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NULL-CONTROLLABILITY OF

LINEAR PARABOLIC-TRANSPORT SYSTEMS

by Karine Beauchard, Armand Koenig & Kévin Le Balc’h

Abstract. — Over the past two decades, the controllability of several examples of parabolic-
hyperbolic systems has been investigated. The present article is the beginning of an attempt
to find a unified framework that encompasses and generalizes the previous results. We consider
constant coefficients parabolic-transport systems with coupling of order zero and one, with a
locally distributed control in the source term, posed on the one-dimensional torus. We prove
the null-controllability, in optimal time (the one expected because of the transport component)
when there is as many controls as equations. When the control acts only on the transport
(resp. parabolic) component, we prove an algebraic necessary and sufficient condition, on the
coupling term, for the null-controllability. The whole study relies on a careful spectral analysis,
based on perturbation theory. For high frequencies, the spectrum splits into a parabolic part
and a hyperbolic part. The negative controllability result in small time is proved on solutions
localized on high hyperbolic frequencies, that solve a pure transport equation up to a compact
term. The positive controllability result in large time is proved by projecting the dynamics
onto three eigenspaces associated to hyperbolic, parabolic and low frequencies, that defines
three weakly coupled systems.

Résumé (Contrôlabilité à zéro des systèmes paraboliques-transport linéaires couplés)
Depuis une vingtaine d’années, la contrôlabilité de plusieurs exemples de systèmes

paraboliques-hyperboliques couplés a été étudiée. Nous initions dans cet article une recherche
d’un cadre qui contient et généralise les résultats déjà existants. Nous considérons des systèmes
paraboliques-transport, à coefficients constants, couplés par des termes d’ordre 0 et 1, posés
sur le tore de dimension 1, et avec contrôle interne localisé sur un ouvert du tore. Nous
démontrons la contrôlabilité à zéro de ces systèmes en temps optimal (celui attendu en raison
des composantes de transport) lorsqu’on contrôle toutes les équations. Lorsque le contrôle
agit uniquement sur les composantes hyperboliques (resp. paraboliques), nous démontrons une
condition nécessaire et suffisante pour la contrôlabilité à zéro, cette condition étant de type
Kalman et portant sur le terme de couplage. Cette étude repose sur une analyse spectrale,
elle-même basée sur la théorie perturbative : en hautes fréquences, le spectre se sépare en une
branche hyperbolique et une branche parabolique. Le résultat de non-contrôlabilité en temps
petit est démontré en construisant des solutions de transport approchées, localisées en hautes
fréquences. Le résultat de contrôle en temps grand est démontré en projetant la dynamique
sur trois espaces stables, associés respectivement aux hautes fréquences hyperboliques, hautes
fréquences paraboliques et basses fréquences, ce qui définit trois systèmes faiblement couplés.
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1. Introduction

1.1. Parabolic-transport systems. — We consider the linear control system

(Sys)
{
∂tf −B∂2

xf +A∂xf +Kf = Mu1ω in (0, T )× T,
f(0, ·) = f0 in T,

where
– T > 0, T = R/(2πZ), ω is a nonempty open subset of T, d ∈ N∗, m ∈ {1, . . . , d},

A,B,K ∈ Rd×d, M ∈ Rd×m,
– the state is f : [0, T ]× T→ Rd,
– the control is u : [0, T ]× T→ Rm.

We assume

d = d1 + d2 with 1 6 d1 < d, 1 6 d2 < d,(H.1)

B =

(
0 0

0 D

)
, with D ∈ Rd2×d2 ,(H.2)

<(Sp(D)) ⊂ (0,∞).(H.3)

Introducing the analogue block decomposition for the d×d matrices A and K, the
d×m matrix M and the function f ,

A =

(
A′ A12

A21 A22

)
, K =

(
K11 K12

K21 K22

)
, M =

(
M1

M2

)
, f(t, x) =

(
f1(t, x)

f2(t, x)

)
,

we see that the system (Sys) couples a transport equation on f1 with a parabolic
equation on f2:(1)

(1)


(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = M1u1ω in (0, T )× T,(
∂t −D∂2

x +A22∂x +K22

)
f2 + (A21∂x +K21)f1 = M2u1ω in (0, T )× T,

(f1, f2)(0, ·) = (f01, f02) in T.

(1)As we will see, the submatrix A′ of A is of considerable importance. We denote it by A′ (instead
of A11) to underline the special role it plays.
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Null-controllability of linear parabolic-transport systems 745

We make the following hypothesis on the matrix A′

(H.4) A′ is diagonalizable with Sp(A′) ⊂ R.

We will prove later, with vector valued Fourier series and a careful spectral analysis,
that for every f0 ∈ L2(T,Cd) and u ∈ L2((0, T ) × T,Cm), there exists a unique
solution f ∈ C0([0, T ], L2(T)d) of (Sys) (see Section 2.2.3). In this article, we are
interested in the null-controllability of (Sys).

Definition 1. — The system (Sys) is null-controllable on ω in time T if for every
f0 ∈ L2(T;Cd), there exists a control u ∈ L2((0, T )× T,Cm) supported on [0, T ]× ω
such that the solution f of (Sys) satisfies f(T, ·) = 0.

For a given ω, it might happen that the system (Sys) is null-controllable for some
T1 > 0 but not for some other T2 > 0 (and we will see that it usually happens).
We call the minimal time of null-controllability (on ω) the infimum of the T > 0

such that the system (Sys) is null-controllable on ω in time T . If we note Tmin this
minimal time of null-controllability, that may a priori take any value in [0,+∞], the
system (Sys) is null-controllable on ω if T > Tmin and it is not null-controllable on ω
if T < Tmin. We aim at

– identifying the minimal time for null-controllability, depending on the matrices
A,B,K and the domain ω,

– controlling the system with a small number of controls m < d,
– understanding the influence of the algebraic structure (A,B,K,M) on the above

properties.

1.2. Statement of the results

1.2.1. Control on any component, minimal time. — Our first result identifies the mini-
mal time, when the control acts on each of the d equations.

Theorem 2. — We assume that ω is a strict open subset of T. We also assume (H.1)–
(H.4) and that the control matrix is M = Id (and so m = d). We define(2)

(2) `(ω) := sup{|I|; I connected component of T r ω},

µ∗ = min{|µ|; µ ∈ Sp(A′)},
and

(3) T ∗ =

{
`(ω)/µ∗ if µ∗ > 0,

+∞ if µ∗ = 0.

Then
(i) the system (Sys) is not null-controllable on ω in time T < T ∗,
(ii) the system (Sys) is null-controllable on ω in any time T > T ∗.

(2)If I ⊂ R is measurable, we note |I| its Lebesgue measure.

J.É.P. — M., 2020, tome 7



746 K. Beauchard, A. Koenig & K. Le Balc’h

In particular, when ω is an interval of T and µ∗ > 0, then the minimal time for
null-controllability is T ∗ = (2π − |ω|)/µ∗.

Actually, the controls may be more regular than in Definition 1: we construct
controls of the form u=(u1, u2) where u1∈L2((0, T )×ω)d1 and u2 ∈ C∞c ((0, T )×ω)d2 .

The proof of Theorem 2 relies on a spectral decomposition: for high frequencies,
the spectrum splits into a parabolic part and a hyperbolic part.

The negative result in time T < T ∗ is expected, because of the transport component
of the system, but its proof does require some care. Indeed, because of the coupling
with a parabolic component, in general, there does not exist pure transport solutions
to the system (Sys) that are concentrated outside (0, T ) × ω (see the appendix for
more precision).

The proof of the positive result, in time T > T ∗ relies on an adaptation, to systems
with arbitrary size, of the strategy introduced by Lebeau and Zuazua [22] to control
the system of linear thermoelasticity, that couples a scalar heat equation and a scalar
wave equation. By projecting the dynamics onto appropriate eigenspaces, the system is
decomposed into three weakly coupled systems. The first one behaves like a transport
system, its controllability is handled by hyperbolic methods from [1]. The second
one behaves like a parabolic system, its controllability is handled by the Lebeau-
Robbiano method. The third one, associated to low frequencies, has finite dimension;
its controllability is handled by a compactness/uniqueness argument.

The null-controllability of the system (Sys) in time T = T ∗ is an open problem.

1.2.2. Control on the hyperbolic component. — Our second result concerns controls
acting on the whole transport component, M1 = Id1 , but not on the parabolic com-
ponent, M2 = 0. To get an aesthetic necessary and sufficient algebraic condition for
null-controllability, we also assume that the diffusion is given by D = Id2 , the coupling
is realized exclusively by the transport term A21∂xf1, i.e., K21 = 0 and there is no
zero order term in the parabolic dynamics, i.e., K22 = 0, which corresponds to the
system

(4)
{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +A22∂x
)
f2 +A21∂xf1 = 0 in (0, T )× T.

By integrating with respect to the space variable the second equation of (4), we see
that, for being steered to zero, an initial condition f0 = (f01, f02) ∈ L2(T)d1×L2(T)d2

has to satisfy

(5)
∫
T
f02(x) dx = 0.

For any vector subspace E of L1(T) we denote by Em the vector subspace made of
functions f ∈ E with zero mean value, i.e.,

∫
T f(x)dx = 0.

Theorem 3. — We assume (H.1)–(H.4), D = Id2 m = d1,M1 = Id1 ,M2 = 0, K21 = 0

and K22 = 0. Let T ∗ be defined by (3). The following statements are equivalent:

J.É.P. — M., 2020, tome 7
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– For every T > T ∗ and f0 = (f01, f02) ∈ L2(T)d1 × L2
m(T)d2 , there exists u1 ∈

L2((0, T )× ω)d1 such that the solution of (4) satisfies f(T ) = 0.
– The pair of matrices (A22, A21) satisfies the Kalman rank condition:

(6) Span{Aj22A21X1;X1 ∈ Cd1 , 0 6 j 6 d2 − 1} = Cd2 .

With the same proof, similar statements can be proved for the following systems:

(7)
{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22

)
f2 +K21f1 = 0 in (0, T )× T,

with arbitrary initial conditions f0∈L2(T)d and Kalman rank condition on (K22,K21)

(see Section 5),

(8)
{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +A22∂x
)
f2 +K21f1 = 0 in (0, T )× T,

with arbitrary initial conditions f0∈L2(T)d and Kalman rank condition on (A22,K21),

(9)
{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22

)
f2 +A21∂xf1 = 0 in (0, T )× T,

with initial conditions f0 ∈ L2(T)d satisfying (5) and Kalman rank condition on
(K22, A21).

If T < T ∗, there exists f0 = (f01, f02) ∈ L2(T)d1 × L2
m(T)d2 , such that, for any

u1 ∈ L2((0, T )× ω)d1 the solution of (4) satisfies f(T ) 6= 0. This result is not a con-
sequence of Theorem 2 because this statement does not ensure that the counter-
example f0 has zero mean value on the second component. However, it can be proved
by the same strategy as the negative result in time T < T ∗ in Theorem 2, see Re-
mark 17 for details.

The proof of the controllability of (4) uses two ingredients. The first ingredient
is a strengthened version of Theorem 2 with smoother controls, more precisely, the
associated observability inequality with observation of negative Sobolev norms of the
parabolic component. The second ingredient is a cascade structure (or Brunovski
form) of the system (4) ensured by the Kalman condition, to eliminate the observation
of the parabolic component.

Proving an algebraic necessary and sufficient condition for null-controllability of
(Sys), involving both matrices D, A and K is an open problem. In the context of
parabolic systems, this difficulty already appeared, see [4] and [5].

1.2.3. Control on the parabolic component. — Our third result concerns controls acting
on the whole parabolic component, M2 = Id2 , but not on the hyperbolic component
of the system, M1 = 0. To get an aesthetic necessary and sufficient condition for
null-controllability, we also assume that the coupling is realized exclusively by the
transport term A12∂xf2, i.e.,K12 = 0, and there is no zero order term in the hyperbolic

J.É.P. — M., 2020, tome 7



748 K. Beauchard, A. Koenig & K. Le Balc’h

dynamics, i.e., K11 = 0. This corresponds to the system

(10)


(∂t +A′∂x)f1 +A12∂xf2 = 0 in (0, T )× T,(
∂t −D∂2

x +A22∂x +K22

)
f2 + (A21∂x +K21)f1 = u21ω in (0, T )× T,

(f1, f2)(0, ·) = (f01, f02) in T.

By integrating with respect to the space variable the first equation of (10), we see
that, for being steered to zero, an initial condition f0 = (f01, f02) ∈ L2(T)d1×L2(T)d2

has to satisfy

(11)
∫
T
f01(x) dx = 0

i.e., f0 = (f01, f02) ∈ L2
m(T)d1 × L2(T)d2 .

We need to adapt the notion of null-controllability, because null-controllable initial
conditions necessarily have a regular hyperbolic component. Indeed, in (10), the source
term A12∂xf2 entering the hyperbolic equation on f1 — that has to serve as an indirect
control for f1 — is smooth, because of the parabolic smoothing on f2. Such a smooth
source term cannot steer to zero non-smooth initial conditions.

Theorem 4. — Let ω be an open interval of T. We assume (H.1)–(H.4), m = d2,
M1 = 0, M2 = Id2 , K11 = 0 and K12 = 0. Let T ∗ be defined by (3). The following
statements are equivalent.

– For every T > T ∗ and f0 = (f01, f02) ∈ Hd1+1
m (T)d1 × Hd1+1(T)d2 there exists

u2 ∈ L2((0, T )× ω)d2 such that the solution of (10) satisfies f(T ) = 0.
– The pair of matrices (A′, A12) satisfies the Kalman rank condition:

(12) Span{(A′)jA12X2;X2 ∈ Cd2 , 0 6 j 6 d2 − 1} = Cd2 .

In Theorem 4, we assume that the open set of control ω is an interval because the
proof uses [1, Lem. 2.6] (see Lemma 49 below). The generalization of this result to a
general open set ω of T is not known.

A similar statement can be obtained with the same proof, when K11 = 0, A12 = 0

under Kalman rank condition on (A′,K12).
The proof of Theorem 4 follows essentially the same strategy as that of Theorem 3:

a strengthened version of Theorem 2 and a cascade structure ensured by Kalman con-
dition. The regularity assumption on the hyperbolic component allows the elimination
of the observation of the hyperbolic component.

In time T < T ∗, we conjecture the existence of

f0 = (f01, f02) ∈ Hd1+1
m (T)d1 ×Hd1+1(T)d2

such that, for any u2 ∈ L2((0, T ) × ω)d2 the solution of (10) satisfies f(T ) 6= 0.
This fact is not a consequence of Theorem 2 because the functional spaces for f0 are
different, nor a byproduct of the strategy developed in Section 3. It seems this could
be proved with holomorphic function technique similar to those used in [19], or with
some propagation of singularities, but this is well outside the scope of the article.

J.É.P. — M., 2020, tome 7
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After Theorem 4, two problems are still open:
– the characterization of null-controllable initial conditions: it may be a larger

space than Hd1+1
m (T)d1 ×Hd1+1(T)d2 , see Section 7,

– the algebraic necessary and sufficient condition for null-controllability, involving
both matrices A and K. In the context of parabolic systems, this difficulty already
appeared, see [4] and [5].

1.3. Organization of the article. — Section 2 is dedicated to preliminary results
concerning the spectral analysis of −B∂2

x+A∂x+K on T, the well-posedness of (Sys)
and the Hilbert uniqueness method.

In Section 3, we prove the negative null-controllability result in time T < T ∗

of Theorem 2. In Section 4, we prove the positive null-controllability result in time
T > T ∗ of Theorem 2. In Section 5, we explain how to adapt this proof to get the null-
controllability in time T > T ∗ of system (7). The interest of this section is to introduce
the proof strategy of Theorem 3 and Theorem 4, in a less technical framework. Then,
in Section 6, we prove Theorem 3 and in Section 7, we prove Theorem 4.

1.4. Bibliographical comments

1.4.1. Wave equation with structural damping. — We consider the 1D wave equation
with structural damping and control h
(13) ∂2

t y − ∂2
xy − ∂t∂2

xy + b∂ty = h(t, x),

where b ∈ R. This equation can be split in a system of the form (Sys) by considering
z := ∂ty − ∂2

xy + (b− 1)y,

(14)
{
∂tz + z + (1− b)y = h(t, x),

∂ty − ∂2
xy − z + (b− 1)y = 0,

i.e., (Sys) with d = 2, d1 = d2 = 1, m = 1,

(15) f =

(
z

y

)
, B =

(
0 0

0 1

)
, A =

(
0 0

0 0

)
, K =

(
1 1− b
−1 b− 1

)
, M =

(
1

0

)
.

Rosier and Rouchon [26] studied the equation (13) on a 1D-interval, x ∈ (0, 1), with
a boundary control at x = 1 and h = 0. This is essentially equivalent to take (13)
with x ∈ (0, 1), Dirichlet boundary conditions at x = 0 and x = 1, and a source term
of the form h(t, x) = u(t)p(x), where p is a fixed profile and u is a scalar control. The
authors prove that this equation is not controllable.

By Theorem 2, we extend this negative result to general controls h (i.e., without
separate variables) for periodic boundary conditions. Here, A′ = 0, µ∗ = 0, T ∗ = +∞,
the system (14) is not controllable even with an additional control in the second
equation.

In [26], the authors prove that this system is not even spectrally controllable,
because of an accumulation point in the spectrum. Indeed, by the moment method, a
control that would steer the system from an eigenstate to another one would have a
Fourier transform vanishing on a set with an accumulation point, which is not possible
for an holomorphic function.

J.É.P. — M., 2020, tome 7



750 K. Beauchard, A. Koenig & K. Le Balc’h

Martin, Rosier and Rouchon [23], studied the null-controllability of the equa-
tion (13) on the 1D torus, x ∈ T, with moving controls, i.e., h(t, x) = u(t, x)1ω+ct

with c ∈ R∗. By the change of variable x ←7 (x − ct), this is equivalent to study the
null-controllability of the system

(16)
{
∂tz − c∂xz + z + (1− b)y = u(t, x)1ω(x),

∂ty − c∂xy − ∂2
xy − z + (b− 1)y = 0

which has the form (Sys) with the same matrices f , B, K as in (15) and

A =

(
−c 0

0 −c

)
.

In [23, Th. 1.2], for c=1, the authors prove that any initial data (y0, y1)∈Hs+2×Hs(T)

with s > 15/2 can be steered to 0 in time T > 2π by means of a control
u ∈ L2((0, T )× ω).

By Theorem 3, we recover this positive null-controllability result with a smaller
minimal time T > `(ω)/|c| and a weaker regularity assumption on the initial data
(y, ∂ty)(0) = (y0, y1) ∈ H2 × L2(T) for (13). This corresponds to an initial data
(y, z)(0) ∈ L2(T)2 for (16) because z(0) = y1− ∂2

xy0 + (b− 1)y0. Actually, Theorem 3
can be applied for b = 1 in (16) but an easy adaptation of Theorem 3 gives the same
result for every b ∈ R. We also prove the negative result in time T < `(ω)/|c|. Here,
µ∗ = |c|, A21 = 0 and K21 = −1.

The limitations in [23, Th. 1.2] (regularity and time) are due to the use of controls
with separate variables u(t, x) = u1(t)u2(x). The proof relies on the moment method
and the construction of a biorthogonal family. A key point in both [23] and the present
article is a splitting of the spectrum in one parabolic-type part, and one hyperbolic-
type part.

Finally, Chaves-Silva, Rosier and Zuazua [9] study the multi-dimensional case of
Equation (13), x ∈ Ω, with Dirichlet boundary conditions and locally distributed
moving controls h(t, x) = u(t, x)1ω(t)(x). The control region ω(t) is assumed to be
driven by the flow of an ODE that covers all the domain Ω within the allotted
time T . Then, the authors prove the null-controllability of any initial data (y0, y1) ∈
H2 ∩H1

0 (Ω)× L2(Ω) with a L2-control.
In the particular case Ω = T with a motion with constant velocity, Theorem 3

gives the same minimal time for the null-controllability and also the negative result
in smaller time.

