαď6
,

where we recall that the notation
`

¨, ¨
˘

L2pFq
stands for the inner product in L2pFq.

By (75) and (76), we deduce that

(199) |pY5q1| ď C |log ε|
2
|K1|}u5} 9H1pFq}v} 9H1pFq ` C |log ε| |pDpvq, Dpu5qq1L2pFq|.

Moreover, by (73) and an integration by parts, we have that

K “

´

pDpVi,αq, DpVj,βqqL2pFq

¯

1ďi,jďN,1ďα,βď6
.

Thus, with the convention that the terms containing v are the sum for 1 ď i ď N

and 1 ď α ď 6, of corresponding terms for Vi,α, and by Theorem 4.1, we have

}v} 9H1pFq ` }u
5} 9H1pFq ď C |log ε|

´1{2
,

so that we arrive at

(200) |pY5q1| ď C |log ε|
´

ˇ

ˇ

`

Dpvq, Dpvq
˘1

L2pFq

ˇ

ˇ`
ˇ

ˇ

`

Dpvq, Dpu5q
˘1

L2pFq

ˇ

ˇ

¯

.

We decompose the time derivative in the terms on the right hand side of (200) into
several contributions. To this end, we introduce the operator

G : W 2,8
σ pR3q ˆW 2,8

σ pR3q ÝÑ R,

defined by
Gpϕ1, ϕ2q :“ pDpψ1q, Dpψ2qqL2pFq,

where ψk, for k “ 1, 2, is the solution in 9H1pFq to the problem
´∆ψk `∇pk “ 0, divψk “ 0 in F,

ψk “ ϕi in
⋃
i

Si.

Then, for any 1 ď i ď N , for any 1 ď α ď 6,

pDpVi,αq, Dpu
5qqL2pFq “ Gpvi,α, u

5q.

Note that the operator G as well as vi,α implicitly depends on the positions and
orientations of the particles. Consequently,

pDpVi,αq, Dpu
5qq1L2pFq “ Y ¨∇h,QGpvi,α, u

5q `GpY ¨∇h,Qvi,α, u
5q `Gpvi,α, Btu

5q.
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Theorem 4.1 implies

|Gpϕ1, ϕ2q| ď C |log ε|
´1
}ϕ1}W 1,8}ϕ2}W 1,8 .

Thus, taking into account the regularity assumptions on the background flow u5, see
(17), we arrive at

|pDpVi,αq, Dpu
5qq1L2pFq| ď |Y||∇h,QGpvi,α, u

5q| ` C |log ε|
´1
p1` |Y|q.

Analogous considerations hold for the term
ˇ

ˇ

`

Dpvq, Dpvq
˘1

L2pFq

ˇ

ˇ. Proposition 5.1 ap-
plied to both pVi,α, u5q and to pVi,α, Vj,βq leads to the result. �

With the result of Lemma 6.3 in hands we can now start the proof of Proposi-
tion 6.2.

Proof of Proposition 6.2. — We first recast (190) as

ε2pMpY´Y5qq1 “ ´KpY´Y5q ` fa ´ ε2pMY5q1,

and then take the inner product with Y´Y5, with the observation that

pY´Y5q ¨
`

MpY´Y5q
˘1
“ E1 `

1

2
pY´Y5q ¨M1pY´Y5q,

so that

E1 “ ´ε´2 pY´Y5q ¨KpY´Y5q ` ε´2 pY´Y5q ¨ fa

´ pMY5q1 ¨ pY´Y5q ´
1

2
pY´Y5q ¨M1pY´Y5q.

Recalling the definition of M in (189), we arrive at the following formula for the time
derivative E1 of the modulated energy:

(201) E1 “ ´ε´2 pY´Y5q ¨KpY´Y5q ` ε´2 pY´Y5q ¨ fa

´ pY´Y5q ¨MpY5q1 ´ pω ´ ω5q ¨ J1ω5 ´
1

2
pω ´ ω5q ¨ J1pω ´ ω5q,

where J is the 3Nˆ3N block diagonal matrix whose 3ˆ3 blocks are Ji for 1 ď i ď N .
By Corollary 4.2, the first term of the right hand side of (201) can be bounded

by ´cε´2 |log ε|
´1

E for some constant c which is positive and uniform with respect
to ε, and will possibly change from line to line, while still satisfying these properties.

