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ERRATUM TO

“THE HÖLDER CONTINUOUS SUBSOLUTION THEOREM

FOR COMPLEX HESSIAN EQUATIONS”

by Amel Benali & Ahmed Zeriahi

Abstract. — The statement and the proof of Theorem B in [BZ20] are not complete, except
when the boundary datum g vanishes identically. We give here the correct version of the state-
ment as well as a complete proof.

Résumé (Erratum à «Le théorème des sous-solutions Hölder continues pour les équations hes-
siennes complexes »)

L’énoncé et la preuve du théorème B dans [BZ20] ne sont pas complets, sauf dans le cas où
la donnée au bord g s’annule identiquement. Nous donnons ici la version correcte de l’énoncé
ainsi qu’une démonstration complète.
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1. Introduction

Let Ω b Cn be a bounded domain andm an integer such that 1 6 m 6 n. We deno-
te by SHm(Ω) the set of m-subharmonic functions on Ω. The Dirichlet problem we
are concerned with is the following: find U ∈ SHm(Ω) ∩ C0(Ω) such that

(1.1)
{

(ddcU)m ∧ βn−m = µ on Ω,

U|∂Ω = g on ∂Ω,

where the boundary datum g ∈ C0(∂Ω) and µ is a positive Borel measure on Ω with
finite mass µ(Ω) < +∞.

Mathematical subject classification (2020). — 31C45, 32U15, 32U40, 32W20, 35J96.
Keywords. — Complex Monge-Ampère equations, complex Hessian equations, Dirichlet problem,
obstacle problems, maximal subextension, capacity.
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780 A. Benali & A. Zeriahi

The Hölder continuous subsolution problem asks basically if the Dirichlet prob-
lem (1.1) admits a Hölder continuous solution when it admits a Hölder continuous
subsolution, provided that the boundary datum g is Hölder continuous.

This qualitative statement is true and was essentially proved in [BZ20, Th.B] and
is essentially correct when the boundary datum g belongs to C1,1(∂Ω). However its
proof in the general case relies on [BZ20, Lem. 4.2] whose proof is not complete (see
Lemma 2.2 below).

Here is the correct version of Theorem B of [BZ20].

Theorem B’. — Let Ω b Cn be a bounded strongly m-pseudoconvex domain
and µ a positive Borel measure on Ω with finite mass. Assume that there exists
ϕ ∈ E0

m(Ω) ∩ Cα(Ω) with 0 < α < 1 such that

(1.2) µ 6 (ddcϕ)m ∧ βn−m, weakly on Ω, and ϕ|∂Ω ≡ 0.

Then for any boundary datum g Hölder continuous on ∂Ω, the Dirichlet problem
(1.1) admits a unique solution U = Ug,µ which is Hölder continuous on Ω. More
precisely,

(1) if g ∈ C1,1(∂Ω), then U ∈ Cα′
(Ω) for any α′ such that

0 < α′ < 2γ′(m,n, α)αm/2m,

where

(1.3) γ′(m,n, α) :=
mα

m(m+ 1)α+ (n−m)[(2− α)m+ α]
,

(2) if g ∈ C2α(∂Ω), then U ∈ Cα′′
(Ω) for any α′′ such that

0 < α′′ < γ′′(m,n, α)αm/2m,

where

(1.4) γ′′(m,n, α) :=
α

m(m+ 1)α+ (n−m)[(2− α)m+ α]
·

The first statement of Theorem B’ is the same as that of [BZ20, Th.B] when the
boundary datum g ∈ C1,1(∂Ω), except for the exponent. In fact the one given in the
statement of [BZ20, Th.B] is not correct due to an unfortunate misprint at the end of
its proof in page 1005, where [BZ20, Prop. 2.20] was applied with a wrong exponent.

On the other hand, when g is only assumed to be Hölder continuous on ∂Ω, we
had to find a new argument because in this case we do not know if the bounds given
by (2.2) in Lemma 2.1 below still hold. This will be done in Lemma 2.2 below, but
unfortunately this leads to a worse exponent.

Acknowledgements. — We thank the referee for his careful reading of this note and
his useful suggestions that helped to improve the presentation of the mains results.
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2. A new version of [BZ20, Lem. 4.2]

Here we will give a new version of [BZ20, Lem. 4.2] and its complete proof following
essentially the same scheme. Before stating this new version, we need to prove the
following result which provides the argument missing in the proof of [BZ20, Lem. 4.2].