The proof strategy in [9] consists in proving Carleman estimates for the parabolic
equation and the ODE in (14) with the same singular weight, adapted to the geometry
of the moving support of the control.

As explained in [9, §5.2], the same construction cannot be used with periodic
boundary conditions.

In the very recent preprint [16], the authors propose another construction of
a weight, to get Carleman estimates for parabolic and transport equations in the
torus T2 (with the same weight). In the present article, we develop another strategy.
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1.4.2. Wave-parabolic systems. — Albano and Tataru [2] consider 2×2 parabolic-wave
systems with boundary control, where

– the coupling term in the wave equation is given by a second order operator with
respect to x,

– the coupling term in the parabolic equation is given by a first order operator
with respect to (t, x).

This large class contains the linear system of thermoelasticity

(17)


∂2
tw −∆w + α∆θ = 0, (t, x) ∈ (0, T )× Ω,

∂tθ − ν∆θ + β∂tw = 0, (t, x) ∈ (0, T )× Ω,

w(t, x) = u1(t, x), (t, x) ∈ (0, T )× ∂Ω,

θ(t, x) = u2(t, x), (t, x) ∈ (0, T )× ∂Ω,

where α, β, ν > 0.
The authors of [2] prove the null-controllability in large time of these systems,

precisely in any time T > 2 sup{|x|;x ∈ Ω} for the system (17). The proof relies
on Carleman estimates for the heat and the wave equation with the same singular
weight. This strategy inspired Chaves-Silva, Rosier and Zuazua [9].

Lebeau and Zuazua [22] prove the null-controllability of the linear system of ther-
moelasticity (17) with a locally distributed control in the source term of the wave
equation, under the geometric control condition on (Ω, ω, T ). The method is based on
a spectral decomposition. For high frequencies, the spectrum splits into a parabolic
part and a hyperbolic part. Projecting the dynamics onto the parabolic/hyperbolic
subspaces, the system is decomposed into two weakly coupled systems, the first one
behaving like a wave equation, the second one like a heat equation. The wave equation
is handled by using the microlocal techniques developed for the wave equation [6]. The
parabolic equation is treated by using Lebeau and Robbiano’s method [21]. The low
frequency part is treated by a compactness argument relying on a unique continuation
property.

The proof of the positive controllability results in the present article is an adapta-
tion, to coupled transport-parabolic systems of any size, of this approach, introduced
for a 2 × 2 wave-parabolic system. The transport equation is handled by using the
results of Alabau-Boussouira, Coron and Olive [1].

The framework of systems (Sys) does not cover the system (17) because the order
of the coupling terms is too high.

1.4.3. Heat equation with memory. — Ivanov and Pandolfi [17] and after them Guer-
rero and Imanuvilov [15] consider the heat equation with memory

(18)

∂ty −∆y −
∫ t

0

∆y(τ) dτ = u1ω, (t, x) ∈ (0, T )× Ω,

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω.
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In 1D, this equation can be split into a system of the form (Sys) by considering
v(t, x) = −

∫ t
0
yx(τ) dτ :

(19)


∂tv + ∂xy = 0,

∂ty − ∂2
xy + ∂xv = h1ω,

y(t, 0) = y(t, 1) = 0,

i.e.,

f =

(
v

y

)
, B =

(
0 0

0 1

)
, A =

(
0 1

1 0

)
, K =

(
0 0

0 0

)
.

In [17], the authors prove that the heat equation with memory term is not “null-
controllable to the rest”. In [15], the authors prove that the scalar equation (18) is
not null-controllable (whatever T > 0). Thus the system (19) is not null-controllable.

Theorem 2 proves that, when Dirichlet boundary conditions are replaced by pe-
riodic boundary conditions, then system (19) is not null-controllable, even with an
additional control in the first equation.

1.4.4. 1D-Linearized compressible Navier-Stokes equations

The compressible Navier-Stokes equation on the 1D torus writes{
∂tρ+ ∂x(ρv) = u1(t, x)1ω in (0, T )× T
ρ[∂tv + v∂xv] + ∂x(aργ)− µ∂2

xv = u2(t, x)1ω(x) in (0, T )× T

where a, γ, µ > 0, ρ, v are the density and velocity of the fluid. The state is (ρ, v) and
the control is (u1, u2). We consider a constant stationary state (ρ, v) ∈ R∗+ ×R∗. The
linearized system around the trajectory ((ρ, v) = (ρ, v), (u1, u2) = (0, 0)) is

(20)
{
∂tρ+ v∂xρ+ ρ∂xv = u1(t, x)1ω, in (0, T )× T
∂tv + v∂xv + aργ−2∂xρ− µ

ρ∂
2
xv = u2(t, x)1ω(x) , in (0, T )× T .

This system is in the form (Sys) with

f =

(
ρ

v

)
, B =

(
0 0

0 µ/ρ

)
, A =

(
v ρ

aργ−2 v

)
, K =

(
0 0

0 0

)
and satisfies (H.1)–(H.4).

By Theorem 2, the system (20) with two controls (u1, u2) is null-controllable in
time T > `(ω)/|v| and is not null-controllable in time T < `(ω)/|v|.

By Theorem 3, the system (20) with one control u1 in the first line (i.e., u2 = 0)
is null-controllable in time T > `(ω)/|v|.

By Theorem 4, with one control u2 in the second equation (i.e., u1 = 0), any initial
condition (ρ0, v0) ∈ H2

m(T)×H2(T) can be steered to zero in time T > `(ω)/|v| by a
control u2 ∈ L2((0, T )× ω).

In [14], Ervedoza, Glass, Guerrero and Puel consider the (nonlinear) compressible
Navier-Stokes equations on a bounded interval x ∈ (0, L), without source term (i.e.,
u1 = u2 = 0), but with a boundary control on both ρ and v at the two boundaries
x = 0 and x = L. They prove the local controllability of this nonlinear system, around
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the trajectory (ρ, v) = (ρ, v), in appropriate functional spaces. A key ingredient is the
controllability of the linearized system, which is proved to hold in time T > L/|v|.
Theorem 2 of the present article enables us to recover the same result with interior
control instead of boundary control, and also proves the negative result in small time.

In [11, Th. 1.4], Chowdhury, Mitra, Ramaswamy and Renardy prove the null-
controllability of (20) with two controls (u1, u2) in time T > 2π/|v|, with spectral
methods. Thus, Theorem 2 of the present article enables us to recover the same result
but with a better minimal time `(ω)/|v| and also proves the negative result in time
T < `(ω)/|v|.

In [10, Th. 1.3], Chowdhury and Mitra prove with moment methods that any ini-
tial condition (ρ0, v0) ∈ Hs+1

m (T) × Hs(T) with s > 6.5 can be steered to zero in
time T > 2π/v by a control acting only on the second equation u2 ∈ L2((0, T ) × ω)

(i.e., u1 = 0). In [11, Th. 1.2], Chowdhury, Mitra, Ramaswamy and Renardy prove
the same result for any initial conditions (ρ0, v0) ∈ H1

m(T) × L2(T). Thus, Theo-
rem 4 of the present article provides a smaller minimal time `(ω)/|v|, for smoother
initial conditions (ρ0, v0) ∈ H2

m(T)×H2(T). It also proves the negative result in time
T < `(ω)/|v|.

Acknowledgments. — The second author would like to thank his Ph.D. adviser, Gilles
Lebeau, for numerous discussions and in particular for pointing us [22]. He also thanks
Emmanuel Trélat for helping us with some duality arguments.

2. Preliminary results

We want to understand the operator
(21) L := −B∂2

x +A∂x +K

with domain
(22) D(L ) =

{
f ∈ L2(T)d;−B∂2

xf +A∂xf +Kf ∈ L2(T)d
}

where the derivatives are considered in the distributional sense D ′(T). Throughout
the article, we will note en the function x 7→ einx. We remark that applying L to Xen,
where X ∈ Cd, we get

(23) L (Xen) = n2
(
B +

i

n
A+

1

n2
K
)
Xen.

Thus, if we define the following perturbation E(z) of B
(24) ∀ z ∈ C, E(z) = B + zA− z2K,

then L acts on the Fourier side as multiplication by n2E(i/n).
In Section 2.1, we apply perturbation theory to the matrices E(z) near z = 0: the

spectrum of E(z) splits into two parts: one close to zero that defines the hyperbolic
component, one close to the spectrum of D that defines the parabolic component. In
Section 2.2, we deduce the dissipation of the parabolic component and the bound-
edness of the hyperbolic component. Thanks to these estimates, we prove the well-
posedness of the system (Sys). Finally, in Section 2.3, we recall the Hilbert Uniqueness
Method.
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2.1. Perturbation theory. — If we want to understand the semigroup etL , we need
to know the spectrum and the eigenvectors of E(z). Here, we relate the spectral
properties of E(z) to those of A and B, in the limit z → 0. This is instrumental in all
the article. Our proofs are essentially self-contained, but the reader unfamiliar with
analytic perturbation theory in finite dimension may read [18, Ch. II, §1 & §2].

For r > 0 and m ∈ N∗, we define Om×m
r as the set of holomorphic functions in the

complex disk D(0, r) with values in Cm×m. Our first result is the following one.

Proposition 5. — There exist r > 0 and a matrix-valued holomorphic function P h ∈
Od×d
r such that
(i) P h(0) =

(
Id1 0
0 0

)
,

(ii) for all |z| < r, P h(z) is a projection that commutes with E(z),
(iii) in the limit z → 0, E(z)P h(z) = O(z).

Proof. — The spectrum of E(z) is continuous in z (see [18, Ch. II, §1.2]). Let us
consider the “0-group” of eigenvalues, i.e., the set of eigenvalues that tend to 0 as
z → 0. Then we note P h(z) the sum of the projections onto the eigenspace(3) of
E(z) associated with eigenvalues in the 0-group along the other eigenspaces. Another
way to define P h(z) is to choose R = 1

2 minλ∈Sp(D) |λ| and r small enough so that
for |z| < r, there is no eigenvalues of E(z) on the circle ∂D(0, R). Then, we define
(see [18, Ch. II, Eq. (1.16)])

(25) P h(z) = − 1

2iπ

∫
∂D(0,R)

(E(z)− ζId)−1 dζ.

In the terminology of Kato, P h(z) is the “total projection for the 0-group”. Then,
according to [18, Ch. II, §1.4], P h(z) is the projection onto the sum of eigenspaces
associated to eigenvalues of E(z) lying inside D(0, R) along the other eigenspaces.
It is holomorphic in |z| < r. For z = 0, the formula (25) that defines P h(0) becomes

P h(0) = − 1

2iπ

∫
∂D(0,R)

(B − ζId)−1 dζ.

Then, P h(0) is the projection onto the eigenspace of B associated to the eigenvalue 0

along the other eigenspaces (see [18, Ch. II, §1.4]). So, according to the hypothe-
ses (H.2)–(H.3) on the blocks of B, P h(0) =

(
Id1 0
0 0

)
. This proves (i).

According to the definition (25), P h(z) commutes with E(z). This proves (ii). Then
we have

P h(0)E(0) = E(0)P h(0) = BP h(0) = 0,

which, along with the holomorphy of P h, proves (iii). �

We say that P h is the “projection on the hyperbolic branches”. We define P p(z) =

Id − P h(z), which we call the “projection on the parabolic branches”, and satisfies
properties analog to P h:

(3)We stress that when we talk about “eigenspace”, we mean “generalized eigenspace” (or, in the
terminology of Kato, algebraic eigenspace), i.e., the space of generalized eigenvectors.
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Proposition 6. — The matrix-valued function P p is in Od×d
r and

(i) P p(0) =
( 0 0

0 Id2

)
,

(ii) for all |z| < r, P p(z) is a projection that commutes with E(z),
(iii) in the limit z → 0, E(z)P p(z) = B +O(z).

We will need to split the hyperbolic branches further. Let us recall that A′ is the
matrix multiplying the derivative of the hyperbolic components in the system (Sys)
(see Equation (1)), i.e., we have A =

(
A′ A12

A21 A22

)
.

Proposition 7. — There exist r > 0 and a family of matrix-valued holomorphic func-
tions (P h

µ )µ∈Sp(A′) ∈ (Od×d
r )Sp(A′) satisfying

(i) for all µ ∈ Sp(A′) and |z| < r, P h
µ (z) is a non-zero projection that commutes

with E(z),
(ii) for all |z| < r, P h(z) =

∑
µ∈Sp(A′) P

h
µ (z) and for all µ 6= µ′, P h

µ (z)P h
µ′(z) = 0,

(iii) for every µ ∈ Sp(A′), there exists Rh
µ ∈ Od×d

r such that

∀ |z| < r, E(z)P h
µ (z) = µzP h

µ (z) + z2Rh
µ(z).

Remark 8. — For µ ∈ Sp(A′), the projection P h
µ is holomorphic and thus continuous

in D(0, r). Therefore, the rank of P h
µ (z), which is its trace, does not depend on |z| < r

(the P h
µ (z) even are similar, see [18, Ch. I, §4.6, Lem. 4.10]). In the same vein, the

ranks of P h(z) and P p(z) do not depend on z.

Proof. — The proof is essentially the “reduction process” of Kato [18, Ch. II, §2.3].
According to Proposition 5, P h is holomorphic and P h(z)E(z) = O(z). Then we
define

E(1)(z) = z−1E(z)P h(z) = z−1P h(z)E(z),

which is holomorphic in |z| < r. Note that we have according to Kato [18, Ch. II,
Eq. (2.38)]

E(1)(0) = P h(0)E′(0)P h(0) =

(
A′ 0

0 0

)
.

Let us assume for the moment that 0 is not an eigenvalue of A′. Then, for µ ∈
Sp(A′), we define P h

µ (z) the total projection on the µ-group of eigenvalues of E(1)(z).
Said otherwise, and according to the definition of E(1)(z), P h

µ (z) is the total pro-
jection on the µz-group of eigenvalues of E(z). The projection P h

µ (z) is defined and
holomorphic for z small enough according to [18, Ch. II, §1.4].

Since for z small enough, P h
µ (z) is the projection on some eigenspaces of E(1)(z)

associated with non-zero eigenvalues,

Im(P h
µ (z)) ⊂ Im(E(1)(z)) ⊂ Im(P h(z)),

with the last inclusion coming from the definition of E(1)(z). Thus P h
µ (z) is a subpro-

jection of P h(z). Moreover, P h
µ (z) commutes with E(1)(z), so it commutes with E(z).

This proves Item (i) in the case 0 /∈ Sp(A′).
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For µ 6= ν, P h
µ (z) and P h

ν (z) are the projections on some sums of eigenspaces
associated with different eigenvalues, so P h

µ (z)P h
ν (z) = 0. Let us denote for conve-

nience Qh(z) =
∑
µ∈Sp(A′) P

h
µ (z). Then, for z small, Qh(z) is the projection on all the

eigenspaces of E(1)(z) associated with non-zero eigenvalues. According to the defini-
tion of E(1)(z), this proves that Qh(z) is a subprojection of P h(z). Let us check that
Qh(z) and P h(z) have the same rank. This will prove that for all z small enough,
Qh(z) = P h(z). The rank of Qh(z), which is its trace, does not depend on z. The
same is true for P h(z). For z = 0, we have E(1)(0) = (A

′ 0
0 0 ), so by using the fact that

0 /∈ Sp(A′),

Qh(0) =

(
Id1 0

0 0

)
= P h(0).

This proves that for all z small enough, Qh(z) = P h(z), and in turn finishes the proof
of Item (ii) in the case where 0 /∈ Sp(A′).

If 0 ∈ Sp(A′), then we add αzI to E(z) for some α ∈ C. This amounts to adding
αP h(z) to E(1)(z). This only shifts the eigenvalues of the restriction of E(1)(z) to
Im(P h(z)) (but not of its restriction to Im(Id − P h(z))) by α, while leaving the
eigenprojections unchanged. Thus, choosing α so that 0 /∈ α+Sp(A′), we get Items (i)
and (ii) in the case 0 ∈ Sp(A′).

We still need to prove the asymptotics of Item (iii). Since A′ is diagonalizable, so
is E(1)(0) = (A

′ 0
0 0 ). So, there is no nilpotent part in the spectral decomposition of

E(1)(0). That is to say, for all µ ∈ Sp(A′),

E(1)(0)P h
µ (0) = µP h

µ (0).

Since z 7→ E(1)(z)P h
µ (z) is holomorphic, we have

E(1)(z)P h
µ (z) = µP h

µ (z) +O(z).

Finally, we multiply by z to come back to E(z), which gives us

E(z)P h
µ (z) = µzP h

µ (z) +O(z2). �

2.2. Estimates on Fourier components and well-posedness

2.2.1. Dissipation of the parabolic component. — The goal of this section is the proof
of the following result.

Proposition 9. — There exist r,Kp, cp > 0 such that for every |z| < r, τ > 0 and
X ∈ Im(P p(z)),

|e−E(z)τX| 6 Kpe−cpτ |X|.

Proof. — By using Proposition 6, for |z| 6 r, we denote by Ep(z) the restriction of
E(z) to the vector subspace Im[P p(z)], which is an endomorphism of Im[P p(z)].

By assumption (H.3), there exists c > 0 such that <(Sp(D)) ⊂ (c,∞). There exists
an open disk Ω in the complex plane such that Sp(D) ⊂ Ω and min{<(z); z ∈ Ω} > c.
Then, by continuity of the spectrum, for r small enough, we have, for every |z| 6 r,
Sp(Ep(z)) ⊂ Ω.
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Step 1: Cauchy formula. — We prove the following equality between endomorphisms
of Im[P p(z)]

(26) ∀ |z| 6 r, τ ∈ R, e−E
p(z)τ =

1

2πi

∫
∂Ω

e−τξ(ξI − Ep(z))
−1

dξ,

where I is the identity on Im[P p(z)]. The right-hand side is well-defined because
∂Ω ∩ Sp(Ep(z)) = ∅. Let us denote it by φ(τ). Then

φ′(τ) =
−1

2πi

∫
∂Ω

e−τξξ(ξI − Ep(z))
−1

dξ

=
−1

2πi

∫
∂Ω

e−τξ((ξI − Ep(z)) + Ep(z))(ξI − Ep(z))
−1

dξ.

By the Cauchy formula,
∫
∂Ω

e−τξ dξ = 0 thus φ′(τ) = −Ep(z)φ(τ). Moreover φ(0) = I

because all the eigenvalues of Ep(z) are inside Ω (see [18, Ch. I, Prob. 5.9]). Thus
φ(τ) = e−τE

p(z).

Step 2: Estimate. — We deduce from (26) the following equality between endomor-
phisms of Cd

(27) ∀ |z| 6 r, τ ∈ R, e−E(z)τP p(z) =
1

2πi

∫
∂Ω

e−τξ(ξId − E(z))
−1
P p(z) dξ.

Note that, if r is small enough, then the eigenvalues of E(z) are either inside Ω

(parabolic branch) or close to 0 (hyperbolic branch), for instance in {<(ξ) < c/2}.
Thus (ξId − E(z)) is invertible on Cd for every ξ ∈ ∂Ω and the above right-hand side
is well-defined.

We deduce from (27) that∣∣e−E(z)τP p(z)
∣∣ 6 1

2π

∫
∂Ω

e−τ<(ξ)
∣∣(ξId − E(z))

−1
P p(z)

∣∣ dξ.
The map (ξ, z) ∈ ∂Ω×D(0, r) 7→

∣∣(ξId − E(z))
−1
P p(z)

∣∣ is continuous on a compact
set thus bounded. Thus there exists a positive constant K such that, for every |z| < r

and τ > 0,
∣∣e−E(z)τP p(z)

∣∣ 6 Ke−cτ . �

2.2.2. Boundedness of the transport component. — The goal of this section is to prove
the following result.

Proposition 10. — There exist r,Kh, ch > 0 such that for every x ∈ [−r, r] r {0},
t ∈ R and X ∈ Im(P h(ix)),∣∣∣exp

( t

x2
E(ix)

)
X
∣∣∣ 6 Kh ech|t||X|.

