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PROTOPERADS I1: KOSZUL DUALITY
BY Jonan LEray
ApstracT. — In this paper, we construct a bar-cobar adjunction and a Koszul duality theory for

protoperads, which are an operadic type notion encoding faithfully some categories of gebras
with diagonal symmetries, like double Lie algebras (DLie). We give a criterion to show that
a binary quadratic protoperad is Koszul and we apply it successfully to the protoperad DLie.
As a corollary, we deduce that the properad DPois which encodes double Poisson algebras is
Koszul. This allows us to describe the homotopy properties of double Poisson algebras which
play a key role in non commutative geometry.

Riésumic (Protopérades II : dualité de Koszul). — Dans cet article, on construit une adjonction
bar-cobar et une dualité de Koszul pour les protopérades, qui encodent fidélement des catégories
de gebres avec des symétries diagonales, comme les algeébres double Lie (DLie). On donne un
critére pour montrer qu’une protopérade quadratique binaire est de Koszul, critére que 'on
applique avec succes a la protopérade DLie. Comme corollaire, on en déduit que la propérade
DPois qui encode les algébres double Poisson est de Koszul. Cela nous permet de décrire les
propriétés homotopiques des algebres double Poisson, qui jouent un role clé en géométrie non
commutative.
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898 J. LERAY

INTRODUCTTION

This paper develops the Koszul duality theory for protoperads, defined in [Ler19],
which are an analog of properads (see [Val03, Val07]) with more symmetries. The
main application of this theory is the proof of the Koszulness of the properad which
encodes double Lie algebras, from which it follows that the properad encoding double
Poisson algebras is Koszul.

The motivation for this work is to determine what is a double Poisson bracket up to
homotopy. A double Poisson structure, as defined by Van den Bergh in [Van08a], gives
a Poisson structure in noncommutative algebraic geometry (see [Gin05, Van08b]) un-
der the Kontsevich-Rosenberg principle, i.e., if A is a double Poisson algebra, then the
associated affine representation schemes Rep,,(A) have (classical) Poisson structures.

In order to determine the homotopical properties of a family of algebras, we use
the classical strategy, which was already used to understand, for example, the ho-
motopical properties of Gerstenhaber algebras (and also the homotopic properties of
associative, commutative, Lie, Poisson, etc, algebras). The idea is to go to the upper
level and understand the homological properties of the algebraic object that encodes
the structure, such as the operad Gerst for Gerstenhaber algebras. In the good case
where the operad (or the properad) satisfies good properties, we can use Koszul du-
ality in order to have a minimal cofibrant replacement of our operad. We can then
go down to the level of algebras. Thanks to this cofibrant replacement (in the case of
Gerstenhaber algebras, the operad G, ), we obtain the associated notion of algebra up
to homotopy: for example, Gerstenhaber algebras up to homotopy are encoded by G,
(see [Gin04] or [GCTV12, §2.1]). This structure has a good homotopical behaviour
at the algebras’ level, the homotopy transfer theorem (see [LV12, §10.3] for algebras
over an operad), etc.

Double Poisson structures are properadic in nature as they are made up of opera-
tions with multiple inputs and multiples outputs. They are encoded by the properad
DPois, which is constructed with the properads As and DLie (see Lemma 5.9), where
the properad DLie encodes double Lie structure and the properad As encodes as-
sociative algebra structure. The properad DLie is a quadratic properad defined by
generators and relations, with the generator Vi, concentrated in arity (2,2):

1 2 2 1
VDgic: fmmy = — jumt
1 2 2 1
and the relation in arity (3, 3)
1 2 3 2 3 1 3 1 2
Rpy: it + bl + et
1 2 3 2 3 1 3 1 2
Thus double Lie bracket on a chain complex A is given by a morphism of properads

DLie — End 4 where End 4 is the properad of endomorphisms of A (see [Val07] for
the definition).

JE.P.— M., 2020, tome 7



Prororeraps II: Koszur puarity 899

The theory of properads is the good general algebraic framework to encode op-
erations with several inputs and outputs. In certain cases, this framework can be
simplified. For example, algebraic structures with several inputs and one output, like
associative, commutative or Lie algebras, are encoded by operads (see [LV12]). In a
certain sense, the operadic framework is the minimal one to study such structures. In
this smaller framework, homotopical properties are much easier to study.

Similarly, protoperads form a special class of properads, which provide the appro-
priate framework for studying the double Lie properads. In the first article [Ler19],
we have developed this minimal framework, such that there exists a protoperad DLie
which encodes the double Lie structure. In [Ler19], we proved the existence of the free
protoperad functor and gave an explicit combinatorial description of this, in terms of
bricks and walls. An important property of protoperads is their compatibility with
properads via the induction functor (see Definition/Proposition 1.16).

In this paper, we develop the homological algebra for protoperads. With the
monoidal exact functor of induction, we prove the existence of a bar-cobar adjunction
in the case of protoperads:

Q: coprotoperads;”*"® =—— protoperads;"¢: B.

We obtain also the following theorem, the protoperadic analogue of the criterion of
Koszul of the properads [Val03, Th. 149],[Val07].

Turorem (see Theorem 2.25). — Let P be a connected weight-graded protoperad. The
following are equivalent:

(1) the inclusion Pl BPisa quasi-isomorphism, i.e., the protoperad P is Koszul;

(2) the morphism of protoperads QP' — P is a quasi-isomorphism, where Pl s the
Koszul dual of P (see Theorem 2.29)

We give a useful criterion to show that a binary quadratic protoperad (i.e., a
quadratic protoperad generated by a &-module concentrated in arity 2) is Koszul.
Take a binary quadratic protoperad P given by generators and relations. We associate
to P a family of associative algebras o/ (P,n), for n > 2. The algebra o7 (P,n) is
constructed so that its bar construction splits and such that one of these factors is
the n-th arity of the normalized simplicial bar construction of the protoperad P.

Turorem (see Theorem 4.3). — Let P be a binary quadratic protoperad. If, for all
integers n > 2, the quadratic algebra <7 (P,n) is Koszul, then the protoperad P is
Koszul.

This is a useful criterion because the study of the Koszulness of algebras is easier
than for pro(to)perads. Many tools are available, such as PBW or Grébner bases, or
rewriting methods (see [LV12, Chap. 4]).

We use this criterion to show that the protoperad DLie is Koszul. As the functor of
induction is exact and preserves the weight, so preserves the Koszulness, the properad
55/1'6, which encodes double Lie algebras, is also Koszul.

JE.P.— M., 2020, tome 7



Q00 J. LEray

Turorem (see Theorem 4.7 and Corollary 4.8). The protoperad DLie and the
properad DLie are Koszul.

This theorem is very important: it is the first example of a Koszul properad with
a generator not in arity (1,2) or (2,1). And so, with an argument of distributive law,
we deduce the main theorem of this paper.

Tueorewm (see Theorem 5.11). — The properad DPois is Koszul.

In an future article, we will explain the homotopy transfer theorem for properadic
algebras and we will use this in an other future work, where we will study the impli-
cations of Theorem 5.11 in derived noncommutative algebraic geometry a la Berest
et al. (see [BCER12, BFP*17, BFR14, CEEY17]). In particular, we will link it to
pre-Calabi Yau structures as in [Yeul8, IK18]. We will also look at the cohomological
theory of double Poison algebras. Indeed, the work of Merkulov and Vallette gives
the notion of deformation theory of P-algebras, for P a properad. We want to link
the deformation complex defined in [MV09b] with the work of Pichereau et al. who
defined the cohomology of differential double Poisson algebra (see [PVAWO08]).

Organization of the paper. — After a review of definitions and some properties of
protoperads (see [Ler19]) in Section 1, following the results on properads (see [Val03,
Val07, MV09a)), we introduce the notion of shuffle protoperads in Section 1.3. In Sec-
tion 2, we define the Koszul duality of protoperads. We transpose a part of the results
on properads obtained by Vallette in [Val03, Val07] to the protoperatic framework
thanks to the exactness of the induction functor Ind (see [Lerl9, Prop. 4.4.]). In Sec-
tion 3, we define the simplicial bar construction and the normalized one for prot-
operads and we described the levelisation morphism (see Definition/Proposition 3.6).
In Section 4, we give a criterion to prove that a binary quadratic protoperad is Koszul
and we use it to prove that the protoperad DLie is Koszul. Finally, in Section 5, we
use results of Vallette on distributive laws to prove that the properad DPois is Koszul.

Notations. We write N* for the set N~ {0}. In all this paper, k is a field with char-
acteristic 0. We denote by Fin, the category with finite sets as objects and bijections
as morphisms and Set, the category of all sets and all maps. For two integers a and b,
we note by [a, b] the set [a,b] N Z, and, for n € N*, &,, is the automorphism group
of [1,n], i.e., &, = Autg, ([1,n]). We denote by Chy, the category of Z-graded chain
complexes over the field k.

The goal of this paper is to study the Koszulness of the properad DPois, using
the protoperad DLie. These two objects are not to be confused with D(Pois) and
D(Lie) where D is the polydifferential functor on the category of props introduce by
Merkulov and Willwacher.

Acknowledgements. — The author is indebted to G.Powell who has carefully read
and corrected the first version of this paper. The author also thanks E. Hoffbeck and
B. Vallette for our useful discussions.
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1. RECOLLECTIONS ON PRO(TO)PERADS

We briefly recall the definition of protoperads and some results of [Ler19]. We
denote by G—modfd, the category of contravariant functors from Fin to the category
of chain complexes Chy, such that P(&) = 0.

1.1. ComBinaTorIAL FUNCTORS. — We recall two important functorial combinatorial
constructions which are described in [Lerl9, §1]: the functors Weom™ and X<,

Notrariox. — For a poset (P, <p), we denote by Succ(P), the set of pairs (r, s) € Px P
such that r» <p s and there does not exist ¢ € P such that r <p t <p s.

Derinirion 1.1 (The functor of walls). — The functor W, : Fin®® — Fin“? is defined,
for every finite sets S, as follows. An element W of W,,(S) is a collection {W,}oca
of non-empty subsets of S, indexed by some finite set A of cardinality n, such that

(1) the union of these subsets is S, i.e., J,cp Wa = 5;

(2) for every s € S, the set T (W, s) := {W,, | s € W,} is totally ordered by <s;

(3) these orders are compatible on the intersection of the sets I': for every s and ¢
in S, and W,, W, e (W, s) NT'(W, t), W, <; W,, if and only if W, <; Wy;

the collection of partial orders {<;}ses defines a canonical partial order on W (see
[Ler19, Lem. 1.3.]). The action of o € Aut(S) on ({Waltaca, <) in W, is induced by
the right action on S, i.e.,

({Wa}aeAy g) 0= (W = {Wa : U}a&‘fh ga)

where W, -0 := o~ 1(W,,) and the order < is induced by the total orders of I'\V.7 =
{Wy-ol|s-0 €W, -o}. Using the collection of functors W,,, one define the functor of
walls by

W: Fin°? — Set®P

S +— [Hnens Wal(S).