By (188), since the background flow is assumed to be smooth, the term fa can
be bounded by ε2. Therefore the second term of the right hand side of (201) can be
bounded by C

?
E, where the constant C is also positive and uniform with respect to ε,

and will also possibly change from line to line, while still satisfying these properties.
Similarly the last three terms of the right hand side of (201) can be respectively

bounded by C
?
E|pY5q1|, C

?
E|J1| and CE|J1|.

Thus

(202) E1 ` cε´2|log ε|
´1
E ď C

?
E
`

1` |pY5q1| ` |J1|
˘

` CE|J1|.

Regarding J1, we use (22e) and |J0,i| ď C to deduce

(203) |J1| ď C|Q1| ď C|ω| ď C|Y|.
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Combining this with the estimate for pY5q1 from Lemma 6.3 in the energy estimate
(202) yields

(204) E1 ď ´
c

ε2 |log ε|
E ` C

?
E p1` |Y|q ` CE|Y|.

Since |Y| ď Cp
?
E ` 1q, and using the uniform bound on Y5 from (185), we arrive at

(205) E1 ď ´
c

ε2 |log ε|
E ` C

?
E p1` Eq

and for Z “
?
E

(206) Z 1 ď ´
c

ε2 |log ε|
Z ` Cp1` Z2q.

Recall that the constants depend on the minimal distance between the particles
dminptq (see (65)). More precisely, if dminptq ě d, then

(207) Z 1 ď ´
cd

ε2 |log ε|
Z ` Cdp1` Z

2q,

for all ε ď ε0pdq.
By definition of Tε,d in (195), we find that on p0, Tε,dq

(208) Z 1 ď ´
cd

2ε2 |log ε|
Z ` Cd.

By Gronwall’s inequality, and recalling that the modulated energy E is ε-uniformly
equivalent to |Y´Y5 |2, we obtain that (196) holds for all t P p0, Tε,dq, up to an
adaptation of the constants cd and Cd. �

Below, in Section 6.3, we will prove the following result on the asymptotic behaviour
of Tε,d as ε converges to 0.

To this end, let us recall the definition d̂min :“ infi‰j distpĈi, Ĉjq from (41) and
that T̂ from (42) is the maximal time for which d̂min stays positive.

Proposition 6.4. — There is ε0 ą 0 small enough which depends only on the
reference filaments, u5 and mintďT d̂minptq, such that for all T in p0, T̂ q, for
d “ 1

4 mintďT d̂minptq and for all ε ă ε0

(209) Tε,d ą T.

Let us already observe that combining Proposition 6.4 and Proposition 6.2 we
obtain the following result.

Theorem 6.5. — Under the same assumptions as in Theorem 3.4 we have on the one
hand the estimate (52) on the lifetime and on the other hand, for all T ă T̂ there
exists C depending only on u5, on the reference filaments Si, on inftPr0,T s d̂minptq and
on the initial velocities, and there exists ε0 ą 0 depending in addition on T such that
for all ε in p0, ε0q and all t in r0, T s the difference between the solution ph1, ωq to (22)
and the “Faxén’s” velocities pv5, ω5q defined in (184) satisfies

(210)
ˇ

ˇph1, ωqptq ´ pv5, ω5qptq
ˇ

ˇ ď
ˇ

ˇph1, ωqp0q ´ pv5, ω5qp0q
ˇ

ˇ e´Ct{ε
2
|log ε| ` Cε2|log ε|.
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Indeed, as we emphasized in Section 3.4, this theorem provides a more precise
approximation than Theorem 3.4, at the expense of ε-dependent positions and implicit
forces.

6.3. Proof of the part of Theorem 3.4 which concerns the filaments. — We now
turn to the proofs of (53) and of (55). In particular we are going to prove the conver-
gence of the filament positions given by the time dependent vector Y defined in (183)
to the limit dynamics for which we use the notation

(211) Ŷptq :“ K̂´1pĥptq, Q̂ptqq̂f5pt, ĥptq, Q̂ptqq,

where K̂ is the 6Nˆ6N matrix whose 6ˆ6 diagonal blocks are the K̂i,i, for 1 ď i ď N ,
are defined in (34), and proved to be invertible in Lemma 3.1, and f̂5 is the vector in
R6N which gathers the vectors f̂5i, for 1 ď i ď N , defined in (35). It follows from (39)
that

(212) Ŷptq :“ pv̂iptq, ω̂iptqq1ďiďN .