Lemma 2.1. — Let Ω b Cn be a bounded strongly m-pseudoconvex domain and k an
integer such that 0 6 k 6 m− 1.

(1) Assume that ψ ∈ SHm(Ω) ∩ L∞(Ω), u, v ∈ SHm(Ω) ∩ L∞(Ω) satisfy u 6 v

on Ω and for any ζ ∈ ∂Ω, limz→ζ(u(z)− v(z)) = 0. Then

(2.1)
∫

Ω

ddcv ∧ (ddcψ)k ∧ βn−k−1 6
∫

Ω

ddcu ∧ (ddcψ)k ∧ βn−k−1.

(2) Assume that g ∈ C1,1(∂Ω). Then there exists a constant M ′ = M ′(m,n, g) > 0

such that for any ψ ∈ E0
m(Ω) and v ∈ SHm(Ω, R) with v|∂Ω = g, we have

(2.2)
∫

Ω

ddcv ∧ (ddcψ)k ∧ βn−k−1 6 (R+M ′)Hm(ψ)k/m.

The first statement is well known and was stated in [BZ20, Cor. 2.9]. Since its proof
there was not complete, we will give a different proof here.

Proof

(1) Fix ε > 0. From the hypothesis, the exists a compact subset K b Ω such that
u > v − ε on Ω rK. Then vε := max{u, v − ε} ∈ SHm(Ω) ∩ L∞(Ω) and vε = u on
Ω rK. We claim that

(2.3)
∫

Ω

ddcvε ∧ (ddcψ)k ∧ βn−k−1 =

∫
Ω

ddcu ∧ (ddcψ)k ∧ βn−k−1.

Indeed we have in the sense of currents on Ω,

ddcvε ∧ (ddcψ)k ∧ βn−k−1 − ddcu ∧ (ddcψ)k ∧ βn−k−1 = ddcT,

where T := (vε − u)(ddcψ)k ∧ βn−k−1.
Since T is a current of order 0 with compact support in Ω, it follows that∫

Ω
ddcT = 0, which proves (2.3). Now observe that (vε) increases to v as ε decreases

to 0. Therefore, taking the limit in (2.3) as ε→ 0 and using the monotone continuity
of the Hessian operators, we obtain the inequality (2.1).

(2) Let us first assume that g|∂Ω ≡ 0. Then v|∂Ω ≡ 0 and we can apply Cegrell type
inequalities [BZ20, Lem. 2.8] and use the normalization mass condition, to conclude
that

Ik(v, ψ) 6 Hm(v)1/mHm(ψ)k/m 6 RHm(ψ)k/m.

This proves the inequality (2.2).
Now assume that g ∈ C1,1(∂Ω) and fix k such that 1 6 k 6 m. There exists

G ∈ C1,1(Ω) such that G = g on ∂Ω. Since Ω is strongly m-pseudoconvex, it admits a
defining function ρ which is strongly m-subharmonic on Ω. Then we can find a large
constant L > 0 such that w := Lρ + G is m-subharmonic on Ω and for 1 6 k 6 m,

J.É.P. — M., 2021, tome 8



782 A. Benali & A. Zeriahi

(ddcw)k∧βn−k 6 L′mβn pointwise almost everywhere in Ω for some uniform constant
L′m > 0.

By the bounded subsolution theorem ([Ngu12]) there exists v0 ∈ E0
m(Ω) solution

to the equation (ddcv0)m ∧ βn−m = (ddcv)m ∧ βn−m with boundary values v0 ≡ 0.
The function ṽ := v0 + w is m-subharmonic and bounded on Ω, (ddcṽ)m ∧ βn−m >
(ddcv)m∧βn−m on Ω and ṽ = g = v on ∂Ω. By the comparison principle we get ṽ 6 v
on Ω. Therefore, by the formula (2.1) we conclude that

Ik(v, ψ) 6 Ik(ṽ, ψ).

It suffices to estimate Ik(ṽ, ψ) by a uniform constant. We have

Ik(ṽ, ψ) = Ik(v0, ψ) + Ik(w,ψ).