Exampre 1.2. One can graphically represent such wall. Consider the set S = [1,4]
and the wall W = {W,, W, W} in W([1,4]) over S with the three bricks

W, ={1,2}, W,={3,4} and W,.={1,2}
with the partial order W, < W,.. We represent this wall by

1 2 3 4
Cae 1086 1

Given (W = {W,}aea, <), a wall in W(S), we define the equivalence relation of
connectedness “~" on W as follows. For two elements a and b of A, we say W, “~" W,
if there exist an integer n > 2 and a sequence Wy, W1y, ..., W,,_1, W,, of elements of
W with Wy = W, and W,, = W}, such that, for all ¢ in [0,n — 1],

Wi N Wiy # @ and (Wu Wz'+1) S Succ(W) or (Wi+17 Wz) S Succ(W).

JE.P.— M., 2020, tome 7
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Derinition 1.3 (Projection X). We define the natural projection X as follows: for
a finite set .S, we have

Ks : W(S) — Y(S) CW(-)
W — {Ugp.cx-1(p)) Ba | [Bl € 7(W)},

onn.

where 7 is the projection of W to its quotient by “~".

Derintrion 1.4 (The functor of connected walls). We also have the subfunctor
weenn <y W, of connected walls Weenn: Fin°® — Fin°P? which is given, for all finite
sets S, by

W(S) 1= { (W = {Wataea, <) € Wa(S) | Ks(W) = {S}}.
We also define the functor
WeeRn : Fin® — Set®P
8 > [Len- W™ (9).

An element W of W (S) is called a connected wall over S, and an element of a
wall W is called a brick of W.

Exawmrpre 1.5. — Consider the wall W € W([[1,5]) with 6 bricks:
Wi = {273}7 Wy = {475}7 W3 = {172}7 Wy = {374}7 W5 = {273}7 W6 = {475}5

with the partial order W7, < W3 < Wy, Wy < Wy < W5 and Wy < Wy < W,
graphically represented as follows:

1 2 3 45

[ | B
I | S
— —
The wall W is connected.
Non-exampLE 1.6. — The wall of Example 1.2 is not connected.

Hence, we have other important subfunctors of Weonn,
— The functor Y : Fin®® — Set®? is defined, for every finite set S, by
Y(S) = { ({Ka}aca, <) €W(S) | Vs € S, [{Ka|se Ka}| =1}

An element of Y(5) is a non-ordered partition of S, i.e., a wall composed with one
row of bricks over S.
— The functor X =Y x Y is defined, for every finite set S, by

X(S) 2 {({Kataca, <) € W(S) | Vs €S, |{Ka |se Ku}| =2}

An element K of X(5) is an ordered pair of unordered partitions of the finite set S,
so we also denote by (I, J) such a K. Graphically, an element of X has the form

1 2 3 45 6 7

— | —
[ ) —| —

JE.P.— M., 2020, tome 7



Prororeraps II: Koszur puarity go3

— The functor X" is the subfunctor of X of connected walls, defined by
xeenn(s) = {({Ka}aeA, S) € WON(S) |Vse S, [{Ka|s€E Ka}‘ = 2}.

The functor X°"" encodes a new monoidal structure on the category of redu-

ced &-modules, the connected composition product, as we will see in Defini-
tion/Proposition 1.12.

1.2. MONOIDAL STRUCTURES AND THE INDUCTION FUNCTOR. — W v i

1.2. Ma ) e have three monoidal
d

structures on &-mod; .

Derinition/Prorosition 1.7 (Composition product). The composition product is
the bifunctor
—0-: 6-modi®! x &-mod}*® — &-mod}™?
defined, for P, @ two reduced G-modules and S a finite set, by
(POQ)(S) = P(S) @ Q(S).

This bi-additive bifunctor gives G-mod™? a symmetric monoidal structure, with iden-
tity Ig, defined, for all non empty sets S, by I5(S) := k concentrated in degree 0.

Derintrion/Prorosirion 1.8 (Concatenation product). — The concatenation product
is the bifunctor
— @1 _: &-modi* x &-mod}*! — S-mod}™?
defined, for all finite sets S and all reduced G-modules P and @, by:
(PeeQ)S)= @& P)2Q[S".

S’,5"€Ob Fin
S'11S" =S

This product is symmetric monoidal without unit (since we are working with reduced
GS-modules).

Derintrion/Prorosirion 1.9 (see [Lerl9, §2.2.1]). We denote by S, the functor
which sends a reduced G-module V' to the free symmetric monoid without unit S(V')
for the concatenation product. Moreover, it is isomorphic to
sV)= @ Q@ V(la),
{Ia}aca€Y(S) a€EA
where the notation @4 V() is defined in [Ler19, Not. 2.7].

Remark 1.10. — We can extend the concatenation product:

1 — @1 _: &-mody, x G-mod™®? — S-mod:*d.
k k

This extension is induced by the equivalence of categories G-modj; = Chy, x G-modffd,

by the injection (—)® : Chy < G-mody, defined, for all chain complexes C and all finite

sets S, by (C)®(@) = C and (C)®(S) = 0 when |S| > 0, and by the action of the

category Chy on G—modied defined, for all chain complexes C and all finite sets S, by
(C @ V)(S)=CV(S).

This extension allows us to define the suspension of a G-module.

JE.P.— M., 2020, tome 7



904 J. LEray

Derinirion 1.11 (Suspension of a &-module (see [Lerl9, Def. 2.6]). Let ¥ (respec-
tively £7!) be the chain complex k concentrated in degree 1 (resp. in degree —1).

For V a reduced G-module, the suspension of V (resp. desuspension of V) is the
not. not.

reduced G-module LV ="X @1V (resp. L1V = L7 geone V),

Derinirion/Prorosition 1,12 (Connected composition product of &-modules (see
[Ler19, Def. 2.8]))
The connected composition product of reduced G-modules is the bifunctor

- K, —: G-modi*? x &-modi*! — G-mod;!
defined, for all reduced G-modules P, @ and for all non empty finite sets S, by:
PX.Q(S) = D X P(Ia)®§ Q(Js),

(I’.])exa)un(s) [e%
where @), P(la)®Qjs Q(Jg) with (I, J) in X°""(S) is the notation for the quotient

(&rme@au)/
i=1 j=1
where the relation ~ identifies (p1 ® --- @ pr) @ (@1 ® - - - ® ¢5) with

(—1)"7(p)‘+|T(q)‘(pgq(l) ® @ Po-1(r) @ (Gr-1(1) @+ @ Gr-1(5))

for all o in &,, 7 in &, with (—1)I7®I (=1)I7@I the Koszul signs induced by per-
mutations. We also denote by Iz, the G-module given by

k if [S| =1,
Ix(S) =
0(5) {0 otherwise,

~

which is the unit of the product ... The category (&-mod}*?, K., Ig) is a (symmetric)
monoidal category. The monoids for this product are called protoperads.

We have a compatibility between these monoidal structures.

Proposition 1.13 (Compatibility between monoidal structures (see [Ler19, Prop. 3.19]))
Let P and @ be two reduced &S-modules. There is a natural isomorphism of
&-modules:
S(PX,. Q) 2SPOSQ.

In particular, for a protoperad P, the G-module SP is a monoid for the product 1.

We have a notion of free protoperad. The combinatorics of the free protoperad is
described by the functor of connected walls W™,

Prorosition 1.14 (Free protoperad (see [Lerl9, Th.5.21])). — Let V be a reduced
&-module and p be a positive integer. There exists a free protoperad on V', denoted
by Z (V). For a finite set S, there is an isomorphism of weight-graded right Aut(S)-
modules, given on each weight p, by

FrV)S) = D & V(Ka),

({Ka}aca,<) a€A
szonn(s)

JE.P.— M., 2020, tome 7
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where WM+ Fin°? — Set®® is the weight-graded functor of connected walls. The
functor F is the left adjoint to the forgetful functor

F . S-modi*® —— protoperads,, : For.

The notion of protoperad is compatible with the notion of properad, defined by
Vallette in [Val03, Val07] and [MV09a], via the induction functor.

Derintrion/Prorosition 1.15 (Properad — Free properad (see [Val03, Val07]))
The category of reduced G-bimodules, i.e., the category of functors
P : Fin x Fin®® — Chy,

such that, for all finite set S, P(S,2) =0 = P(,.S), is monoidal for the connected
composition product denoted by XY?!. The monoids for this product are called prop-
erads. We have the free properad functor, which is denoted by . V& which is the left
adjoint to the forgetful functor:

FVal. &-bimod;*! = properads, : For.
We define a monoidal adjunction between these categories.

Derintrron/Prorostrion 1.16 (Induction functor (see [Ler19, Def. 4.1]))
We define the induction functor Ind : G-mod;*® — &-bimod;*® which is given, for
all reduced G-modules V' and, for all finite sets S and E, by:

(Ind V) (S, E) = {0 it5#E
E[Aut(E)] @ V(S) otherwise.

This functor is exact, has a right adjoint which is the functor of restriction Res, and
is monoidal. Hence, that induces the functor

Ind: protoperads — properads.

Moreover, the induction functor commutes with the free monoid constructions, for-
mally by adjunction, i.e., we have the natural isomorphism of reduced G-bimodules:
Ind(Z(-)) = #Val(Ind(-)).

Then, for a protoperad P defined by generators and relations, i.e., P = .Z(V)/(R),

the properad Ind(P) is given by
Ind(P) = . V¥ (Ind V)/(Ind R).

The functor of induction also commutes with the cofree conilpotent comonoids con-
structions:

Ind(F¢(-)) = F¥(Ind(-)),
because the underlying functor of .Z¢(—) (resp. #%V2!) is the same of the one of
Z () (resp. Z V1), and Ind respects the coproduct, because it is monoidal.

Revark 1.17. — In the rest of this paper, we use the same name for the induction

functor from G—modﬁfed to G—bimodffd, and the one from protoperads to properads.

JE.P.— M., 2020, tome 7



906 J. Leray

1.3. SHUFFLE PROTOPERAD. Here, we introduce shuffie protoperads. This notion is
very similar to the notion of protoperad, without the actions of the symmetric groups;
these notions are related by the functor defines in Proposition 1.24. In the operadic
framework, shuffle operads are very useful to study Kozsulness. That permits to define
the notion of PBW-basis or Grébner basis (see [Hof10, DK10] or [LV12, Chap. 8] for
definitions). Recall the PBW theorem: if a quadratic operad O has a PWB basis,
then O is Koszul. As the author shows in [Ler17], the proof of a similar PBW theorem
does not hold directly in the protoperadic case. In fact, the analogous of the spectral
sequence appearing in [Hof10, §4] does not collapse in page 1, because the underlying
combinatorial of protoperads is more complicated. Nevertheless, the notion of shuffle
protoperad still holds some appeal, as we will see (see Remark 3.8).

We denote Ord, the category of totally ordered finite sets, with bijections. Anal-
ogously to [Ler19, §1.2], we define the combinatorial functors, Y** : Ord°® — Set°P
and X" : Set°® — Fin°? which encode shuffle protoperads. The shuffle framework
corresponds to choosing a representative for each wall. We define the functor Ys" as
follows: for all finite, totally ordered sets S, we set

Vr € IIl,.R]]7 IT 7& @; UT’GIILR]] IT = S
Yw(S) =< I =(Ij)jep,ny Vr#se[l,R],I,NI, =&
min(l1) < min(ly) < --- < min(Ig)
and Y (S) == [, cn- Y52(S); we also have
XMS) = T Y"(S) x ¥5"(S) and  X*M(S) = [ X3"(9).
i+j=r reN*

We have the natural isomorphism of functors X" = YsP x Y2 As in the unshuffle case
(see Definition/Proposition 1.9), using the functor Y*", one can define the following
functor.