Proof. — Let r be as in Proposition 7, x ∈ [−r, r] r {0}, t ∈ R, µ ∈ Sp(A′) and
Y ∈ Im[P h

µ (ix)]. Taking into account that Im[P h
µ (ix)] is stable by E(ix), we get

exp
( t

x2
E(ix)

)
Y = exp

( t

x2
E(ix)P h

µ (ix)
)
Y = exp

( t

x2

(
iµxP h

µ (ix)− x2Rh
µ(ix)

))
Y.
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Note that P h
µ (ix) and Rh

µ(ix) commute because P h
µ (ix) and E(ix) commute and

E(ix)P h
µ (ix) = µixP h

µ (ix)− x2Rh
µ(ix). Thus, by using that iµ/x ∈ iR, we obtain∣∣∣exp

( t

x2
E(ix)

)
Y
∣∣∣ =

∣∣∣eiµt/x exp
(
−tRh

µ(ix)
)
Y
∣∣∣ 6 ecµ|t||Y |,

where cµ = max{|Rh
µ(z)|; z ∈ D(0, r)}. We conclude for X ∈ Im[P h(ix)] that∣∣∣exp
( t

x2
E(ix)

)
X
∣∣∣ 6 ∑

µ∈Sp(A′)

∣∣∣exp
( t

x2
E(ix)

)
P h
µ (ix)X

∣∣∣
6

∑
µ∈Sp(A′)

ecµ|t||P h
µ (ix)X| 6 Kec|t||X|

with c = max{cµ; µ ∈ Sp(A′)} and K = max
{∑

µ∈Sp(A′)|P h
µ (z)|; z ∈ D(0, r)

}
. �

2.2.3. Well-posedness. — By gathering the results of Sections 2.2.1 and 2.2.2, we can
prove that the heat-transport system (Sys) is well-posed. We define the Fourier coef-
ficients of f ∈ L2(T)d by

∀n ∈ Z, f̂(n) =
1

2π

∫
T
f(t)e−int dt ∈ Cd.

We consider the operator L defined by (21) and (22). By Bessel-Parseval identity
and the fact that L (Xen) = n2E(i/n)Xen,

(28) D(L ) =
{
f ∈ L2(T)d;

∑
n∈Z
∣∣n2E(i/n)f̂(n)

∣∣2 <∞}.
The goal of this section is to prove the following result.

Proposition 11. — −L generates a C0 semi-group of bounded operators on L2(Td).

This result will ensure well-posedness of (Sys) in the following sense.

Definition 12. — Let T > 0, f0 ∈ L2(T)d and u ∈ L2(QT )d. The solution of (Sys)
is the function f ∈ C0([0, T ];L2(T)d) defined for t ∈ [0, T ] by

f(t) = e−tL f0 +

∫ t

0

e−(t−τ)LM1ωu(τ) dτ.

Moreover, f(t) satisfies the estimate

(29) ∀ 0 6 t 6 T, ‖f(t)‖L2(T) 6 C
(
‖f0‖L2(T) + ‖u‖L2([0,T ]×ω)

)
,

where C depends on T but not on f0 and u. We will also note S(t, f0, u) := f(t) this
solution.
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Proof. — We deduce from Propositions 9 and 10 that for every x ∈ [−r, r] r {0},
t > 0 and X ∈ Cd,

(30)

∣∣∣exp
(
− t

x2
E(ix)

)
X
∣∣∣ 6 ∣∣∣exp

(
−E(ix)

t

x2

)
P p(ix)X

∣∣∣
+
∣∣∣exp

(
− t

x2
E(ix)

)
P h(ix)X

∣∣∣
6 Kp e−cptx

−2

|P p(ix)X|+Kh echt
∣∣P h(ix)X

∣∣
6 K echt|X|,

where K = max
{
Kp|P p(ix)|+Kh

∣∣P h(ix)
∣∣;x ∈ [−r, r]

}
.

For f ∈ L2(T)d and t ∈ [0,∞) we define

S(t) =
∑
n∈Z

e−tn
2E(i/n)f̂(n)en.

By Bessel Parseval equality and (30) with x = 1/n, S(t) is a bounded operator on
L2(T)d, because the number of n ∈ Z such that 1/n /∈ [−r, r] is finite. The semi-group
properties S(0) = I and S(t+ s) = S(t)S(s) are clearly satisfied. For f ∈ D(L ), we
have, by Bessel Parseval equality∥∥∥(S(t)− I

t
+ L

)
f
∥∥∥2

L2(T)d
=
∑
n∈Z

∣∣∣(e−tn
2E(i/n) − Id

t
− n2E(i/n)

)
f̂(n)

∣∣∣2.
In the right-hand side, each term of the series converges to zero when [t → 0] and,
thanks to (30), is dominated for every t ∈ [0, 1] and n > 1/r by∣∣∣∣(∫ 1

0

e−tθn
2E(i/n) dθ − Id

)
n2E(i/n)f̂(n)

∣∣∣∣2 6 (Kech + 1)2
∣∣n2E(i/n)f̂(n)

∣∣2,
which can be summed over n ∈ Z because f ∈ D(L ), see (28). By the dominated
convergence theorem, the sum of the series converges to zero. �

Remark 13. — We can see from this proof that the semi-group e−tL is strongly
continuous on any Hs(T)d for any s > 0, i.e., we have

‖e−tL f0‖Hs(T)d 6 Kecht‖f0‖Hs(T)d .

2.3. Adjoint system and observability. — The null-controllability of a linear system
is equivalent to a dual notion called “observability”. We have the following general,
abstract result (see [12, Lem. 2.48]).

Lemma 14. — Let H1, H2 and H3 be three Hilbert spaces. Let Φ2 : H2 → H1 and
Φ3 : H3 → H1 be continuous linear maps. Then

Im(Φ2) ⊂ Im(Φ3)

if and only if there exists C > 0 such that

∀h1 ∈ H1, ‖Φ∗2h1‖H2
6 C‖Φ∗3h1‖H3

.
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From Lemma 14, see [12, Th. 2.44], we deduce the following result.

Proposition 15. — Given T > 0, the system (Sys) is null-controllable on ω in time T
if and only if there exists C > 0 such that for every g0 ∈ L2(T;Cd), the solution g to
the equation(4)

(31)
{
∂tg −Btr∂2

xg −Atr∂xg +Ktrg = 0 in (0, T )× T,
g(0, ·) = g0 in T.

satisfies

(32) ‖g(T, ·)‖2L2(T;Cd) 6 C
∫ T

0

∫
ω

|M∗g(t, x)|2 dtdx.

Note that the solutions of the adjoint system (31) are of the form(5)

(33) g(t, x) =
∑
n∈Z

e−tn
2E(i/n)∗ ĝ0(n)einx.

Moreover, we have a spectral theory for the adjoint system that is similar to Propo-
sitions 5–7. We just have to take the adjoint of each formulas of these Propositions.

Remark 16. — As for the semi-group e−tL (see Remark 13), the dual semi-group
e−tL

∗ is strongly continuous on any Hs(T)d for any s > 0, i.e., we have

‖e−tL
∗
g0‖Hs(T)d 6 K

′ec
′t‖g0‖Hs(T)d .

3. Obstruction to the null-controllability in small time

The goal of this section is to prove the first point of Theorem 2, by disproving the
observability inequality (32) on an appropriate solution of the adjoint system (31).
Intuitively, the lack of null-controllability in small time should come from the trans-
port components. So, the idea is to construct approximate transport solutions. Note
that in general, there are no non-trivial exact transport solutions that are supported
on a strict subset of [0, T ]× T (see the appendix).

Proof of the lack of null-controllability in time T < T ∗

Step 1: Construction of approximate transport solutions. — Let µ ∈ Sp(A′) with mini-
mum absolute value (i.e., |µ| = µ∗). Let χ ∈ C∞(T) r {0} be such that the solution
η(t, x) = χ(x+ µt) of the transport equation (∂t − µ∂x)η(t, x) = 0 on [0, T ]×T, with
initial condition η(0, ·) = χ, has its support supp(η) disjoint from [0, T ] × ω. Such a
solution exists because T < T ∗.

To exploit the spectral asymptotics of the previous section, that are valid in the
high-frequency limit, we want a high-frequency version of χ. To that end, we con-
sider for N ∈ N∗ the polynomial PN (X) =

∏N
j=−N (X − j) and χN = PN (−i∂x)χ.

(4)We denote the transpose of M ∈ Rd×d by Mtr.
(5)When we write E(z)∗, it is to be understood as (E(z))∗. We will use the same notation for

Ph
µ (z)∗ etc.
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Since χN is the image of χ by a differential operator, we have supp(χN ) ⊂ supp(χ).
If we note χ(x) =

∑
n∈Z aneinx and χN (x) =

∑
n∈Z a

N
n einx, we have aNn = PN (n)an.

In particular, for |n| 6 N , aNn = 0.
In summary, χN satisfies the following properties:
– χN is non-zero,
– χN has no components along frequencies less than N ,
– the support of χN is a subset of the support of χ.

In particular, the last property implies that the solution ηN of (∂t−µ∂x)ηN (t, x) = 0,
with initial condition ηN (0, ·) = χN is such that supp(ηN ) is disjoint from [0, T ]× ω.

We adopt the notations of Proposition 7. Let ϕ0 ∈ Im(P h
µ (0)∗) r {0}. We define

g̃N (t, x) =
∑
n∈Z

aNn ein(x+µt)+tRh
µ(0)∗ϕ0 = χN (x+ µt)etR

h
µ(0)∗ϕ0,(34)

gN (t, x) =
∑
n∈Z

aNn ein(x+µt)+tRh
µ(i/n)∗P h

µ (i/n)
∗
ϕ0.(35)

By Proposition 7, E(z)∗ acts as µz + z2Rh
µ(z)∗ on the range of P h

µ (z)∗. So the
definition of gN can be written alternatively as

gN (t, x) =
∑
n∈Z

aNn einx−tn2E(i/n)∗P h
µ (i/n)

∗
ϕ0.

So, according to the representation of the solutions of the adjoint system (33),
gN solves the parabolic-transport system (31). On the other hand, g̃N solves the
transport equation (∂t − µ∂x − Rh

µ(0)∗)g̃N = 0. We will prove that in the limit
N → +∞, gN is an approximation of g̃N .

Step 2: Approximation of the exact solution by the transport solution. — According to
Parseval’s identity, we have for every t > 0

‖gN (t, ·)− g̃N (t, ·)‖2L2(T) = 2π
∑
n∈Z
|aNn |2

∣∣∣(etR
h
µ(0)∗ − etR

h
µ(i/n)∗P h

µ (i/n)
∗
)
ϕ0

∣∣∣2.
Then, according to the holomorphy of z 7→ Rh

µ(z) and z 7→ P h
µ (z), and the fact that

P h
µ (0)∗ϕ0 = ϕ0, we have uniformly with respect to t ∈ [0, T ]

‖gN (t, ·)− g̃N (t, ·)‖2L2(T) = 2π
∑
n∈Z
|aNn |2O(1/n2).

Now, reminding that for |n| 6 N , aNn = 0, we deduce that

‖gN (t, ·)− g̃N (t, ·)‖2L2(T) = O
(
1/N2

)∑
n∈Z
|aNn |2.

Thanks to Parseval’s identity we rewrite it as

(36) ‖gN (t, ·)− g̃N (t, ·)‖L2(T) = O(1/N)‖χN‖L2(T).
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Step 3: Conclusion. — By the triangle inequality, we have for 0 6 t 6 T

‖gN (t, ·)‖L2(ω) 6 ‖g̃N (t, ·)‖L2(ω) + ‖gN (t, ·)− g̃N (t, ·)‖L2(ω).

Then, since the support of g̃N does not intersect [0, T ] × ω, the first term of the
right-hand side is zero, and according to the inequality (36), we have uniformly in
0 6 t 6 T

‖gN (t, ·)‖2L2(ω) = O
(
1/N2

)
‖χN‖2L2(T).

Integrating this estimate for 0 6 t 6 T , we get the following upper bound on
‖gN‖L2([0,T ]×ω):

(37) ‖gN‖2L2([0,T ]×ω) = O
(
1/N2

)
‖χN‖2L2(T).

To disprove the observability inequality, we also need a lower bound of ‖gN (T, ·)‖L2(T).
According to Parseval’s identity, we have

‖gN (T, ·)‖2L2(T) = 2π
∑
n∈Z
|aNn |2

∣∣∣eTRh
µ(i/n)∗P h

µ (i/n)
∗
ϕ0

∣∣∣2.
Since ϕ0 is in the range of P h

µ (0), for n large enough, we have |eTR
h
µ(i/n)∗P h

µ (i/n)
∗
ϕ0| >

c > 0. Then, since aNn = 0 for |n| 6 N , as soon as N is large enough,

(38) ‖gN (T, ·)‖2L2(T) > 2πc2
∑
n∈Z
|aNn |2 = 2πc2‖χN‖2L2(T).

Comparing the lower bound (38) and the upper bound (37), we see that the ob-
servability inequality (32) (with M = identity matrix of size d) cannot hold. �

Remark 17. — The previous candidate gN (0, .) belongs to L2(T)d1×L2
m(T)d2 because

it is supported on high frequencies |n| > N . Moreover, with the notation gN =

(gN1, gN2), we have
‖gN1‖L2([0,T ]×ω)

‖gN (T )‖L2(T)
6
‖gN‖L2([0,T ]×ω)

‖gN (T )‖L2(T)
−→
N→∞

0.

By duality, this proves the existence of f0 = (f01, f02) ∈ L2(T)d1 × L2
m(T)d2 , such

that, for any u1 ∈ L2((0, T )× ω)d1 the solution of (4) satisfies f(T ) 6= 0.

4. Large time null-controllability

The goal of this section is to prove the point (i) of Theorem 2. An adapted decom-
position of L2(T)d is introduced in Section 4.1. The control strategy is presented in
Section 4.2. Projecting the dynamics onto the parabolic/hyperbolic subspaces, the
system is decomposed into two weakly coupled systems, the first one behaving like
a transport equation, the second one like a heat equation. The transport equation is
handled in Section 4.3 by using the methods developed in [1]. The parabolic equation
is treated in Section 4.4 by adapting the Lebeau-Robbiano method [21] to systems
with arbitrary size. The low frequency part is treated by a compactness argument
and a unique continuation property in Section 4.5.
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In the whole Section 4, the parameter r > 0 is assumed to be small enough so that
Propositions 5, 6, 7, 9 and 10 hold.

4.1. An adapted decomposition of L2(T)d

Proposition 18. — Let n0 ∈ N∗ be such that 1/n0 < r. We have the following decom-
position

(39) L2(T)d = F 0 ⊕ F p ⊕ F h,

where

F 0 :=
⊕
|n|6n0

Cden,(40)

F p :=
⊕
|n|>n0

Im(P p(i/n))en,(41)

F h :=
⊕
|n|>n0

Im
(
P h(i/n)

)
en.(42)

Moreover the projections Π0, Πp, Πh and Π defined by
L2(T)d = F 0 ⊕ F p ⊕ F h

Π0 = IF 0 + 0 + 0

Πp = 0 + IFp + 0

Πh = 0 + 0 + IFh

Π = 0 + IFp + IFh = Πp + Πh

are bounded operators on L2(T)d.

Proof. — The function z ∈ D(0, r) 7→ P p(z) is continuous thus there exists C > 0

such that, for every z ∈ D(0, 1/n0), |P p(z)| 6 C. Let f ∈ L2(T)d. We deduce from

(43)
∑
|n|>n0

∣∣P p(i/n)f̂(n)
∣∣2 6 C2

∑
|n|>n0

|f̂(n)|2 6 C2‖f‖2L2(T)d

and Bessel-Parseval identity that the series
∑
P p(i/n)f̂(n)en converges in L2(T)d.

Using Id = P p(z) + P h(z), we get the decomposition

f =
∑
n∈Z

f̂(n)en =
∑
|n|6n0

f̂(n)en +
∑
|n|>n0

P p(i/n)f̂(n)en +
∑
|n|>n0

P h(i/n)f̂(n)en

with convergent series in L2(T)d. This proves L2(T)d = F 0 + F p + F h. The sum is
direct because (en)n∈Z is orthogonal and Im(P p(z))∩ Im(P h(z)) = {0} when |z| < r.
The linear mappings Π0 and Π are orthogonal projections, thus bounded operators
on L2(T)d. We deduce from Bessel-Parseval identity and (43) that Πp is a bounded
operator on L2(T)d and so is Πh = Π−Πp. �

The operator L defined in (21) maps D(L ) ∩ F 0 = F 0 into F 0 thus we can
define an operator L 0 on F 0 by D(L 0) = D(L ) ∩ F 0 and L 0 = L |F 0 . More-
over, −L 0 generates a C0-semi-group of bounded operators on F 0 and e−tL

0

=

e−tL |F 0 . For the same reasons, we can define an operator L p on F p by D(L p) =

D(L ) ∩ F p, L p = L |Fp , −L p generates a C0-semi-group of bounded operators on
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F p: e−tL
p

= e−tL |Fp . Finally, we can define an operator L h on F h by D(L h) =

D(L ) ∩ F h, L h = L |Fh , −L h generates a C0-semi-group of bounded operators on
F h: e−tL

h

= e−tL |Fh .

Proposition 19. — The operator −L 0 generates a C0 group (e−tL
0

)t∈R of bounded
operators on F 0. The operator −L h generates a C0 group (e−tL

h

)t∈R of bounded
operators on F h

Proof. — We just need to check that e−tL defines a bounded operator of F 0 and F h

when t < 0. It is clear for F 0 because it has finite dimension. For F h, one may proceed
as in the proof of Proposition 11, noticing that the estimate of Proposition 10 is valid
for any t ∈ R. �

For the duality method, we will need the dual decomposition of (39), i.e.,

(44) L2(T)d = F 0 ⊕ F̃ p ⊕ F̃ h, where F̃ p := Im
(
(Πp)∗

)
, F̃ h := Im

(
(Πh)∗

)
.

By using the definitions of F p and F h in (41) and (42) and the fact that (en)n∈Z is
a Hilbert basis of L2(T), we get

(45) F̃ p =
⊕
|n|>n0

Im(P p(i/n)∗)en,

(46) F̃ h =
⊕
|n|>n0

Im
(
P h(i/n)∗

)
en.

Moreover,

(47) (e−tL )∗f = e−tL
∗
f =

∑
n∈Z

e−tn
2E(i/n)∗ f̂(n)en

and the spaces F 0, F̃ p and F̃ h are stable by etL
∗ .

4.2. Control strategy. — Let T ∗ be as in (3) and T, T ′ be such that

(48) T ∗ < T ′ < T.

In this section, we consider controls u of the form

(49) u := (uh, up)tr ∈ Cd1 × Cd2 ,

where

supp(uh) ⊂ [0, T ′]× ω, supp(up) ⊂ [T ′, T ]× ω,(50)

uh ∈ L2((0, T ′)× T)d1 , up ∈ L2((T ′, T )× T)d2 .

The control uh is intended to control the hyperbolic component of the system and
the control up the parabolic component.

The control strategy for system (Sys) consists in
– first proving the null-controllability in time T in a subspace of L2(T)d with finite

codimension,
– then using a unique continuation argument, to get the full null-controllability.

The first step of this strategy is given by the following statement.
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Proposition 20. — There exist a closed subspace G of L2(T)d with finite codimension
and a continuous operator

U : G −→ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2

f0 7−→ (uh, up),

that associates with each f0 ∈ G a pair of controls U f0 = (uh, up) such that

(51) ∀ f0 ∈ G , ΠS(T ; f0,U f0) = 0.

By “continuous operator”, we mean that, for every s ∈ N, the map U : G 7→
L2((0, T ′)× ω)d1 ×Hs

0((T ′, T )× ω)d2 is continuous: there exists Cs > 0 such that

∀ f0 ∈ G , ‖uh‖L2((0,T ′)×ω)d1 + ‖up‖Hs0 ((T ′,T )×ω)d2 6 Cs‖f0‖L2(T)d .