Since v0|∂Ω ≡ 0, from the previous case it follows that

Ik(v0, ψ) 6

(∫
Ω

(ddcv0)m ∧ βn−m
)1/m(∫

Ω

(ddcψ)m ∧ βn−m
)k/m

6 Hm(ψ)k/mR.

It remains to estimate Ik(w,ψ). Since w ∈ C1,1(Ω), it follows that ddcw 6 M3β

pointwise almost everywhere on Ω, hence by [BZ20, Lem. 2.8] , we have∫
Ω

ddcw ∧ (ddcψ)k ∧ βn−k−1 6M ′
∫

Ω

(ddcψ)k ∧ βn−k

6M ′Hm(ψ)k/m 6M ′Hm(ψ)k/m,

where M ′ = M ′(g) > 0 depends on the uniform bound of ddcG. �

To state the main lemma which will replace [BZ20, Lem. 4.2], let us fix some nota-
tions.

Fix R > 1 and denote by SHm(Ω, R)) the set of bounded negative m-subharmonic
functions w on Ω such that

∫
Ω

(ddcw)m ∧ βn−m 6 Rm. On the other hand, we denote
by E0

m(Ω, R) = SHm(Ω, R) ∩ E0
m(Ω).

Lemma 2.2. — Let Ω b Cn be a bounded strongly m-pseudoconvex domain and ϕ ∈
E0
m(Ω) ∩ Cα(Ω), with 0 < α 6 1. Then for every k such that 1 6 k 6 m, there exists

a constant C̃k = C̃(k,m, ϕ,Ω) > 0 such that for every u, v ∈ SHm(Ω, R) such that
u = v on ∂Ω, we have

(2.4)
∫

Ω

|u− v|(ddcϕ)k ∧ βn−k 6 C̃k(1 + ‖u− v‖m−1
∞ )R [‖u− v‖1]

α̃k ,

provided that ‖u− v‖1 6 1, where α̃k := αk/m2k.
Furthermore if g ∈ C1,1(∂Ω), for any k such that 1 6 k 6 m, there exists a constant

Ck = C(k,m, ϕ, g,Ω) > 0 such that for every u, v ∈ SHm(Ω, R) with u = g = v on
∂Ω, we have

(2.5)
∫

Ω

|u− v|(ddcϕ)k ∧ βn−k 6 CkR [‖u− v‖1]
αk ,

provided that ‖u− v‖1 :=
∫

Ω
|u− v|βn 6 1, where αk := 2(α/2)k.

J.É.P. — M., 2021, tome 8
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The proof follows the same scheme as that of [BZ20, Lem. 4.2]. More precisely, we
will first start by assuming g|∂Ω ≡ 0, since the proof is exactly the same in this case.
Then we will consider the case g ∈ C1,1(∂Ω), which can be reduced to the previous
case using Lemma 2.1. Finally we will treat the general case by emphasizing the new
ingredient to be used to fill the gap in the proof of [BZ20, Lem. 4.2].

Proof. — Let us first recall the main steps of the proof of [BZ20, Lem. 4.2]. We can
reduce to the case when u = v near the boundary ∂Ω and u > v on Ω.

We approximate ϕ by smooth functions. As in [BZ20], we extend ϕ as a Hölder
continuous function of order α on Cn and denote by ϕδ (0 < δ < δ0) the usual smooth
approximants of ϕ on Cn. We know that ϕδ ∈ SHm(Ωδ) ∩ C∞(Cn).

To prove the required estimates, we will argue by induction on k such that 06k6m.
Fix 0 6 k 6 m− 1 and δ0 > 0 small enough and write for δ such that 0 < δ < δ0,∫

Ω

(u− v)(ddcϕ)k+1 ∧ βn−k−1 = A(δ) +B(δ),

where
A(δ) :=

∫
Ω

(u− v)ddcϕδ ∧ (ddcϕ)k ∧ βn−k−1,

and
B(δ) :=

∫
Ω

(u− v)ddc(ϕ− ϕδ − κδα) ∧ (ddcϕ)k ∧ βn−k−1,

where we recall that ϕ− κδα 6 ϕδ 6 ϕ+ κδα on Ω by hypothesis.
The first term A(δ) is estimated as follows. Observe that we have

ddcϕδ 6M1κδ
α−2β

pointwise on Ω, where M1 > 0 is a uniform bound on the second derivatives of χ.
Then since u > v we deduce that

(2.6) |A(δ)| 6M1κδ
α−2

∫
Ω

(u− v)(ddcϕ)k ∧ βn−k.