Derinition 1.18 (The functor S%). — Let V: Ord°® — Chy be a functor. We denote
by S*(V), the functor S**(V): Ord®® — Chy, given, for a totally ordered set S, by

SIS = @ @V

Ij)1<i<rEYR(S) j=1

The functors Y*» and X" are compatible with their unshuffled analoguous through
the forgetful functor (—): Ord — Fin.

Lemva 1.19. — We have the following commutative diagrams of functors up to natural
isomorphisms
Ord®? —>(7 Fin°P Ord°? —> Fin°P
\ o / and \ /
sh 13 sh
d SetP

where X and Y are the functors defined in Section 1.1 (see also [Lerl9, §1.2]).
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We will define the shuffle-analoguous of the functor X<°™".

Derivition 1.20 (Projection X%"). — We define the projection X as follows: for a
totally ordered finite set (S, <g), we have
K XM (S) — Y (S)
Wi— {UBaeﬂ—l([B]) B, | [B] € m(W)},

conn.

where 7 is the projection of W to its quotient by ~~" (cf. [Lerl9, §1.4]), and the
set K?l(W) is totally ordered by the order < defined as follows: for B, and Bg in
K (W), By < Bg if min(B,) <g min(Bg).

As for X (cf. [Lerl9, Lem.1.10]), the product X" on Y! is associative. Let M
and S be two totally ordered finite sets. Every monotone injection j : M < S induces
a morphism

Lt PR(M) — Y(S)
such that, for all W = {W,}seqi ] in Y (M),

W) = W)}y 11 {s),
sESNJ(M)

Let M, N and S be three totally ordered finite sets and ¢ be the diagram of monotone
injections ¢ = (z M — S+ N: j) such that

im(7) Uim(j) = S

im(i) Nim(j) # 2,
then, we have the product p,: YsU(M) x Ysh(N) — Y8(S), given by the union of the

images by i and j of the partitions of M and N, extended by singletons, i.e., defined
by the following composition

Y)Y (N) T Y(S) <y (S)

,LLSO = }

ey yoh(5)
We have the following commutative diagram:

sh sh
(M) x 20 () 2M IR e gy sy (v

1o QJ Jﬂw
j{sh

2R (S) : 9 (S)

Finally, we define the functor Xt . Ord°® — Fin°?, for all totally ordered finite
sets S, by
xeom(8) = {(I,J) € X*(S) | K¥(I,J) = {S}}.
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Derintrion/Prorosirion 1.21 (Connected shuffle product). The connected shuffle
product is the bifunctor

— X — : Func(Ord°?, Chy) x Func(Ord°?, Chy) — Func(Ord°?, Chy,)
defined, for two objects P and @ of Func(Ord°?, Chy) and a finite totally ordered S, by

PREQ)S) =  ® ® P(K)) ®§1 Q(L;).

(K,L)exconnvsh(s) =1

Provosirion 1.22. — The product K is associative. Also, for all objects A and B in
the category Func(Ord®?, Chy), the endofuncteur

® 4 p : Func(Ord®?, Chy) — Func(Ord®?, Chy,)
X+— ARY X K B
is split analytic in the sense of [Val07, Val09]. The category
(Func(Ord®?, Chy,), K", Ixq)

is an abelian (symmetric) monoidal category and the monoidal product preserves re-
flexive coequalizors and sequential colimits.

Proof. — Similar to the proof of [Ler19, Lem. 2.9] and [Ler19, Prop. 2.10]. O

Derinirion 1.23 (Shuffle protoperad). — The monoids of (Func(Ord®?, Chy,), K., I)
are called shuffle protoperads, and we denote protoperadsSh, the category of shuffle
protoperads.

The forgetful functor (—) : Ord — Fin induces the functor (—)*" from S-modi to
Func(Ord°?, Chy,).

Prorosition 1.24. — The functor
(=)™ (&-modi??, K, In) — (Func(Ord®?, Chy,), K" I )
is (strongly) monoidal. It induces the functor
(=)*": protoperad, — protoperad;".

Proof. — Let S be a totally ordered finite set and P and @ be two reduced G-modules.
We have the following isomorphisms:

(PR.Q)™(S) = (PR.Q)S) 2 @ @ PKa)® ® Q(Lp)
(K,L) acA BEB
€X(S)
> @ PE)® - @P(Kny)@Q(L)® - ®Q(Ly)
(K,L)
exconn,sh(s)
=~ (PR Q™) (9). O

As for the case of protoperads, we have a combinatorial description of the free
shuffle protoperad.
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Derintrion/Prorosrrion 1.25. Let V be a functor in Func(Ord®?, Chy). The free
shuffle protoperad %,,(V') is given, for all totally ordered sets .S, by:

Fu(V)(S) = Wew@m(s) @A V(Wa).

The functor %, is the left adjoint to the forgetful functor
Z,: Func(Ord®P, Chy) = protoperads;": For.
By Proposition 1.24, we have the following.

Cororrary 1.26. Let V' be a reduced G-module. There is a natural isomorphism of
shuffle protoperads
Fuv = (F()".
Also, for (R) C F(V) an ideal, (R)*" is an ideal of F,(V*?), and there is a natural
isomorphism of shuffle protoperads
s sh ~ sh
Fu(VI/(R)™ = (Z(V)/(R))™.

Moreover, if P is a weight graded protoperad, then so is the shuffle protoperad P,

2. KOSZUL DUALITY OF PROTOPERADS

In this section, we adapt the constructions of [MV09a, §3] and [Val03, Val07] for
properads to the protoperadic framework.

2.1. (Co)AUGMENTATION, INFINITESIMAL (CO)BIMODULE AND (CO)DERIVATION. —

Derinition 2.1 (Augmented protoperad). An augmentation of a protoperad P is
a morphism of protoperads € : P — [, where Iy is the unit of the product X.. A
protoperad with an augmentation is called augmented. We denote by protoperads;®,
the category of augmented protoperads. To an augmented protoperad (P, e), we as-
sociate its augmentation ideal P, defined as the kernel of the augmentation ¢, i.e.,
P = Ker(¢).

For two reduces G-modules M and P, the G-module P X, (P @ M) has a weight-
grading, which we denote
PR, (PaM)=@ (PR, (P& M)
reN
Let (P,e) be an augmented protoperad. Then, we have the isomorphism of reduced
G&-modules P = [z & P. Moreover, by the bigrading given by [Ler19, Lem. 5.16], we
can decompose the connected composition product

p= @ p" by pr ((In @ P) B, (Ix @?))(T’S)T’ — P.
(r,s)€(N*)?
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Derinirion 2.2 (Partial composition product). Let (P, £) be an augmented protop-
erad. The partial composition product is the restriction of the product p : PR, P — P
to

pD (I @ P) R, (Iy © 7)) 7 — .

Using the partial composition, we introduce the notion of an infinitesimal bimodule
over a protoperad.

Derinition 2.3 (Infinitesimal bimodule). — Let (P, u) be a protoperad. A G-mod-
ule M is a P-infinitesimal bimodule if M has two morphisms of G-modules, respec-
tively called the left and right actions:

A (PR @Pe M) Y M oand p: ((Pe MR, )Y — M
such that the following compatibility diagrams commute:
(1) associativity of the left action A:

PR (A+p)
5

(PR PR, (Po M))D™ (PR, (P M)V

(D A M

(PR (Po M))
(2) associativity of the right action p:

(1) (p"’_:u) |Z|cf])
)

(PoM)R, PR, P (P e M)", )P

(P M) K. MJ o lﬂ
(P& M) R, P) M P M

(3) the left and right actions commute:

A+p) X P
—_—

(T &c (T@M) &c T)(I)M ((‘:PEBM) &C j))(l)M

PR (p+ N)J ) lp
(PR, (P @ M) A M
Remark 2.4. — We also have the dual definitions of co-augmented coprotoperad, par-

tial coproduct and infinitesimal cobimodule.(see [MV09a] for properadic definition).

Remark 2.5. — For an augmented protoperad (P, u,e : P — Ix), the following def-
inition is equivalent to the data of two actions N : (P K. M, )M» M — M and
P (M R, P)Da-D5 5 M where My = M @ Ig, compatible with the product
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of the protoperad P. In fact, if we consider the left action on M, then the injection
Iy — P induces the following morphism of G-modules

((P IXC M+) (1).?(1)1&1

o
(PR, (Po M) —— M
compatible with the product u of P. Conversely, if we consider a G-module M with
a morphism
N (PR, (M) VT
compatible with the product p of P, i.e., the following diagram commutes:

PR, (N + pbD)

(ﬂj X, P KX, M+)(1)$7(1)?7(1)M (fP X, M+)(1)$7(1)M

P R, M% o lx
A/

(PR, M, )T M

This compatibility and associativity of the product p allows the extension of the
morphism ) to a morphism A : (P K. (P & M))(I)M — M, which is the expected
morphism. We have a similar equivalence for p and p'.

For the definition of infinitesimal bimodule in the properadic case, which is similar
to the protoperadic case, the reader can refer to [MV09a].

Lemma 2.6. Let P be a protoperad and M be an infinitesimal P-bimodule. The
S-bimodule Ind(M) is an infinitesimal Ind(P)-bimodule.

Proof. — The functor Ind is monoidal for the products K. and ®°"° (see [Lerl9,
Prop. 4.7, Th. 4.16]) and is additive, i.e., Ind(V @&W) = Ind(V) &Ind(W), so preserves
the weight grading:

Ind((ip &c ((P D M)) (I)M) o (Ind P IXC (Ind P @ Ind M)) (1) 1na mr ’ 0
Derinirion 2.7 (Derivation, coderivation). — Let (P, ¢) be an augmented protoperad

and (M, X, p) be an infinitesimal P-bimodule. A morphism of &-modules d : P — M
of homological degree n is called a homogeneous derivation if the following diagram

commutes:
(1,1)
(P, ) o
dX. P+ PK,. dl Jd
p+A

MX.POPPR. M — M
i.e., for all p and ¢ in P:

do Y (p,q) = p(d(p),q) + (—=1)""' \(p, d(q)).
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We denote Der,, (P, M), the k-module of derivations from P to M of homological
degree n and the derivation complex is denoted by Der, (P, M), with the differential
[0, —] defined, for  in Der, (P, N), by [0,8] = Onx 0§ — (=1)I"1§ 0 0.

Let (C,v) be a coaugmented coprotoperad and (NN, A, p), an infinitesimal C-cobi-
module. A morphism of G-modules d : N — € of homological degree n is a homoge-
neous coderivation if the following diagram commutes:

N d e
)\+pJ JA(M)
(N®, € o (eRr, N) 4B CHCRd o o

We denote Coder,(C, N), the k-module of homogeneous coderivations from € to N
of degree n and Coder,(C, N), the coderivation complex.

Proposition 2.8. Let (P,e) be an augmented protoperad, (C,v) be a coaug-
mented coprotoperad, M be an infinitesimal P-bimodule and N be an infinitesimal
C-cobimodule. We have the following natural isomorphisms:

Ind(Der* (P, M)) = Der* (Ind(P), Ind(M));
Ind(Coder® (€, N)) = Coder® (Ind(€), Ind(N)).

