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MIXING VIA CONTROLLABILITY FOR

RANDOMLY FORCED NONLINEAR DISSIPATIVE PDES

by Sergei Kuksin, Vahagn Nersesyan & Armen Shirikyan

Abstract. — In the paper [KNS20], we studied the problem of mixing for a class of PDEs with
a very degenerate bounded noise and established the uniqueness of stationary measure and its
exponential stability in the dual-Lipschitz metric. One of the hypotheses imposed on the prob-
lem in question required that the unperturbed equation should have exactly one globally stable
equilibrium point. In this paper, we relax that condition, assuming only global controllability
to a given point. It is proved that the uniqueness of a stationary measure and convergence to
it are still valid, whereas the rate of convergence is not necessarily exponential. The result is
applicable to randomly forced parabolic-type PDEs, provided that the deterministic part of
the external force is in general position, ensuring a regular structure for the attractor of the
unperturbed problem.

Résumé (Mélange via la contrôlabilité pour des EDP non linéaires dissipatives bruitées)
Dans l’article [KNS20], nous avons étudié le problème de mélange pour une classe d’EDP

avec un bruit borné très dégénéré et établi l’unicité de la mesure stationnaire et sa stabilité
exponentielle pour la métrique dual-Lipschitz. L’une des hypothèses imposées au problème en
question exigeait que l’équation non perturbée ait exactement un point d’équilibre globalement
stable. Dans cet article, on assouplit cette hypothèse, en ne supposant que la contrôlabilité
globale à un point donné. On prouve que l’unicité d’une mesure stationnaire et la convergence
restent vraies, alors que le taux de convergence n’est pas nécessairement exponentiel. Le résultat
est applicable aux EDP de type parabolique avec une perturbation aléatoire, à condition que la
partie déterministe de la force extérieure soit en position générale, ce qui garantit une structure
régulière pour l’attracteur du problème non perturbé.
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0. Introduction

In the last twenty years, there was a substantial progress in the question of de-
scription of the long-time behaviour of solutions for PDEs with random forcing.
The problem is particularly well understood when all the determining modes are
directly affected by the stochastic perturbation. In this situation, for a large class
of PDEs the resulting random flow possesses a unique stationary distribution, which
attracts the laws of all the solutions with an exponential rate. We refer the reader
to [FM95, KS00, EMS01, BKL02] for the first results in this direction and to the
review papers [ES00, Bri02, Deb13] and the book [KS12] for a detailed discussion of
the literature. The question of uniqueness of stationary distribution becomes much
more delicate when the random forcing is very degenerate and does not act directly
on all the determining modes of the evolution. In this case, the propagation of the
randomness under the unperturbed dynamics plays a crucial role and may still ensure
the uniqueness and stability of a stationary distribution. There are essentially two
mechanisms of propagation—transport and diffusion—and they allowed one to get
two groups of results. The first one deals with random forces that are localised in the
Fourier space. In this situation, it was proved by Hairer and Mattingly [HM06, HM11]
that the Navier–Stokes flow is exponentially mixing in the dual-Lipschitz metric, pro-
vided that the random perturbation is white in time. Földes, Glatt-Holtz, Richards,
and Thomann [FGRT15] established a similar result for the Boussinesq system, as-
suming that a degenerate random force acts only on the equation for the tempera-
ture. The recent paper [KNS20] deals with various parabolic-type PDEs perturbed by
bounded observable forces, which allowed for treatment of nonlinearities of arbitrary
degree. The second group of results concerns random forces localised in the physical
space. They were obtained in [Shi15, Shi20] for the Navier–Stokes equations in an
arbitrary domain with a random perturbation distributed either in a subdomain or
on the boundary.

The goal of the present paper is to relax a hypothesis in [KNS20] that required
the existence of an equilibrium point which is globally asymptotically stable under
the unperturbed dynamics. To illustrate our general result, let us consider the fol-
lowing example of a randomly forced parabolic PDE which defines (under suitable
hypotheses) a random dynamical system in the Sobolev space Hs(Td) with an arbi-
trary integer s > 0:

(0.1) ∂tu− ν∆u+ f(u) = h(x) + η(t, x), x ∈ Td, d 6 4.

Here ν > 0 is a parameter, f : R→ R is a polynomial satisfying some natural growth
and dissipativity hypotheses (see (4.2) and (4.3)), h : Td → R is a smooth determin-
istic function, and η is a finite-dimensional Haar coloured noise. More precisely, let us
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denote by {h0, hjl} the Haar basis in L2(0, 1) defined by the relations(1)

h0(t) =

{
1 for 0 6 t < 1,

0 for t < 0 or t > 1,

hjl(t) =


0 for t < l2−j or t > (l + 1)2−j ,

1 for l2−j 6 t <
(
l + 1

2

)
2−j ,

−1 for
(
l + 1

2

)
2−j 6 t < (l + 1)2−j ,

where j > 0 and 0 6 l 6 2j − 1. Note that, for any integer k > 1, the functions{
h0(· − k + 1), hjl, j > 0, (k − 1)2j 6 l 6 k2j − 1

}
are supported on [k−1, k] and form an orthonormal basis in L2([k−1, k]). We assume
that η is a random process that takes values in a sufficiently large(2) finite-dimensional
subspace H of L2(Td) and has the form

(0.2) η(t, x) =
∑
i∈I

biη
i(t)ϕi(x),

where {ϕi}i∈I is an orthonormal basis in H , {bi} are non-zero numbers, and {ηi}
are independent copies of a random process defined by

(0.3) η̃(t) =

∞∑
k=0

ξkh0(t− k) +

∞∑
j=0

cj

∞∑
l=0

ξjlhjl(t).

In this sum, {cj} is a sequence given by

(0.4) cj = C (j + 1)−q for some C > 0, q > 1,

and {ξk, ξjl} are independent identically distributed (i.i.d.) scalar random variables
with Lipschitz-continuous density ρ such that supp ρ ⊂ [−1, 1] and ρ(0) > 0. Note
that the restrictions of η̃ to [k−1, k] (whose translations can be considered as random
functions of t ∈ [0, 1]) form a sequence of i.i.d. random variables in L2(0, 1). Thus,
the random process (0.2) is a concatenation of i.i.d. random variables ηk = η|[k−1,k]

in L2([0, 1],H ), and the value uk of a solution u(t, x) for (0.1) at time t = k depends
only on uk−1 and ηk. Let us supplement Equation (0.1) with the initial condition

(0.5) u(0, x) = u0(x),

where u0 ∈ Hs(Td). Under the above hypotheses, the restrictions to integer times
of solutions for Problem (0.1), (0.5) form a discrete-time Markov process, which is
denoted by (uk,Pu), and this Markov process is the main subject of our study.

We assume that the space H and the functions f and h are in general position in
the sense that the following two conditions are satisfied.

(1)Note that the Haar basis used in this work differs from that of [Lam96, §22] by normalisation.
(2)More precisely, we require H to be saturating in the sense of Definition 4.1. Note that the

saturation property does not depend on ν, and therefore we can choose the same finite-dimensional
subspace H for all values of the viscosity.
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(S) Stationary states. — The nonlinear elliptic equation

(0.6) − ν∆w + f(w) = h(x), x ∈ Td

has finitely many solutions w1, . . . , wN ∈ H2(Td).

Genericity of this condition is proved in Section 5.3, and examples are provided by
the criterion established in [CI74, §5]; e.g. in our context with d = 1, one can take
f(u) = u3 − u and h = 0.

The existence of a Lyapunov function (see (4.11)) implies that at least one of the
stationary states, say wN , is locally asymptotically stable.(3) This means that, for some
number δ > 0, the solutions of the unperturbed equation

(0.7) ∂tu− ν∆u+ f(u) = h(x)

that are issued from an initial condition u0 with ‖u0 − wN‖L2(Td) 6 δ converge
uniformly to wN :

(0.8) lim
t→+∞

sup
u0∈B(wN ,δ)

‖u(t)− wN‖H1(Td) = 0,

where B(w, δ) is the ball in L2 of radius δ centred at w. To formulate the second
condition, let us denote by K the support of the law for the restriction to the inter-
val [0, 1] of the process (0.2) and by Sn(u0; ζ1, . . . , ζn) the value at time t = n of the
solution for Problem (0.1), (0.5) in which the external force η coincides with ζk on
the time interval [k − 1, k].