The proof strategy of Proposition 20 consists in splitting the problem in two parts:
– for any initial data f0 and parabolic control up, steer the hyperbolic high fre-

quencies to zero at time T (Proposition 21),
– for any initial data f0 and hyperbolic control uh, steer the parabolic high fre-

quencies to zero at time T (Proposition 22).

Proposition 21. — If n0 (in (40)–(41)) is large enough, there exists a continuous
operator

U h : L2(T)d × L2((T ′, T )× ω)d2 −→ L2((0, T ′)× ω)d1

(f0, up) 7−→ uh,

such that for every (f0, up) ∈ L2(T)d × L2((T ′, T )× ω)d2 ,

ΠhS(T ; f0, (U
h(f0, up), up)) = 0.

Proposition 22. — If n0 is large enough, there exists a continuous operator

U p : L2(T)d × L2((0, T ′)× ω)d1 −→ C∞c ((T ′, T )× ω)d2

(f0, uh) 7−→ up,

such that for every (f0, uh) ∈ L2(T)d × L2((0, T ′)× ω)d1 ,

ΠpS(T ; f0, (uh,U
p(f0, uh)) = 0.

Admitting that Propositions 21 and 22 hold, we can now prove Proposition 20.

Proof. — We observe that the relation ΠS(T ; f0, (uh, up)) = 0 holds if the two fol-
lowing equations are simultaneously satisfied

uh = U h(f0, up) = U h
1 (f0) + U h

2 (up),

up = U p(f0, uh) = U p
1 (f0) + U p

2 (uh).
(52)

If we set
C := U p

1 + U p
2 U h

1 : L2(T)d −→ C∞c ((T ′, T )× T)d2 ,

then solving system (52) is equivalent to

(53) find up ∈ C∞c ((T ′, T )× T)d2 , such that Cf0 = (I −U p
2 U h

2 )up.
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The operator U p
2 U h

2 is compact on L2((T ′, T ) × T)d2 because it takes values in
C∞c ((T ′, T ) × T)d2 . Thus, by Fredhlom’s alternative (see [8, Th. 6.6]), there exist
N ∈ N and `1, . . . , `N continuous linear forms on L2((T ′, T ) × T)d2 such that the
equation (53) has a solution up ∈ L2((T ′, T )× T)d2 if and only if

(54) ∀ j ∈ {1, . . . , N}, `j(C(f0)) = 0.

Under these conditions (54), the equation (53) has a solution up = L(f0) given by a
continuous map L : G → L2((T ′, T ) × T)d2 defined on the closed vector subspace of
L2(T)d defined by

(55) G := {f0 ∈ L2(T)d ; `j(Cf0) = 0, 1 6 j 6 N}.

Then L(f0) = up = U p
2 U h

2 up+Cf0 belongs to C∞c ((T ′, T )×ω). We get the conclusion
with

∀ f0 ∈ G , U (f0) := (U h(f0, L(f0)), L(f0)). �

Proposition 21 is proved in Section 4.3. Proposition 22 is proved in Section 4.4.
The unique continuation argument to control the low frequencies is presented in Sec-
tion 4.5.

4.3. Control of the hyperbolic high frequencies. — The goal of this subsection
is to prove Proposition 21. We remind that T > T ′ > T ∗ and that the control
u = (uh, up) satisfies (50).

4.3.1. Reduction to an exact controllability problem. — The goal of this paragraph is to
transform the null-controllability problem of Proposition 21 into an exact controllabil-
ity problem associated with a hyperbolic system. Precisely, we will get Proposition 21
as a corollary of the following result.

Proposition 23. — If n0 (in (40)–(41)) is large enough, then, for every T ′ > T ∗,
there exists a continuous operator

U h
T ′ : F

h −→ L2((0, T ′)× ω)d1

fT ′ 7−→ uh,

such that for every fT ′ ∈ F h,

ΠhS
(
T ′; 0, (U h

T ′(fT ′), 0)
)

= fT ′ .

Proposition 23 will be proved in Section 4.3.2. Now, we prove Proposition 21 thanks
to Proposition 23.

Proof of Proposition 21. — Let (f0, up) ∈ L2(T)d×L2((T ′, T )×ω)d2 . We have to find
uh ∈ L2((0, T ′)× ω)d1 such that

ΠhS(T ; f0, (uh, up)) = 0,

or, equivalently,

(56) ΠhS(T ; 0, (uh, 0)) = −ΠhS(T ; f0, (0, up)).
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According to the well-posedness of the system (Sys) and the continuity of the projec-
tion Πh (Definition 12 and Proposition 18), the linear map

(57) (f0, up) 7−→ −ΠhS(T ; f0, (0, up)),

is continuous from L2(T)d×L2((T ′, T )×ω)d2 into F h, equipped with the L2(T)d-norm.
Since uh is supported in (0, T ′)× ω by (50), we have

(58) ΠhS(T ; 0, (uh, 0)) = e−(T−T ′)L h

ΠhS(T ′; 0, (uh, 0)).

As pointed out in Proposition 19, e−tL
h is well-defined for all t ∈ R. Therefore, by

using (57) and (58), (56) is equivalent to

(59) ΠhS(T ′; 0, (uh, 0)) = −e(T−T ′)L h

ΠhS(T ; f0, (0, up)) ∈ F h.

We get the conclusion with

U h(f0, up) = U h
T ′
(
−e(T−T ′)L h

ΠhS(T ; f0, (0, up))
)
. �

4.3.2. Exact controllability of the hyperbolic part. — The goal of this section is to prove
Proposition 23. By the Hilbert Uniqueness Method, Proposition 23 is equivalent to
the following observability inequality (it is an adaptation of [12, Th. 2.42]).

Proposition 24. — If n0 is large enough, there exists a constant C > 0 such that for
every g0 ∈ F̃ h, the solution g of (31) satisfies

(60) ‖g0‖2L2(T)d 6 C
∫ T ′

0

∫
ω

|g1(t, x)|2 dtdx,

where g1 denotes the first d1 components of g.

Proof. — Let g0 ∈ F̃ h. By using the definition (46) of F̃ h, and Proposition 7,
g0 decomposes as follows(6)

(61) g0 =
∑

µ∈Sp(A′)

∑
|n|>n0

P h
µ (i/n)∗ĝ0(n)en.

Then, the solution g of (31) is

(62) g(t) =
∑

µ∈Sp(A′)

Gµ(t), where Gµ(t) =
∑
|n|>n0

e−tn
2E(i/n)∗P h

µ (i/n)∗ĝ0(n)en.

Let µ ∈ Sp(A′).

(6)Let us recall that A′ is the matrix multiplying the derivative of the hyperbolic components in
the system (Sys) (see (1)).
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Step 1. — We prove the existence of C1 = C1(T ′) > 0, independent of g0, such that

(63) ‖Gµ(0, ·)‖L2(T)d 6 C1

(
‖Gµ‖L2(qT ′ )

d + ‖g0‖H−1(T)d
)
,

where qT ′ = (0, T ′)× ω and

(64) ‖g0‖H−1(T)d =

( ∑
|n|>n0

|ĝ0(n)|2

n2

)1/2

.

By using (i) and (iii) of Proposition 7, we have

e−tn
2E(i/n)∗P h

µ (i/n)∗ = e−tn
2(µi/n+(i/n)2Rh

µ(i/n))
∗

P h
µ (i/n)∗ = etµin+tRh

µ(i/n)∗P h
µ (i/n)∗,

which leads to

(65) ∂tGµ − µ∂xGµ −Rh
µ(0)∗Gµ = Sµ in (0, T ′)× T,

where

(66) Sµ(t) =
∑
|n|>n0

(
Rh
µ(i/n)

∗ −Rh
µ(0)∗

)
etµin+tRh

µ(i/n)∗P h
µ (i/n)∗ĝ0(n)en.

By regularity of z 7→ Rh
µ(z), Bessel-Parseval identity and (64) there exists C =

C(T ′) > 0, independent of g0, such that

(67) ‖Sµ‖L∞((0,T ′),L2(T)d) 6 C‖g0‖H−1(T)d .

By (65), the function G̃µ defined by

(68) G̃µ(t, x) = etR
h
µ(0)∗Gµ(t, x)

solves

(69)
{
∂tG̃µ − µ∂xG̃µ = etR

h
µ(0)∗Sµ in (0, T ′)× T,

G̃µ(0, ·) = Gµ(0, ·) in T.

We introduce the solution G[µ of

(70)
{
∂tG

[
µ − µ∂xG[µ = 0 in (0, T ′)× T,

G[µ(0, ·) = Gµ(0, ·) in T.

Using the Duhamel formula for the system (69) and the estimate (67), we obtain

(71) ‖G̃µ −G[µ‖L∞((0,T ′),L2(T)d) 6 C‖etR
h
µ(0)∗Sµ‖L1((0,T ′),L2(T)d) 6 C‖g0‖H−1(T)d ,

where C = C(T ′) > 0 is independent of g0. The time Tµ := `(ω)/|µ| is the minimal
time for the observability of the system (70) on ω (see for instance [1, Th. 2.2]). Indeed,
for any T ′′ > Tµ,

T ⊂ {x− µt; (t, x) ∈ [0, T ′′]× ω}.

Since T ′ > Tµ, there exists C = C(T ′, ω) > 0, independent of g0, such that

‖Gµ(0, ·)‖L2(T)d 6 C‖G[µ‖L2(qT ′ )
d .
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By the triangular inequality, (68) and (71), we deduce that

‖Gµ(0, ·)‖L2(T)d 6 C
(
‖G̃µ‖L2(qT ′ )

d + ‖G̃µ −G[µ‖L2(qT ′ )
d

)
6 C

(
‖Gµ‖L2(qT ′ )

d + ‖g0‖H−1(T)d
)
,

which ends the first step.

Step 2. — We prove the existence of C2 =C2(T ′, ω)>0, independent of g0, such that

(72) ‖Gµ(0, ·)‖L2(T)d 6 C2

(
‖P h

µ (0)∗g‖L2(qT ′ )
d + ‖g0‖H−1(T)d

)
.

Taking into account that the projection P h
λ (z) commutes with E(z) we deduce

from (62) that for any λ ∈ Sp(A′),

Gλ(t) =
∑
|n|>n0

P h
λ (i/n)∗e−tn

2E(i/n)∗P h
λ (i/n)∗ĝ0(n)en,

thus,

(73) Gµ(t)− P h
µ (0)∗g(t)

=
∑
|n|>n0

(
P h
µ (i/n)∗ − P h

µ (0)∗
)
e−tn

2E(i/n)∗P h
µ (i/n)∗ĝ0(n)en

−
∑

λ∈Sp(A′)r{µ}

∑
|n|>n0

P h
µ (0)∗

(
P h
λ (i/n)∗ − P h

λ (0)∗
)
e−tn

2E(i/n)∗P h
λ (i/n)∗ĝ0(n)en

because, for λ 6= µ, P h
µ (0)∗P h

λ (0)∗ = 0. By using the regularity of z 7→ P h
λ (z), Bessel-

Parseval identity and (64), we obtain the existence of C = C(T ′) > 0 independent
of g0 such that

‖Gµ − P h
µ (0)∗g‖L∞((0,T ′),L2(T)d) 6 C‖g0‖H−1(T)d .

We deduce from Step 1, the triangular inequality and the previous estimate that

‖Gµ(0, ·)‖L2(T)d 6 C
(
‖Gµ‖L2(qT ′ )

+ ‖g0‖H−1(T)d
)

6 C
(
‖P h

µ (0)∗g‖L2(qT ′ )
+ ‖Gµ − P h

µ (0)∗g‖L2(qT ′ )
+ ‖g0‖H−1(T)d

)
6 C

(
‖P h

µ (0)∗g‖L2(qT ′ )
+ ‖g0‖H−1(T)d

)
,

which ends Step 2.

Step 3: Conclusion. — For every µ ∈ Sp(A′), we have P h
µ (0)∗ = P h

µ (0)∗P h(0)∗ thus

‖P h
µ (0)∗g‖L2(qT ′ )

6 |P h
µ (0)∗| ‖P h(0)∗g‖L2(qT ′ )

6 C‖g1‖L2(qT ′ )
.

Using (62), the triangular inequality, Step 2 and the previous inequality, we obtain

(74) ‖g0‖L2(T)d 6
∑

µ∈Sp(A′)

‖Gµ(0, ·)‖L2(T)d 6 C
(
‖g1‖L2(qT ′ )

d + ‖g0‖H−1(T)d
)
.

From this estimate and the compact embedding L2(T) ↪→ H−1(T), a classical
compactness-uniqueness argument gives the observability inequality (60) (see for
instance [13, Lem. 2.1 and Rem. 2.2]).
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Indeed, by Peetre’s lemma (see [24, Lem. 3]), we deduce from (74) that
NT ′ := {g0 ∈ F̃ h; g1 = 0 in (0, T ′)× ω},

has finite-dimension. Moreover, from [24, Lem. 4], to prove (60), we only need to show
that NT ′ is reduced to zero.

First, by definition, we remark thatNT ′ decreases as T ′ increases. So, the map T ′ 7→
dim(NT ′) is decreasing and takes integer values. As a consequence the discontinuities
on (T ∗,+∞) are isolated. If T ′ is not such a discontinuity point, then there exists
δ > 0 such that dim(NT ′) = dim(NT ) for every |T − T ′| < δ. In case T ′ is such a
discontinuity point, one may replace T ′ by a smaller value, still such that T ′ > T ∗,
for which this holds.

By a small perturbation of T ′, we may therefore assume that NT = NT ′ for T −T ′

small, in which case NT ′ is stable by e−tL
∗h where L ∗h is the restriction of L ∗ to F̃ h.

Then, ifNT ′ is not reduced to zero, it contains an eigenfunction of L ∗h, i.e., a function
of the form Xen where X ∈ Cd, |n| > n0 and X = P h(i/n)X. By definition of NT ′ ,
the first components of that eigenfunction vanish on ω i.e., X1 = 0, or equivalently
P h(0)X = 0. Thus

|X| =
∣∣(P h(i/n)− P h(0)

)
X
∣∣ 6 C

|n|
|X|,

where C > 0 does not depend on n. For a large enough choice of n0, this is impossible.
�

4.4. Control of the parabolic high frequencies. — The goal of this subsection is
to prove Proposition 22. We recall that T and T ′ are chosen such that T ∗ < T ′ < T

and the control u is such that (49) and (50) hold.
The strategy is the following one: identify the equation satisfied by the last d2

components of the parabolic equation (31) with the help of the asymptotics of Propo-
sition 7, then construct smooth controls by adapting Lebeau-Robbiano’s method to
systems.

In this section, for every vector ϕ ∈ Cd, we will denote ϕ1 its first d1 components
and ϕ2 its last d2 components.

4.4.1. Reduction to a null-controllability problem. — The goal of this paragraph is to
transform the null-controllability problem of Proposition 22 into a null-controllability
problem associated to a parabolic system. Precisely, we will prove that Proposition 22
is a consequence of the following result.

Proposition 25. — If n0 is large enough, then for every T > 0, there exists a contin-
uous operator

U p
T : F p −→ C∞c ((0, T )× ω)d2

f0 7−→ up,

such that for every f0 ∈ F p,

ΠpS(T ; f0, (0,U
p
T (f0))) = 0.
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Proposition 25 will be proved thanks to an adaptation of Lebeau-Robbiano’s
method in Section 4.4.4, after two sections of preliminary results. We now prove
Proposition 22 thanks to Proposition 25.

Proof of Proposition 22. — Let (f0, uh) ∈ L2(T)d ×L2((0, T ′)× ω)d1 . We have to find
up ∈ C∞c ((T ′, T )× ω)d2 such that

(75) ΠpS(T ; f0, (uh, up)) = 0,

or equivalently,

(76) ΠpS(T ; 0, (0, up)) = −ΠpS(T ; f0, (uh, 0)).

In view of the support of the controls (Equation (50)), the equality (76) is equivalent
to

(77) ΠpS(T − T ′; 0, (0, up(·+ T ′))) = −e−(T−T ′)L p

ΠpS(T ′; f0, (uh, 0)),

or

(78) ΠpS
(
T − T ′; ΠpS(T ′; f0, (uh, 0)), (0, up(·+ T ′))

)
= 0.

By using Definition 12 and Proposition 18, we see that the mapping (f0, uh) 7→
ΠpS(T ′; f0, (uh, 0)) is continuous from L2(T)d × L2((0, T ′) × ω)d1 into F p. Thus we
get the conclusion with

∀ t ∈ (T ′, T ), U p(f0, uh)(t) = U p
(T−T ′)

(
ΠpS(T ′; f0, (uh, 0))

)
(t− T ′). �

4.4.2. Equation satisfied by the parabolic components of the free system. — We begin by
proving that if g is in F̃ p then we can compute the first d1 components of g from the
last d2. This will allow us to write an uncoupled equation for these components.

Proposition 26. — If z is small enough, there exists a matrix G(z) such that for
every ϕ ∈ Cd,

ϕ ∈ Im(P p(z)∗) ⇐⇒ ϕ1 = G(z)ϕ2.

Moreover, G is holomorphic in z and G(0) = 0.

Proof. — We write

P p(z)∗ =

(
p11(z) p12(z)

p21(z) p22(z)

)
.

Since P p(z)∗ is a projection, ϕ is in Im(P p(z)∗) if and only if{
p11(z)ϕ1 + p12(z)ϕ2 = ϕ1

p21(z)ϕ1 + p22(z)ϕ2 = ϕ2.

In particular, if ϕ ∈ Im(P p(z)∗), then (Id1 − p11(z))ϕ1 = p12(z)ϕ2. And since
P p(0)∗ =

( 0 0
0 Id2

)
(see Proposition 6), p11(0) = 0, and so, if z is small enough,

|p11(z)| < 1 and Id1 − p11(z) is invertible.
In that case, ϕ1 = (Id1 − p11(z))−1p12(z)ϕ2. This proves that the map

ϕ ∈ Im(P p(z)∗) 7−→ ϕ2 ∈ Cd2
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is one-to-one. But the rank of P p(z)∗ does not depend on z (Remark 8), and so
it is always d2. So the previous map is bijective. We denote by G(z) the first d1

component of its inverse. Note that we have G(z) = (Id1 − p11(z))−1p12(z). Then, if
ϕ ∈ Im(P p(z)∗), we have

ϕ = (ϕ1, ϕ2) = (G(z)ϕ2, ϕ2).

To prove the converse, note that the inverse of ϕ ∈ Im(P p(z)∗) 7→ ϕ2 is ϕ2 ∈
Cd2 7→ (G(z)ϕ2, ϕ2). �

Increasing n0 if necessary, we may assume that for |n| > n0, G(i/n) is well-defined.
Then, we define the (bounded) operator G from L2(T,Cd2) to L2(T,Cd1) by

(79) G

(∑
n∈Z

ϕn,2en

)
=
∑
|n|>n0

G(i/n)ϕn,2en.

According to the definition of F̃ p, we have the following corollary that enables us to
compute the first d1 components from the last d2.

Corollary 27. — For every g ∈ (F 0)⊥ (the space of functions with no components
along frequencies less than n0), we have the equivalence g ∈ F̃ p ⇔ g1 = Gg2.

Corollary 27 makes it easy to write an equation on the last d2 components of the
adjoint system (31) if the initial condition is in F̃ p.

Proposition 28. — We define the operator D by

(80) D(D) = H2(T)d2 , D = Dtr∂2
x +Atr

22∂x −Ktr
22 +Atr

12∂xG−Ktr
12G.

Let g0 ∈ F̃ p and g(t) = e−tL
∗
g0. Then, for all t > 0, g1(t) = Gg2(t) and g2 satisfies

the following equation

(81) ∂tg2(t, x)−Dg2(t, x) = 0 in (0, T )× T.