Proof. The functor Ind is additive monoidal and respects the grading on M (see
Definition/Proposition 1.16, or [Ler19, Th.4.16]). O

Lemmya 2.9. Let F(V) be the free protoperad on the &-module V. For a homo-
geneous morphism 0 : V. — F (V) of degree |0|, there exists a unique homogeneous
derivation dg : F (V) — F(V) of degree ||, such that its restriction to V is 0: we have

Deryy (F(V), F(V)) 2 Homyy (V. F(V))
Moreover, if (V) C .FP)(V) then we have dg(.F ) (V)) C Fte=1(V).

Proof. — Let ®?=1(v{ ®---®wv] ) be a representative of a class of V,, = (V& Ig)Ben
with each v in V @ Iy. We define the application dy by

do (@1 (] @ -~ @ vl)))

s—1 .
= Y [0 @0le-wu)e e 000) e o)
§€|Il,n]] J=1 _
el © @ wlo-ou)

where \g; = (25-:1 Syl + ]+ [vs_1])]6] and where we extend 6 to
V & Ix by 9([@) = 0. The morphism dy is constant on the equivalence class of
®?:1(U1 @l ,)- We just need to verify that for n =1 and for the transposition
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which sends v; to vj4:
d9(1)1®"'®'0j+1®Uj®"'®vr) =
= Z (_1)\9|Z;;11|UL\,U1 @ @OV) D BV OV R BV,
ie[1,5—-1]
+ (=1l Tisilly @@ 0(vj+1) ®v; @ @ vy
+ (—D)OIES el el @ @ v @ 0(0;) @ ® vy
+ Z (_1)|9\E§;11 vl @ QU4 RV @ RO(V) - Ry
i€j+2,r]
~ (_1)|vj||vj+1\ ( Z (_1)|9\Zf;11 iy @ -+ ® ()@ @V @41 @ D v,
ie[1,5—1]
+ (DI ey @ @ 0y ® O(0j41) ® - ® vy
+ (_1)|0|Z{;11 iy, @ -+ ® 0(v;) @ Vj11 ® - D vy
+ Z (_1)|9\Z§;11 loily, @ RV ® g ®"‘®9(Ui)"'®vr)
i€j+2,r]
— (,1)|vj||vj+1|d9(v1 @ @V RV @ ®Ur)-
Moreover, dg factorizes through V,, (see [Ler19, §5.2] for the definition); similarly,
we show that, on the elements of the form
7= (v @y @ u3) @ (v} @1 @uvy) — (—1)I2l1wsl+iD (4 © 1@ vg) @ (V] @ vy @ vY),

we have dg(v) = 0. Hence, we use the same arguments that the properadic case
(cf. [Val03, Lem.87]): the surjectivity of the product of the free protoperad .Z (V)
gives us the uniqueness of the derivation dy and that all derivation are as above. O

Dually we have the following lemma (which is the protoperadic analogue of [Val03,
Lem. 88]).

Lemma 2.10. — Let (V) be the connected cofree coprotoperad on the S-module V.
For all homogeneous morphisms of &-module 0 : F°(V) — V of homological

degree |0|, there exists a unique homogeneous coderivation with the same degree
dy : Fe(V) — F(V) such that the composition

Fev) 90, geyy 2oL,y

is equal to 0. This correspondence is bijective; moreover, if 0 is null on each weight
component F) (V) for s # r, then do(F T =(V)) ¢ FE)(V), for s > 0.

Derinirion 2,11 (Quasi-free protoperad/ quasi-cofree coprotoperad)
A protoperad (% (V'),0 = Ov + dy) (resp. coprotoperad (.F¢(V),d = v +dp)) is
called quasi-free (resp. quasi-cofree).
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Prorosirion 2.12. The projection F (V) — V of a quasi-free protoperad on to its
indecomposables is a morphism of S-modules if and only if 6(V') C @@2 FO(V).

Proof. — The proof is similar to the properadic one: see [Val03, Prop. 89]. |

2.2. Bar-coBar apsuncrion. — We introduce the bar construction of a protoperad.
We denote by s the generator of the G-module ¥, the suspension (see Definition 1.11).
Let (P, u, ) be an augmented protoperad. The partial product w1 of P induces a
homogeneous morphism of G-modules of homological degree —1:

spp 1 FOO(LP) — BP
given by
spiz(s.p1 @ s.p2) = (—1)‘1)1‘3#(1’1)(101 ®p2).

By Lemma 2.10, we can associate to sus, a homogeneous coderivation
dspn : FE(BP) — F(XP),
of homological degree —1. We consider the coderivation
0= 0p +dg,: F(EP) — F(XP)

with Jp the coderivation induced by the internal differential of P. We show that
0% = 0, which is equivalent to showing that Opdsy, + dsp, Op —|—d§#2 =0, because O is
a differential. By Proposition 2.8, Ind(ds, ) is a coderivation of homological degree —1
(in the properadic sense). As the functor Ind commutes with the cofree conilpotent
comonoid functor %#¢(—), with the suspension and Ind is exact (so commutes with

the functor (—)), we have the following isomorphism

Id((Z°(EP), p + dsyiy ) 22 (F°(EInd(P)), (o) + Ind(dsy, ).

As the coderivation dy,, is the suspension of the partial product p("?, and the

functor Ind is compatible with the weight-bigrading in P of P XK. P and commutes

with the suspension, then Ind(dsug) is equal to dgﬂlnd((}’), the coderivation induced by
22

the partial product of the properad Ind(P).
This lends to the definition of the bar construction of a protoperad.

DeriNition/Prorosition 2,13 (Bar construction). — Let (P, u,dp,e) be an aug-
mented protoperad. The bar construction of P is the following quasi-cofree coaug-
mented coprotoperad:

(BP,0) = (FSP), 0 + dup ).

which gives the functor B: protoperads;"® — coprotoperads;”*"¢. Moreover, the re-
spective bar constructions commute with the induction functor:

Ind(B(-)) = BY* (Ind(-)),

where the functor BV2! is the bar construction for properads defined in [Val03, Val07].
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Prorosition 2.14. Let V' be a reduced S-module concentrated in homological
degree 0. Then the homology of the chain complex given by the bar construction of
the free protoperad over V is acyclic, i.e.,

H,(BZ(V),0) =XV,
where X is the shifting of homological degree one.
Proof. For this proof, we use the notion of coloring of a wall W and the coloring

complez associated to W, defined in [Lerl9, §6]. Let S be a totally ordered finite set.
We have the following isomorphisms of chain complexes:
BFM)S)= ® D (@ V(K..v)
KeWweonn(8) peCol(K) a€A

where the differential on the right side acts on the coloring as in the coloring complex.
So we have:

(BZ(V))(S) = s#0 (@ V(Ko )
KeWeenn(8) oeCol(K) acA
2o @ O THI(Q V(Ka).p)
KEWenn(5) »eCol(K) €A
HEK>2
2V @ (O (K))PH A
KGWCOIIH(S) *
HEK>2
then, by [Lerl9, Th.6.15], B# (V) ~ XV. O

We also have the cobar construction.

Derinirion/Prorosition 2.15 (Cobar construction). Let (C, A, d¢,v) be a coaug-
mented coprotoperad. The cobar construction of C is the following quasi-free aug-
mented protoperad:

(2€,0) = (F(2'€),0¢ + dy-1a,),

which gives the functor Q: coprotoperads,”*"® — protoperads;'®. Moreover, the re-

spective cobar constructions commute with the induction functor:
Ind(Q(-)) = QY (Ind(-)),

where the functor QV2! is the cobar construction for properads defined in [Val03,
Val07].

By the exactness of the functor Ind, we directly have the adjunction between bar
and cobar construction.

Prorosition 2.16. — The functors B and Q form a pair of adjoint functors:
Q : coprotoperads;”*"® 7— protoperads; " : B.

Proof. — By the properties of the functor Ind (see [Lerl9, Props.4.4 & 5.20]) and
[MV09a, Prop. 17]. O
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2.3. KoszuL. puaLiTy. The result of this section are inspired by [Val03, Chap. 7]:
as the results are very similar, we try to use the same notation as in [Val03].

2.3.1. Definition of the Koszul dual. Let (P, i, €) be an augmented protoperad, with
a weight grading, P = @, oy Plnl This grading induced a new one on the bar con-
struction of P:

BiyP = @B ()",
pEN

where B(,)P = .Z (") (EP) is the grading described in [Ler19, Th.5.21]. We interpret r
as the number of elements of P and p as the total weight induced by the weight of
each element of P. As the product p of P respects the weight grading, d,, respects
the induced grading on BP; so we have

ds,uQ (B(T) (:P)[p]) c B('F—l) (:P) e :
Thus we have the following lemma.

Lemma 2.17. Let P (respectively C) be a weight-graded, connected, protoperad
(resp. coprotoperad), i.e., P = Ig (resp. CI%) = I ). Then we have:

By(P) = 70 (PY)  and By (P)F =0 forr > p
(resp. QP el = ﬁ(p)(Z_lém) and QM (@) =0 forr > p).
Proof. — The proof is similar to the properadic one, see [Val03, §7.1]. |

Derinition 2,18 (Koszul dual). Let P (respectively €) be a weight-graded, con-
nected protoperad (resp. coprotoperad). We define the Koszul dual of P (resp. of @),
denoted by P! (resp. €') by the weight-graded G-module:

fpl[p] = H(p) (B*(fp)[p],dSIw) (resp. G'[p] = H(p) (Q*(G)[p],dsflAz)).

Remark 2.19. — One can remark that a weight-graded connected pro(to)perad P is
augmented, the augmentation given by the projection on the weight 0 which is isomor-
phic to Ig. Similarly, a weight-graded connected copro(to)perad € is coaugmented.

By Lemma 2.17, we have the equalities:
Pl — Ker (dgpy : B(p)(P) ) — Bp_)(P)P)
and .
el = Coker(dy-1a, : Q1) (@)?) — Q) (@)P).
Moreover, if the protoperad P is concentrated in homological degree 0, then we have

B (P)P if m =7
B (o] — (r) ’
( () )m { 0 otherwise.

The dual coprotoperad Pl is not concentrated in degree 0, but satisfies:

O

0 otherwise.
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Proposrrion 2.20. — The functor (=) : (co)protoperads;® — &-mod{" commutes
with the functor Ind.

Proof. By the exactness and the preservation of the weight grading of the functor
Ind (see Definition/Proposition 1.16). O

We have a protoperadic equivalent of the proposition [Val03, Prop. 136].

Provosition 221. — Let P = @, PM (resp. € = @, €M) be a weight-graded,
connected protoperad (resp. coprotoperad). Then the Koszul dual of P is a sub
weight-graded, connected, coaugmented coprotoperad of ﬁC(ZCP[l]) (respectively, the

Koszul dual of C is a connected, weight-graded, augmented protoperad quotient of
F(xtel)).

2.3.2. Koszul resolution

Derinirion 2.22 (Koszul protoperad, coprotoperad). — Let P and € be respectively a
protoperad and a coprotoperad, each weight-graded and connected. The protoperad P
is Koszul if the inclusion P! — BP Is a quasi-isomorphism. Dually, the coprotoperad €
is Koszul if the projection Q€ — €! is a quasi-isomorphism.

Prorosirion 2.23. — If P is a weight-graded, connected protoperad which is Koszul,
then its dual P' is a Koszul coprotoperad, and PV = P.