From the estimates in the previous subsection we already know that the velocities Y

and Y5 are close as long as the filaments are well separated. We now introduce

(213) Ỹptq :“ K̂´1phεptq, Qεptqq̂f
5pt, hεptq, Qεptqq.

The velocities Ỹ correspond to the limit dynamics but with the positions of the
filaments given by the ε-dynamics rather than the limit dynamics. In this sense,
Ỹ can be seen as intermediate between Y5 and Ŷ. Next lemma takes benefit from the
previous estimates of Y´Y5 to establish some estimates of Ỹ ´ Y5 as long as the
filaments are well separated.

Lemma 6.6. — For all d ą 0 there exists a constant Cpdq ą 0 and ε0pdq ą 0 such that
for all ε P p0, ε0q and dmin ě d,

(214) |Ỹ ´Y5| ď C |log ε|
´1{2

}u5}W 1,8pR3q.

Proof. — Recalling the definition of Y5 in (184) and the one of Ỹ above, we observe
that

Y5 ´ Ỹ “ K´1pf5 ´ |log ε|
´1

f̂q ´K´1pK´ |log ε|
´1

K̂qK̂´1̂f,

where K̂ and f̂ should be understood as being evaluated at phε, Qεq. Combining (74),
(75), (80) and observing that |K̂´1|`|̂f| ď C, we conclude the proof of Lemma 6.6. �

We now turn to the proof that (53) and (55) holds on r0, Tε,ds, where Tε,d is defined
by (195), that is in particular to to the estimate of Y´Ŷ.

Proposition 6.7. — For all d ą 0, there exists Cpdq ą 0 and ε0pdq ą 0 independent
of ε such that for all ε P p0, ε0q, the estimates (53) and (55) hold on r0, Tε,ds.

Proof. — First we recall that the coefficients of (40) are smooth and globally Lips-
chitz, so that recalling (211) and (212), we infer that

(215) |Ỹ ´ Ŷ| ď C|phε, Qεq ´ pĥ, Q̂q|.
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Recalling (10) and (8), we also have that the initial data php0q, Qp0qq and pĥp0q, Q̂p0qq
satisfy

(216) |php0q, Qp0qq ´ pĥp0q, Q̂p0qq| ď Cε,

Thus, using (22a), (22b) and (39), by a combination of (196), (215) and Lemma 6.6
we obtain that for all t ď Tε,d,

|phεptq,Qεptqq ´ pĥptq, Q̂ptqq|

ď Cε`

ˆ t

0

|Y ´Y5| ` |Y5 ´ Ỹ| ` |Ỹ ´ Ŷ| ds

ď Cε`

ˆ t

0

`

|Yp0q ´Y5p0q|e´cds{ε
2
|log ε| ` Cdε

2 |log ε| ` Cd |log ε|
´1{2 ˘

ds

` C

ˆ t

0

|phεpsq, Qεpsqq ´ pĥpsq, Q̂psqq| ds

ď Cε` Cd |log ε|
´1{2

t` C

ˆ t

0

|phεpsq, Qεpsqq ´ pĥpsq, Q̂psqq| ds.

Here, we used the bound (185) on Y5 and the constant in the last line depends on
the initial velocities Yp0q. By Gronwall’s estimate, we deduce that (53) holds for all
t ď Tε,d. We also note that, bookkeeping the computations above, this allows to prove
the following bound on the velocities:

(217) |Y ´ Ŷ| ď Cde
´cdt{ε

2
|log ε||Yp0q ´Y5p0q| ` Cd |log ε|

´1{2
` Cd |log ε|

´1{2
teCt.

Thus, estimating

(218) |Yp0q ´Y5p0q| ď |Yp0q ´ Ŷp0q| ` |Ŷp0q ´ Ỹp0q| ` |Ỹp0q ´Y5p0q|,

and applying again (215) and Lemma 6.6 yields (55) on r0, Tε,ds. �

We now turn to the proof of Proposition 6.4.