(C) Controllability to the neighbourhood of wN . — For any 1 6 i 6 N − 1, there
is an integer ni and functions ζi1, . . . , ζini ∈ K such that

(0.9) ‖Sni(wi; ζi1, . . . , ζini)− wN‖H1(Td) < δ.

The validity of this condition can be derived from Agrachev–Sarychev type ap-
proximate controllability results,(4) provided that the support K is sufficiently large.
We also note that if the δ-neighbourhood of wN is attainable from the other stationary
states, then due to the asymptotic stability any neighbourhood of wN can be reached
in a sufficiently large time. The following theorem is a consequence of the main re-
sult of this paper on the uniqueness and mixing of a stationary measure for (uk,Pu).
Its exact formulation and further discussions are presented in Section 4.

(3)To see this, it suffices to note that the Lyapunov function admits at least one local minimum,
and any local minimum is a locally asymptotically stable stationary state.

(4)Theorem 5.5 of the appendix establishes an approximate controllability property for Equa-
tion (0.1). Namely, it shows that, for any i ∈ [[1, N − 1]], there is an H -valued function ζi such that
the trajectory of Equation (0.1) issued from wi is in the open δ-neighbourhood of wN at time t = 1.
Replacing the process η in (0.2) with aη and choosing a > 1 sufficiently large, we can ensure that
K a := supp D(aη) contains a function arbitrarily close to ζi, so that Inequality (0.9) holds with
ni = 1.
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Main Theorem. — Under the above conditions, the Markov process (uk,Pu) has a
unique stationary measure µ on the space H1(Td), and for any other solution u(t)

of (0.1), we have

‖D(u(k))− µ‖∗L −→ 0 as k −→∞,

where ‖ · ‖∗L stands for the dual-Lipschitz metric over the space H1(Td), and D(·)
denotes the law of a random variable.

Among the assumptions of this theorem, a key property is Hypothesis (C) which
connects the underlying (deterministic) dynamics with the random perturbation given
by η. A natural question is to determine what can be said if (C) is not satisfied.
While in the general setting this question is not likely to have a satisfactory answer,
when the noise is sufficiently small, one can prove that, for any stable stationary
state, there is a unique stationary measure supported in its neighbourhood. In this
context, a challenging open problem is the description of the behaviour of stationary
measures in the vanishing noise limit, in the spirit of the Freidlin–Wentzell theory
developed for finite-dimensional diffusion processes; see [FW84, Chap. 6]. Note that,
in the case of the nonlinear wave equation, with finitely many equilibria and a white-
noise perturbation of full range, that limit is studied in [Mar17].

The paper is organised as follows. In Section 1, we formulate and discuss our main
theorem on the uniqueness of a stationary measure and mixing for a discrete-time
Markov process. In Section 2, we derive some preliminary results needed in the proof
of the main theorem, which is established in Section 3. Application to a class of
nonlinear parabolic PDEs is presented in Section 4. Finally, the appendix gathers
some auxiliary results.

Acknowledgements. — The authors thank R. Joly for the proof of the genericity of
Hypothesis (S) (see Proposition 5.3) and the anonymous referees for their pertinent
remarks which helped to improve the text and to remove a number of inaccuracies.

Notation. — For a Polish space X with a metric dX(u, v), we denote by BX(a,R)

the closed ball of radius R > 0 centred at a ∈ X and by ḂX(a,R) the corresponding
open ball. The Borel σ-algebra on X and the set of probability measures are denoted
by B(X) and P(X), respectively. We shall use the following spaces, norms, and
metrics.

We denote by Cb(X) the space of bounded continuous functions f : X → R
endowed with the norm ‖f‖∞ = supX |f |, and Lb(X) stands for the space of functions
f ∈ Cb(X) such that

‖f‖L := ‖f‖∞ + sup
0<dX(u,v)61

|f(u)− f(v)|
dX(u, v)

<∞.

In the case of a compact space X, we write C(X) and L(X).
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The space P(X) is endowed with either the total variation metric or the dual-
Lipschitz metric. They are defined by

‖µ1 − µ2‖var := sup
Γ∈B(X)

|µ1(Γ)− µ2(Γ)| = 1

2
sup
‖f‖∞61

|〈f, µ1〉 − 〈f, µ2〉| ,(0.10)

‖µ1 − µ2‖∗L := sup
‖f‖L61

|〈f, µ1〉 − 〈f, µ2〉| ,(0.11)

where µ1, µ2 ∈P(X), and 〈f, µ〉 =
∫
X
f(u)µ(du) for f ∈ Cb(X) and µ ∈P(X).

We denote by Lp(J,E) the space Borel-measurable functions f on an interval J ⊂ R
with range in a separable Banach space E such that

‖f‖Lp(J,E) =

(∫
J

‖f(t)‖pEdt
)1/p

<∞;

in the case p =∞, this norm should be modified accordingly.
We denote by Hs(D) the Sobolev space of order s > 0 with the usual norm ‖ · ‖s.

1. Main result

Let us denote by H and E separable Hilbert spaces and by S : H × E → H

a continuous mapping. Given a sequence {ηk} of i.i.d. random variables in E, we
consider the random dynamical system (RDS)

(1.1) uk = S(uk−1, ηk), k > 1.

In what follows, we always assume that the law ` of the random variables ηk has
a compact support K ⊂ E and that there is a compact set X ⊂ H such that
S(X×K ) ⊂ X. Our aim is to study the long-time behaviour of the restriction of the
RDS (1.1) to the invariant set X.

For a vector u ∈ H and a sequence {ζk} ⊂ E, we set Sm(u; ζ1, . . . , ζm) := um,
where {uk} is defined recursively by Equation (1.1) in which u0 = u and ηk = ζk.
We assume that the hypotheses below hold for the RDS (1.1) and some Hilbert space V
compactly embedded into H.

(H1) Regularity. — The mapping S is twice continuously differentiable from H ×E
to V , and its derivatives are bounded on bounded subsets. Moreover, for any fixed
u ∈ H, the mapping η 7→ S(u, η) is analytic from E to H, and all its derivatives
(Dj

ηS)(u, η) are continuous functions of (u, η) that are bounded on bounded subsets
of H × E.

(H2) Approximate controllability to a point. — There is û ∈ X such that, for any
ε > 0, one can find an integer m > 1 with the following property: for any u ∈ X there
exist ζ1, . . . , ζm ∈ K such that

(1.2) ‖Sm(u; ζ1, . . . , ζm)− û‖ < ε.

Given u ∈ X, let us denote by K u the set of those η ∈ E for which the image of
the derivative (DηS)(u, η) is dense in H. It is easy to see that K u is a Borel subset
in E; see [KNS20, §1.1].

J.É.P. — M., 2020, tome 7
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(H3) Approximate controllability of the linearisation. — For any u ∈ X, the
set K u has full `-measure.

(H4) Structure of the noise. — There exists an orthonormal basis {ej} in E, inde-
pendent random variables ξjk, and real numbers bj such that

(1.3) ηk =

∞∑
j=1

bjξjkej , B :=

∞∑
j=1

b2j <∞.

Moreover, the laws of ξjk have Lipschitz-continuous densities ρj with respect to the
Lebesgue measure on R.

We refer the reader to [KNS20, §1.1] for a discussion of these conditions and of
their relevance in the study of large-time asymptotics of trajectories for PDEs with
random forcing. Here we only mention that the approximate controllability hypothe-
sis (H2) imposed in this paper is weaker than the dissipativity condition of [KNS20]
and allows one to treat a much larger class of PDEs that possess several steady states.
A drawback is that the main result of this paper does not give any estimate for the
rate of convergence (to the unique stationary measure), which remains an interesting
open problem.

To formulate our main abstract result, we introduce some notation. Since {ηk} are
i.i.d. random variables, the trajectories of (1.1) issued from X form a discrete-time
Markov process, which is denoted by (uk,Pu). We shall write Pk(u,Γ) for its transition
function and Pk : Cb(X) → Cb(X) and P∗k : P(X) → P(X) for the corresponding
Markov operators.

Let us recall that a measure µ ∈ P(H) is said to be stationary for (uk,Pu)

if P∗1µ = µ. The continuity of S implies that (uk,Pu) possesses the Feller prop-
erty, and by the Bogolyubov–Krylov argument and the compactness of X, there is at
least one stationary measure. We wish to investigate its uniqueness and stability.

Let ‖ · ‖∗L be the dual-Lipschitz metric on the space of probability measures on X
(see Notation). The following theorem, which is the main result of this paper, describes
the behaviour of P∗k as the time goes to infinity.