Proof. — By the properties of the functor Ind (see Definition/Proposition 1.16) and
by [Val03, Prop. 141]. O

Derinition 2.24 (Koszul complex). — Let P be a weight-graded protoperad. The
(right and left) Koszul complexes of P are the following complexes:

(1) the complex (f]’i X, P,8 = 0p + di), where the differential d is induced by
the homogeneous morphism of homological degree —1:

Pl B, pl, 9l (PR, (Ig o PH) — PR, (Ig e ),

where the right morphism is induced by the isomorphism (?i)m = 5[1] ;

(2) the complex (P X, P',d = 9p + dly), where the differential d!y is induced by
the homogeneous morphism of degree —1:

Pl B pig, Py (g e PHU R, P) — (Ig & PV R, P,

As in the properadic case, we have the following Koszul criterion:
Turorem 2.25 (Koszul criterion). — Let P be a connected weight-graded protoperad.

The following are equivalent:
(1) the inclusion Pl ey BT.is a quasi-isomorphism, i.e., the protoperad P is Koszul;
(2) the Koszul complex (fP' X, P,0=0p + dTA) is acyclic;
(3) the Koszul complex (P X, P',0 = dp + dY) is acyclic;
(4)

4) the morphism of protoperads QP 5 Pisa quasi-isomorphism.
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Proof. — By the exactness of the functor Ind (see Definition/Proposition 1.16) and
theorems [Val03, Th. 144, Th. 149]. O

Remark 2.26. — By Corollary 1.26, we have a bar-cobar adjunction and a Koszul
duality for shuffle protoperads. Also, a properad P is Koszul if and only if P! is
Koszul.

2.3.3. The case of quadratic protoperads. — This subsection is strongly inspired by
[Val08, §2] which described the notion of a quadratic properad. We adapt the notion
to the protoperadic framework. Let V be a G-module and R C .#®) (V): such a pair
(V, R) is called a quadratic datum.

As the underlying G-modules of the free protoperad (V') and the cofree coprot-
operad #¢(V) are isomorphic, we consider the following morphisms of &-modules:

(*) _
R FOWV) s F(V) = ZV) —» ZO(V) —» Z°O(V)/R =R,

where the isomorphism (%) is an isomorphism of G-modules. Using this, we naturally
define a quotient protoperad of .7 (V') or a sub-coprotoperad of .Z¢(V).

Derinition 2.27 (Quadratic (co)protoperad). The (homogeneous) quadratic pro-
toperad generated by V and R is the quotient protoperad of Z#(V) by the ideal
generated by R C .Z ) (V). We denote this protoperad by Z(V,R) = .Z(V)/(R).
Dually, the (homogeneous) quadratic coprotoperad cogenerated by V and R is the sub-
coprotoperad of .Z¢(V) cogenerated by .Z%(?) (V) — R. We denote this coprotoperad
by €(V, R).

Remark 2.28. — All quadratic protoperads &(V, R) and all quadratic coprotoperads
% (V, R) have a weight-grading by V, as for properads (see [Val03, Prop. 55]).

Turorem 2.29 (Kosul dual (—)i). Let (V, R) be a quadratic datum. We denote by
2R, the image of R in F?)(ZV) and ©~2R, the quotient of F*)(-1V) by ©—2R.
The Koszul dual of the protoperad 2 (V, R), denoted by 2(V, R)', is the coprotoperad
given by
P(V,R)' = €(2V,2°R).

Dually, the Koszul dual of the coprotoperad ¢ (V,R), denoted by ‘K(V,E)i, is the
protoperad given by

€(V,R)' = 2(27'V,272R).
Also, we have P (V, R)“ =2(V,R) and ‘K(Kﬁ)“ =% (V,R).
Proof. — Tt is a similar proof as [Val08, Th. 8]. O

Prorosition 2.30. Let (V,R) be a locally finite quadratic datum, i.e., for all finite
sets S, V(S) has a finite dimension. The linear dual of the coprotoperad € (V, R) is
the quadratic protoperad

(¢(V.R))" = Z(V")/(RY)
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with R+ ¢ FO(V)* = Z@(V*). In particular, we have
(2(V,R)))" = 2(7'V* S2RY).

Proof. — Tt is the same proof as [Val03, Cor. 154] or [Val08, Prop.9]. O

3. SIMPLICIAL BAR CONSTRUCTION FOR PROTOPERADS

We construct the simplicial bar complex for protoperads, as in the properadic case
(see [Val07, §6]). Recall that X" denotes the homological suspension of degree n (see
Definition 1.11).

Derinirion 3.1 ((Reduced) Simplicial bar construction). — Let (P, u, n,€) be an aug-
mented protoperad. We denote

Cp(P) = X" Ig K, PP K, Ig.
The face maps d; : C,,(P) — C,,—1(P) are induced by:

eX. .
— the augmentation P X. Iy ﬂ Ix X, Ix = Iy for i = 0;
— the composition p of the i-th and the (i + 1)-th row,
X.e .
— the augmentation Ig X, P L Ix X, Ig = Ig for i =n.
The degeneracy maps s; : C,,(P) — C,11(P) are given by the insertion of the unit
n: I — P of the protoperad s; == X" Iy K, PX? K, n K, PX"~i K, Ir. The differen-
tial Oc(py is defined by

ac(y) = 8{]) + Z(—l)iJrldi.
i=0
One can check that agm = 0. This chain complex is called the (reduced) simplicial
bar construction of P.

DeriNiTion 3.2 (Normalized bar construction). — The normalized bar construction is
given by the quotient of the simplicial bar construction by the image of the degeneracy
maps. We denote by N(P) the following graded &-module, given in grading n, by:

N,,(P) := %" Coker (@ Ig X, PP R, n R, PEn K, I|Z|> .

=0
We define the functor W(;L?rnn’lcv : Fin®® — Fin°? of n-level connected wall given, for
all finite set S, by

Vi € [1,n],3I € Y(5)
W™ () =W = (W', ,W") | @ £ Wi = {Wiltaea, C 1 :
Uiz1 Usea, Wa = 8:Xs(W) = {5}
where K is the natural projection defined in Definition 1.3 (see also [Ler19, Def. 1.9]).

We denote the label of the number of levels by n 1, because Wfﬁm’lev (S) is also weight-

graded by the number of bricks: an element (W?!,... W") lives in WZOTI?E’ICV (S) with

b= |[W + .-+ + |[W"|. The graded functor of level connected wall is denoted by
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Weonnlev HanLOTnn’lcv : Fin®® — Set®®. We have also the natural projection of

unlevelisation

unl . Wconn,lev Wconn

which sends an element ({W2}aea,, ..., {W2}aea, ) in WeoRRIeV (§) 6 the connected
wall W over S which contains W}, for all i in [1,n] and all a in A; and such that, for
all s in 9, the total order of I's = {Wi|s € W}} is defined by levels: for W¢ and Wé
in Ty, Wi <, W} if i < j.

Remark that the unlevelisation morphism projects the functor of n-leveled con-
nected wall with n bricks to WS°™". We denote by 7,4 the restriction of the unleveli-

sation morphism to Wf;}nz’lev
T+ WIS — Wi
Prorosition 3.3. Let P be an augmented protoperad, and its augmentation ideal P,

and S be a finite set. We have the following isomorphism

NA(P)(S) =2 @ Q@ & P(Wy).
(W', wn) i=lacA
EW:LoTnn,lev (9)

Proof'of Proposition 3.3. — As in the properadic case (see [Val07, §6.1.3, 1rst rem.]).
An element W = (W ..., W") in W;‘)Tnn’leV(S) describes the position of non-trivial
elements in each level. In the definition of the normalized bar construction, the cok-
ernel ensures that there is a non-trivial element in each level: this is the condition
W' # @. The conditions J_, Unc 4, W, = S and Kg(unl(W)) = {S} ensure that we
have the connectedness of the product. O

Prorosition 3.4. — The simplicial bar construction and the normalized simplicial bar
construction commute with the induction functor Ind:

Ind(C(—)) = CVa!(Ind(—)) and Ind(N(-)) = NV (Ind(-)),

CVal N Val

where the functors and

tion and the normalized simplicial bar construction for properads (see [Val07]).

are respectively, the reduced simplicial bar construc-

Proof. — The functor Ind is monoidal and exact (see Definition/Proposition 1.16).
]

Prorosition 3.5

(1) The simplicial bar construction and the normalized bar construction preserve
quasi-isomorphisms.

(2) Let P be a quasi-free protoperad on a weight-graded S-module V', i.e., P has
underlying &-module F(V), such that V®©) = 0 and concentrated in homological
degree 0. The natural projection N(P) — XV is a quasi-isomorphism.
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Proof

(1) As for the bar construction of protoperads. The functors Res, Ind and CV!,
(cf. [Val07, Prop. 6.1]) preserve quasi-isomorphisms. Let ¢ be a quasi isomorphism of
&-modules, then Res(CV2(Ind(i))) = Res o Ind C(¢) = C(¢) is a quasi-isomorphism.

(2) Similar to [Val07, Prop. 6.5] O

We define the levelisation morphism as in the operadic and the properadic case
(see [Val07, §6.2]).

Derinition/Prorosition 3.6. — Let P be an augmented protoperad. The levelisation
morphism is the injective morphism of G-modules

e: B(P) — N(P)
which, for a finite set S, and a wall W = {W, }neca in WR(S), sends

® W) @ @IP(T) C N@):

acA WETF:Tl(W) =1

the map e sends each element of @, 4 SP(Wy) to the sum of representatives (with
signs induced by the Koszul sign of the symmetry).

Tarorem 3.7. — Let P be a weight-graded augmented protoperad. The levelisation
morphism e : B(P) — N(P) is a quasi-isomorphism.

Proof. — Let P be a weight-graded, augmented protoperad, and consider the lev-
elisation morphism e : B(P) — N(P). The induction functor sends e to e¥?! the
levelisation morphism for properads, defined by Vallette in [Val07, §6], which is a
quasi isomorphism (see [Val07, Th.6.7]):

Ind(e) = V2!
o A

~

Ind(BP) = BV? Ind(P) NVal Ind(P) = Ind(NP)

We apply the functor Res to this map, which is an exact functor, and which satisfies
ResoInd = id, then the map e is a quasi-isomorphism. We just use the same arguments
that for the properadic case (see [Val07, §6]). O

Remark 3.8 (About shuffle protoperads). All these constructions, the bar construc-
tion, the simplicial bar construction and the normalized simplicial bar construction,
have their shuffle analoguous.

— As we have a free shuffle protoperad .%,,(—) and an associated cofree conilpotent
shuffle coprotoperad Z5,(—), one has the shuffle bar construction B,,,. Moreover, let P
be a quadratic protoperad. For every ordered finite set S, we have the isomorphism
of chain complexes

(BP)(S) == (BwP™)(S).
These isomorphisms justify the construction of shuffle protoperads (see the proof of
Theorem 4.3).
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L

o, one can construct the shuffle simplicial bar

— As we have a shuffle product X
construction C_, and the shuffle normalized simplicial bar construction N;,.

Moreover, these constructions commute with the functor (—)**, by Corollary 1.26
and Proposition 1.24.

/I. STU])YI\IG KOSZULNESS OF BINARY QUADRATIC PROTOPERAD

In this section, we describe a criterion to study the Koszulness of binary quadratic
protoperad, which are protoperads given by a quadratic datum (V, R) such that V is
concentrated in arity 2, V(5) = 0 for all finite sets S with |S] # 2.

4.1. A useruL criTerioN. — We give an algebraic criterion for a binary quadratic
protoperads concentrated in homological degree 0 to be Koszul.