Proof of Proposition 6.4. — Let T ă T̂ and d “ 1
4 mintďT d̂minptq. We first observe

that (196) implies Tε,d “ 8 or dminpTε,dq “ d. Moreover, by (53), we have on p0, Tε,dq,

(219) dminptq ě d̂minptq ´ Cε´ Cdpε` |log ε|
´1{2

tqeCt,

where the term Cε accounts for the filaments’ thickness. Thus, the choice d “
1
4 mintďT d̂minptq implies for ε sufficiently small (depending on d, T , u5 and the refer-
ence filaments), dminptq ě 2d for all t ď mintTε,d, T u. Since Tε,d “ 8 or dminpTε,dq “ d

this implies Tε,d ą T . This concludes the proof of (53) and (55) on r0, T s. This com-
pletes the proof of Proposition 6.4. �

7. Asymptotic behaviour of the fluid

This section is devoted to the proof of the part of Theorem 3.4 devoted to the
asymptotic behaviour of the fluid, that is to the proof of (54), together with the proof
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of (56). To this aim we first decompose up into

(220) up “
ÿ

1ďiďN

upi and pp “
ÿ

1ďiďN

ppi ,

where

´∆upi `∇ppi “ 0 and div upi “ 0 in Fptq,(221a)

upi “ vSi ´ u5 for x P Siptq,(221b)
upi “ 0 for x P Sjptq, for j ‰ i.(221c)

Then, we apply Theorem 4.1 to upi , for each i, recalling that in Si,

vSi “
ÿ

1ďβď6

Yi,β vi,β ,

to obtain the following proposition.

Proposition 7.1. — Let d ą 0. Then there exists ε0pdq ą 0 and Cpdq ă 8 such that
for all ε P p0, ε0q and all t P r0, Tmax

ε s with dminptq ě d

(222) }uppt, ¨q ´ |log ε|
´1

ÿ

1ďiďN

UCiptqrv
Siptq ´ u5pt, ¨qs} 9H1pR3r

⋃
i Siptqq

ď C |log ε|
´1 `

|Yptq| ` }u5pt, ¨q}W 1,8

˘

.

Moreover, for 1 ď q ă 3{2,

(223) }uppt, ¨q ´ |log ε|
´1

ÿ

1ďiďN

UCiptqrv
Siptq ´ u5pt, ¨qs}W 1,q

loc

ď C |log ε|
´3{2 `

|Yptq| ` }u5pt, ¨q}W 1,8

˘

.

Furthermore, for 1 ď p ă 3,

(224) }up ´ |log ε|
´1

ÿ

1ďiďN

UCi
rvSi ´ u5s}Lp

loc
ď C |log ε|

´3{2 `
|Y| ` }u5}W 1,8

˘

,

and, for 3 ď p ă 6

(225) }up ´ |log ε|
´1

ÿ

1ďiďN

UCi
rvSi ´ u5s}Lp

loc

ď C |log ε|
´1`3{p´1{2´δ `

|Yptq| ` }u5}W 1,8

˘

.

Proof. — Estimates (222) and (223) follow immediately from Theorem 4.1. Moreover,
(224) follows from (223) and Sobolev embedding.

Concerning (225) for 3 ď p ă 6, we combine (69) and (70) instead of just relying
on (70). More precisely, combining (69) and (70) with Hölder’ inequality yields for all
3{2 ď q ă 2 and all δ ą 0

}up ´ |log ε|
´1

ÿ

1ďiďN

UCi
rvSi ´ u5s}W 1,q

loc pR3r
⋃

i Siq
(226)

ď C |log ε|
´1´3{p`1{2`δ `

|Yptq| ` }u5}W 1,8

˘

.(227)
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Since the H1-estimate in (69) excludes the sets occupied by the filaments, we had
to exclude it in the above estimate. However, the pointwise estimates (67) imply that
for all q ă 2

(228) }up ´ |log ε|
´1

ÿ

1ďiďN

UCi
rvSi ´ u5s}Lpp

⋃
i Siq

ď |log ε|
´1
ε2´q

`

|Yptq| ` }u5}W 1,8

˘

.

Combining (226) and (228) yields (225). �

In order to conclude that (54) and (56) hold true, we show the following result.

Lemma 7.2. — Let 1 ď i ď N and denote
(229) w :“ UCirv

Si ´ u5s ´ U
Ĉi
rv̂Sipt, ¨q ´ u5pt, ¨qs.

Then, there exists ε0 ą 0 such that for all ε in p0, ε0q, for all t P r0, Tmax
ε s,

– for all 1 ď p ă 2, and all compact subset K of R3, there exists C in p0,`8q
such that

(230) }w}LppKq

ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|
`

|Y| ` }u5}W 1,8

˘

` C|pv, ωq ´ pv̂, ω̂q|.