We now estimate the second term B(δ) following the arguments of [BZ20, Lem. 4.2]
with a slight modification.

Since u − v = 0 near the boundary ∂Ω, i.e., on Ω r Ω′, where Ω′ b Ω is an open
set, we can integrate by parts to get the following formula

B(δ) =

∫
Ω′

(ϕδ − ϕ+ κδα)ddc(v − u) ∧ (ddcϕ)k ∧ βn−k−1,

and then, since 0 6 ϕδ − ϕ+ κδα 6 2κδα on Ω, it follows that

|B(δ)| 6 2κδα
∫

Ω′
ddcv ∧ (ddcϕ)k ∧ βn−k−1.

Therefore, we get

(2.7) |B(δ)| 6 2κδα I ′k(v, ϕ),

where I ′k(v, ϕ) :=
∫

Ω′ dd
cv ∧ (ddcϕ)k ∧ βn−k−1 < +∞ by Chern-Levine-Nirenberg

inequalities (see [Lu12]).

J.É.P. — M., 2021, tome 8



784 A. Benali & A. Zeriahi

The problem is to estimate the masses I ′k(v, ϕ) by a uniform constant which does
not depend on Ω′ b Ω. We could use the obvious inequality∫

Ω′
ddcv ∧ (ddcϕ)k ∧ βn−k−1 6

∫
Ω

ddcv ∧ (ddcϕ)k ∧ βn−k−1,

to conclude under the finiteness full mass condition

Ik(v, ϕ) :=

∫
Ω

ddcv ∧ (ddcϕ)k ∧ βn−k−1 < +∞.

This is precisely the statement of Lemma 2.1 when g ∈ C1,1(∂Ω), whose justification
was missing in the proof of [BZ20, Lem. 4.2].

So let us proceed to the proof the second statement of the lemma assuming that
g ∈ C1,1(∂Ω). By (2.7) and the formula (2.2) of Lemma 2.1 applied to v and ψ = ϕ,
we get

(2.8) |B(δ)| 6 κ d(m,n)Rδα,

where d(m,n) = d(m,n, ϕ, g) > 0 is a uniform constant.
For simplicity set σk(ϕ) := (ddcϕ)k ∧βn−k. Combining the inequalities (2.6), (2.7)

and (2.8), we obtain for δ such that 0 < δ < δ0,

(2.9)
∫

Ω

(u− v)σk+1(ϕ) 6M1
κδα

δ2

∫
Ω

(u− v)σk(ϕ) + κ d(m,n)Rδα.

To finish the proof of the last statement of the lemma, we argue by induction on k
for k such that 0 6 k 6 m. When k = 0, the inequality is obviously satisfied with
C0 = 1 and α0 = 1.

Assume that the inequality holds for some integer 0 6 k 6 m− 1, i.e.,

(2.10)
∫

Ω

(u− v)σk(ϕ) 6 CkR[‖u− v‖1]αk .

We will show that there exists Ck+1 > 0 such that∫
Ω

(u− v)σk+1(ϕ) 6 Ck+1R[‖u− v‖1]αk+1 .

Indeed (2.9) and (2.10) yields∫
Ω

(u− v)σk+1(ϕ) 6M1CkRκδ
α−2[‖u− v‖1]αk + d(m,n)κRδα.

We want to optimize the last estimate by a suitable choice of δ. Since ‖u−v‖1 6 1,
we can take δ = δ0[‖u− v‖1]αk/2 < δ0 in the last inequality to obtain∫

Ω

(u− v)σk+1(ϕ) 6 (M1Ck + d(m,n))κR
(
‖u− v‖1]αk/2

)α
6 Ck+1R[‖u− v‖1]αk+1 ,

where αk+1 := αk(α/2). This proves the last statement of the lemma.
We now proceed to the proof of the first statement. As we saw before the main

issue is to estimate uniformly the integrals like I ′k(v, ϕ). We do not know whether

J.É.P. — M., 2021, tome 8
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the integrals Ik(v, ϕ) are finite. We will rather estimate the following integrals which
behave much better:

Jk(u, v, ϕ) :=

∫
Ω

(u− v)m(ddcϕ)k ∧ βn−k.