Derinirion 4.1 (Binary protoperad). A protoperad P, given by generators and
relations, i.e., P = .#(V)/(R) is binary if the G-module V is concentrated in arity 2,
ie., V(S) =0 for all finite sets S with |S| # 2.

Let P be a binary quadratic protoperad concentrated in homological degree 0,
given by the quadratic datum (V) R), then V = V{(2). We associate to P, a family of
quadratic algebras {7 (P,n)},>2, defined by

o (P, n) = S(PM)([1,n]),

where S* is defined in Definition 1.18. We will see that the algebras .7 (P, n) are qua-
dratic. Fix n > 2, we consider the decomposition of V' in irreducible representations:

V=V,
v=1

where V,, = k - v, is the trivial representation or the signature representation of Gq
(recall that the characteristic of k is different to 2). To V', we associate the set V (P, n)
of generators of {7 (P, n)}n>0:
V(P,n)={(v,)ij | 1<i<j<n, 1<v<m}
Thus V(P,n) corresponds to the generators of S(P)([1,n]) as algebra for the prod-
uct po (see Proposition 1.13), i.e.,
1 i J n

(2) (Uu)ij“’"
As P is binary and quadratic, the set of relations R is concentrated in arity 2 and 3.
Each relation in R(2) is given by a linear combination of terms as

12

—

(—

where each brick is labeled by a generator v,.. To a such relation r in R(2), we associate
a family of quadratic relations {r;;}1<i<j<n in terms of V(P,n), where r;; is given
by replacing a monomial indexed by v, for the bottom brick and vg for the upper
brick, with v, and vs two generators, by the monomial (v, )i;(vg)i; in V(P,n)®?, as
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in Figure 1. We denote by R(2);;, the set of relations in V (P, n)®? which are obtained

1 2
CE i
~ (va)ij(vg)i-

Ficure 1. Labelled procedure for R(2)

by the labeled procedure 4 (see Figure 1). Similarly, by connectivity, each relation
in R(3) is given by a linear combination of terms as follow:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
s I s [ s s I S s e N s
e s B o ; ;3 R s e e

where each brick is labeled by a generator v,. If n > 3, for all relation r in R(3),
we associate a family of quadratic relations {r;;x }1<i<j<k<n With rijr € V(P,n)®2,
where 755, is given by replacing all monomial indexed by v, for the bottom brick
and vg for the upper brick, with v, and vg two generators, as in Figure 2.

1% ijk é]s ijk

o3 > (Va)ik(vs)jk = * (va)jk(vs)ij ;
1 2 3 1 2 3

S (va)ju(vp)in ; =57 2 (va)ij (vg)in 5
1 2 3 1 2 3

::]] % (va)ij(vg) ik :1:]:1 A (Va)ik(vp)ij -

Ficure 2. Labelled procedure for R(3)

We denote by R(3);x, the set of relations in V(P,n)®? which are obtained by the
labeled procedure i, We consider the quadratic algebra
TV (P,n))
(R@)is, B3)iges [(00)is: (08)a] | vicashinisiStan o)

The new relations given by the commutator [(va)ij, (vg)aes] correspond to the “paral-
lelism commutativity” which is present in the protoperadic structure:

1 2 3 4 1 2 3 4
CEa  Ca
= iz Y
(see [Val07] for the properadic case).
Lemva 4.2, — Let P be a binary quadratic protoperad. For all integer n > 2, we have
the isomorphism of algebras
TV (P,n))

V1<i<j<k<n, ’
<R(2)ija R(?’)mka [(Uoz)ija (vﬁ)ab] V1<a<bl§n,<{zj}ﬁ{a,b}:@>

3) H(Pn)=
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Proof. — We recall that, for a protoperad (P,u), the product on S(P)([1,n]) is
given by

S(@)([1,n]) DS@)([1,n]) = S@ &, P)([L,n]) —Ls §(@)([1,n]).

As V(P,n) is, by construction, a set of generators of the algebra S(Z*"(V))([1,n]),
we have the following morphism of algebras T (V (P, n)) — S(.#*"(V))([1,n]), which
factorizes as follows:

T(V(P,n)) S(Z(V))([L.n])

h 0
T(V(P.n)) j

Yva
< [('Ua)ija ('Uﬂ)ab] ’ Vlégfjb}if{bﬁfziéj<n>

the isomorphism ¢ induces the isomorphism (3). O

Turorem 4.3 (Criterion of Koszulness). Let P be a binary quadratic protoperad. If,
for all integer n > 2, the quadratic algebra o/ (P, n) is Koszul, then the protoperad P
is Koszul.

Proof. — Fix n an integer such that n > 2. By Lemma 4.2, the bar constructions of
the algebras o/ (P, n) are isomorphic, so we have the isomorphism of chain complexes
(4) BME(o/ (P, n)) = BYE(S™ (P ([1,n])),

where BA8 is the bar construction for algebras (see [LV12, §2.2]). To a monomial m
of BA8(o7(P,n)), we associate the partition which is induced by the set of pairs
(i,4) of generator indices which appear in m, as explain below. We have the sur-
jection BA®B(T(V(P,n))) — BAe&(</(P,n)), so choose a representative m of m in
BAg(T(V(P,n))) and consider the set of pairs (i, 5) of generator indices which appear
in T, completed by singletons {k} if k in [1,n] does not appear in any of the pairs.
Such sets can be viewed as elements of W™ ([1,n]), with the partial order induced
by the lexicographic order. Then, by the natural transformation X : W — Y (see
Definition 1.3), we associate 7, a partition p of [1,n].
pforl<i<j<k<n 1<ac<
b < n,rin R(2) and r" in R(3). So, as we see in Figure 2, any choice of representative m
for m gives us the same partition, then the partition p does not depend of the choice
of the representative 7. By the same argument, as the differential of BA'8(.o7 (P, n))
is induced by the product of &/ (P,n), the bar complex splits:
() BNS(o/(Pn) = @ BYE((Pn)).

ped([L.n])
For convenience, we denote by pg, the trivial partition with one element of [1,n].
Through the isomorphism in Equation (4), we identify the complex Bﬁ(l)g(szf (P,n))
with the normalized simplicial bar construction Ny, (P*2)([1,n]) (see Remark 3.8).

All relations in &/ (‘P n) are given by 74, and r
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Let p > 1, a monomial w in N&f)(fPSh)([[l, n]) is given by a leveled connected wall
where bricks are labeled by monomials of P". To such a monomial w, we associate

directly an element of Bﬁ(')g’(l’)

(7 (P,n)) where each level w; of w is sent to a mono-
mial m; in &7 (P, n), as in Figure 3. It is clear that this application is an isomorphism

1 2 3 4 5

NE (P ([L5]) 3 - - 2520 ¢ (va)13(v9)23 @ (0,)a5(va)aa € BRE P (A(P,5))

Ficure 3. Example

of chain complexes:
(6) NE (@) ([L,n]) = BoE ™ (o (P, m)).

As the algebras o7 (P, n) are Koszul by hypothesis, for all n > 2, then the homology of

BAs:(P) (o7 (P, n)) is concentrated in degree p. As this complex splits (see Equation (5)),

Alg,(p)
Po

then the homology of B (<7 (P,n)) is also concentrated in degree p. Then, by the
isomorphism in Equation (6), the homology of N (P1)([1,n]) is also concentrated
in degree p. So, by Theorem 3.7, the shuffle protoperad P*" is Koszul, then P too,
because we have, for every ordered finite set .S, the following isomorphisms of chain
complexes:
BLO™(S) = (BP)™M(S) = BX(S),

the first one given by Corollary 1.26 and the second one by definition of the functor
(=), O

4.2. THE MAIN EXAMPLE: THE PROTOPERAD DLlie. In this section, we define the pro-
toperad DLie and we show that it is Koszul by Theorem 4.3.

Derinition 4.4 (The protoperad DLie). — The protoperad DLie is the quadratic
protoperad

1 9 2 1 123 231 312
@Lie::ﬁz(— :——>/< A A >
Remark 4.5. We associate to the protoperad DLlie, the shuffle protoperad
1 2
th( — )
DLie™ = :
123 123 123 123 123 123
< D TN O FEET O B O >
BN | | N ; e | B |

by Corollary 1.26.

To the protoperad DLie, we associate the family of quadratic algebras, denoted by
o (DLie,n) for n > 2, given by the quadratic datum (V(DLie,n), R(DLie,n)), with
generators
V(DLie,n) ={zi; |1 <i<j<n}
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and relations
. . T12T923 — T23L13 — T13T
R(DLie,2) =0 ; R(mze,g)—{ 127728 7 P28 A3 12};
T23%12 — T13%23 — 12713
and, for n > 4,
1<i<j<k<n
I1<u<v<n

1<a<bsn
LabTyv — LuvLab {a b} n {u ’U} -
) Y -

LijLjk — TjkTik — TikTLij
R(DLZ.B, Tl) = TjkTij — TikTjk — LijTik

Prorosririon 4.6. For all n > 2, the quadratic algebra </ (DLie,n) is Koszul.
Proof. See Proposition A.1 for the proof. O
Turorem 4.7. — The protoperad DLie is Koszul.

Proof. — By Proposition 4.6 and Theorem 4.3 ]
Cororrary 4.8. — The properad Ind(DLie) is Koszul.

Proof. — The monoidal functor Ind is exact by Definition/Proposition 1.16, and pre-
serves the graduation by the weight. (|

This corollary is very important: it is the first example of a Koszul properad with
a generator not in arity (1,2) or (2,1).
5. DPois 1s KoszuL

In this section, we study the Koszul dual of the protoperad DLie, which is called
DCom, by analogy of the case of operads Lie and Com.

5.1. Tur KoszuL puaL or DLie. — To the protoperad DLlie, we associate its Koszul
dual, which we will called DCom:

DCom := y(ngie)/<R$J>,

where V* is the linear dual of V and, for all R ¢ .Z ) (V), R* is the orthogonal of R
in .# @ (V*). The G-module V3, is identified to

sgn(Gq) ifm=2

0 otherwise.

Vigie([1,m]) = {

Then, as in the case of the protoperad DLie, we can diagrammatically interpret
Vi rio([1,2]) as follow

Viee([L2) = (4= = —&=).

We also have the following relations:

RJBJ' 1 2 3 _ 2 3 1 ; %
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By the second relation in R% rier We directly have that
DCom([1,2]) = DGom(l)([[l, 2]) = Vi rie-
For the &-module DCom([1, 3]), we have:

1 2 3 3 2 1

If we consider the elements of weight 3 in DCom([1, 3]), we have, by the first relation
in Rp;, the two following equality:

=L s i

That implies that the &-module DCom([1, 3]) is reduced to its component of weight 2,
i.e., DCom([1,3]) = DComy2y([1,3]). This equality is a more general thing, as we will
see, i.e., we will prove that, for all n > 2, we have DCom([1,n]) = DCom(,—1)([1,7]).