– for 2 ď p ă 6, and all compact subset K of R3, there exists C in p0,`8q such
that

(231) }w}LppKq ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|
3{p´1{2´δ

`

|Y| ` |Ŷ| ` }u5}W 1,8

˘

` C|pv, ωq ´ pv̂, ω̂q|.

Before proving Lemma 7.2, we show how to deduce (54) and (56).

Proof of (54) and (56). — Let T ă T̂ and d “ 1
4 mintPr0,T s d̂minptq. Then, by Proposi-

tion 6.4, for ε sufficiently small, we have Tmax
ε ě T and dmin ě d on r0, T s. Therefore,

Proposition 7.1 and Lemma 7.2, as well as (53) and (55) yields (54) and (56). �

Proof of Lemma 7.2. — We first observe that w satisfies

wpxq “
1

2

ˆ
Ci

Spx´ yqkpyqpvSi ´ u5qpyq dH1pyq

´
1

2

ˆ
Ĉi

Spx´ yqkpyqpv̂Si ´ u5qpyq dH1pyq “: w1 ` w2,

where

w1pxq :“
1

2

ˆ
Ci

Spx´ yqkpyqpvSi ´ u5qpyq dH1pyq

´
1

2

ˆ
Ĉi

Spx´ yqQkpφpyqqpvSi ´ u5qpφpyqq dH1pyq,

and
w2pxq :“

1

2

ˆ
Ĉi

Spx´ yq
´

QkpφpyqqpvSi ´ u5qpφpyqq ´ kpyqpv̂Si ´ u5qpyq
¯

dH1pyq,

where
Q :“ Qi,εQ̂

T
i and φpxq :“ Qpx´ ĥiq ` hi,ε ` hi,ε
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is the rigid body motion that transforms Ĉi to Ci. Then, using SpQTxq “ QTSpxqQ,
we find

w1pxq “
1

2

ˆ
Ci

Spx´ yqkpyqpvSi ´ u5qpyq dH1pyq

´
1

2
QT

ˆ
Ci

Spφpxq ´ yqkpyqpvSi ´ u5qpyq dH1pyq

“ UCirv
Si ´ u5spxq ´QTUCirv

Si ´ u5spφpxqq.

Using the fundamental theorem of calculus, we observe that for any ψ P W 1,s
loc , and

for s in r1,8s,
(232) }ψ ´ ψ ˝ φ}Ls

loc
ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|}∇ψ}Ls

loc
.

Hence, for p ă 2, by recalling (88), we infer that

(233) }w1}Lp
loc
ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|}v

Si ´ u5}L8pCiq.

On the other hand, pointwise bounds analogous to (66) imply for all p ă 8

(234) }w2}Lp
loc

ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|
´

}vSi ´ u5}L8pCiq ` }∇pv
Si ´ u5q}L8pR3q

¯

` C|pv, ωq ´ pv̂, ω̂q|.

Combining (233) and (234) yields (230).
Finally, we give the proof of (231). Notice that in the case |pQε,i, hi,ε ` hi,εq ´

pQ̂i, ĥiq| ě 1, the estimate follows from (88) and the Sobolev embedding by estimating
the two terms separately. Thus, since (234) holds for all p ă 8, it suffices to show for
2 ď p ă 6 and for |pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq| ď 1,

(235) }w1}Lp
loc
ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|

3{p´1{2´δ}vSi ´ u5}L8pCiq

With ψ as above, the critical Sobolev inequality yields for s ă 3 and s‹ “ p3sq{p3´sq

(236) }ψ ´ ψ ˝ φ}Ls‹

loc
ď }∇ψ}Ls

loc
.

Therefore, for any p ă 6, s ă 2, θ P r0, 1s such that

(237) 1

p
“
θ

s
`

1´ θ

s‹
,

Hölder’s inequality, (232) and (236) yield

(238) }ψ ´ ψ ˝ φ}Lp
loc
ď |pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|

θ}∇ψ}Ls
loc
.

Elementary calculations show that for all 2 ď p ă 6 and any δ ą 0 we can choose
s ă 2, such that (237) holds with

(239) θ “
3

p
´

1

2
´ δ.

Hence,

(240) }w1}Lp
loc
ď C|pQε,i, hi,ε ` hi,εq ´ pQ̂i, ĥiq|

3{p´1{2´δ}vSi ´ u5}L8pCiq.

This concludes the proof of Lemma 7.2. �
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