Theorem 1.1. — Suppose that Hypotheses (H1)–(H4) are satisfied. Then the Markov
process (uk,Pu) has a unique stationary measure µ ∈P(X), and there is a sequence
of positive numbers {γk} going to zero as k →∞ such that

(1.4) ‖P∗kλ− µ‖∗L 6 γk for all k > 0 and λ ∈P(X).

A proof of this result is given in Section 3. Here we discuss very briefly the main
idea, postponing the details to Section 3.1.

A sufficient condition for the validity of the conclusions is given by Theorem 5.1 in
the appendix. According to that result, it suffices to check the recurrence and stability
properties. The recurrence is a simple consequence of the approximate controllability
to the point û; see Hypothesis (H2). The proof of stability is much more involved
and will follow from two properties, (A) and (B), of Theorem 3.1. Their verification
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is based on a key new idea of this work, which reduces the required properties to
some estimates for sums of independent Bernoulli variables. The latter is discussed
in Section 2, together with an auxiliary result on the transformation of the noise
space E (which was established in [KNS20]) and a property of continuous probability
measures.

2. Preliminary results

2.1. Transformation in the control space. — Given a number δ > 0, we set Dδ :=

{(u, u′) ∈ X × H : ‖u − u′‖ 6 δ}. Recall that ` stands for the law of the random
variables ηk; see (1.1). The following proposition is established in [KNS20, §3.2] (see
there Prop. 3.3 with σ = 1/4).

Proposition 2.1. — Suppose that Hypotheses (H1), (H3), and (H4) are satisfied. Then,
for any θ ∈ (0, 1), there exist positive numbers C, β, and δ, a family of Borel subsets
{K u,θ ⊂ K u}u∈X , and a measurable mapping Φ : X × H × E → E such that
Φu,u

′
(η) = 0 if η /∈ K u,θ or u′ = u, and

`(K u,θ) > 3/4,(2.1)

‖`− Ψu,u
′

∗ (`)‖var 6 C ‖u− u′‖β ,(2.2)

‖S(u, η)− S(u′, Ψu,u
′
(η))‖ 6 θ ‖u− u′‖,(2.3)

where Ψu,u′(η) := η + Φu,u
′
(η), Ψu,u

′

∗ (`) is the image of the measure ` under Ψu,u′ ,
and (u, u′) ∈ Dδ and η ∈ K u,θ are arbitrary points.

2.2. Estimates for sums of i.i.d. Bernoulli variables. — Let {wk}k>1 be a sequence
of i.i.d. random variables such that

P{wk = 1} = p, P{wk = −1} = 1− p,

where p ∈ (1/2, 1). We define

(2.4) ζk =

k∑
j=1

wj , Mk = ζk − (2p− 1)k.

A proof of the following result can be found in [Lam96, §12] and [Fel68, §XIV.2].

Proposition 2.2
(a) For any ε>0 there is a random time τ=τ(ε, p)>1 and a number α=α(ε, p)>0

such that

Mk > −εk for k > τ ,(2.5)
E eατ <∞.(2.6)

(b) For any integer l > 0, we have

(2.7) P
{
ζk > −l for all k > 0

}
= 1−

(1− p
p

)l
.
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A consequence of this proposition is the following result, which will be used in
Section 3.3.

Corollary 2.3. — For any c ∈ (0, 2p − 1), there is a sequence {pl} ⊂ R depending
only on c and p such that

P{ζk > −l + ck for all k > 0} > pl for all l > 1,(2.8)
pl −→ 1 as l −→∞.(2.9)

Proof. — Applying (2.5) with ε = 2p− 1− c, we see that ζk > ck for k > τ . By the
Markov inequality and (2.6), we have

P{τ > l} 6 Ce−αl for l > 1.

It follows that

(2.10) P{ζk > ck for k > l} > 1− Ce−αl for l > 1.

On the other hand, it follows from (2.7) that

P{ζk > −l + ck for 0 6 k 6 l} > 1−
(1− p

p

)[(1−c)l]
for l > 1,

where [a] stands for the integer part of a. Combining this with (2.10), we obtain (2.8)
with

pl := 1−
(1− p

p

)[(1−c)l]
− Ce−αl.

Since c < 1, we have limit (2.9). �

2.3. Continuous probability measures. — Let (Ω,F ,P) be a probability space.
We shall say that P is continuous if for any Γ ∈ F and p ∈ [0,P(Γ)] there is Γp ∈ F

such that Γp ⊂ Γ and P(Γp) = p. Given a measurable space (X,B) and measurable
mapping F : Ω→ X, we say that P admits a disintegration with respect to Q = F∗(P)

if there is a random probability measure {P (x, ·)}x∈X on (Ω,F ) such that

(2.11) P
(
A ∩ F−1(B)

)
=

∫
B

P (x,A)Q(dx) for any A ∈ F , B ∈ B.

The following result provides a simple sufficient condition for continuity of a proba-
bility measure.

Lemma 2.4. — Let (Ω,F ,P) be a probability space and let F : Ω→ R be a measurable
mapping such that Q = F∗(P) has a density ρ with respect to the Lebesgue measure
and P admits a disintegration P (s,A) with respect to Q. Then P is continuous.

Proof. — Given Γ ∈ F , we define Γ(r) = Γ∩F−1((−∞, r]) ∈ F , where r ∈ R. Then
P(Γ(r)) converges to 0 as r → −∞ and to P(Γ) as r → +∞. Moreover, by (2.11), we
have

P
(
Γ(r)

)
=

∫ r

−∞
P (s,Γ)ρ(s)ds,

whence we see that the function r 7→ P(Γ(r)) is continuous. The required result follows
from the intermediate value theorem. �
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We now apply the above idea to deal with a construction that will be used in
Section 3. Namely, let (Ωi,Fi,Pi), i = 1, 2 be two probability spaces and let (Ω,F ,P)

be their direct product. With a slight abuse of notation, we write Fi for the sub-σ-
algebra on Ω generated by the natural projection Ω→ Ωi.

Lemma 2.5. — In addition to the above hypotheses, suppose that the probability space
(Ω2,F2,P2) and a function F : Ω2 → R satisfy the conditions of Lemma 2.4, and let
Γ ∈ F be such that, for some p ∈ (0, 1),

(2.12) E(IΓ|F1) > p P-almost surely.

Then there is Γ′ ∈ F such that Γ′ ⊂ Γ and

(2.13) E(IΓ′ |F1) = p P-almost surely.

Proof. — We first reformulate the lemma in somewhat different terms. Given Γ ∈ F

and ω1 ∈ Ω1, we denote

Γ(ω1) = {ω2 ∈ Ω2 : (ω1, ω2) ∈ Γ}.

It is straightforward to check that

E(IΓ|F1) = P2

(
Γ(ω1)

)
.

Furthermore, the inclusion Γ′ ⊂ Γ holds if and only if Γ′(ω1) ⊂ Γ(ω1) for any ω1 ∈ Ω1.
Thus, the lemma is equivalent to the following assertion: if Γ ∈ F is such that
P2(Γ(ω1)) > p for P1-a.e. ω1 ∈ Ω1, then there is Γ′ ∈ F such that Γ′(ω1) ⊂ Γ(ω1) for
any ω1 ∈ Ω1 and P2(Γ′(ω1)) = p for P1-a.e. ω1 ∈ Ω1.

Given a real-valued measurable function r(ω1), we define

Γ′ = {(ω1, ω2) ∈ Γ : F (ω2) 6 r(ω1)} ⊂ Γ.

Then Γ′(ω1) = Γ(ω1) ∩ F−1((−∞, r(ω1)]), so that

(2.14) E(IΓ′ |F1) = P2(Γ′(ω1)) =

∫ r(ω1)

−∞
P
(
s,Γ(ω1)

)
ρ(s)ds,

where P (s, ·) stands for the disintegration of P2 with respect to F∗(P2), and ρ is the
density of F∗(P2) with respect to the Lebesgue measure. Consider the measurable
function

G(ω1, t) =

∫ t

−∞
P (s,Γ(ω1))ρ(s)ds, t ∈ R.