Lemva 5.1. Every stairway of arity n is invariant up to the sign by the diagonal
action of Z/nZ, that is, for all n > 2
n—1n n 1
2 o = (_1)n—1 3 o
1 ?] 2 ?]
Proof. — We prove this result by induction on the arity n. By the definition of the
protoperad DCom, we have:

12 3 2 3 1
= = - = ad 5T = L5

Suppose that, for a fixed integer n, we have the following equality:
n—1n n 1
g =
2 e = (_1)7171 3 e .
1 ?} 2 ?}

Then, we have

= = (-1t E = (1) j

L= i i

Then, we have

H]iw
Hﬁw
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|
Lemma 5.2. — For all integer n greater than 2, we have the following equality
n—1 n n n—1
2 R = (_1)n+1 T2 .
L ==
Proof. We prove this result by induction on the arity. We also have
1 2 3 3 2 1
Suppose that, for a fixed integer n > 2, we have
n—2 n—2
n—3 n—1 n—1 n—3
2 o = (_l)n T 2 :
1 ?] % 1
Then, we have
n n—1
neln z w1
n—2 F] n—2 l% n—2
2 = - 2 = _(_1)n 2
O
Lemva 5.3. — Every monomial of DCom such that the underlying non-oriented graph
does not have cycles can be rewritten as a stairway.
Proof. — We prove this result by induction on the weight of monomials, i.e., the

number of vertices of the underlying graph. By Lemma 5.2, we have that this lemma
holds for a monomial of weight 2. Let n be an integer strictly greater than 2. Suppose
the lemma holds for every monomial of weight w < n. We consider ®, a monomial
of weight n and we denote by ®, its underlying non-oriented graph. As DCom is
a properad, the graph ® is connected: we label its n vertices by v1,...,v,. There
exists v in [1,n] such that the subgraph @ := T \ v, is connected. By the induction
hypothesis, we can rewrite ®* as a stairway, then we can rewrite ® as a one of these
two following monomials:

o - %

and, by invariance of stairways under the cyclic group action, we have our result. [J

Lemva 5.4. — Ewvery monomial of DCom such that the underlying non-oriented graph
has a cycle is null.
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Proof. We prove the result by induction on the weight of monomials. We limit
ourselves to considering only monomials whose underlying non-oriented graph is a
cycle, i.e., monomials whose each elementary block is linked by two edges to another
block. We have the relation %

=0

which initialize our induction. Suppose that every cycle of weight < n — 1 is null. We
consider a cycle ® of weight n and, we isolate one of the blocs v, in the cycle (i.e.,
one of the vertex of the underlying graph) such that its two outputs are linked with
an other bloc. In a cycle, such a bloc already exists. We denote by ®*, the monomial
obtained by the forgetfulness of the bloc v, in the initial cycle. The monomial ®* does
not contain a cycle, then, by Lemma 5.3, ®* can be rewriting in a stairway. Finally,
the monomial ® can be rewrite as one of the two following monomials in Figure 4
and Figure 5. By the invariance of stairways under the diagonal action of the cyclic

Ficure 4. Monomial of form 1 Ficure 5. Monomial of form 2

group (cf. Lemma 5.1), a monomial with the form 2 (see Figure 5) can be rewrite as
a monomial with the form 1 (see Figure 4). Then, ® can be rewrite as a monomial
which contains a smaller cycle, then ® is null. O

Prorosition 5.5. For alln > 2, we have
DCom([1,n]) = DCom(,,—1)([1,n]).

with DCom,_1)([1,n]) generated by ¢,, the stairway with n inputs, which is stable
under the diagonal action of the cyclic group. In terms of group representations,
DCom(n,n) is given by

sgn(Z/nZ) Tg/"nz if n even,

D =
Gom([[l, n]]) {triV(Z/nZ) Tg/nnz Zf n odd.

Proof. — We already have that DComyy([1,n]) = 0 for all k in [0, — 2]. We also
have that the &-module DCom(,,—1)([1,7]) is generated by the stairway with n inputs.
Finally, monomials in Dﬁie!(k)([[l,n]]) for £ > n have a cycle, thus they are null, by
Lemma 5.4. ]

Norarion 5.6. — For all integers n > 2, we denote:

sgn(Z/nZ) if n even,

not.
sen(Z/nZ) = sen(Z/nZ)®" =
En(Z/nZ) sn(Z/nZ) {triV(Z/nZ) if n odd.
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By Theorem 2.29, the dual coprotoperad of DLie is given by
Diel = (gz(VDLieaRDJ))l =€ (SVosie, X Rpy).

We have seen, in Proposition 5.5, that the protoperad DCom = 2 (V... RJjjJ) sat-
isfies

Deom([1,n]) = DCom 1 ([1,n]) = sE0(Z/nZ) 1577 "
By Proposition 2.30, we have the isomorphism
€ (SVogie, S Rpy)" = P (5" Ve, B Rp ),
so, for all integer n > 0, we have
Daie ([L,n]) = S SG(Z/nZ) |5,

So we have the following proposition.

Prorosirion 5.7. The properad Ind(DLie) s = Q(Ind(@ﬁie)i), which is a cofibrant
resolution of the properad Ind(DZLie), is the quasi-free properad (FV(S~1W),04)
with X~'W, the &-bimodule defined by X—'*W([1,m],[1,n]) = 0 for m # n in N
and

STW (Ll [ n]) = (E7W)a2([L 0], [1,n]) = "2 Ind (sgn(Z/nZ) 157,,)

with XYW ([1,n], [1,n]) concentrated in homological degree n — 2 and with the dif-
ferential Oa induced by the coproduct A of the coproperad Ind(iDLie)‘, which sends

oD o)

s 43
>

IKM
H,

We exhibit the action of the differential on generators of degree 2, 3 and 4.

— The element @9 in Ind('DLie)i is primitive, i.e., A(p2) = (1 ® 1)p2 + p2(1 ®@ 1)
then

Oa(slp2) == (1@ 1)s o + (-)2ls T (1@ 1)) = 0.

— We have seen that the G-bimodule Ind(DLie)i([[l7 3], [1, 3]) is generated by @3,
the stairway of arity 3 which is stable under the diagonal action of the cyclic group, so

2
Aps) = 206123)(<P27 1)(1,902)02123) )
i=0
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then

2
a7 0) = = (01 (57 D1 )y

=0
= 20(123) @2,1)(1,8_1302)0E123),

which is exactly the double Jacobi relation.
— Ind(DLie)' ([1,4], [1,4]) is generated by ¢4, with

2) = D 0an (02, 1)1 05) + (3, (1, 92)) o124

then

3
O (571 1) = = > 0 ihny (1)1 02, 1)(1, 57 0)
=0

(=1 (s s, (1,57 02) ) 0y

3
= > 0 (57 2 (1L 57 M8) = (57 s, (157 02) )iz
=0

5.2. Tur rrorErAD DPois. — We define the properad DPois which encodes the struc-
ture of double Poisson algebra. DPois is the quadratic properad gives as follows:

DPois = F (V& W)/(Ras ® Dy @ Rpy)

with generators concentrated in homological degree 0:

1

Vo= Vae = pk @ k[Sy] = Y @ k[S2)

and

Wi Vo = *= © sgn(S,) 1927

and the relations

— of associativity for the product u :
1 2 3 1 2 3
1 1
— double Jacobi for the double bracket:
1 2 3 2 3 1 3 1 2
Rpji=  fuk? 4 ddl b
1 2 3 2 3 1 3 1 2
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— of derivation:
1 2 3 2 1 3 1 2 3
P
1 2 1 2
We recall the following result of Vallette

Prorosirion 5.8 (see [Val03, Lem. 155, Props. 156 & 158]). Let P be a properad of
the form P == P(VOW,R® D)@ S), with A, a compatible distributive law. Then we
have the following isomorphism of &-bimodules

PARYNB
with A = P(V,R) and B := 2 (W, S). Also, if the sum
> dimg ((V & W)([L,m], [L.n]))

is finite and W is concentrated in homological degree 0, then we have the isomorphism
of &-bimodules P' = B! &Yl Al with A .= 2(V,R) and B := P (W, S). Moreover, if
the properads A and B are Koszul, then the properad P is also a Koszul properad.

For DPois, the relation of derivation D) is given by a compatible replacement law
(see [Val03, Val07]), with A the following morphism of &-bimodules:

A (Ig @ W) B (I @ V)0V — (I & V) B (Ig @ W) V(0w
given by
12 o3 2 1 3 12 o3
A \1;;/ — W + W .
Levma 5.9. The morphisms of &-bimodules
As RY2 Ind(DLie) V@ — DPois  and  AsKY Ind(DLie)? D — DPois
are injectives.

Proof. — We start by considering the morphism As &Y Ind(DLie) () — DPois:
in DPois, we consider the terms

1 2 3 4 1 2 3 4
w7
1 2 1 2

In the properad DPois, by the relation D)y, we have the following equalities

1 2 3 4 2 3 1 4 N 3 1 2 3 4 1 2 3 4
2 4
W NG Y - R
1 2 1 2 1 2 1 2 1 2
then As KY2! Ind(DLie) 1) — DPois is injective. As the double jacobiator is a

multiderivation (see [Van08a]), then the morphism As XY Ind(DLie)1): () — DPois
is injective 0
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Cororrary 5.10. We have the following isomorphism of properads:
DPois =2 As XY Ind(DLie).

As the properads As and Ind(DLie) are Koszul (see [LV12, Chap. 9] for the case
of As), we obtain the main theorem of this paper.

Turorem 5.11. — The properad DPois is Koszul.

Proof. — Directly by Proposition 5.8. O

ArpexpIX. THE ALGEBRAS &7 (DLie, n) AR KoszuL

In this section, DLie is the protoperad of double Lie algebras.
We consider the family of quadratic algebras 7 (DLie,n), for n > 2, given by the
quadratic datum (V(DLie,n), R(DLie,n)), with

V(DLie,n) ={z;; | 1 <i<j<n}
and, for n in N,

1<i<j<k<n
I1<u<v<n
1<a<b<n

{a,b} N{u,v} =@

LijLjk — TjkTik — TikTLij
R(D[;i@, n) = TjkeTij — TikLjk — LijLik

ZTabTyuv — TuvLab

Prorosirion A.1. — For alln > 2, the algebra o7 (DLie,n) is Koszul.

Proof. — The algebra o7 (DLie,2) is isomorphic to k[z], which is Koszul. We denote
by W™, the Koszul dual of o7 (DLie, n); this quadratic algebra is given by the quadratic
datum (V(DLie,n), R(DLie,n)"*) :
V(DLie,n)Y ={x;; | 1 <i<j<n}

2
ij
TijZie F i | 1<i<j<k<n
Tij Tk + Tik%ij I1<u<v<n
TijTik + TjkTij 1<a<b<sn
ZijTik — Tk | {a, 0} N{u,v} =&
TabTuv T TuvTab

T

R(DLie,n)* =

We prove that the algebra W, is Koszul by the rewriting method; we will follow [LV12,
Chap. 4, Sect 4.1].

Step 1. We totally order the set of generators of W™ by the right lexicographic
order on indices:

iy <xpeif j<Llorj=~andi<k.

Step 2. — We extend this order to the set of monomials by the left lexicographic
order.
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Step 3. We obtain the following rewriting rules:
2 1 2 3
Zij — 0, TjkTik — —TijTjk, TikTij — —TijTjk
4 5 6
TjpZij — —TijTik, TikTjk — TijTik, TuvTij — —TijTyy-

Step 4. — We test the confluence of rewriting rules for all critical monomials. Recall
that a critical monomial is a monomial x;;Tre®y, such that monomials x;;x, and
TkeXyy can be rewrite by rewriting rules. Any critical monomial gives an oriented
graph under the rewriting rules which is confluent if it has only one terminal vertex.