Proof. — The function g satisfies the system

(∂t −Btr∂2
x −Atr∂x +Ktr)g(t, x) = 0 in (0, T )× T.

If we take the last d2 components of this system, we get, in (0, T )× T,

(82)
(
∂t −Dtr∂2

x −Atr
22∂x +Ktr

22

)
g2(t, x)−

(
Atr

12∂x −Ktr
12

)
g1(t, x) = 0.

But for all t ∈ [0, T ], g(t, ·) ∈ F̃ p, so, according to Corollary 27, g1(t) = Gg2(t).
Substituting this inside Equation (82) gives the stated equation (81). �
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4.4.3. Smooth control of a finite number of parabolic vector components

For N > n0 we introduce

(83) F p
N :=

⊕
n0<|n|6N

Im(P p(i/n))en, F p
>N :=

⊕
|n|>N

Im(P p(i/n))en.

and the projection Πp
N defined by

L2(T)d = F 0 ⊕ F p
N ⊕ F

p
>N ⊕ F h

Πp
N = 0 + IFp

N
+ 0 + 0

which is a bounded operator on L2(T)d (composition of the bounded operator Πp with
an orthogonal projection). The goal of this section is to prove the following result.

Proposition 29. — There exists C > 0 such that, for every T ∈ (0, 1] and N > n0,
there exists a linear map(7)

KT,N : F p −→ C∞0 ((0, T )× ω)

such that, for every f0 ∈ F p and s ∈ N

Πp
NS
(
T ; f0, (0,KT,N (f0))

)
= 0,

‖KT,N (f0)‖Hs0 ((0,T )×T) 6
C

T s+1
N2seCN‖f0‖L2(T)d .

Proof. — Let f0 ∈ F p. Throughout this proof, we will denote by E2(n) the d2 × d2

matrices defined by

∀ |n| > n0, E2(n) := Dtr − i

n
Atr

22 +
1

n2
Ktr

22 −
( i

n
Atr

12 −
1

n2
Ktr

12

)
G(i/n).

Step 1. — We prove that u2 ∈ C∞0 ((0, T )×ω) satisfies Πp
NS(T ; f0, (0, u2)) = 0 if and

only if u2 solves the following moments problem in Cd2

(84) ∀n0 < |n| 6 N,
∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗u2(t, x)e−inx dxdt = Fn

where Fn = −e−n
2TE2(n)∗

(
G(i/n)

∗
f̂01(n) + f̂02(n)

)
and E2(n)∗ = E2(n)tr.

We first recall that, if P is a projection operator on Rd and x ∈ Im(P ), then

(x = 0) ⇐⇒ (∀ z ∈ Im(P ∗), 〈x, z〉 = 0)

because |x|2 = 〈x, x〉 = 〈Px, x〉 = 〈x, P ∗x〉.
As a consequence, the relation Πp

NS(T ; f0, (0, u2)) = 0 is equivalent to

(85) ∀ gT ∈ F̃ p
N , 〈S(T ; f0, (0, u2)), gT 〉 = 0,

where 〈·, ·〉 is the scalar product of L2(T,Cd) and

F̃ p
N :=

⊕
n0<|n|6N

Im
(
P p(i/n)

∗)
en.

(7)The space C∞0 ((0, T )×ω) consists of functions supported on [0, T ]×K, where K is a compact
subset of ω, and all of whose derivatives vanish on ω at time t = 0 and t = T .
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For gT ∈ F̃ p
N , we denote by g(t) = e−L ∗(T−t)gT the solution of the adjoint sys-

tem (31). Then, by Proposition 28, g = (g1, g2), where g1 = G(g2) and

〈S(T ; f0, (0, u2)), gT 〉 = 〈f0, g(0)〉+

∫ T

0

∫
ω

〈u2(t, x), g2(t, x)〉dxdt,

where the first two scalar products are in L2(T)d and the last one is in Cd2 . By Corol-
lary 27, the assertion (85) is equivalent to

(86) ∀ gT2 ∈ Span{Xen, X ∈ Cd2 , n0 < |n| 6 N},∫ T

0

∫
ω

〈u2(t, x), g2(t, x)〉dxdt = −
〈
f0,
(
G(g0

2), g0
2

)〉
,

where g2(t) = e−D(T−t)gT2 and g0
2 = g2(0). By considering gT2 = Xen with X ∈ Cd2

and n0 < |n| 6 N , we obtain

g2(t) = e−n
2(T−t)E2(n)Xen and G(g0

2) = G(i/n)e−n
2TE2(n)Xen.

The previous property is equivalent to

∀n0 < |n| 6 N, ∀X ∈ Cd2 ,
∫ T

0

∫
ω

〈u2(t, x), e−n
2(T−t)E2(n)X〉e−inx dx dt

= −〈f01, G(i/n)e−n
2TE2(n)Xen〉 − 〈f02, e

−n2TE2(n)Xen〉

or, equivalently,

∀n0 < |n| 6 N, ∀X ∈ Cd2 ,
〈∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗u2(t, x)e−inx dx dt,X

〉
= −

〈
e−n

2TE2(n)∗G(i/n)∗f̂01(n) + e−n
2TE2(n)∗ f̂02(n), X

〉
,

which proves (84).

Step 2: Solving the moment problem. — We look for a solution u2 ∈ C∞0 ((0, T )×ω) of
the moment problem (84) of the form

(87) u2(t, x) = ρ(t, x)v2(t, x),

where v2 ∈ C∞((0, T ) × T)d2 and ρ ∈ C∞0 ((0, T ) × ω) is a scalar function with an
appropriate support. More precisely, let

– ω̂ be an open subset such that ω̂ b ω and ρ2 ∈ C∞c (ω,R+) such that ρ2 = 1

on ω̂,
– ρ1 ∈ C∞([0, 1],R+) such that ρ1(0) = ρ1(1) = 0 and

(88) ∃C0 > 0, ∀ γ > 0,

∫ 1

0

ρ1(τ)e−γτ dτ >
1

C0
e−C0

√
γ .

For instance, we may consider ρ1 such that ρ1(τ) = ρ1(1 − τ) = e−1/τ for τ ∈
(0, 1/4). Indeed, for every γ > 0, the change of variable s =

√
γ τ gives∫ 1

0

ρ1(τ)e−γτ dτ >
1√
γ

∫ √γ/4
0

e−
√
γ φ(s) ds,
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where φ(s) = s+ 1/s. The function φ takes its minimal value at s∗ = 1 and φ′′(1) =

2 > 0 thus, by Laplace’s method (see [25, Ch. 9, Th.VI.1]),∫ 2

0

e−
√
γφ(s) ds ∼

γ→∞

√
π

4
√
γ

e−2
√
γ .

which proves (88) for a large enough constant C0.
Then we choose ρ(t, x) = ρ1((T − t)/T )ρ2(x). We also look for v2 of the form

(89) v2(t, x) =
∑

n0<|k|6N

e−k
2(T−t)E2(k)Vkeikx where Vk ∈ Cd2 .

The construction of v2 will use the following algebraic result.

Lemma 30. — There exists C > 0 such that, for every N > n0 and T ∈ (0, 1] the
matrix A in C(2(N−n0)d2)×(2(N−n0)d2), defined by blocks A = (An,k)n0<|n|6N

n0<|k|6N
by

An,k =

∫ T

0

∫
ω

e−n
2(T−t)E2(n)∗e−k

2(T−t)E2(k)ei(k−n)xρ(t, x) dxdt ∈ Cd2×d2 ,

is invertible and
∀F ∈ C2(N−n0)d2 , |A−1F | 6 C

T
eCN |F |,

where | · | is the hermitian norm on C2(N−n0)d2 .

Remark 31. — For instance, when N = n0 + 2, then A is given by

A =


A−n0−2,−n0−2 A−n0−2,−n0−1 A−n0−2,n0+1 A−n0−2,n0+2

A−n0−1,−n0−2 A−n0−1,−n0−1 A−n0−1,n0+1 A−n0−1,n0+2

An0+1,−n0−2 An0+1,−n0−1 An0+1,n0+1 An0+1,n0+2

An0+2,−n0−2 An0+2,−n0−1 An0+2,n0+1 An0+2,n0+2

.
For X ∈ C4d2 with block decomposition

X =


X−n0−2

X−n0−1

Xn0+1

Xn0+2


where Xk ∈ Cd2 for every n0 < |k| 6 n0 + 2, we have

AX =


∑
n0<|k|6n0+2A−n0−2,kXk∑
n0<|k|6n0+2A−n0−1,kXk∑
n0<|k|6n0+2An0+1,kXk∑
n0<|k|6n0+2An0+2,kXk

.
Thus 〈X,AX〉 =

∑
n0<|n|,|k|6n0+2X

∗
nAn,kXk.

Proof of Lemma 30. — The proof relies on the following spectral inequality, due to
Lebeau and Robbiano (see [21] and also [20, Th. 5.4]):

(90) ∃C1 > 0, ∀N ∈ N, ∀ (an)n∈Z ∈ CZ,

+N∑
n=−N

|an|2 6 C1eC1N

∫
ω̂

∣∣∣∣ +N∑
n=−N

aneinx

∣∣∣∣2 dx.
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By summing the components, the same inequality holds when an is a vector, an ∈ Cd2 ,
and | · | denotes the hermitian norm on Cd2 .

Let N > n0 and X ∈ C2(N−n0)d2 written by blocks X = (Xk)n0<|k|6N with
Xk ∈ Cd2 . Then, by using the definition of A, ρ, the properties of ρ2 and the above
spectral inequality in vector form, we obtain

〈AX,X〉 =
∑

n0<|n|,|k|6N

X∗nAn,kXk

=

∫ T

0

∫
ω

∣∣∣∣ ∑
n0<|k|6N

e−k
2(T−t)E2(k)Xkeikx

∣∣∣∣2ρ(t, x) dxdt

>
∫ T

0

∫
ω̂

∣∣∣∣ ∑
n0<|k|6N

e−k
2(T−t)E2(k)Xkeikx

∣∣∣∣2ρ1((T − t)/T ) dx dt

>
e−C1N

C1

∫ T

0

∑
n0<|k|6N

∣∣e−k2(T−t)E2(k)Xk

∣∣2ρ1((T − t)/T ) dt.

There exists c > 0 such that, for every |k| > n0, |E2(k)| 6 c. Then,

∀ |k| > n0, τ > 0, Y ∈ Cd2 , |eE2(k)τY | 6 ecτ |Y |.

By considering τ = k2(T − t) and Y = exp
(
−k2(T − t)E2(k)

)
Xk, we obtain

∀ |k| > n0, t ∈ (0, T ),
∣∣e−k2(T−t)E2(k)Xk

∣∣ > e−ck
2(T−t)|Xk|.

Therefore, by using the change of variable τ = (T − t)/T and (88), we get

〈AX,X〉 > T e−C1N

C1

∑
n0<|k|6N

|Xk|2
∫ T

0

e−2ck2Tτρ1(τ) dτ

>
T e−C1N

C1C0

∑
n0<|k|6N

|Xk|2e−C0k
√

2cT

>
T

C1C0
e−(C1+C0

√
2cT )N |X|2.

The above relation, valid for any X ∈ C2(N−n0)d2 proves that any eigenvalue of A
is positive, thus A is invertible. Moreover, for any F ∈ C2(N−n0)d2 r {0}, the vector
X = A−1F satisfies

T

C1C0
e−(C1+C0

√
2cT )N |X|2 6 〈AX,X〉 = 〈F,X〉 6 |F ||X|.

Thus

|X| 6 C1C0

T
e(C1+C0

√
2cT )N |F |.

This gives the conclusion with C = max
{
C1C0; C1 + C0

√
2c
}
. �
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Now, let us come back to the proof of Proposition 29. For such a control of the
form given by Equations (87) and (89), the moment problem (84) writes

∀n0 < |n| 6 N,
∑

n0<|k|6N

An,kVk = Fn

or equivalently AV = F with the notation of Lemma 30. Thus, it is sufficient to take
V = A−1F . By the definition of F in (84), and Bessel-Parseval identity there exists
C2 > 0 independent of (T,N) such that

|F | =
( ∑
n0<|n|6N

|Fn|2
)1/2

6 C2‖f0‖L2(T)d .

Therefore, by Lemma 30

(91) |V | =
( ∑
n0<|k|6N

|Vk|2
)1/2

6
C2C

T
eCN‖f0‖L2(T)d .

Step 3: Estimates on u2. — Let s ∈ N∗. By (87) and the definition of ρ, there exists
C = C(ρ, s) > 0 such that

(92) ‖u2‖Hs((0,T )×ω) 6
C

T s
‖v2‖Hs((0,T )×T).

For any s1, s2 ∈ N such that s1 + s2 6 s we have,

∂s1t ∂
s2
x v2(t, x) =

∑
n0<|k|6N

k2s1E2(k)s1e−k
2(T−t)E2(k)Vk(ik)s2eikx.

By Bessel-Parseval identity, we have

‖∂s1t ∂s2x v2‖2L2((0,T )×T) =

∫ T

0

∑
n0<|k|6N

∣∣∣k2s1+s2E2(k)s1e−k
2(T−t)E2(k)Vk

∣∣∣2 dt

6 C
∫ T

0

∑
n0<|k|6N

k4s
∣∣∣e−k2(T−t)E2(k)Vk

∣∣∣2 dt.

By working as in the proof of Proposition 9, we obtain, for n0 large enough, positive
constants Kp, cp > 0 such that

‖∂s1t ∂s2x v2‖2L2((0,T )×T) 6 C
∑

n0<|k|6N

k4sK2
p

∫ T

0

e−2cpk
2(T−t) dt |Vk|2

6
CK2

p

2cp

∑
n0<|k|6N

k4s−2|Vk|2 6
CK2

p

cp
N4s−1|V |2.

By (91),

‖∂s1t ∂s2x v2‖L2((0,T )×T) 6

√
C

cp
KpN

2s−1/2 C2C

T
eCN‖f0‖L2(T)d .
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This provides a constant C > 0 independent of (T,N) such that

‖v2‖Hs((0,T )×T) 6
C

T
N2s−1/2 eCN‖f0‖L2(T)d

and (92) gives the expected estimate on u in Hs. �

4.4.4. Lebeau-Robbiano’s method. — The goal of this section is to prove Proposi-
tion 25. Let T > 0. We fix δ ∈ (0, T/2) and ρ ∈ (0, 1). For ` ∈ N∗, we set N` = 2`,
T` = A2−ρ`, where A > 0 is such that 2

∑∞
`=1 T` = T − 2δ. Let f0 ∈ F p. We define

f1 = e−δL
p

f0,

g` = ΠpS(T`; f`, u`) where u` = (0,KT`,N`(f`)),

f`+1 = e−T`L
p

g`,

where KT`,N` is the control operator introduced in Proposition 29. By construction
Πp
N`
g` = 0 and therefore, by Proposition 9,

‖f`+1‖2L2(T)d = ‖e−T`L
p

g`‖2L2(T)d =
∑
|n|>N`

∣∣∣e−n2E(i/n)T` ĝ`(n)
∣∣∣2

6
∑
|n|>N`

K2
pe−2n2cpT` |ĝ`(n)|2 6 K2

pe−2cpN
2
` T`‖g`‖2L2(T)d .

By the semi-group property proved in Proposition 11, there exist positive constants K
and c such that

∀ f ∈ L2(T)d, t > 0, ‖e−tL f‖L2(T)d 6 Kect‖f‖L2(T)d .

Then, according to the triangle inequality and Cauchy-Schwarz inequality,

‖g`‖L2(T)d 6 ‖S(T`; f`, u`)‖ 6 KecT`‖f`‖L2(T)d +

∫ T`

0

Kec(T`−t)‖u`(t)‖L2(T) dt

6 KecT`
(
‖f`‖L2(T)d +

√
T` ‖u`‖L2((0,T`)×ω)

)
,

and by Proposition 29

(93) ‖u`‖L2((0,T`)×ω) 6
C

T`
eCN`‖f`‖L2(T)d .

Thus
‖g`‖L2(T)d 6 KecT`

(
1 +

C√
T`

eCN`
)
‖f`‖L2(T)d .

By setting

m` = Kpe
−cpN2

` T`KecT`
(

1 +
C√
T`

eCN`
)
,

we get
‖f`+1‖L2(T)d 6 m`‖f`‖L2(T)d .

It is easy to see that there exist C1, C2 > 0 such that m` 6 C1e−C22(2−ρ)` . Thus
‖f`‖L2(T)d → 0 and more precisely there exist positive constants C3, C4 > 0 such that

‖f`‖L2(T)d 6 C3 exp
(
−C42(2−ρ)`)‖f0‖L2(T)d .
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Moreover, from (93),

(94)
∞∑
`=1

‖u`‖2L2((0,T`)×ω) 6 C
∞∑
`=1

eCN`

T`C3 exp(−C42(2−ρ)`)‖f0‖L2(T)d <∞.

We set a0 = δ, a2 = δ+2T1, . . . , a` = a`−1 +2T`. We have a` → (T −δ) as `→∞.
For any f0 ∈ F p, we define the control

U p
T (f0)(t, x) =


KT`,N`(f`)(t− a`−1) for a`−1 6 t 6 a`−1 + T`,

0 for a`−1 + T` 6 t 6 a`−1 + 2T` = a`,

0 for T − δ 6 t 6 T.

Then, U p
T (f0) ∈ C∞0 ((δ, T−δ)×ω)d2 because all its derivatives vanish at times t = a`.

Thus U p
T (f0) ∈ C∞c ((0, T )× ω)d2 .

By (94), U p
T (f0) ∈ L2((0, T ) × ω)d, thus S(T − δ; f0,U

p
T (f0)) is the limit,

in L2(T)d, as ` → ∞, of the sequence S(a`; f0,U
p
T (f0)). As a consequence,

ΠpS(T − δ; f0,U
p
T (f0)) is the limit in L2(T) of the sequence ΠpS(a`; f0,U

p
T (f0)) =

f`+1. Finally,

ΠpS(T ; f0,U
p
T (f0)) = ΠpS(T − δ; f0,U

p
T (f0)) = 0.

By Proposition 29, for any s ∈ N∗,

‖U p
T (f0)‖Hs((0,T )×ω) 6

∞∑
`=1

C

T s+1
`

N2s
` eCN`C3 exp

(
−C42(2−ρ)`)

︸ ︷︷ ︸
<∞

‖f0‖L2(T)d .

This concludes the proof of Proposition 25. �

4.5. Control of the low frequencies. — The goal of this subsection is to prove
Theorem 2. Let T > T ∗ where T ∗ is defined in (3). Then, there exists T ′ > 0 such
that (48) holds. Let G and U be as in Proposition 20.

Without loss of generality, we may assume that F0 ⊂ G by the following procedure.
Let W be a complement of G ∩F 0 in F 0. Then W is a complement of G in(8) G +F 0,
and we extend U to G ⊕W by setting U (f0) = 0 for every f0 ∈W .

Implicitly, G is equipped with the topology of the L2(T)d-norm. The operator S is
defined in Definition 12.

We introduce the vector subspace of L2(T)d defined by

FT =
{
f0 ∈ L2(T)d; ∃u ∈ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2/S(T ; f0, u) = 0

}
.

(8)If f ∈ G + F 0, we write it as fG + fF0
, and in turn we decompose fF0

along the sum
F0 = G ∩ F0 ⊕W : fF0

= fG∩F0
+ fW ∈ G + W . So f = (fG + fG∩F0

) + fW . This proves that
G + F0 = G + W . Moreover, if f ∈ G ∩W , since W ⊂ F0, we have f ∈ G ∩ F0 ∩W , which is {0}.
So the sum G +W is direct.
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Step 1. — We prove that FT is a closed subspace of L2(T)d with finite codimension.
For f0 ∈ G , the function S(T ; f0,U f0) belongs to F 0, thus
(95) K (f0) := −eTL 0

S(T ; f0,U f0)

is well-defined in F 0 by Proposition 19. Then, K is a compact operator on G because
it has finite rank. By the Fredholm alternative, (I + K )(G ) is a closed subspace of G

and there exists a closed subspace G ′ of G , with finite codimension in G , such that
(I + K ) is a bijection from G ′ to (I + K )(G ). Note that G ′ is also a closed subspace
with finite codimension in L2(T)d.