It is continuous in t, vanishes when t = −∞ and is > p when t = +∞. Consider the
set {t ∈ R : G(ω1, t) 6 p}. This is a measurable set which is the sub-graph of certain
measurable function t = λ(ω1). Choosing r(ω1) = λ(ω1), we see that the right-hand
side of (2.14) is identically equal to p, and Γ′ is a pre-image of the above-mentioned
sub-graph under the measurable mapping (ω1, ω2) 7→ (ω1, F (ω2)). We conclude that Γ′

is measurable, which completes the proof. �
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3. Proof of the main theorem

Let us explain the main idea of the proof informally. As was mentioned after the
formulation of Theorem 1.1, the crucial point is the proof of the stability inequal-
ity (5.2). Theorem 3.1 reduces that inequality to the construction of an auxiliary
Markov process (uk, vk) in the extended phase space X ×X such that
(3.1) P{‖u1 − v1‖ 6 θ‖u− u′‖} > p, P{‖u1 − v1‖ > θ−1‖u− u′‖} = 0,

where θ ∈ (0, 1) and p ∈ (1/2, 1) are some parameters, and (u, u′) is an initial state.
We shall prove that the required stability inequality is a consequence of the almost
sure convergence ‖uk−vk‖ → 0 as k →∞. Relations (3.1) show that, with probability
at least p > 1/2, the distance between the components contracts by a factor of θ < 1,
and if this does not happen, then the distance can expand by a factor of at most θ−1.
Stratifying the space X ×X according to the distance between the components of a
point (u, u′) (see (3.18)), we obtain a Z -valued random walk {ξk} in a dynamic random
environment, and the required property translates as the almost sure convergence of ξk
to +∞. We then prove that ξk can be minorised by a sum of independent Bernoulli
variables and use the results of Section 2.2.

3.1. General scheme. — We wish to apply a sufficient condition for mixing from
[KS12, §3.1.2], stated below as Theorem 5.1. To this end, we need to check the
recurrence and stability conditions. The recurrence is a consequence of Hypothe-
sis (H2). Indeed, Inequality (1.2) implies that Pm(u,BX(û, r)) > 0 for any u ∈ X

and some integer m = mr > 1. Since the function u 7→ Pm(u, ḂX(û, r)) is lower
semicontinuous and positive, it is separated from zero on the compact set X, so
that (5.1) holds. We thus need to prove the stability. We shall always assume that
the hypotheses of Theorem 1.1 are satisfied. Recall that, given δ > 0, we write
Dδ = {(u, u′) ∈ X × H : ‖u − u′‖ 6 δ}. The following result provides a sufficient
condition for the validity of (5.2).

Theorem 3.1. — Suppose there is a measurable mapping Ψ : X ×H ×E → E, taking
(u, u′, η) to Ψu,u′(η), and positive numbers α, β, and q ∈ (0, 1) such that Ψu,u(η) = η

for any u ∈ X and η ∈ E, and the following properties hold.

(A) Stabilisation. — For any u, u′ ∈ H, let (uk, vk) be defined by
(u0, v0) = (u, u′),(3.2)
(uk, vk) = (S(uk−1, ηk), S(vk−1, Ψ

uk−1,vk−1(ηk)).(3.3)

Let us introduce the stopping time
(3.4) τ = min

{
k > 1 : ‖uk − vk‖ > qk‖u− u′‖α

}
and, for any δ > 0, define the quantity

p(δ) = inf
(u,u′)∈Dδ

P{τ = +∞}.

Then
(3.5) lim

δ→0
p(δ) = 1.
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(B) Transformation of measure. — For any (u, u′) ∈ X ×H, we have
(3.6) ‖`− Ψu,u

′

∗ (`)‖var 6 C‖u− u′‖β .

Then condition (5.2) is valid:
(3.7) lim

δ→0+
sup

(u,u′)∈Dδ
sup
k>0
‖Pk(u, ·)− Pk(u′, ·)‖∗L = 0.

Remark 3.2. — In terms of the PDE (0.1), the hypotheses of this theorem can be
reformulated informally as follows. If we are given two sufficiently close initial condi-
tions, u0 and u′0, then we can modify the right-hand side η of the equation for the
second one so that the difference between the corresponding solutions u(t) and u′(t)
goes to zero exponentially fast, unless the realisation of the noise belongs to an excep-
tional set whose measure goes to zero with the distance ‖u0 − u′0‖. The modification
of the right-hand side for u′ is obtained by iterations of a map Ψu,u′(η) that does not
change much the law of η. As will be established in the proof of the Main Theorem
(see the introduction), the hypotheses of Theorem 3.1 are satisfied for (0.1). Thus,
as a by-product, we obtain a stabilisation result for the parabolic PDE (0.1) with a
finite-dimensional control η.

Theorem 3.1 is established in Section 3.2. Note that if the constant C in the right-
hand side of (3.6) vanishes, then the random variables ηk and η′k := Ψuk−1,vk−1(ηk)

form a coupling for the pair of measures (`, `), so that D(vk)=D(u′k), where {u′k, k>0}
solves (1.1) with u′0 = u′. In this case, we deal with the classical coupling approach
to compare Pk(u, ·) and Pk(u′, ·). Our proof of Theorem 1.1 crucially uses the above
result with ‖u − u′‖ � 1. The right-hand side of (3.6) is not zero in this situation,
but it is small, so we deal with a kind of approximate coupling.

To prove Theorem 1.1 given Theorem 3.1, it suffices to construct a measurable
mapping Ψ satisfying Conditions (A) and (B). This will be done by means of Propo-
sition 2.1.

3.2. Proof of Theorem 3.1. — Let us define a probability space (Ω,F ,P) by the
relations

Ω = {ω = (ωk)k>1 : ωk ∈ E}, F = B(Ω), P =
∞⊗
k=1

`,

where Ω is endowed with the Tikhonov topology. Let (uk(ω), vk(ω)) be the trajectory
of (3.2), (3.3) with ηk ≡ ωk and let u′k(ω) be the trajectory of (1.1) with u0 = u′ and
ηk ≡ ωk. Given u, u′, y, z ∈ H, we define mappings θk : E → E, k > 1 by

(3.8) θk(y, z, ω) =

Ψ
y,z(ω) if ‖y − z‖ 6 qk−1‖u− u′‖α,

ω if ‖y − z‖ > qk−1‖u− u′‖α,

where Ψ is constructed in Proposition 2.1, and consider the mapping

Θ : Ω −→ Ω, Θ(ω) =
(
θk(uk−1(ω), vk−1(ω), ωk)

)
k>1

.

Clearly, {uk(ω)}k>0 is a trajectory of (1.1) with u0 = u, and

(3.9) vk(ω) = u′k(Θ(ω)) for k > 1, ω ∈ {τ = +∞}.
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We now write
(3.10) ‖Pk(u, ·)− Pk(u′, ·)‖∗L 6 ‖Pk(u, ·)−D(vk)‖∗L + ‖D(vk)− Pk(u′, ·)‖∗L
and estimate the two terms on the right-hand side. For (u, u′) ∈ Dδ, we have

(3.11)

‖Pk(u, ·)−D(vk)‖∗L = sup
‖F‖L61

∣∣E(F (uk)− F (vk))
∣∣

6 2P{τ <∞}+ E
(
I{τ=∞}‖uk − vk‖

)
6 2(1− p(δ)) + δαqk.

To estimate the second term on the right-hand side of (3.10), we use the following
simple result, in which G = {τ = +∞}. Its proof is given at the end of this section.

Lemma 3.3. — Let (Ω,F ,P) be a probability space, let X be a Polish space, and
let U, V : Ω → X two random variables. Suppose there is a measurable mapping
Θ : Ω→ Ω such that
(3.12) U(Θ(ω)) = V (ω) for ω ∈ G,

where G ∈ F . Then
(3.13) ‖D(U)−D(V )‖var 6 2P(Gc) + ‖P−Θ∗(P)‖var.

In view of (3.9) and (3.13), we have

(3.14)
‖D(vk)− Pk(u′, ·)‖∗L 6 2 ‖D(vk)− Pk(u′, ·)‖var

6 4P{τ <∞}+ 2‖P−Θ∗(P)‖var.

The first term on the right-hand side does not exceed 4(1− p(δ)). Substituting (3.14)
and (3.11) in (3.10), we see that (3.7) will be established if we show that

(3.15) sup
(u,u′)∈Dδ

‖P−Θ∗(P)‖var −→ 0 as δ −→ 0.

To prove this, we use the second relation in (0.10) to calculate the total variation
distance between two measures µ1, µ2 ∈ P(Ω). Obviously, it suffices to consider
the functions F belonging to a dense subset of C(Ω) and satisfying the inequality
‖F‖∞ 6 1. Hence, the supremum can be taken over all functions depending on finitely
many coordinates.