We denote by a-f the confluence diagram associated to the monomial x;;Tre® .
where x;;21, is the leading term (the term of the left side) of the rewriting rule o and
TkeTyy, the leading term of the rewriting rule 5. We adopt the following notation: for
a monomial ;;TreTy., when we use the rewriting rule a on x;;x¢, we denote that by

Lij Tt Luv o ? LabZedLuv

and when we use the rewriting rule o on zp¢x,,, we denote that by

—~—

«a
Tij Tt Ty ? TijTabTed-

We start with the case of 1 <4 < j < k < n and x4, < j; to study diagrams of the
form 1-3:

2 ... 2 o 2
X TipTik X Tipij X Tikij
0\ L kT Tik 0\ g TTikTij Tk 0\ , T TikTijTik s
1 ) / 1 ) e 1 ) /
xijlec xijxjk xijxjk
5 ikLijlik ijuv
2 _—— 5 ) Y ¢
T3k Tjk —ZijTikTik ; 0»/ e
\ 1 9 — 6 ijLuvdijg
) 2
Ty T

all diagrams for a critical monomial with the leading term of 1 on the left are confluent.
Similarly, all diagrams -1 are confluent.

Now, we study the diagrams for a critical monomial with the leading term of 2 on
the left. We start with 2-2: let u < i < j < k:

2 " TikTuilik —— TuiljkTik _ 2
2> 6
TjkTikTuk —LuilijTjk -
2
2 LT Tk — TijTuTik 2

For 2-3, there are three cases: we begin with ¢ < j < u < k:

3/ jkLiubuk 6 iutljkluk 5
TjkTikTiu . 5 TiuTjuTik
2 XX > TijTau Lk
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for the case i < j = u < k, we have:

5
3 jkLijlijk ijLlikdjk ijLijlik
— 4
TjkTikTij 0;
4 1
2 T T —— TijTijTik
and, for i < u < j < k, we have:

3 Tk TiuTuk ” TiuLjkLuk 2
—— 6
TjkLikTiu —LiuLujTjk -

6
2 —k T Ty — Tij Tl O

For 2-4, there are only one case: let u < i < j <k

4 L jkLuiluk 6 ? TuiljkLuk 4
LikTikTys —Tyi Ly j Tuk s
JjkLikLui uibujluk s
2 4 —
—Tij Tk Tui — TijluiTuk 4

For 2-5, there is three cases: we begin with i < u < j < k:
}) TjkTiuTik T> —TiuTjkTik _ 2

TjkTikLuk —LiuLij Lk ;3

_—

2
2 =TT Tk —— Tij Ty Tk O
for the case i < j = u < k, we have:

5y Tk 1 TijTikTik
TjkTikT jk R
1

2 —TijTipTj —7 0
and, for ¢ < u < j < k, we have:

5 TikTiulik o 7 TiuljkTik __2
TjkTikTuk 3 —TiuTiTk -

5
2T T Tk — TijTiuTjk

For 2-6, there are three cases: we begin with u < i < j < k, v < k and v # j:

6 L jkLyvLik > TuvTikTik 2
—— 6
LjkTikLyv “LyvTijTjk 5
6
2 =X Ty — TijLun®jk O

and for u < i< j < kand v =j:

5
6, L jkTujLik — 7 TujLukLik — Tujluiluk

TjRTikTyj 3

LT Tyl -

4
2 BTy —— TijTujTuk —5 ~TuilukTij O

JE.P.— M., 2020, tome 7



936 J. Leray

For 3-2, let u <t < j <k:

2 T TikTuiTij — TuilukTij
2 —
= p

LikLijLuyyj —ZLiTii Tk -
3Tuj - . N J
LT Ty — TijTujTuk 2
Consider the case 3-3, let i < v < j < k:
3 Lk TivLTyj T> LivLokTyj 3
LikTijLiv — Ty Ty Tk -
3 6 —
—TijTjkTip — TijTivTjk 3
For the case 3-4, let u <1 < j < k:
4 T TikTyiToyy T> LyiLukLuj 3
LikLijLui —Tyi Ty Tk -
6
3 T — TigTuiTie 4
Consider the case 3-5, let i < u < j < k:
}) TikTiuLij T> —TiuTukTij _ 6
LikLijLuyyj TiuZijTuk -
4 _—
37 =TT Ty —— TijTujTuk O

For 3-6, there is three cases: we begin with u <i < j <k, v # j and v # k:

6 . TikTuvTij T> TuvTikTij _ 3
TikTijTuv —LyvTijTjk s
6 -
3 =BT Ty — Tij Ty Tk O

and foru<i<j<k,v#jandv=k:

6 . TikTukTij T> TiTikTij _ 3
TikTij Tuk “Luilij Lk -
3 2 —
—Ti T Ty — TijTujTjk 2

For 4-2,let u < i < j < k:

}) Lk LuiLig *>6 TuiljkLij _ 4
Tl TiiToys —TyiTii Tik -
IRy ug utbigLe
1 6 —
—XijTikTuj — TijLujTik >

Consider the case 4-3, let i < u < j < k:

3 TjkTiuluj —— 7 TiuljkTuj _ 4
i 6
LjkLijLiy —TiuTuj Tuk -

3
4 —B LTy — T T Tk 3
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Consider the case 4-4, let u < i < j < k:

}( —T Ty T *>6 ToyiljkTuj 4
TikTii Tui — T Tui Tk -
GkLijLui uilujLu
4 4 —
—Xij Tk Tus — TijTuiTuk 24

Consider the case 4-5, let i < u < j < k:

}?*xjkwiuxij *>6 TiuTjkLij _ 5

LjkLijLug —LiuTijLik -

6
4 Ty — Tij Ty Tik O

For 4-6, there are three cases: we begin with i < u < j <k, v # j and v # k:

6 . LjkTuvTij —— TuovTjkTij _ 3
—— 6
TjkTijLyn LuvTijTik 3

6
4 =2 T Ty — TijTueTik O

and fori<u<j<k,v#jandv=k:

4
6, T TjkTukTij 5 7 TujTikTi; — 7 ~TujTijTik

TjkTijLuk ) 5l
4 —ZijTikLuv — LijTuilik 4>4 “LuilujTik

For 5-2, we have three cases. We begin with the case where u < i < j < k:

5
2 | T TikTujTjk 4>6 TyjTik T — TujTijTik
Tik Lk Tuk 5l 5
2
5 T Ly ikTuk —— ~TijTuilik —— TuilijTik
we continue with u =14 < j < k:
2, T TikTig Tk 3 TijTikTk
TikTjkTik s

1
5 Twijripwiy ——— 0

and we finish by i <u < j < k:
5
2, —TikTujTjk T> TyjTikTjk — 7 TujTijTik
Tik jkTuk 2|
5
> T Ty TikTuk —— TijTiuTik — 5 ~TiuTujTik
For 5-3,let i < j <u < k:

3/ ikLjuluk 6 JuLikLuk 5
TikT kT ju <2/ TjuLiuTik -
6
5 T X TikTju —— —TijTjulik

937
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For 5-4, we have three cases. We begin with the case where u < i < j < k:

2
— X Ty j Ty ——— Ty j ik Tyl ————> — Ly Loy T
4/ ikbujLluk 6 ujbikLtuk ujtuglik
Tik T jkTyj 3 ;
6
5 Wi TikTug —— —TijTujTik —5 TuilijTik

we continue with u =17 < j < k:
2
4 “TikTijTik 5 TijTjkTik — ~LijTijLjk
T 1] ;
3
> L XigTij —— Tijli T ——— 0
and we finish by i <u < j < k:
5
PN —ZikLujLuk T> TyjTikTuk — TujLiulik
Tk )Ty 4l
6
5T Xy TikTyj ——F ~TijTujTik — 5 ~TiuTijTik
For 5-5, we have three cases. We begin with the case where i < j < u < k:

5/ ik Tjuluk 6 > TjulikTuk 5
TikTjkLuk 4 TjuTijTik -

5
5 T XXXyl — > TijTiuTik
For 5-6, there are many cases: we begin with i < j < k,u#iand j <v < k:
6/ —LikLyvTjk T> LyvLikTjk 5
LikTjkLyv 6 —LuvTijTik ;

6
5 LijTikTyv > —LijjLyvLik

fori < j<k,uv#iand v < j:

6/ ik TyvTjk 6 ? LyvTikTjk 5
LikZjkLuv —LuvTijLik ;
J 6 / J )
5 TijTikTyy — —TijTuvTik 6
foru=i<j<v<k:
6 Tk TivTjk 3 ? TivTokTjk 2
LikZjkLiv 5 —LipTjy Lok s
3
5 "X TikTin —— TijTivTok
foru=i<v<j<k:
6/ ik TivTjk 4>3 TivTokTjk 5
TikTjkTiv LijyvLojLok 5

3 -
5 T X TikTiv — > —TijTivTok 3
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foru<i=v<j<k:

6/ Lk Tuiljk 1 ? TyilukTjk 5
TikTjkLusi P LuiLujLuk -

4
5 Xk Ty — —TijTuiluk 2

Finally, consider the diagrams 6-/3. We start with the case 6-2; there are two cases:
i1 <j<k<wvandu#i,jk:

2 T TuvTij ik 4>6 LTijTuvTijk _ 6
LyvTjkTik —LijTjkLyv ;
6 6 /2
—TjkTuvTij — TjkLijLTuw

and the case i < j < k <wv and u=1:

2, “TiwlijTik —5* TijTjoTjk __ 3
LivTjkLik ~LijTjkLko -
J 5 oyt
—TjkTivTik — TjkTikTho 2

For the case 6-3, we begin with the case where i < j < k < v and u # 1, j, k:
3 . “TuvTijTjk T> TijTuvTik _ 6

LyvTikTij LTk Ly 3
_—

—Zik LuvTij SELEN TikTijTyy 3
and the case 1 < j < k <wv and u = j:
3 TTiwTijTik —5 7 TijTiuTik 3
TivTjkTik , . X TjkTky -
—TjkTipTik — TjkTikTho 2
For the case 6-4, we begin with the case where i < j < k <wv and u # 1, j, k:
4 " TuuTijTik T> TijTuvTik __ 6

Ty jkTij —LijTikTyw 3
6
—TjkTupTij — TjkTijTuv 4
and thecase i < j<k<vandu=1:
5  —TiwlijTik T> TijTijvTik _ 6
TivZjkTij —TijTik Ly -

3 —
—TjkTivTij — TjkTijTju

For the case 6-5, we begin with the sub-case where i < j < k < v and u # 14, j, k:

5/ ToyvTijTik *>6 —ZijTyvTik _ 6
LyvTikTjk LijLik Ly 3
6 _6 . —5
Lk TyvTjk LTikLjkTyy
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and thecase i < j<k<vandu=j:

}) TjoTijLik *>4 —LijTivTik __ 3
LivXikTik Liilik Loy -
JuLikL g gl v
6 _3 —5
Lk Tjuljk LikZ kT kv

For the case 6-6, there are two sub-cases: the first one is for b < j < v and u # a:

}} TuvTablij T> —LabTyvTij 6
TuvTijTab —LabTijTyw ;
6 6, —
—LijTuvTab TijTabTyv
and the second is for b < j < v and u = a:
}} LavTablij T} —TLabTbyLij 6
TavZijTab TabTijThy -
6

3
—TijTavTab —— TijTabToy O

Since all diagrams are confluent, the algebra W,, is Koszul. Hence, for all integers
n > 2, the algebra &7 (DLie, n) is Koszul. O
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