By Hölder inequality, we have

(2.11)
∫

Ω

(u− v)(ddcϕ)k ∧ βn−k 6 |Ω|(m−1)/m (Jk(u, v, ϕ))
1/m

,

where |Ω| is the volume of Ω.
It is then enough to estimate Jk(u, v, ϕ). We will proceed by induction on k

(0 6 k 6 m) to prove the following estimate

(2.12) Jk(u, v) 6 C ′kR(1 + ‖u− v‖m−1
∞ ) ‖u− v‖αk1 ,

where C ′k = C ′k(k,m, nϕ, g) > 0 is a constant.
If k = 0, we have J0(u, v) 6 ‖u − v‖m−1

∞ ‖u − v‖1. Assume the estimate (2.12) is
proved for some integer 0 6 k 6 m− 1. To prove it for the integer k + 1, we write as
before for δ such that 0 < δ < δ0,

Jk+1(u, v) = A′(δ) +B′(δ),

where
A′(δ) :=

∫
Ω

(u− v)mddcϕδ ∧ (ddcϕ)k ∧ βn−k,

and
B′(δ) :=

∫
Ω

(u− v)mddc(ϕ− ϕδ − κδα) ∧ (ddcϕ)k ∧ βn−k.

The first term A′(δ) is estimated as before using (2.12), i.e.,

(2.13) |A′(δ)| 6M1
κδα

δ2
Jk(u, v).

We need to estimate the second term B′(δ). Since u−v = 0 near the boundary, we can
integrate by parts to get the following formula

(2.14) B′(δ) =

∫
Ω

(ϕδ − ϕ+ κδα) (−ddc[(u− v)m]) ∧ (ddcϕ)k ∧ βn−k−1.

If m = 1, then k = 0. Since ddcu ∧ βn−1 > 0 weakly on Ω, it follows that

−ddc[(u− v) ∧ βn−1 6 ddcv ∧ βn−1,

weakly on Ω. Since 0 6 ϕδ − ϕ+ κδα 6 2κδα, it follows from (2.14) that

|B′(δ)| 6 2κδα
∫

Ω

ddcv ∧ βn−1 6 2Rκ δα.

If m > 2, a simple computation shows that

−ddc[(u− v)m] = −m(u− v)m−1ddc(u− v)

−m(m− 1)(u− v)m−2d(u− v) ∧ dc(u− v)

6 −m(u− v)m−1ddc(u− v),

J.É.P. — M., 2021, tome 8



786 A. Benali & A. Zeriahi

Since ddcu ∧ (ddcϕ)k ∧ βn−k−1 > 0 weakly on Ω, it follows that

−ddc[(u− v)m] ∧ (ddcϕ)k ∧ βn−k−1 6 m(u− v)m−1ddcv ∧ (ddcϕ)k ∧ βn−k−1,

weakly on Ω. Since 0 6 ϕδ − ϕ+ κδα 6 2κδα, it follows from (2.14) that

(2.15) |B′(δ)| 6 2mκδα
∫

Ω

(u− v)m−1ddcv ∧ (ddcϕ)k ∧ βn−k−1.

Recall that β = ddcψ0, where ψ0(z) := |z|2 − r2
0, where r0 > 0 is chosen so that

ψ0 6 0 on Ω. Then the inequality (2.15) implies that

(2.16) |B′(δ)| 6 2mκδα
∫

Ω

(u− v)m−1ddcv ∧ (ddcϕ)k ∧ (ddcψ)m−k−1 ∧ βn−m.

Since v, ϕ, ψ0 6 0 on Ω, repeating the integration by parts (m− 1) times, we deduce
from (2.16) that

(2.17) |B′(δ)| 6 2m!κ δα‖ϕ‖k∞‖ψ0‖m−k−1
∞

∫
Ω

(ddcv)m ∧ βn−m.