For any f0 ∈ G ′, by using that K (f0) ∈ F 0 and (95), we obtain
S(T,K (f0), 0) = e−TL K (f0) = e−TL 0

K (f0) = −S(T, f0,U f0),

thus
S(T, f0 + K (f0),U f0) = S(T, f0,U f0) + S(T,K (f0), 0) = 0.

This proves that FT contains (I + K )(G ′), which is a closed subspace with finite
codimension in L2(T)d. Therefore, there exists a finite dimensional subspace F] of
L2(T)d such that FT = (I + K )(G ′)⊕ F]. This gives the conclusion of Step 1.

Step 2. — We prove that, up to a possibly smaller choice of T > T ∗, there exists
δ > 0 such that FT ′ = FT for every T ′ ∈ [T, T +δ]. When 0 < T ′ < T ′′, by extending
controls defined on (0, T ′) by zero on (T ′, T ′′), we see that FT ′ ⊂ FT ′′ . Thus, the
map T ′ 7→ codim(FT ′) is decreasing and takes integer values. As a consequence the
discontinuities on (T ∗, T + 1] are isolated. If T is not such a discontinuity point, then
there exists δ > 0 such that codim(FT ′) = codim(FT ) for every T ′ ∈ [T, T + δ]. In
case T is such a discontinuity point, one may replace T by a smaller value, still such
that T > T ∗, for which this holds.

Step 3. — We prove that
(
e−tL

∗
F⊥T

)⊥ ⊂ FT for every t ∈ (0, δ). Let t ∈ (0, δ) and
g0 ∈ L2(T)d be such that 〈g0, e

−tL ∗f0〉 = 0 for every f0 ∈ F⊥T . Then 〈e−tL g0, f0〉 = 0

for every f0 ∈ F⊥T , i.e., e−tL g0 ∈ (F⊥T )⊥. By Step 1, FT is a closed subspace
of L2(T)d thus (F⊥T )⊥ = FT . Therefore e−tL g0 ∈ FT . By definition of FT , this
implies that g0 ∈ FT+t. By Step 2, we get g0 ∈ FT , which ends the proof of Step 3.

Step 4. — We prove that F⊥T is left invariant by e−tL
∗ , i.e., F⊥T = e−tL

∗
F⊥T for

every t > 0. The subspace e−tL
∗
F⊥T is closed in L2(T)d because it has finite dimen-

sion. Thus
(
(e−tL

∗
F⊥T )⊥

)⊥
= e−tL

∗
F⊥T and we deduce from Step 3 that, for every

t ∈ (0, δ), F⊥T ⊂ e−tL
∗
F⊥T . Taking into account that dim(e−tL

∗
F⊥T ) 6 dim(F⊥T ),

we obtain F⊥T = e−tL
∗
F⊥T for every t ∈ (0, δ). By the semi-group property, this

equality holds for every t > 0.

Step 5. — We prove the existence of N ∈ N such that any f0 ∈ F⊥T can be written
(96) f0 =

∑
k6N

ϕkek with ϕk ∈ Cd.

Let S(t)∗ be the restriction of the semigroup e−tL
∗ to F⊥T , i.e., S(t)∗ = e−tL

∗ |F⊥T .
Then S(t)∗ = etM , where M is a matrix such that L ∗f0 = Mf0 for every f0 ∈ F⊥T .
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But then ker(M −λ)j = ker(L ∗−λ)j ∩F⊥T . The Kernel decomposition theorem ap-
plied toM , and the structure of the generalized eigenspaces of L ∗ gives the conclusion
of Step 4.

Step 6. — We prove that any element of L2(T)d can be steered to FT in an arbitrary
short time, i.e., for every ε > 0 and f0 ∈ L2(T)d, there exists

u ∈ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2

such that S(ε; f0, u) ∈ FT . By the Hilbert Uniqueness Method, it is sufficient to prove
an observability inequality for S(t)∗. By using the finite-dimensionality of F⊥T , it is
equivalent to prove that the following unique continuation property holds: if f(t, ·) =

etMf0 with f = 0 in (0, ε) × ω, then f0 = 0. By using the spectral inequality of
Lebeau-Robbiano, i.e., (90) and (96), we readily get the result.

Step 7: Conclusion. — Step 5 implies the controllability of the system in any time
τ > T . As T is an arbitrary time such that T > T ∗, this concludes the null-
controllability in any time T > T ∗. �

By a duality argument, we obtain the following result, that will be used in the next
sections.

Corollary 32. — For every T > T ∗ and s ∈ N, there exists CT,s > 0 such that, for
every g0 ∈ L2(T)d the solution g(t) = e−tL

∗
g0 = (g1, g2)(t) of the adjoint system (31)

satisfies
‖g(T )‖L2(T)d 6 CT,s

(
‖g1‖L2(qT )d1 + ‖g2‖H−s(qT )d2

)
,

where qT = (0, T )× ω.

We will use the following standard lemma that gives a canonical isometry between
H−s(Ω) and Hs

0(Ω).

Lemma 33. — Let Ω be an open subset of Rd or a compact manifold (possibly with
boundary). Let s > 0 and ιs : Hs

0(Ω) → L2(Ω) be the inclusion map.(9) The map
ι∗s : L2(Ω)→ Hs

0(Ω) extends to a bijective isometry from H−s(Ω) to Hs
0(Ω).

Proof. — The map ι∗s is defined on L2(Ω) by

(97) ∀ f ∈ L2(Ω), ∀ v ∈ Hs
0(Ω), 〈ι∗sf, v〉Hs0 = 〈f, v〉L2 .

Thus, for every f ∈ L2(Ω),

|ι∗sf |Hs0 = sup
|v|Hs0 =1

〈ι∗sf, v〉Hs0 = sup
|v|Hs0 =1

〈f, v〉L2 = |f |H−s ,

where we used the definition of H−s(Ω) as the dual of Hs
0(Ω) with respect to the

pivot space L2(Ω) (see for instance [27, §2.9]). Since L2(Ω) is dense in H−s(Ω), this
proves that ι∗s extends by continuity to H−s(Ω).

(9)We recall that Hs
0(Ω) is the closure of C∞c (Ω) for the Hs-norm, and that H−s(Ω) is the dual

of Hs
0(Ω) with respect to the pivot space L2(Ω).
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This extension is an isometry from H−s(Ω) onto its range. As such it is injective
and its range is closed. To prove it is bijective, we check that its range is dense, i.e.,
that its orthogonal is zero.

If g0 ∈ Hs
0(Ω) is orthogonal to Im(ι∗s), then, according to the definition of ι∗s

(Equation (97)) g0 is orthogonal in L2(Ω) to Hs
0(Ω). But Hs

0(Ω) is dense in L2(Ω), so
g0 = 0. Thus Im(ι∗s)

⊥ = {0}. �

Proof of Corollary 32. — We apply the duality lemma 14 with

Φ2 : f0 ∈ L2(T)d 7−→ f(T, ·) ∈ L2(T)d,

where f is the solution to the system (Sys) with initial data f0 and control u = 0,
and

Φ3 : u = (u1, u2) ∈ L2(qT )d1 ×Hs
0(qT )d2 7−→ f(T, ·) ∈ L2(T)d,

where f is the solution to the system (Sys) with initial data f0 = 0 and control u.
The null-controllability result proved above is equivalent to the inclusion Im(Φ2) ⊂
Im(Φ3), thus to the existence of C > 0 such that for every gT ∈ L2(T)d,

(98) ‖Φ∗2(gT )‖L2(T)d 6 C‖Φ∗3(gT )‖L2(qT )d1×Hs0 (qT )d2 .

We compute the adjoint operators of Φ2 and Φ3 thanks to the duality relation
between the solution f of (Sys) and the solution ϕ(·) = g(T − ·) of the adjoint
system (31):

(99) 〈f(T ), ϕ(T )〉L2(T)d = 〈f(0), ϕ(0)〉L2(T)d +

∫ T

0

∫
ω

〈u(t, x), ϕ(t, x)〉dtdx

= 〈f(0), ϕ(0)〉L2(T)d +

∫ T

0

∫
ω

〈u1(t, x), ϕ1(t, x)〉+ 〈u2(t, x), ϕ2(t, x)〉dtdx.

First, we have Φ∗2(gT ) = (e−TL )∗gT = e−TL ∗gT . To compute Φ∗3, we introduce the
input-output operator FT : u ∈ L2(qT )d 7→ f(T, .) ∈ L2(T)d, where f is the solution
of (Sys) with initial condition f0 = 0 and right-hand side u. By (99), F ∗T (gT ) is the
restriction of e(t−T )L ∗gT to [0, T ]×ω. We have Φ3 = FT ◦ (I, ιs), where (I, ιs) stands
for the inclusion map L2(qT )d1×Hs

0(qT )d2 → L2(qT )d. Thus, according to Lemma 33,
the right-hand side of the inequality (98) is

‖(I, ι∗s) ◦F ∗T (gT )‖L2(qT )d1×Hs0 (qT )d2 = ‖F ∗T (gT )‖L2(qT )d1×H−s(qT )d2 ,

which gives the conclusion. �

5. Hyperbolic control: coupling of order zero

The goal of this section is to prove the following result on the system

(100)
{

(∂t +A′∂x +K11)f1 + (A12∂x +K12)f2 = u11ω in (0, T )× T,(
∂t − ∂2

x +K22

)
f2 +K21f1 = 0 in (0, T )× T.

Theorem 34. — We assume (H.1)–(H.4), D= Id2 m=d1, M1 = Id1 , M2 =0, A21 =0

and A22 = 0. Let T ∗ be defined by (3). The following statements are equivalent.
– The system (100) is null-controllable in any time T > T ∗.
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– The pair of matrices (K22,K21) satisfies the Kalman rank condition:

(101) Span{Kj
22K21X1;X1 ∈ Cd1 , 0 6 j 6 d2 − 1} = Cd2 .

The interest of this theorem is that its proof is essentially the same as that of
Theorems 3 and 4 (that will be done in the next sections) but it is less technical.

In Section 5.1, we prove that the Kalman condition (101) is necessary for the
null-controllability of the system (100). In Section 5.2, we prove that the Kalman
condition (101) is sufficient for the null-controllability of the system (100), first in the
case d1 = 1 (i.e., with one hyperbolic line in the system) where the cascade structure
(or Brunovski form) is easy to handle, then in the general case d1 > 1 which is more
delicate to write.

5.1. The Kalman condition is necessary. — If the null-controllability property for
(100) holds, then, by considering the Fourier components of the solution and the
control, we obtain the null-controllability, for every n ∈ Z r {0}, of the system{

X1(t)′ + (inA′ +K11)X1(t) + (inA12 +K12)X1(t) = v1(t),

X ′2(t) + (n2Id2 +K22)X2(t) +K21X1(t) = 0,

with state X(t) = (X1, X2)(t) ∈ Cd1 ×Cd2 and control v1 ∈ L2(0, T )d1 . This requires
the null-controllability of the control system

X ′2(t) + (n2Id2 +K22)X2(t) +K21X1(t) = 0,

with state X2(t) ∈ Cd2 and control X1 ∈ L2(0, T )d1 , i.e., the Kalman rank condition
(see for instance [12, Th. 1.16])

Span{(n2Id2 +K22)jK21v1; v1 ∈ Cd1 , j ∈ {0, . . . , d2 − 1}} = Cd2 ,

that can equivalently be written in the form (101).

5.2. The Kalman condition is sufficient. — In this section, we explain how to com-
plete the proof of Theorem 2 to prove that the Kalman rank condition (101) implies
the null-controllability of (100) in time T > T ∗, in Theorem 34.

First, we treat the case d1 = 1, then we generalize to the case d1 > 1. From now
and until end of this subsection, C will denote positive constants which will vary from
line to line. For 1 6 i 6 2 and 1 6 j 6 di, we denote by vji the j-th component of a
vector vi ∈ Cdi .

5.2.1. The case of one hyperbolic component: d1 = 1. — By using Hamilton-Cayley’s
theorem, we know that there exist c0, . . . , cd2−1 ∈ R such that

(102) Kd2
22 = c0Id2 + c1K22 + · · ·+ cd2−1K

d2−1
22 .

By using the Kalman condition (101), the matrix P defined as follows

(103) P := (K21,K22K21, . . . ,K
d2−1
22 K21),
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is invertible. We set

(104) K̂22 :=



0 . . . . . . 0 c0

1 0 . . .
... c1

0
. . . . . .

... c2
...

. . . . . . 0
...

0 . . . 0 1 cd2−1


and K̂21 :=


1

0
...
0

.

From (102), (103), (104), we check that we have the following relations

K22P = PK̂22 and K21 = PK̂21, i.e., K̂22 = P−1K22P and K̂21 = P−1K21.

The function w = (w1, w2) = (f1, P
−1f2) solves

(105)


(∂t +A′∂x +K11)w1 + (A12P∂x +K12P )w2 = u11ω in (0, T )× T,(
∂t − ∂2

x + K̂22

)
w2 + K̂21w1 = 0 in (0, T )× T,

(w1, w2)(0, ·) = (w01, w02) in T.

The system (105) is a “cascade system”. Indeed, roughly speaking the control u1

directly controls the component w1, the component w1 indirectly controls the com-
ponent w1

2 in the second equation through the coupling term w1, the component w1
2

indirectly controls the component w2
2 in the third equation through the coupling

term w1
2, . . . the component wd2−1

2 indirectly controls the component wd22 in the last
equation through the coupling term wd2−1

2 .
The adjoint system of (105) is

(106)


(
∂t −A′tr∂x +Ktr

11

)
g1 + K̂21

trg2 = 0 in (0, T )× T,(
∂t − ∂2

x + K̂22
tr
)
g2 +

(
−(A12P )tr∂x + (K12P )tr

)
g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

From Corollary 32, we know that for every g0 ∈ L2(T)d, the solution g of (106)
satisfies

(107) ‖g(T, ·)‖L2(T) 6 C
(
‖g1‖L2(qT ) + ‖g2‖H−2d2+1(qT )

)
.

By using the fact that K̂22 is a companion matrix, see (104), for every i ∈ {2, . . . , d2},
the i-th equation of (106) is

∂tg
i−1
2 − ∂2

xg
i−1
2 + gi2 + bi−1∂xg1 + ai−1g1 = 0, with (ai−1, bi−1) ∈ R2

Then we deduce

(108) ‖gi2‖H−2i+1(qT ) 6 C
(
‖gi−1

2 ‖H−2(i−1)+1(qT ) + ‖g1‖L2(qT )

)
.

Here, we have used in particular that

‖(∂t − ∂2
x)gi−1

2 ‖H−2i+1(qT ) 6 C‖gi−1
2 ‖H−2(i−1)+1(qT )

and
‖bi−1∂xg1 + ai−1g1‖H−2i+1(qT ) 6 C‖g1‖L2(qT ).
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We deduce from (107) and (108) that

(109) ‖g(T, ·)‖L2(T) 6 C
(
‖g1‖L2(qT ) + ‖g1

2‖H−1(qT )

)
.

By using the fact that K̂21 is the first vector of the canonical basis of Rd2 , see (104),
the first equation of (106) is

∂tg1 −A′∂xg1 +K11g1 + g1
2 = 0.

We obtain

(110) ‖g1
2‖H−1(qT ) 6 C‖g1‖L2(qT ).

So, we deduce from (109) and (110) the observability inequality

‖g(T, ·)‖2L2(T)d 6 C
∫ T

0

∫
ω

|g1(t, x)|2 dxdt,

in the case d1 = 1. This concludes the proof of Theorem 34 in the case d1 = 1 by
duality.

5.2.2. The case of several hyperbolic components: d1 > 1. — In this section, we deal
with the general problem of null-controllability of (100). To this end, we introduce
Ki

21 ∈ Rd2 the i-th column of the matrix K21 (1 6 i 6 d1), i.e.,

K21 =
(
K1

21|K2
21| . . . |K

d1
21

)
,

From the Kalman rank condition (101), we construct an adapted basis of Cd2 .

Lemma 35. — There exist r ∈ {1, . . . , d2} and sequences (`j)16j6r ⊂ {1, 2, . . . , d1}
and (sj)16j6r ⊂ {1, 2, . . . , d2} with

∑r
j=1 sj = d2, such that

B =
r⋃
j=1

{
K
`j
21,K22K

`j
21, . . . ,K

sj−1
22 K

`j
21

}
is a basis of Cd2 . Moreover, for every j, with 1 6 j 6 r, there exist αik,sj ∈ R
(1 6 i 6 j, 1 6 k 6 sj) such that

(111) K
sj
22K

`j
21 =

j∑
i=1

(
αi1,sjK

`i
21 + αi2,sjK22K

`i
21 + · · ·+ αisi,sjK

si−1
22 K`i

21

)
.

For a proof of this lemma, see [3, Lem. 3.1]. Let B the basis of Cd2 provided by
Lemma 35 and P be the matrix whose columns are the elements of B, i.e.,

P :=
(
K`1

21|K22K
`1
21| . . . |K

s1−1
22 K`1

21| . . . |K
`r
21| . . . |K

sr−1
22 K`r

21

)
.

Let us observe that the basis B has been constructed in such a way that (111) is
satisfied.
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Let the matrices Cii ∈ Rsi×si and Cij ∈ Rsi×sj , 1 6 i < j 6 r, be defined by

(112) Cii =


0 0 0 . . . αi1,si
1 0 0 . . . αi2,si
0 1 0 . . . αi3,si
...

...
. . . . . .

...
0 0 . . . 1 αisi,si

 and Cij =


0 . . . 0 αi1,sj
...

. . .
... αi2,sj

0 . . . 0 αisi,sj

.

We set

(113) K̂22 :=


C11 C12 . . . C1r

0 C22 . . . C2r

...
...

. . .
...

0 0 . . . Crr

 and K̂21 := P−1K21.

From (111), (113) and (112), by denoting Pi :=
(
K`i

21|K22K
`i
21| . . . |K

si−1
22 K`i

21

)
, we

obtain

K22 Pi =
(
K22K

`i
21|K2

22K
`i
21| . . . |K

si
22K

`i
21

)
=
(
K22K

`i
21

∣∣K2
22K

`i
21

∣∣ . . . ∣∣∑i
k=1

(
αk1,siK

`k
21 + αk2,siK22K

`k
21 + · · ·+ αksk,siK

sk−1
22 K`k

21

))
=
(
0
∣∣ . . . ∣∣0∣∣∑i−1

k=1

(
αk1,siK

`k
21 + αk2,siK22K

`k
21 + · · ·+ αksk,siK

sk−1
22 K`k

21

))
+
(
K22K

`i
21

∣∣K2
22K

`i
21

∣∣ . . . ∣∣(αi1,siK`i
21 + αi2,siK22K

`i
21 + · · ·+ αisi,siK

si−1
22 K`i

21

))
= P1C1i + P2C2i + · · ·+ PiCii.

Therefore,

(114) K22P = PK̂22 and PeSi = K`i
21, 1 6 i 6 r,

where eSi is the Si-element of the canonical basis of Cd2 with Si = 1+
∑i−1
j=1 sj . In the

following, we will also use the notation Sr+1 := d2 + 1.
We argue as in the previous subsection. We perform the same change of variable

w = (w1, w2) = (f1, P
−1f2), we consider the solution g of the adjoint system

(115)


(∂t −A′tr∂x +Ktr

11)g1 + K̂21
trg2 = 0 in (0, T )× T,(

∂t − ∂2
x + K̂22

tr
)
g2 + (−(A12P )tr∂x + (K12P )tr)g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

We recall from Corollary 32 that the solution g of (115) satisfies

(116) ‖g(T, ·)‖L2(T) 6 C
(
‖g1‖L2(qT ) + ‖g2‖H−2m+1(qT )

)
, with m = max

16i6r
si.