We thus fix any integer m > 1 and consider an arbitrary continuous function
F : Ω→ R of the form F (ω) = F (ω1, . . . , ωm) with ‖F‖∞ 6 1. Then

〈F,P−Θ∗(P)〉 = E {F (ω1, . . . , ωm)− F (θ1(u, u′, ω1), . . . , θm(um−1, vm−1, ωm)}

=

m∑
k=1

EFk(u, u′, ω1, . . . , ωm),(3.16)

where we set

Fk(u, u′, ω1, . . . , ωm) = F (θ1(u, u′, ω1), . . . , θk−1(uk−2, vk−2, ωk−1), ωk, . . . , ωm)

− F (θ1(u, u′, ω1), . . . , θk(uk−1, vk−1, ωk), ωk+1, . . . , ωm).

Let Fk ⊂ F be the σ-algebra generated by the first k coordinates. Setting

∆k = F (x1, . . . , xk−1, ωk, . . . , ωm)− F (x1, . . . , xk−1, θk(y, z, ωk), ωk+1, . . . , ωm),
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we note that

|E∆k| 6 ‖`− θk∗(y, z, `)‖var 6 I[0,qk−1‖u−u′‖α](‖y − z‖)‖`− Ψy,z∗ (`)‖var,

where we used (3.8). Combining this with (3.6), we derive∣∣E(Fk(u, u′) |Fk−1

)∣∣ = |E∆k| 6 Cqβ(k−1)‖u− u′‖αβ ,

where one takes xj = θj(uj−1, vj−1, ωj), y = uk−1, and z = vk−1 in the middle term
after calculating the mean value. Substituting this into (3.16), we obtain

|〈F,P〉 − 〈F,Θ∗(P)〉| 6 E
m∑
k=1

∣∣E(Fk(u, u′) |Fk−1

)∣∣ 6 C1‖u− u′‖αβ .

Taking the supremum over F with ‖F‖∞ 6 1, we see that (3.15) holds.

Proof of Lemma 3.3. — Let µ = D(U) and ν = D(V ). Then, for any Γ ∈ F , we have

µ(Γ)− ν(Γ) = E
(
IΓ(U)− IΓ(V )

)
6 P(Gc) + E

{
(IΓ(U)− IΓ(U ◦Θ))IG

}
6 2P(Gc) + E

(
IΓ(U)− IΓ(U ◦Θ)

)
6 2P(Gc) + ‖P−Θ∗(P)‖var,

where we used (3.12) for the first inequality. A similar argument enables one to bound
ν(Γ)− µ(Γ) by the same expression. Since Γ ∈ F was arbitrary, these two estimates
imply the required inequality (3.13). �

3.3. Completion of the proof. — We need to prove that Property (A) of Theo-
rem 3.1 is satisfied for the Markov process (1.1) and the mapping Ψ constructed in
Proposition 2.1 with an appropriate choice of θ. To this end, we fix R > 0 so large
that X ⊂ BH(R− 1) and K ⊂ BE(R), and choose θ < 1 such that

(3.17) ‖S(u, η)− S(u′, η)‖ 6 θ−1‖u− u′‖ for u, u′ ∈ BH(R), η ∈ BE(R).

Let us denote by δ > 0 and Ψ : X × H × E → E the number and mapping con-
structed in Proposition 2.1. Given (u, u′) ∈ X × H, let (uk, vk) be the random se-
quence given by (3.2), (3.3). Without loss of generality, we assume that the underly-
ing probability space (Ω,F ,P) coincides with the tensor product of countably many
copies of (E,B(E), `) and denote by {Fk}k>1 the corresponding filtration. For any
(u, u′) ∈ Dδ, let N = N(u, u′) > 0 be the smallest integer such that

θ−N‖u− u′‖ > δ.

We define the sets Xn, n > −N by the relation

(3.18) Xn = {(v, v′) ∈ Dδ : θn+1‖u− u′‖ < ‖v − v′‖ 6 θn‖u− u′‖}.

It is clear that the union of the sets
⋃
n>−N Xn and the diagonal {(v, v) : v ∈ X}

coincides with Dδ. Given (u, u′) ∈ Dδ, let us consider a random sequence {ξk}k>0

J.É.P. — M., 2020, tome 7



Mixing via controllability for randomly forced nonlinear dissipative PDEs 885

given by (5)

ξk =


+∞ if uk = vk,

n if (uk, vk) ∈Xn,

−N − 1 if (uk, vk) /∈ Dδ.

In particular, we have ξ0 = 0, and if ξm = +∞ for some integer m > 1, then ξk = +∞
for k > m (since Ψu,u(η) = η for any u ∈ X and η ∈ E). Suppose we have proved
that

(3.19) P{ξk > −l + ck for all k > 1} > pl for ‖u− u′‖ 6 δθ2l,

where the sequence {pl} and the number c > 0 do not depend on (u, u′), and pl → 1

and l→∞. Then, in view of (3.18), on the set {ξk > −l + ck}, we have

‖uk − vk‖ 6 θ−l+ck‖u− u′‖ 6 δ1/2θck‖u− u′‖1/2 6 θck‖u− u′‖1/2,

since we can assume that δ < 1. It follows that if we take q = θc and α = 1/2, then the
random time τ defined by (3.4) will satisfy the inequality P{τ = +∞} > pl. We thus
obtain (3.5). Hence, it remains to prove (3.19). To this end, we shall use Corollary 2.3.

If ‖u − u′‖ 6 δθ2l and (uk−1, vk−1) ∈ Xn for some integer n > −2l, then
‖uk−1 − vk−1‖ 6 δ. So Inequality (2.3) applies, and combining it with (2.1) and (3.17),
we see that

P{ξk − ξk−1 > 1 |Fk−1} >
3

4
on the set {ξk−1 > −2l},(3.20)

P{ξk − ξk−1 > −1 |Fk−1} = 1 almost surely,(3.21)

where k > 1 is an arbitrary integer. Let us consider the event

Γk := {ξk − ξk−1 > 1}.

It follows from (3.20) and (3.21) that, with probability 1,

E{IΓk |Fk−1} = E
{
IΓk

(
I{ξk−1>−2l} + I{ξk−1<−2l}

)
|Fk−1

}
> I{ξk−1>−2l}P{ξk − ξk−1 > 1 |Fk−1}

+ I{ξk−1<−2l}P{ξk − ξk−1 > −1 |Fk−1} >
3

4
.

It is easy to see that the conditions of Lemma 2.5 are satisfied with the following
choice of the probability spaces and the function F : the space (Ω1,F1,P1) is the tensor
product of k− 1 copies of (E,B(E), `), (Ω2,F2,P2) coincides with (E,B(E), `), and
F : E → R is the orthogonal projection to the vector space of e1; see Hypothesis (H4).
Hence, there is a subset Γ′k ⊂ Γk such that E{IΓ′k |Fk−1} = 3/4 almost surely. Define
a random variable wk by

wk =

1 for ω ∈ Γ′k,

−1 for ω ∈ Ω r Γ′k.

(5)To simplify the notation, we do not indicate the dependence on (u, u′) for Xn and ξk (as well
as for the events Γk,Γ

′
k and random variables wk, ζk defined below).
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The construction implies that the conditional law of wk given Fk−1 satisfies the
relations

(3.22) P{wk = 1 |Fk−1} = p, P{wk = −1 |Fk−1} = 1− p,

where p = 3/4. In particular, wk is an Fk-measurable Bernoulli variable with parame-
ter p. Moreover, since the conditional law of wk given Fk−1 is almost surely constant,
for s = −1, 1 and Γ ∈ Fk−1, we can write

P
(
{wk = s} ∩ Γ

)
= E

(
IΓ P{wk = s |Fk−1}

)
= P{wk = s}P(Γ),

whence we see that wk is independent of Fk−1. Thus, the sequence {wk}k>1 satisfies
the hypotheses of Section 2.2.

Let us set ζk = w1 + · · ·+wk. Applying Corollary 2.3, we find a number c > 0 and
a sequence {pl} converging to 1 as l→∞ such that

(3.23) P{ζk > −l + ck for all k > 1} > pl.

Now note that, on the event in (3.23), we have ξk > ζk > −l+ck, whence we conclude
that (3.19) is valid. This completes the proof of Theorem 1.1.