Combining the inequalities (2.13) and (2.17), we obtain for δ such that 0 < δ < δ0,∫
Ω

(u− v)mσk+1(ϕ) 6M1κδ
α−2Jk(u, v) + d′(m,n)Rδα,

where d′(m,n) = d′(m,n, ϕ, g) > 0 is a uniform constant. Applying the induction
hypothesis (2.12), we get∫

Ω

(u− v)mσk+1(ϕ) 6 κM1Ckδ
α−2(1 + ‖u− v‖m−1

∞ )‖u− v‖αk1 + d′(m,n)Rδα.

We want to optimize the last estimate. Since ‖u− v‖1 6 1, we can take

δ = δ0[‖u− v‖1]αk/2 < δ0

in the last inequality to obtain∫
Ω

(u− v)mσk+1(ϕ) 6
(
κM1Ck(1 + ‖u− v‖m−1

∞ ) +Rd′(m,n)
) (
‖u− v‖αk/21

)α
6 Ck+1(1 + ‖u− v‖m−1

∞ )R ‖u− v‖αk+1

1 ,

where αk+1 := αk(α/2) and and Ck+1 := κM1δ
α−2
0 Ck + d′(m,n). This proves the

estimate (2.12) for k + 1. Taking into account the inequality (2.11) we obtain the
estimate of the lemma with appropriate constants. This finishes the proof of the
second part of the lemma. �

3. Proof of Theorem B’

We are now ready to prove Theorem B’ using Lemma 2.2.

Proof. — The strategy of the proof is the same as that of [BZ20, Th.B], but for
convenience of the reader we will recall the main steps.

We know that the Dirichlet problem (1.1) admits a unique bounded solution u ∈
SHm(Ω) ∩ L∞(Ω) by [Ngu12].

J.É.P. — M., 2021, tome 8
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To prove that u is Hölder continuous with some exponent 0 < θ < 1, it is enough
to consider the standard regularization uδ := u ? χδ, for δ such that 0 < δ < δ0 and
to prove that there exists a constant L1 > 0 and 0 < δ1 < δ0 such that for any δ such
that 0 < δ < δ1, and any z ∈ Ωδ, we have

(3.1) sup
Ωδ

(uδ − u) 6 Cδθ,

provided we prove that u is Hölder continuous near the boundary with the same
exponent θ. We refer the reader to [Zer20] for a complete proof of this fact.

Recall that uδ can be defined for δ such that 0 < δ 6 δ0 (where δ0 > 0 is small
enough) by the following formula : for z ∈ Cn,

uδ(z) =

∫
Ω

u(ζ)χδ(z − ζ)dλ2n(ζ),

where λ2n is the Lebesgue measure on Ω. Observe that uδ is smooth on Cn and
m-subharmonic on Ωδ.

The first step is to use the Hölder continuity of the boundary datum g to construct
global barriers to show that u is Hölder continuous near the boundary and to deduce
bounded m-subharmonic global approximants (ũδ)0<δ<δ0 of u on Ω which satisfy the
following inequalities:

(3.2) 0 6 ũδ(z)− u(z) 6 uδ(z)− u(z) 6 ũδ(z)− u(z) + κδα, z ∈ Ωδ,

and ũδ > u on Ω and ũδ = u on ΩrΩδ for δ such that 0 < δ < δ0. We refer to [BZ20]
for this construction.

Since ũδ = u near the boundary ∂Ω, it follows from Stokes formula that for δ such
that 0 < δ < δ0, we have∫

Ω

(ddcũδ)
m ∧ βn−m =

∫
Ω

(ddcu)m ∧ βn−m 6 µ(Ω) <∞.

The second step is to use stability estimates. Since ũδ = u on Ω r Ωδ and µ 6
(ddcϕ)m ∧ βn−m on Ω, we can apply [BZ20, Prop. 2.20] with the exponent τ given in
[BZ20, Th.A], to deduce that for any γ such that

0 < γ < γ′(m,n, α) :=
mα

m(m+ 1)α+ (n−m)[(2− α)m+ α]
,

there exists a constant Dγ > 0 such that any 0 < δ < δ0,

(3.3) sup
Ω

(ũδ − u) 6 Dγ

(∫
Ω

(ũδ − u)dµ

)γ
.