We use the coupling terms in the system (115) in order to get rid of the term
‖g2‖2H−2m+1(qT ) in the right-hand side of the inequality (116).

From the cascade form of the matrix K̂22, see (113), more precisely from the cascade
form of the block matrix Cii and the form of the matrices C1,i, . . . , Ci−1,i, see (112),
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the equations of the adjoint system (115) are

(117) ∀ i ∈ {1, . . . , r}, ∀ j ∈ {Si, . . . , Si+1 − 2}

∂tg
j
2 − ∂2

xg
j
2 + gj+1

2 +

d1∑
k=1

bki,j∂xg
k
1 + aki,jg

k
1 = 0, (aki,j , b

k
i,j) ∈ R2.

We deduce successively from (117) with

j = Si+1 − 2, Si+1 − 3, . . . , Si+1 − 2− (si − 2) = Si,

the following estimates∥∥gSi+1−1
2

∥∥
H−2si+1(qT )

6 C
(∥∥gSi+1−2

2

∥∥
H−2(si−1)+1(qT )

+ ‖g1‖L2(qT )

)
6 C

(∥∥gSi+1−3
2

∥∥
H−2(si−2)+1(qT )

+ ‖g1‖L2(qT )

)
6 . . .

6 C
(∥∥gSi+1−2−(si−2)

2

∥∥
H−1(qT )

+ ‖g1‖L2(qT )

)
.

So, we have for every i ∈ {1, . . . , r} and j ∈ {Si + 1, . . . , Si+1 − 1},

(118)
∥∥gj2∥∥H−2m+1(qT )

6 C
(∥∥gSi2

∥∥
H−1(qT )

+ ‖g1‖L2(qT )

)
.

Then, by using (113) and (114), we have K̂21

`i
= P−1K`i

21 = eSi . Consequently, the
`i-th equation of the adjoint system (115) is

∂tg
`i
1 +

d1∑
k=1

a`i,k∂xg
k
1 + b`i,kg

k
1 + gSi2 = 0, (a`i,k, b`i,k) ∈ R2.

Then, we obtain

(119)
∥∥gSi2

∥∥
H−1(qT )

6 C‖g1‖L2(qT ).

By gathering (118) and (119), we obtain

(120) ∀ i ∈ {1, . . . , r}, ∀ j ∈ {Si, . . . , Si+1 − 1},
∥∥gj2∥∥H−2m+1(qT )

6 C‖g1‖L2(qT ).

By using that {S1, . . . , S2 − 1, S2, . . . , S3 − 1, . . . , Sr, . . . , Sr+1 − 1} = {1, . . . , d2}, we
finally deduce from (120) and (116) the observability inequality

‖g(T, ·)‖2L2(T)d 6 C
∫ T

0

∫
ω

|g1(t, x)|2 dx dt.

This concludes the proof of Theorem 34 in the case d1 > 1 by duality. �

6. Hyperbolic control: coupling of order one

The goal of this section is to prove Theorem 3. The requirement of the Kalman rank
condition (6) for null-controllability is an adaptation of the proof given in Section 5.1.
Now, we explain how to complete the proof of Theorem 2 to prove that the Kalman
condition is sufficient for null-controllability. We set

(121) F2 := L2(T)d1 × L2
m(T)d2 =

{
f0 = (f01, f02) ∈ L2(T)d ;

∫
T
f02(x) dx = 0

}
.
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We only give the proof in the case d1 = 1. The case d1 > 1 is an easy adaptation
of the case d1 = 1 and the arguments already presented for coupling terms of order
zero in Section 5.2.2.

6.1. A special observability inequality. — The goal of this section is to prove the
following observability inequality.

Proposition 36. — There exists C > 0 such that for every g0 ∈ F2, the solution of
the adjoint system (31) satisfies

(122) ‖g(T, ·)‖2L2(T) 6 C
(
‖g1‖2L2(qT ) + ‖∂d2x g2‖2H−2d2+1(qT )

)
.

In order to prove Proposition 36, by a duality argument, it is sufficient to establish
the following null-controllability result.

Proposition 37. — For every f0 ∈ F2, there exists u ∈ L2(qT )d1 × (H2d2−1
0 (qT ))d2

such that S(T, f0, (uh, ∂
d2
x up)) = 0.

Proof of the equivalence between Propositions 36 and 37. — We apply Lemma 14 with

Φ2 : f0 ∈ F2 7−→ f(T, ·) ∈ F2,

where f is the solution to the system (Sys) with initial data f0 and control u = 0,
and

Φ3 : u = (u1, u2) ∈ L2(qT )d1 ×H2d2−1
0 (qT )d2 7−→ f(T, ·) ∈ F2,

where f is the solution to the system (Sys) with initial data f0 = 0 and control
(u1, ∂

d2
x u2). Note that by integrating the second equation of the system (1), we see that

a control of the form (u1, ∂
d2
x u2) cannot change the mean of the parabolic component.

This justifies that Φ2 and Φ3 do indeed take values in F2.
The null-controllability result of Proposition 37 is equivalent to the existence of

C > 0 such that for every gT ∈ L2(T)d,

(123) ‖Φ∗2(gT )‖F2 6 C‖Φ∗3(gT )‖
L2(qT )d1×H2d2−1

0 (qT )d2
.

We have Φ∗2(gT ) = (e−TL )∗gT = e−TL ∗gT . We claim that the right-hand side of
the inequality (123) satisfies

(124) ‖Φ∗3(gT )‖
L2(qT )d1×H2d2−1

0 (qT )d2
= ‖(g1, (−1)d2∂d2x g2)‖L2(qT )d1×H−2d2+1(qT )d2 ,

where g = e−(T−t)L ∗gT . This will prove that the inequality (123) is exactly the
observability inequality (122).

We write Φ3 as
Φ3 = FT ◦ (I, ∂d2x ) ◦ (I, ι2d2−1),

where FT : L2(qT )d → L2(T)d is the input-output operator introduced in the proof
of Corollary 32, ∂d2x is seen as an unbounded operator on L2(T)d2 with domain
Hd2(T)d2 , and ι2d2−1 : H2d2−1(qT )d2 → L2(qT )d2 is the inclusion map (see Lemma 33).
Note that while Φ3 written this way looks like an unbounded operator (because ∂d2x is),
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we have Im(ι2d2−1) ⊂ D(∂d2x ), so that the composition of operators above is indeed a
continuous operator. So, we have

Φ∗3 = (I, ι∗2d2−1) ◦ (I, (∂d2x )∗) ◦F ∗T = (I, ι∗2d2−1) ◦ (I, (−1)d2∂d2x ) ◦F ∗T .

Since ι∗2d2−1 is an isometry between H2d2−1
0 and H−2d2+1 (see Lemma 33), this proves

the relation (124). �

First, we show that the null-controllability result of Proposition 37 is true at the
high-frequency level, i.e., we prove the following adaptation of Proposition 20.

Proposition 38. — There exist a closed subspace G � of L2(T)d with finite codimen-
sion and a continuous operator

U � : G � −→ L2((0, T ′)× ω)d1 × C∞c ((T ′, T )× ω)d2

f0 7−→ (uh, up),

that associates with each f0 ∈ G � a pair of controls U �f0 = (uh, up) such that

(125) ∀ f0 ∈ G �, ΠS(T ; f0, (uh, ∂
d2
x up)) = 0.

In order to prove Proposition 38, it is enough to prove Proposition 22 with parabolic
control of the form ∂d2x up. Thus, by using Section 4.4.1, it is sufficient to show the
following adaptation of Proposition 25.

Proposition 39. — If n0 is large enough, then for every T > 0, there exists a contin-
uous operator

U p,�
T : F p −→ C∞c ((0, T )× ω)d2

f0 7−→ up,

that associates with each f0 ∈ F p a control U p,�
T f0 = up such that

ΠpS(T ; f0, (0, ∂
d2
x up)) = 0.

Proof. — Let f0 ∈ F p and f�

0 be such that ∂d2x f�

0 = f0. Note that f�

0 is well-
defined because

∫
T f0(x)dx = 0. We know from Proposition 25 that there exists

up ∈ C∞c ((0, T ) × ω)d2 such that the solution f� of (Sys) with initial data f�

0 and
control (0, up) satisfies

Πpf�(T, ·) = 0.

Then, by setting f := ∂d2x f
� and by applying ∂d2x to the system (Sys) satisfied by f�,

we deduce that f is the solution of (Sys) with initial data f0 and control (0, ∂d2x up)

and satisfies
Πpf(T, ·) = 0,

because ∂d2x and Πp commute.
We get the conclusion of the proof of Proposition 39 with the continuous operator

U p,�
T (f0) = U p

T (f�

0 ) where U p
T is the operator defined in Proposition 25. �
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Secondly, we have to show that the null-controllability result of Proposition 37 is
true at the low frequency-level, as we have already shown for Theorem 2 in Section 4.5.
All the steps of Section 4.5 remain unchanged except Step 6. Indeed, the unique
continuation argument transforms into: if f(t, ·) = etMf0 with (f1, ∂

d2
x f2) = (0, 0)

in (0, ε) × ω then (f01, ∂
d2
x f02) = (0, 0) thanks to the spectral inequality of Lebeau-

Robbiano (90), that is to say, f0 = 0 because
∫
T f02(x) dx = 0.

This concludes the proof of Proposition 37, thus the proof of Proposition 36. �

6.2. The case of one hyperbolic component: d1 = 1. — Let us now give the proof of
Theorem 3.

By Hamilton-Cayley’s theorem, there exist c0, . . . , cd2−1 ∈ R such that

Ad222 = c0Id2 + c1A22 + · · ·+ cd2−1A
d2−1
22 .

By using the Kalman condition (6), the matrix P defined as follows

P := (A21, A22A21, . . . , A
d2−1
22 A21),

is invertible. By setting

(126) Â22 :=



0 . . . . . . 0 c0

1 0 . . .
... c1

0
. . . . . .

... c2
...

. . . . . . 0
...

0 . . . 0 1 cd2−1


and Â21 :=


1

0
...
0

,

we check that we have the following relations

A22P = PÂ22 and A21 = PÂ21, i.e., Â22 = P−1A22P and Â21 = P−1A21.

Then, by setting w = (w1, w2) = (f1, P
−1f2), we have

(127)


(∂t +A′∂x +K11)w1 + (A12P∂x +K12P )w2 = u11ω in (0, T )× T,(
∂t − ∂2

x + Â22∂x

)
w2 + Â21∂xw1 = 0 in (0, T )× T,

(w1, w2)(0, ·) = (w01, w02) in T.

The system (127) is a “cascade system” with coupling terms of order one in the spatial
variable.

The adjoint system of (127) is

(128)


(
∂t −A′tr∂x +K11

tr
)
g1 − Â21

tr∂xg2 = 0 in (0, T )× T,(
∂t − ∂2

x − Â22
tr∂x

)
g2 +

(
−(A12P )tr∂x + (K12P )tr

)
g1 = 0 in (0, T )× T,

(g1, g2)(0, ·) = (g01, g02) in T.

We know from Proposition 36 that the solution g of (128) satisfies

(129) ‖g(T, ·)‖L2(T) 6 C
(
‖g1‖L2(qT ) + ‖∂d2x g2‖H−2d2+1(qT )

)
.
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By using the fact that Â22 is a companion matrix, see (104), for every i ∈ {2, . . . , d2},
the i-th equation of (128) is

(130) ∂tg
i−1
2 − ∂2

xg
i−1
2 + ∂xg

i
2 + bi−1∂xg1 + ai−1g1 = 0, (ai−1, bi−1) ∈ R2.

By applying ∂i−1
x to (130) with i ∈ {2, . . . , d2}, we get that there exists C > 0 such

that

‖∂ixgi2‖H−2i+1(qT )

6 C
(
‖(∂t − ∂2

x)∂i−1
x gi−1

2 ‖H−2i+1(qT ) + ‖(bi−1∂
i
x + ai−1∂

i−1
x )g1‖H−2i+1(qT )

)
,

therefore we have

‖∂ixgi2‖H−2i+1(qT ) 6 C
(
‖∂i−1
x gi−1

2 ‖H−2(i−1)+1(qT ) + ‖g1‖L2(qT )

)
.(131)

We deduce from (129) and (131) that

‖g(T, ·)‖L2(T) 6 C
(
‖g1‖L2(qT ) + ‖∂d2x g2‖H−2d2+1(qT )

)
6 C

(
‖g1‖L2(qT ) +

d2∑
i=1

‖∂ixgi2‖H−2i+1(qT )

)
6 C

(
‖g1‖L2(qT ) + ‖∂xg1

2‖H−1(qT )

)
.

(132)

By using the fact that Â21 is the first vector of the canonical basis of Rd2 , see (126),
the first equation of (128) is

∂tg1 −A′∂xg1 +K11g1 + ∂xg
1
2 = 0.

We obtain

(133) ‖∂xg1
2‖H−1(qT ) 6 C‖g1‖L2(qT ).

So, we deduce from (132) and (133) the observability inequality

‖g(T, ·)‖L2(T) 6 C‖g1‖L2(qT ),

which concludes the proof of Theorem 3 in the case d1 = 1. �

7. Parabolic control

The goal of this section is to prove Theorem 4 and to illustrate the necessity of a
regularity assumption on the initial condition.

7.1. A regularity assumption is necessary. — We consider for λ ∈ R∗ the system

(134)
{
∂tf̃1 + λ∂xf̃1 + ∂xf̃2 = 0, in (0, T )× T,
∂tf̃2 − ∂2

xf̃2 + λ∂xf̃2 = v(t, x), in (0, T )× T,

i.e., ω = T, d = 2, m = 1,

A =

(
λ 1

0 λ

)
, A′ = (λ), B =

(
0 0

0 1

)
, M =

(
0

1

)
,
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that satisfies (H.3), (H.4) and the Kalman condition (12) because A12 = 1. By The-
orem 4, any initial condition f0 = (f01, f02) ∈ H2

m ×H2(T) is null-controllable. The
following statement illustrates that

– a regularity assumption on f01 is necessary for the null-controllability,
– that given by Theorem 4 is sufficient but may not be necessary.

Proposition 40. — An initial condition f0 = (f01, f02) ∈ L2
m(T) × L2(T) is null-

controllable with v ∈ L2((0, T )× T) if and only if f01 ∈ H1(T).

Remark 41. — Similar problems of regularity between initial data and control have
already been noticed in the context of transport systems, see [1, Rem. 5].

Proof. — In the proof, we use the notation QT = (0, T )× Ω. The change of variable

f̃j(t, x) = fj(t, x− λt), v(t, x) = u(t, x− λt)

leads to

(135)
{
∂tf1 − ∂xf2 = 0, in (0, T )× T,
∂tf2 − ∂2

xf2 = u(t, x), in (0, T )× T.

The null-controllability of (f̃1, f̃2) with control v ∈ L2(QT ) is equivalent to the null-
controllability of (f1, f2) with control u ∈ L2(QT ). On Fourier components, Equation
(135) gives the ordinary differential equations

(136)


d

dt
f̂1(t, n) = inf̂2(t, n),

d

dt
f̂2(t, n) = −n2f̂2(t, n) + û(t, n).

Let f0 = (f01, f02) ∈ L2
m(T)× L2(T). The solution writes

f̂2(t, n) = f̂02(n)e−n
2t +

∫ t

0

e−n
2(t−τ)û(τ, n) dτ,

f̂1(t, n) = f̂10(n) + in

∫ t

0

f̂2(τ, n) dτ

= f̂01(n) + i/n(1− e−n
2T )f̂02(n) + in

∫ t

0

û(τ, n)
1− e−n

2(t−τ)

n2
dτ.

thus the relation f(T ) = 0 is equivalent to the moment problem∫ T

0

e−n
2(T−τ)û(τ, n) dτ = −f̂02(n)e−n

2T , ∀n ∈ Z,∫ T

0

û(τ, n) dτ = inf̂01(n)− f̂02(n), ∀n ∈ Z r {0}.
(137)

Note that the assumption
∫
T f01 = 0 implies

∫
T f1(t) = 0 for every t > 0 thus the

null-controllability of this component does not require any condition on the control u.
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Necessary condition. — We assume f0 = (f01, f02) null-controllable with a control
u ∈ L2(QT ) and we prove that f01 ∈ H1(T). By the Bessel-Parseval equality and
Cauchy-Schwarz inequality,

‖u‖2L2(QT ) =
∑
n∈Z

∫ T

0

|û(t, n)|2 dt >
∑
n∈Z

1

T

∣∣∣∣∫ T

0

û(t, n) dt

∣∣∣∣2
>
∑
n∈Z

1

T

∣∣inf̂01(n)− f̂02(n)
∣∣2 =

1

T
‖∂xf01 − f02‖2L2(T)

thus f01 ∈ H1(T).

Sufficient condition. — We assume f0 = (f01, f02) ∈ H1
m × L2(T) and we construct a

control u ∈ L2((0, T )× T) that steers this initial condition to 0.
Let Gn be the Gramian matrix, in L2(0, T ), of the family (w1,n, w2,n) where

w1,n : τ 7→ ne−n
2(T−τ) and w2,n : τ 7→ 1, i.e., (Gn)i,j =

∫ T
0
wi,n(τ)wj,n(τ) dτ for

every 1 6 i, j 6 2. Then Gn is invertible for every n ∈ Z r {0} (because it is the
Gramian matrix of a linearly independent family) and, when |n| → ∞,

Gn ∼
(

1/2 1/n

1/n T

)
thus there exists C > 0 such that, for every n ∈ Z r {0}, ‖G−1

n ‖ 6 C. We take

u(τ, x) = − 1

T
f̂02(0) +

∑
n∈Zr{0}

(αnw1,n(τ) + βnw2,n(τ))einx

where

(138)
(
αn
βn

)
:= G−1

n

(
−nf̂02(n)e−n

2T

inf̂01(n)− f̂02(n)

)
.

By Bessel-Parseval equality, we have for various positive constants C depending on T ,

‖u‖2L2(QT ) =
1

T
|f̂02(0)|2 +

∫ T

0

∑
n∈Zr{0}

|αnw1,n(t) + βnw2,n(t)|2dt

6
1

T
|f̂02(0)|2 + C

∑
n∈Zr{0}

(
|αn|2 + |βn|2

)
6

1

T
|f̂02(0)|2 + C

∑
n∈Zr{0}

(
|nf̂02(n)e−n

2T |2 + |inf̂01(n)− f̂02(n)|2
)

6 C
(
‖f01‖2H1(T) + ‖f02‖2L2(T)

)
<∞.

J.É.P. — M., 2020, tome 7



794 K. Beauchard, A. Koenig & K. Le Balc’h

Thus u ∈ L2(QT ). Note that the moment problem (137) can equivalently be written∫ T

0

û(τ, 0) dτ = −f̂02(0) ,∫ T

0

w1,n(τ)û(τ, n) dτ = −nf̂02(n)e−n
2T , ∀n ∈ Z r {0},∫ T

0

w2,n(τ)û(τ, n) dτ = inf̂01(n)− f̂02(n), ∀n ∈ Z r {0}.

(139)

Therefore, by (138), u solves (137). �

7.2. Proof of Theorem 4. — The Kalman rank condition (12) is a necessary condi-
tion for null-controllability of (10) by the same arguments as in Section 5.1. Thus we
only explain how to complete the proof of Theorem 2 to prove that it is a sufficient
condition for null-controllability of (10). We introduce the space

(140) F1 := Hd1+1
m (T)d1 ×Hd1+1(T)d2 ,

equipped with the scalar product of Hd1+1(T)d and the space

(141) F̃1 := L2
m(T)d1 × L2(T)d2 ,

equipped with the scalar product of L2(T)d.
The null-controllability of the system (10) in F1 with control of the form (0, u2) ∈

{0}d1 × L2(qT )d2 is equivalent to the following observability inequality: for every
T > T ∗, there exists C > 0 such that, for every g0 ∈ F̃1, the solution of the adjoint
system (31) satisfies

(142) ‖g(T, ·)‖2H−(d1+1)(T)d 6 C
∫ T

0

∫
ω

|g2(t, x)|2 dxdt.

where g2(t, x) ∈ Cd2 is made of the last d2 components of g(t, x).