4. Application

In this section, we apply Theorem 1.1 to a parabolic PDE with a degenerate random
perturbation. Namely, we consider Equation (0.1) in which f : R→ R is a polynomial
of an odd degree p > 3 with positive leading coefficient:

(4.1) f(u) =

p∑
n=0

cnu
n,

where cp > 0, and c0, c1, . . . , cp−1 ∈ R are arbitrary. In this case, it is easy to see
that f satisfies the inequalities

−C 6 f ′(u) 6 C(1 + |u|)p−1,(4.2)
f(u)u > c |u|p+1 − C,(4.3)

where u ∈ R is arbitrary, and C, c > 0 are some constants. We shall confine ourselves
to the case p = 5 and d = 3, although all the results below remain true (with simple
adaptations) in the case

(4.4)

p > 3 for d = 1, 2,

3 6 p 6
d+ 2

d− 2
for d = 3, 4.

We assume that h ∈ H1(T3) is a fixed function and η is a random process of the form

(4.5) η(t, x) =

∞∑
k=1

I[k−1,k)(t)ηk(t− k + 1, x),

where I[k−1,k) is the indicator function of the interval [k − 1, k), and ηk are i.i.d.
random variables in L2(J,H) with J := [0, 1] and H := H1(T3).
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Under the above hypotheses, Problem (0.1), (0.5) is well posed(6) in H; see [BV92,
Chap. I, §5]. Denoting by S(u0, η) the map taking (u0, η|J) to the solution u at time
t = 1, we see that the functions uk = u(k, ·) satisfy relation (1.1). Hence, the frame-
work discussed in Section 1 applies to the randomly forced PDE (0.1). To be able
to apply Theorem 1.1 to our setting, we shall have to restrict the RDS (1.1) to an
invariant set X ⊂ H2(T3) considered as a subset in the phase space H, while the
noise space E will be a closed subspace in L2(J,H).

Let us recall some definitions that were used in [KNS20] in the context of the
Navier–Stokes system and complex Ginzburg–Landau equations. Given a finite-
dimensional subspace H ⊂ H2 := H2(T3), we define by recurrence a non-decreasing
sequence subspaces Hk ⊂ H2 as follows:

(4.6) H0 := H , Hk+1 := span{η, ζξ : η, ζ ∈Hk, ξ ∈H }, k > 0.

Definition 4.1. — A subspace H ⊂ H2 is said to be saturating if the union
of {Hk}k>0 is dense in L2(T3).

Examples of saturating spaces are provided by Proposition 5.2. Note that the
saturation property does not depend on the number ν > 0 or on the polynomial f .
Let us denote by (· , ·) the scalar product in L2(T3) and fix an interval JT = [0, T ].

Definition 4.2. — A function ζ ∈ L2(JT ,H ) is said to be observable if for any
Lipschitz-continuous functions ai : JT → R, i ∈ I and any continuous function
b : JT → R the equality (7)∑

i∈I

ai(t)(ζ(t), ϕi)− b(t) = 0 in L2(JT )

implies that ai, i ∈ I and b vanish identically. A probability measure ` on L2(JT ,H )

is said to be observable if `-almost every trajectory in L2(JT ,H ) is observable.

We now formulate the hypotheses imposed on the random process (4.5). We assume
that it takes values in a finite-dimensional saturating subspace H ⊂ H2. Let us fix
an orthonormal basis {ϕi}i∈I in H , and denote by Ei the space of square-integrable
functions on J with range in span(ϕi), so that E := L2(J,H ) is representable as
the orthogonal sum of {Ei}i∈I . We assume that ` = D(ηk) has a compact support
K ⊂ E containing the origin and satisfies the two hypotheses below.

Decomposability. — The measure ` is representable as the tensor product of its pro-
jections `i to Ei. Moreover, the measures `i are decomposable in the following sense:
there is an orthonormal basis in Ei such that the measure `i is representable as the
tensor product of its projections to the one-dimensional subspaces spanned by the basis

(6)The problem is well posed also in L2(T3). However, we need a higher Sobolev space to ensure
the required regularity properties of the resolving operator; see Hypothesis (H1).

(7)It is easy to see that the observability of a function does not depend on the particular choice
of the basis {ϕi} in H ; see [KNS20, Rem. 1.4].
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vectors. Finally, for any i ∈ I the corresponding one-dimensional projections of `i
possess Lipschitz-continuous densities with respect to the Lebesgue measure.

Observability. — There is T ∈ (0, 1) such that the projection `′ of the measure ` to
the interval (8) JT = [0, T ] is observable.

We refer the reader to Section 5 in [KNS20] for a discussion of decomposability
and observability properties and examples. In particular, it is shown there that both
properties are satisfied for the Haar coloured noise given by (0.2), (0.3).

Let (uk,Pu) be the Markov process in H = H1(T3) obtained by restricting the
solutions of Equation (0.1) to integer times, and let Pk and P∗k be the associated
Markov semigroups. The following theorem is the main result of this section.

Theorem 4.3. — In addition to the above assumptions, suppose that the saturating
subspace H contains the function identically equal to 1, and the dynamics of Equa-
tion (0.1) satisfies Hypotheses (S) and (C) of the introduction. Then, for any ν > 0,
the process (uk,Pu) has a unique stationary measure µν ∈ P(H), and there is a
sequence of positive numbers {γk} going to zero as k →∞ such that

(4.7) ‖P∗kλ− µ‖∗L 6 γk for all k > 1 and λ ∈P(H),

where ‖ · ‖∗L denotes the dual-Lipschitz norm over the space H.

Remark 4.4. — The convergence to the stationary distribution µ remains valid for
measures λ on L2(T3). Indeed, as was mentioned above, Equation (0.1) is well posed
in L2(T3), and in view of the parabolic regularisation property (e.g. see [BV92,
Chap. 1, §5]) and the strong nonlinear dissipation (see (4.10)), the space H = H1(T3)

is absorbing in the sense that

Pu{uk ∈ H for k > 1} = 1 for any u ∈ L2(T3).(4.8)

It follows that P∗1λ is a probability measure on H. Hence, applying Inequality (4.7) to
the measure P∗1λ, we see that it is valid for λ ∈P(L2(T3)), with γk replaced by γk−1.

Before proving Theorem 4.3, let us consider a concrete example of a stochastic
force for which the conclusion holds. To this end, we shall use some results described
in the appendix (see Sections 5.2–5.4).

Example 4.5. — Let us denote by I ⊂ Z3 the symmetric set defined in Proposi-
tion 5.2 and by H the corresponding 7-dimensional subspace of trigonometric func-
tions. We consider the process

ηa(t, x) = a
∑
l∈I

blη
l(t)el(x),

where a > 0 is a (large) parameter, bl ∈ R are non-zero numbers, {el}l∈I is the basis
of H = H (I ) defined in Section 5.2, and {ηl}l∈I are independent Haar processes,

(8)In other words, `′ is the image of ` under the map restricting a function in L2(J,H ) to the
interval JT .
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see (0.3). Let us fix any ν > 0 and use Proposition 5.3 to find a subset Gν ⊂ H1(T3)

of Baire’s second category such that Hypothesis (S) is satisfied for any h ∈ Gν . We fix
any h ∈ H1(T3) with that property and denote by w1, . . . , wN the corresponding set
of solutions for (0.6). As was explained in the introduction, one of these solutions is
locally asymptotically stable under the dynamics of the unperturbed equation (0.7),
and there is no loss of generality in assuming that wN possesses that property. Let
δ > 0 be a number such that the solutions of (0.7) issued from the δ-neighbourhood
of wN satisfy (0.8). In view of Theorem 5.5, for any i ∈ [[1, N − 1]], there is a smooth
H -valued function ζi such that

(4.9) ‖u(1;wi, ζi)− wN‖H1 < δ,

where u(t; v, η) stands for the solution of (0.1) corresponding to the initial state
v ∈ H1(T3) and the external force η. Let K a ⊂ L2(J,H ) be the support of the law `a

for the restriction of ηa to the interval J = [0, 1]. Since the Haar functions {h0, hjl}
entering (0.3) form a basis in L2(J), and the density ρ of the random variables ξk, ξjl is
positive at zero, choosing a > 0 sufficiently large, we can approximate the functions ζi,
within any accuracy in L2(J,H ), by elements of K a. It follows that inequalities (4.9)
remain valid for some suitable functions ζi ∈ K a, provided that a� 1. Thus, Hypoth-
esis (C) is also fulfilled. Finally, as is explained in Section 5 of [KNS20], the measure `a
possesses the decomposability and observability properties. Hence, for any ν > 0 and
h ∈ Gν , we can find a0(ν, h) > 0 such that the conclusion of Theorem 4.3 is valid for
a > a0(ν, h).