To prove (3.1), we need to estimate
∫

Ω
(ũδ − u)dµ in terms of the integral∫

Ω
(ũδ − u)dλ2n, where λ2n is the Lebesgue measure.
Since µ 6 (ddcϕ)m∧βn−m, this is possible by applying Lemma 2.2 if we can ensure

that ‖(ũδ − u‖1 :=
∫

Ω
(ũδ − u)dλ2n 6 1 for δ > 0 small enough. This is clearly true

since ũδ decreases to u as δ decreases to 0, but we will need a quantitative estimate.
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Indeed by [GKZ08] (see also [BZ20, Lem. 2.3]), we know that

(3.4)
∫

Ω

(uδ − u)dλ2n 6 B‖∆u‖Ωδδ2.

To complete the proof of our theorem, it suffices to estimate the mass ‖∆u‖Ωδ :=∫
Ωδ
ddcu ∧ βn−1 in terms of δ. We will consider the two cases separately.
(1) Assume first that g ∈ C1,1(∂Ω). By the inequality (2.2) of Lemma 2.1, we have

for δ such that 0 < δ < δ0,

‖∆u‖Ωδ 6
∫

Ω

ddcu ∧ βn−1 6 d(m,n)
(
M ′ + µ(Ω)1/m

)
< +∞.

Hence by (3.4) it follows that

‖uδ − u‖1 =

∫
Ω

(uδ − u)dλ2n 6 C
′
mδ

2 6 1,

for δ such that 0 < δ 6 δ1 with 0 < δ1 < δ0 and small enough. Therefore, applying
the inequality (2.5) of Lemma 2.2, we get for δ such that 0 < δ < δ1,∫

Ω

(ũδ − u)dµ 6 Cm

(∫
Ω

(ũδ − u)(z)dλ2n(z)

)αm
6 Cm

(∫
Ωδ

(uδ(z)− u(z)dλ2n(z)

)αm
,

where the last inequality follows from (3.2). Using (3.4) we deduce that for δ such
that 0 < δ < δ1,

(3.5)
∫

Ω

(ũδ − u)dµ 6 C ′mδ
2αm .

It follows from (3.2), (3.3) and (3.5) that for δ such that 0 < δ < δ1,

sup
Ωδ

(uδ − u) 6 sup
Ω

(ũδ − u) + κδα

6 C ′′mδ
2γαm + κδα.

This proves the required estimate (3.1) with θ = 2γαm < α.
(2) In the general case we need to estimate ‖∆u‖Ωδ in a different way. Since the

defining function ρ of Ω is smooth and |∇ρ| > 0 on ∂Ω, it follows from Hopf’s lemma
that there exists a uniform constant c̃1 > 0 such that −ρ(z) > c̃1 dist(z, ∂Ω) (see
[Zer20] for more details). Then∫

Ωδ

ddcu ∧ βn−1 6 c̃2δ
−1

∫
Ω

(−ρ)ddcu ∧ βn−1.

We can assume that u 6 0 on Ω. Then by the integration by parts inequality (see
[BZ20, (2.5)]), it follows that

(3.6)
∫

Ωδ

ddcu ∧ βn−1 6 c̃2δ
−1

∫
Ω

(−u) ddcρ ∧ βn−1 6 c̃3δ
−1 oscΩu,
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where c̃2, c̃3 > 0 are uniform constants. Hence by (3.4) and (3.6) we get∫
Ω

(uδ − u)dλ2n 6 C̃
′
mδ 6 1,

for δ such that 0 < δ 6 δ2 with 0 < δ2 < δ1 and small enough.
Therefore, applying the inequality (2.4) of Lemma 2.2, we get for δ such that

0 < δ < δ2, ∫
Ω

(ũδ − u)dµ 6 C̃ ′m

(∫
Ω

(ũδ − u)dλ2n(z)

)α̃m
6 C̃ ′m

(∫
Ωδ

(uδ − u)dλ2n

)α̃m
,

where the last inequality follows from (3.2). This implies that for δ such that 0<δ<δ2,

(3.7)
∫

Ω

(ũδ − u)dµ 6 C̃ ′′m δ
α̃m .

Therefore, taking into account (3.3) and (3.7), we get for δ such that 0 < δ < δ2,

sup
Ωδ

(uδ − u) 6 C̃m δ
γαm/m + κδα,

since ‖ũδ−u‖∞6oscΩu. This proves the required estimate (3.1) with θ=γαm/m<α.
�
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