Proof of the equivalence between the null-controllability in F1 and the observability in-
equality (142)

We apply the duality lemma 14 with

Φ2 : f0 ∈ F1 7−→ e−TL f0 ∈ F̃1,

Φ3 : u2 ∈ L2(qT )d2 7−→ S(T ; 0, (0, u2)) ∈ F̃1.

Note that the mean value of the d1 first components is indeed zero. The null-
controllability result in F1 is equivalent to the inclusion Im(Φ2) ⊂ Im(Φ3), thus to
the existence of a constant C > 0 such that for every gT ∈ F̃1

(143) ‖Φ∗2(gT )‖Hd1+1(T)d 6 C‖Φ∗3(gT )‖L2(qT )d2 .

We compute the adjoint operators of Φ2 and Φ3 thanks to the duality relation between
the solution f of (Sys) and the solution ϕ(·) = g(T − ·) of the adjoint system (31):

(144) 〈f(T ), ϕ(T )〉L2(T)d = 〈f(0), ϕ(0)〉L2(T)d +

∫ T

0

∫
ω

〈u2(t, x), ϕ2(t, x)〉dtdx.
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First, Φ∗3(gT ) is the restriction of the d2-last components of e(t−T )L ∗gT to [0, T ]× ω.
Then, by (144) and Lemma 33 (working as in the proof of Corollary 32), the left-hand
side of (143) is

‖Φ∗2(gT )‖Hd1+1(T)d = ‖e−TL ∗gT ‖H−(d1+1)(T)d .

Thus the inequality (143) is indeed the observability inequality (142). �

By using the strategy developed in Section 6, we claim that, in the case d2 = 1,
it is sufficient to prove the following result in order to prove the observability inequal-
ity (142).

Proposition 42. — For every T > T ∗, there exists C > 0 such that for every g0 ∈ F̃1,
the solution g of the adjoint system (31) satisfies

(145) ‖g(T, ·)‖2H−(d1+1)(T)d 6 C
(
‖∂d1x g1‖2H−(d1+1)(qT ) + ‖g2‖2L2(qT )

)
.

The observability inequality (145) has to be compared to the observability inequal-
ity (122) in Section 6. Roughly speaking, the term ‖∂d1x g1‖H−(d1+1)(qT ) comes from
the fact that we will perform (d1 − 1) steps of elimination, each of them “costs” one
derivative (instead of two in Section 6.2) because we will use transport equations
which are of order one in time and space (instead of parabolic equations which are
of order two in space variable). The last step of elimination “costs” two derivatives
because we will use a heat equation which is of order one in time and two in space.
This explains the number (d1−1)+2 = d1 +1 derivatives. By adapting the arguments
of Section 5.2.2, we can also treat the case d2 > 1.

In order to prove Proposition 42, by duality (a simple adaptation of the proof
that Proposition 36 and Proposition 37 are equivalent), it is sufficient to establish the
following null-controllability result.

Proposition 43. — For every f0 ∈ F1, there exists

u = (uh, up) ∈ (H2d1+1
0 (qT ))d1 × L2(qT )d2

such that S(T, f0, (∂
d1
x uh, up)) = 0.

The proof of this result is an adaptation of the proof of Theorem 2:
– we prove that parabolic high frequencies are null-controllable,
– we prove that hyperbolic high frequencies are null-controllable,
– we combine these two propositions to prove that high frequencies are null-

controllable,
– we finally deal with low frequencies.
For the first point, we just need a special case of the corresponding result that was

used in the proof of Theorem 2, i.e., Proposition 22.

Proposition 44. — If n0 is large enough, there exists a continuous operator

U p,] : F1 ×H2d1+1
0 ((0, T ′)× ω)d1 −→ C∞c ((T ′, T )× ω)d2

(f0, uh) 7−→ up,
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that associates with any (f0, uh) ∈ F1 × H2d1+1
0 ((0, T ′) × ω)d1 a control up =

U p,](f0, uh) such that
ΠpS(T ; f0, (∂

d1
x uh, up)) = 0.

Proof. — Proposition 44 is a consequence of Proposition 22 because

F1 ×H2d1+1
0 ((T ′, T )× ω)d2

is continuously embedded in L2(T)d×L2((T ′, T )×ω)d2 and ∂d1x uh ∈ L2((0, T ′)×ω)d1

for every uh ∈ H2d1+1
0 ((0, T ′)× ω)d1 . �

For the second point, we will prove the following adaptation of Proposition 21.

Proposition 45. — If n0 is large enough, there exists a continuous operator

U h,] : F1 ×H2d1+1
0 ((T ′, T )× ω)d2 −→ H2d1+1

0 ((0, T ′)× ω)d1

(f0, up) 7−→ uh,

that associates with any (f0, up) ∈ F1 × H2d1+1
0 ((T ′, T ) × ω)d2 a control uh =

U h,](f0, up) such that

(146) ΠhS(T ; f0, (∂
d1
x uh, up)) = 0.

While the ideas of the proof are the same as for Proposition 21, the proof of this
Proposition is technically more delicate, as we have to build regular controls, and,
on the observability side, deal with the (slightly impractical) Hs

0 and H−s norms.
We postpone the proof to the next subsection. For now, let us assume Proposition 45
holds true, and finish the proof of Theorem 4.

We now combine Propositions 44 and 45 with the Fredholm alternative, as in the
proof of Proposition 20, to prove that high frequencies are null-controllable. That is
to say, we get the following adaptation of Proposition 20.

Proposition 46. — There exist a closed subspace G ] of F1 with finite codimension
and a continuous operator

U ] : G ] −→ H2d1+1
0 (qT )d1 ×H2d1+1

0 (qT )d2

f0 7−→ (uh, up),

that associates with each f0 ∈ G ] a pair of controls U ]f0 = (uh, up) such that

(147) ∀ f0 ∈ G ], ΠS(T ; f0, (∂
d1
x uh, up)) = 0.

The last step consists in showing that the null-controllability result of Proposi-
tion 43 is true at the low frequency-level, as we have already shown for Theorem 2
in Section 4.5. All the steps of Section 4.5 remain unchanged except Step 6. In-
deed, the unique continuation argument transforms into: if f(t, ·) = etMf0 with
(∂d1x f1, f2) = (0, 0) in (0, ε) × ω then (∂d1x f01, f02) = (0, 0) thanks to the spectral
inequality of Lebeau-Robbiano (90), that is to say, f0 = 0 because

∫
T f01(x) dx = 0.

This concludes the proof of Proposition 43 thus the proof of Proposition 42. �

J.É.P. — M., 2020, tome 7



Null-controllability of linear parabolic-transport systems 797

7.3. Proof of Proposition 45. — The proof of Proposition 45 is an adaptation of
that of Proposition 21, with the following changes:

– we deal with the fact that we want a control of the form (∂d1x uh, 0),
– we adapt the duality argument to take into account the regularity of the controls

that we want (it involves some H−s norms),
– we adapt all the inequalities to replace the relevant L2 norms by H−s norms,
– to build regular controls of the simple transport equation ∂tf + µ∂xf = 0, we

use [1].

Step 1: reduction to an exact controllability problem. — We claim that in order to prove
Proposition 45, we only have to prove the following exact controllability result.

Proposition 47. — If n0 is large enough, then for every T ′ > T ∗, there exists a
continuous operator

U h,]
T ′ : F h ∩H2d1+1(T)d −→ H2d1+1

0 (qT ′)
d1

fT ′ 7−→ uh,

that associates with any fT ′ ∈ F h ∩H2d1+1(T)d, a control U h,]
T ′ (fT ′) = uh such that

ΠhS(T ′; 0, (uh, 0)) = fT ′ .

Indeed, by the choice of support in time of the controls, and by the reversibility of
e−tL

h (see Section 4.3.1 for the details), the relation (146) is equivalent to

Πh(S(T ′; 0, (∂d1x uh, 0))) = −e(T−T ′)L h

ΠhS(T ; f0, (0, up)).

Note that functions in F h have zero mean (see the definition (42) of F h). Thus, ∂d1x
is invertible on F h, and its inverse ∂−d1x is, on the Fourier side, the multiplication
by (in)−d1 . Moreover, the operator ∂x commute with Πh and the semi-group e−tL .
So the relation (146) is equivalent to

(148) Πh(S(T ′; 0, (uh, 0))) = −∂−d1x e(T−T ′)L h

ΠhS(T ; f0, (0, up)) =: K(f0, up).

So, if Proposition 47 holds, we may choose (assuming it makes sense)

uh := U h,]
T ′ (K(f0, up)).

Thus, to end this first step, we just have to check that the right-hand side K(f0, up)

of (148) is indeed in F h ∩H2d1+1(T)d.
The projection Πh has range F h, and etL

h sends F h to itself, as do ∂−d1x . So
K(f0, up) belongs to F h.

The group etL
h sends every Hs(T)d into itself (see Remark 13). Since Πh is just

the multiplication on the Fourier side by P h(i/n), the operator Πh also sends every
Hs(T)d into itself. Thus, we just have to check that S(T, f0, (0, up)) = e−TL f0 +

S(T, 0, (0, up)) ∈ Hd1+1(T)d because ∂−d1x sends Hd1+1(T)d into H2d1+1(T)d.
– The function f0 belongs to Hd1+1(T) by hypothesis, so e−TL f0 also belongs to

Hd1+1(T) (see Remark 13).
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– The parabolic control up belongs to H2d1+1
0 ((T ′, T ) × ω)d2 by hypothesis, thus

for almost every t ∈ (0, T ), (0, up)(t, ·) belongs to H2d1+1(T) and thus

S(T ; 0, (0, up)) =

∫ T

0

e−(T−t)L (0, up)(t) dt ∈ H2d1+1(T)d.

This concludes this first step.

Step 2: Observability inequality associated to the controllability problem of Proposi-
tion 47. — Let

Φ2 := Πh ◦ ι2d1+1 : H2d1+1(T)d −→ L2(T)d

be the restriction of Πh to H2d1+1(T)d and

Φ3 := Πh ◦FT ′ ◦ (ι2d1+1, 0) : H2d1+1
0 (qT ′)

d1 −→ L2(T)d,

where (ι2d1+1, 0) stands for the map uh ∈ H2d1+1
0 (qT ′)

d1 7→ (uh, 0) ∈ L2(qT ′)
d. Note

that Φ2 and Φ3 are continuous.
The controllability problem of Proposition 47 is equivalent to the inclusion

Im(Φ2) ⊂ Im(Φ3). Therefore, according to the duality lemma 14, it is equivalent
to the following inequality: there exists C > 0 such that for every g0 ∈ L2(T)d,
‖Φ∗2g0‖H2d1+1(T)d 6 C‖Φ∗3g0‖H2d1+1

0 (qT ′ )
d . Since Πh∗ is a projection on F̃ h, since

F ∗T ′g0 is the restriction of the first d1 components of e−(T ′−t)L ∗g0 to qT ′ , and
since ι∗s is an isometry between Hs

0 and H−s,(10) this inequality reads: there ex-
ists C > 0 such that for every g0 ∈ F̃ h, the solution g = e−tL

∗
g0 of the adjoint

system (31) satisfies

(149) ‖g0‖H−2d1−1(T)d 6 C‖g1‖H−2d1−1(qT ′ )
d1 ,

where g1 are the first d1 components of g.
Let g0 ∈ F̃ h. For the remaining of this proof, we use the notation of Section 4.3.2,

and in particular we introduce the decompositions (61) and (62). In the following
arguments, the constants C do not depend on g0.

Step 3. — We prove the observability inequality (149) assuming that, for every µ ∈
Sp(A′), there exists C > 0 such that the solution G[µ of (70) satisfies

(150) ‖Gµ(0, ·)‖H−(2d1+1)(T) = ‖G[µ(0, ·)‖H−(2d1+1)(T) 6 C‖G[µ‖H−(2d1+1)(qT ).

We will prove (150) in Step 4.
We proceed as in the proof given in Section 4.3.2. By the explicit expression (66)

of Sµ and Bessel-Parseval identity, there exists C = C(T ′) independent of g0 such
that

(151) ‖Sµ‖L∞((0,T ′),H−(2d1+1)(T)d) 6 C‖g(0, ·)‖H−(2d1+2)(T)d .

(10)See Lemma 33, and also recall that because T has no boundary Hs
0(T) = Hs(T).
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Using the Duhamel formula, we obtain that the function G̃µ defined by (68) satisfies

(152) ‖G̃µ −G[µ‖L∞((0,T ′),H−(2d1+1)(T)d)

6 C‖etR
h
µ(0)∗Sµ‖L1((0,T ′),H−(2d1+1)(T)d) 6 C‖g0‖H−(2d1+2)(T)d .

By (150), the triangular inequality, (68) and (152), we deduce that

(153)
‖Gµ(0, ·)‖H−(2d1+1)(T)d 6 C

(
‖G̃µ‖H−(2d1+1)(qT ′ )

d + ‖G̃µ −G[µ‖H−(2d1+1)(qT ′ )
d

)
6 C

(
‖Gµ‖H−(2d1+1)(qT ′ )

d + ‖g0‖H−(2d1+2)(T)d
)
.

Using Bessel-Parseval identity and the decomposition (73), we obtain

(154) ‖Gµ − P h
µ (0)∗g‖L∞((0,T ′),H−(2d1+1)(T)d) 6 C‖g0‖H−(2d1+2)(T)d .

We deduce from (153), the triangular inequality and (154)) that

‖Gµ(0, ·)‖H−(2d1+1)(T)d 6 C
(
‖P h

µ (0)∗g‖H−(2d1+1)(qT ′ )
d + ‖g0‖H−(2d1+2)(T)d

)
.

Taking into account that P h
µ (0)∗ = P h

µ (0)∗P h(0)∗, we get(11)

‖P h
µ (0)∗g‖H−(2d1+1)(qT ′ )

d 6 |P h
µ (0)∗|‖P h(0)∗g‖H−(2d1+1)(qT ′ )

d 6 C‖g1‖H−(2d1+1)(qT ′ )
d1 .

Using (62), the triangular inequality and the previous two estimates, we obtain

‖g0‖H−(2d1+1)(T)d 6
∑

µ∈Sp(A′)

‖Gµ(0, ·)‖H−(2d1+1)(T)d

6 C
(
‖g1‖H−(2d1+1)(qT ′ )

d1 + ‖g0‖H−(2d1+2)(T)d
)
.

(155)

Proceeding as in the end of the proof given in Section 4.3.2, the inequality (155),
together with a compactness-uniqueness argument, end Step 2.

Step 4: We prove that the solutionG[µ of (70) satisfies (150). — By duality, it is actually
enough to prove the following exact-controllability result.

Proposition 48. — Let ω = (a, b) and T ′ > (2π − (b− a))/|µ|. For every (f0, fT ′) ∈
(H2d+1(T)d)2, there exists u ∈ H2d1+1

0 (qT )d such that the solution f of

(156)
{
∂tf + µ∂xf = u1ω in QT ′ ,
f(0, ·) = f0 in T,

satisfies f(T ′, ·) = fT ′ .

To prove Proposition 48, we will use the following lemma, which is an easy adap-
tation of [1, Lem. 2.6].

(11)Remark that if K is a matrix and f ∈ (H−s)d, then ‖Kf‖H−s 6 |K|‖f‖H−s . Indeed,
denoting by 〈·, ·〉 the duality between Hs

0 and H−s, we have for every g ∈ Hs
0 , 〈Kf, g〉 = 〈f,K∗g〉 6

‖f‖H−s‖K∗g0‖Hs0 6 ‖f‖H−s |K
∗|‖g0‖Hs0 , and taking the supremum over ‖g‖Hs0 = 1, we do have

‖Kf‖H−s 6 |K∗|‖f‖H−s .
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Lemma 49. — Let ω = (a, b) and T ′ > (2π − (b− a))/|µ|. Then, there exist δ > 0

small enough and a cut-off function η ∈ C∞([0, T ′]× [0, 2π]) with

(157) η = 0 in [0, T ′]× [0, 2π] r ((δ, T ′ − δ)× (a+ δ, b− δ)),

such that, for every x ∈ [0, 2π],

(158) Qx :=

∫ T ′

0

η(s, x+ µs)ds 6= 0.

Remark 50. — We assumed that the function η is extended by 2π-periodicity in the
spatial variable.

Now, we give the proof of Proposition 48 thanks to Lemma 49.

Proof of Proposition 48. — We take the control

(159) u(t, x) = η(t, x)Q−1
x−µt(fT ′(x+ µ(T ′ − t))− f0(x− µt)).

We easily check that the control u belongs to Hk
0 (qT ) by using the support of η (157),

and the regularity of the three functions η, fT ′ and f0. Let f be the solution of (156)
with initial data f0 and control u defined in (159). We just have to check that f
satisfies f(T ′, ·) = fT ′ . We write the solution along the characteristic, that is to say

d

dt
f(t, x+ µt) = u(t, x+ t) = η(t, x+ µt)Q−1

x (fT ′(x+ µT ′)− f0(x)).

By integrating in time between 0 and T ′ and by using the definition of Qx (158),
we obtain

f(T ′, ·+ µT ′)− f(0, ·) = fT ′(·+ µT ′)− f0(·),
then f(T ′, ·) = fT ′ which concludes the proof of Proposition 48. �

This ends the proof of Proposition 47. �

Appendix. Pure transport solutions are not enough to disprove
the observability inequality

Proposition 51. — Let us assume that the d× d2 matrix

(B|AB| . . . |Ad−1B)

has rank = d, or, equivalently, that there is no eigenvector of A∗ in the kernel of B∗
(see for instance [7, Lem. 1]). Let µ ∈ R and T > 0. There exists C = C(µ, T ) > 0(12)

such that every solution of the adjoint system (31) of the form g(t, x) = g0(x − µt)
satisfies ‖g(T, ·)‖L2(T)d 6 C‖g‖L2([0,T ]×ω)d .

This statement shows that, for a dense set of matrices (A,B), pure transport
solutions of the adjoint system (31) cannot be used to disprove the observability
inequality (32), and thus the null-controllability of (Sys).

(12)With the help of Proposition 7, we could even prove that C(µ, T ) can be chosen independently
of µ.
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Proof. — Let us note Solµ the set of solutions of the adjoint system (31) of the form
g0(x−µt). Remark that according to the expression (33) of the solutions of the adjoint
system, the relation g0 ∈ Solµ is equivalent to

(160) ∀n 6= 0, nE(i/n)
∗
ĝ0(n) = iµĝ0(n).

We claim that Solµ is finite dimensional. Indeed, if it is infinite dimensional, then,
according to the relation (160), there is infinitely many n such that iµ is an eigenvalue
of nE(i/n). Let (Xnk)k>0 be an associated sequence of eigenvectors, chosen such
that |Xnk | = 1. Since the unit sphere of Cd is compact, we may assume that (Xnk)

converges to some X with |X| = 1. Then we have

nkB
∗Xnk − iA∗Xnk +

1

nk
K∗Xnk = nkE(i/nk)

∗
Xnk = iµXnk −−−−−→

k→+∞
iµX.

And since −iA∗Xnk + (nk)−1K∗Xnk −−−−−→
k→+∞

−iA∗X, we must have B∗X = 0 and
A∗X = −µX. But this is in contradiction with the hypothesis of the proposition.
Therefore, Solµ is finite dimensional.

So, according to the description (160) of Solµ, there exists N > 0 such that every
solution of the adjoint system (31) of the form g0(x − µt) has no frequencies higher
than N : Solµ ⊂ Span{en, |n| < N}. But finite linear combination of exponentials
have the unique continuation property.(13) So the expressions ‖g0(· − µT )‖L2(T)d and
‖g0(x− µt)‖L2([0,T ]×ω)d both define a norm on Solµ. Since Solµ is finite dimensional,
these two norms are equivalent. This proves the claimed inequality. �
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