Proof of Theorem 4.3. — Recall that S : H×E → H, u0 7→ u(1) stands for the time-1
resolving operator for Problem (0.1), (0.5). Due to the superlinear growth of f and
parabolic regularisation property, there is a number K > 0 such that

(4.10) ‖S(u, η)‖2 6 K for any u ∈ H, η ∈ K ;

see [JNPS15, Lem. 2.10]. The theorem will be established if we check Hypotheses (H1)–
(H4) of Theorem 1.1 for H = H1(T3), V = H2(T3), E = L2(J,H ), and X =

BH2(K). By construction, X is compact in H, and the inclusion S(X × K ) ⊂ X

follows from (4.10). Hypothesis (H1) on the regularity of S is well known to hold for
Equation (0.1) (e.g. see Section 7.4 in [KNS20] and [Kuk82]), and Hypothesis (H4) is
satisfied in view of the decomposability assumption. The remaining hypotheses are
checked in the following two steps.

Step 1. Checking Hypothesis (H2). — By Hypothesis (S), Equation (0.6) has finitely
many stationary states w1, . . . , wN . As in the introduction, wN is locally asymptoti-
cally stable and δ > 0 is its stability radius in L2(T3). We claim that Hypothesis (H2)
is valid with û = wN . To see this, we first establish (1.2) for u ∈W := {w1, . . . , wN−1}
and an arbitrary ε > 0. Let us fix any i ∈ [[1, N−1]] and use Hypothesis (C) to find an
integer ni > 1 and vectors ζi1, . . . , ζini ∈ K such that (0.9) holds. Since the solutions
of (0.7) that are issued from the δ-neighbourhood of wN converge uniformly to wN ,
we can find an integerm� 1 such that Inequality (1.2) (in which ‖·‖ is the H1-norm)
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holds for u = wi and û = wN , provided that ζj = ζij for 1 6 j 6 ni and ζj = 0 for
ni + 1 6 j 6 m.

To check (H2) for arbitrary initial condition u ∈ X, we use the existence of a global
Lyapunov function for the unperturbed equation (0.7). Namely, let us set

(4.11) Φ(u) =

∫
T3

(ν
2
|∇u|2 + F (u)− hu

)
dx,

where F (u) =
∫ u

0
f(s)ds. Then, for any solution u(t) of Equation (0.7), we have

d
dtΦ(u(t)) =

∫
T3

∂tu (ν∆u− f(u) + h)dx = −
∫
T3

(∂tu)
2 dx 6 0.

Thus, the function t 7→ Φ(u(t)) is non-increasing, and it is constant on a non-
degenerate interval if and only if u ≡ wi for some 1 6 i 6 N . Thus, Φ is a global
Lyapunov function for (0.7).

We now use a standard approach to prove that the ω-limit set of any solu-
tion u(t) of Equation (0.7) coincides with one of the stationary states (e.g. see [BV92,
Chap. 3, §2]). A simple compactness argument will then show that, for any r > 0 and
a sufficiently large integer T > 0, the union Ur of the balls BL2(wi, r), 1 6 i 6 N ,
contains the function u(T ), where u(t) is the trajectory issued from any initial point
u0 ∈ X r Ur. Since 0 ∈ K , this will imply the validity of Hypothesis (H2).

To prove the required property, we first note that, for any u0 ∈ X, the trajectory
{u(t), t > 0} is contained in the compact set X, so that the corresponding ω-limit
set ω(u0) is a non-empty compact subset in H. Hence, for any w ∈ ω(u0) we can
find a sequence tn → ∞ such that u(tn) → w in H as n → ∞. By the continuity of
Φ : H → R and the monotonicity of Φ(u(t)), we have

Φ(w) = lim
n→∞

Φ(u(tn)) = inf
t>0

Φ(u(t)).

On the other hand, the continuity of S(·, 0) : H → H implies that

Φ(S(w, 0)) = lim
n→∞

Φ(S(u(tn), 0)) = lim
n→∞

Φ(u(tn + 1)) = inf
t>0

Φ(u(t)).

This shows that Φ(w) = Φ(S(w, 0)), so that w is a stationary solution for (0.7).
Since ω(u0) is a connected subset, it must coincide with one of the stationary solutions.

Step 2. Checking Hypothesis (H3). — The verification of this hypothesis is similar to
the cases of the Navier–Stokes system and complex Ginzburg–Landau equations con-
sidered in [KNS20, §4]. Let us recall that the nonlinear term f : R → R has the
form (4.1), in which p = 5, c5 > 0, and c0, . . . , c4 ∈ R. It defines a smooth mapping
in H2, whose derivative is a multiplication operator given by

f ′(u; v) = f ′(u)v =

( 5∑
n=1

ncnu
n−1

)
v.

We need to show that, for any u ∈ X and `-a.e. η ∈ E, the image of the derivative
(DηS)(u, η) : E → H is a dense subspace. Let us fix u ∈ X and η ∈ E, denote by
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ũ ∈ L2(J,H3) ∩W 1,2(J,H1) the solution of (0.1), (0.5), and consider the linearised
problem
(4.12) v̇ − ν∆v + f ′(ũ(t))v = g, v(s) = v0,

where v0 ∈ H and g ∈ L2(J,H ). We denote by v(t;u0, g) the solution of Prob-
lem (4.12) with s = 0. As is explained in Step 2 of the proof of [KNS20, Th. 4.7], it suf-
fices to prove that the vector space {v(T ; 0, g) : g ∈ L2(JT ,H )} is dense in L2(T3)

for some T ∈ (0, 1).
Let Rũ(t, s) : H → H with 0 6 s 6 t 6 1 be the resolving operator for Prob-

lem (4.12) with g ≡ 0 and let T ∈ (0, 1) be the number entering the observability
hypothesis. We define the Gramian Gũ : H → H by

(4.13) Gũ :=

∫ T

0

Rũ(T, t)PH Rũ(T, t)∗dt,

where Rũ(T, t)∗ : H → H is the adjoint of Rũ(T, t), and PH : H → H is the
projection to H . Together with Equation (4.12), let us consider its dual problem,
which is a backward parabolic equation:
(4.14) ẇ + ν∆w − f ′(ũ(t))w = 0, w(T ) = w0.

This problem has a unique solution w ∈ L1(J,H1) ∩W 1,2(J,H−1) given by
(4.15) w(t) = Rũ(T, t)∗w0.

In view of [Zab08, Part IV, Th. 2.5], the required density property in L2(T3) is valid
if and only if
(4.16) Ker(Gũ) = {0}.

We claim that this equality holds for any u ∈ X and `-a.e. η ∈ E. To prove this,
we shall show that all the elements of Ker(Gũ) are orthogonal to Hk for any k > 0.
Since

⋃
k>0 Hk is dense in L2(T3), this will imply (4.16).

We argue by induction on k > 0. Let us take any w0 ∈ Ker(Gũ). By (4.13),

(Gũw0, w0) =

∫ T

0

‖PH Rũ(T, t)∗w0‖2dt = 0.

This implies that PH Rũ(T, t)∗w0 ≡ 0, and hence, for any ζ ∈H0, we have

(4.17) (ζ,Rũ(T, t)∗w0) = 0 for t ∈ JT .

Taking t = T , we see that w0 is orthogonal to H0. Assuming that the function w0 is
orthogonal to Hk, let us prove its orthogonality to Hk+1. We differentiate (4.17) in
time and use (4.14) and (4.15) to derive(

−ν∆ζ + f ′(ũ(t))ζ, w(t)
)

= 0 for t ∈ JT .

Differentiating this equality in time and using (4.14), we obtain(
−ν∆ζ + f ′(ũ)ζ, ẇ

)
−
(
f (2)(ũ; ζ,−ν∆ũ+ f(ũ)− h), w

)
+
∑
i∈I

(
f (2)(ũ; ζ, ϕi), w

)
ηi(t) = 0,
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where ηi(t) = (η(t), ϕi) and f (k)(u; ·) is the kth derivative of f(u) (so that f (k) = 0

for k > 6). Setting

ai(t) =
(
f (2)(ũ; ζ, ϕi), w

)
,

b(t) =
(
−ν∆ζ + f ′(ũ)ζ, ẇ

)
−
(
f (2)(ũ; ζ,−ν∆ũ+ f(ũ)− h), w(t)

)
,

we get the equality
b(t) +

∑
i∈I

ai(t)η
i(t) = 0 for t ∈ JT ,

where ai are Lipschitz-continuous functions and b is continuous. The observability of `
implies that (

f (2)(ũ(t); ζ, ϕi), w(t)
)

= 0 for i ∈ I , t ∈ JT .

Applying exactly the same argument three more times, we derive(
f (5)(ζ, ϕi, ϕj , ϕm, ϕn), w(t)

)
= 0 for i, j,m, n ∈ I , t ∈ JT .

Taking t = T , we see that w(T ) = w0 is orthogonal to the space V spanned
by {(f (5)(ζ, ϕi, ϕj , ϕm, ϕn)}. As the space H contains the function identically equal
to 1, we can take ϕj = ϕm = ϕn = 1, in which case

f (5)(ζ, ϕ, 1, 1, 1) = 120 c5ζϕ.

The latter implies that V contains all the products ζξ with ζ ∈ Hk and ξ ∈ H .
Combining this with the induction hypothesis, we conclude that w0 is orthogonal
to Hk+1. This completes the proof of Theorem 4.3. �

5. Appendix

5.1. Sufficient conditions for mixing. — Let X be a compact metric space and
let (uk,Pu) be a discrete-time Markov process in X possessing the Feller property.
We denote by Pk(u,Γ) the corresponding transition function, and by Pk and P∗k the
Markov operators. The following theorem is a straightforward consequence of [KS12,
Th. 3.1.3].

Theorem 5.1. — Suppose that the following two conditions are satisfied for some point
û ∈ X.
Recurrence. — For any r > 0, there is an integer m > 1 and a number p > 0 such
that
(5.1) Pm

(
u,BX(û, r)

)
> p for any u ∈ X.

Stability. — There is a positive function δ(ε) going to zero as ε→ 0+ such that

(5.2) sup
k>0
‖Pk(u, ·)− Pk(u′, ·)‖∗L 6 δ(ε) for any u, u′ ∈ BX(û, ε).

Then the Markov process (uk,Pu) has a unique stationary measure µ ∈P(X), and
convergence (1.4) holds.
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To establish this theorem, it suffices to take two independent copies of the Markov
process (uk,Pu) and use standard techniques (based on the Borel–Cantelli lemma)
to show that the first hitting time of any ball around (û, û) is almost surely finite
and has a finite exponential moment; combining this with the stability property, we
obtain the required result. Since the corresponding argument is well known (e.g. see
[KS12, §3.3]), we do note give more details.

5.2. Saturating subspaces. — As in Section 4, we consider only the case d = 3;
the other dimensions can be treated by similar arguments. For any non-zero vector
l = (l1, l2, l3) ∈ Z3, we set

cl(x) = cos〈l, x〉, sl(x) = sin〈l, x〉, x ∈ T3,

where 〈l, x〉 = l1x1 + l2x2 + l3x3. Let us define an orthogonal basis {el} in L2(T3) by
the relation

el(x) =

{
cl(x) if l1 > 0 or l1 = 0, l2 > 0 or l1 = l2 = 0, l3 > 0,

sl(x) if l1 < 0 or l1 = 0, l2 < 0 or l1 = l2 = 0, l3 < 0.

Let I ⊂ Z3 be a finite symmetric set (i.e., −I = I ) containing the origin. We define

(5.3) H (I ) := span{el : l ∈ I }

and denote by Hk(I ) the sets Hk given by (4.6) with H = H (I ). Recall that I

is called a generator if all the vectors in Z3 are finite linear combinations of elements
of I with integer coefficients.

Proposition 5.2. — The subspace H (I ) is saturating if and only if I is a generator.
In particular, the set I = {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1)} gives rise to the
7-dimensional saturating subspace H (I ).

Proof. — To prove the sufficiency of the condition, we note that

(5.4) cl(x)cr(x) =
1

2

(
cl−r(x) + cl+r(x)

)
, sl(x)sr(x) =

1

2

(
cl−r(x)− cl+r(x)

)
.

If cr, sr ∈ H (I ) and cl, sl ∈ Hk(I ), then (5.4) implies that cl+r, cl−r ∈ Hk+1(I ).
A similar argument shows that sl+r, sl−r ∈Hk+1(I ). Since I is a generator, we see
that all the vectors of the basis {el} can be obtained from the elements of H (I )

after finitely many iterations.
To prove the necessity, assume that I is not a generator. Then there is a vector

m ∈ Z3 that is not a finite linear combination of elements of I with integer coeffi-
cients. It is easy to see that the functions cm and sm are orthogonal to

⋃
k>0 Hk(I ).

This shows that H (I ) is not saturating and completes the proof of the proposi-
tion. �
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5.3. Genericity of Hypothesis (S)

Proposition 5.3. — Let ν > 0 be any number and let f be a real polynomial satisfying
conditions (4.2)–(4.4) with d = 3. Then there is a subset Gν ⊂ H1(T3) of Baire’s
second category such that, for any h ∈ Gν , the nonlinear equation
(5.5) − ν∆w + f(w) = h(x), x ∈ T3

has finitely many solutions.

Before proceeding with the proof, let us recall the formulation of an infinite-
dimensional version of Sard’s theorem and some related definitions (see [Sma65]).
Let X and Y be Banach spaces. A linear operator L : X → Y is said to be Fredholm
if its image is closed, and the dimension of its kernel and the co-dimension of its image
are finite. The index of L is defined by

IndL := dim(KerL)− codim(ImL).

It is well known that if L : X → Y is a Fredholm operator andK : X → Y is a compact
linear operator, then L+K is also Fredholm, and IndL = Ind(L+K). A C1-smooth
map F : X → Y is said to be Fredholm if for any w ∈ X the derivative DF (w) :

X → Y is a Fredholm operator. The index of F is the index of the operator DF (w)

at some w ∈ X (it is independent of the choice of w). A point y ∈ Y is called a regular
value for F if F−1(y) = ∅ or DF (w) : X → Y is surjective for any w ∈ F−1(y).
The following result is due to Smale [Sma65, Cor. 1.5].

Theorem 5.4. — Let F : X → Y be a Ck-smooth Fredholm map such that k >

max{IndF, 0}. Then its set of regular values is of Baire’s second category.

Proof of Proposition 5.3. — Let us consider the map

F : H3(T3) −→ H1(T3), w 7→ −ν∆w + f(w).

We have Ind(−ν∆) = 0, so Ind(−ν∆ + Df(w)) = 0 for any w ∈ H3(T3), since
the derivative Df(w) : H3(T3) → H1(T3) (acting as the operator of multiplication
by f ′(w)) is compact. Smale’s theorem implies the existence of a set Gν ⊂ H1(T3) of
Baire’s second category such that DF (w) : H3(T3) → H1(T3) is surjective for any
solution w of Equation (5.5) with h ∈ Gν . Since the index is zero, it follows that the
derivative DF (w) is an isomorphism between the spaces H3(T3) and H1(T3) for any
solution w ∈ H3(T3) of (5.5). Applying the inverse function theorem, we conclude that
the solutions are isolated points in H3(T3). On the other hand, the elliptic regularity
implies that the family of all solutions for Equation (5.5) is a compact set in H3(T3),
so there can be only finitely many of them. �

5.4. Approximate controllability of parabolic PDEs. — In this section, we discuss
briefly the approximate controllability for Equation (0.1) established in [Ner20]. This
type of results were obtained by Agrachev and Sarychev [AS05, AS06] for the 2D
Navier–Stokes and Euler equations on the torus and later extended to the 3D case
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in [Shi06, Ner10]. We assume that the nonlinearity f : R → R is a polynomial sat-
isfying the hypotheses of Section 4. The space H (I ) is defined by (5.3) for some
finite symmetric set I ⊂ Zd containing the origin, with an obvious modification of
the functions el for d = 1, 2, 4.

Theorem 5.5. — In addition to the above hypotheses, assume that I is a generator
for Zd and h ∈ H1(Td) is a given function. Then Equation (0.1) is approximately
controllable in H1(Td), i.e., for any ν > 0, ε > 0, and u0 ∈ L2(Td), u1 ∈ H1(Td),
there is a function ζ ∈ L2([0, 1],H (I )) such that the solution of Equation (0.1) with
initial condition u(0) = u0 satisfies the inequality

‖u(1)− u1‖H1(Td) < ε.

This result is essentially Theorem 2.5 of [Ner20], dealing with the case when the
problem in question is not necessarily well posed and assuming that u0, u1 ∈ H2(T3).
Under our hypotheses, Equation (0.1) is well posed, and using a simple approximation
argument, we can prove the validity of Theorem 5.5.
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