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A NEW INEQUALITY ABOUT MATRIX PRODUCTS AND

A BERGER-WANG FORMULA

by Eduardo Oregón-Reyes

Abstract. —We prove an inequality relating the norm of a product of matrices An · · ·A1 with
the spectral radii of subproducts Aj · · ·Ai with 1 6 i 6 j 6 n. Among the consequences of this
inequality, we obtain the classical Berger-Wang formula as an immediate corollary, and give an
easier proof of a characterization of the upper Lyapunov exponent due to I.Morris. As main
ingredient for the proof of this result, we prove that for a large enough n, the product An · · ·A1

is zero under the hypothesis that Aj · · ·Ai are nilpotent for all i, j such that 1 6 i 6 j 6 n.

Résumé (Une nouvelle inégalité sur les produits de matrices et une formule de Berger-Wang)
Nous montrons une inégalité reliant la norme d’un produit An · · ·A1 de matrices aux rayons

spectraux des sous-produits Aj · · ·Ai avec 1 6 i 6 j 6 n. Comme conséquences de cette
inégalité, nous obtenons la formule classique de Berger-Wang comme corollaire immédiat, et
nous donnons une preuve plus simple de la caractérisation, due à I.Morris, de l’exposant de
Liapounov supérieur. Nous montrons, comme ingrédient principal de la preuve de ce résultat,
que pour n assez grand, le produit An · · ·A1 est nul si les Aj · · ·Ai sont nilpotents pour tout
i, j tel que 1 6 i 6 j 6 n.
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186 E. Oregón-Reyes

1. Introduction

Let k be a field, and let Md(k) be the algebra of d × d matrices with coefficients
in k. If k = R or C, let ‖.‖ be any norm on kd, with the corresponding operator norm
on Md(k) also denoted by ‖.‖. The spectral radius of a matrix A will be denoted
by ρ(A). Given a bounded set M ⊂Md(k), the joint spectral radius of M is defined
by the formula

(1) R(M ) = lim
n→∞

(sup {‖A1 · · ·An‖ : Ai ∈M })1/n.

By a submultiplicative argument, this quantity is well defined and finite, and the limit
in the right hand side of (1) can be replaced by the infimum over n.

The joint spectral radius was introduced by Rota and Strang [26], and for a set
M ⊂Md(k), represents the maximal exponential growth rate of the partial sequence
of products (A1 · · ·An)n of a sequence of matrices A1, A2, . . . with Ai ∈M . For this
reason, this quantity has appeared in several mathematical contexts, making it an
important object of study (see e.g. [13, 14, 22, 29]). In particular, the question of
whether the joint spectral radius may be approximated by periodic sequences plays
an important role. The Berger-Wang formula gives a positive answer to this question
in the case of bounded sets of matrices [2]:

Theorem 1.1 (Berger-Wang formula). — If M ⊂Md(C) is bounded, then

(2) R(M ) = lim sup
n→∞

(sup {ρ(A1 · · ·An) : Ai ∈M })1/n.

This result has been generalized by Morris, to the context of linear cocycles (in-
cluding infinite dimensional ones) [21], by using multiplicative ergodic theory. In the
finite dimensional case, the problem of finding a formula similar to (2), when there
is a Markov-type constraint on the allowed products was presented by Kozyakin [16].
Although the result of Morris already applies to this kind of constraints, the nov-
elty in Kozyakin’s proof is that his arguments are purely linear algebraic, and are
consequences of Theorem 1.1.

Another tool to obtain results related to joint spectral radius was found by Bochi
in [4]. In that work, he proved some inequalities that may be seen as lower bounds
for joint spectral radii of sets of matrices in terms of the norms of such matrices.
Following that method, the purpose of this article is to present an inequality relating
the norm of the product of matrices with the spectral radii of subproducts. We will
give an upper bound for the norm of the product of matrices AN · · ·A1 in terms of the
spectral radii of its subproducts AβAβ−1 · · ·Aα+1Aα. This inequality will allow us to
obtain relations similar to (2). It holds in an arbitrary local field where the notions of
absolute value, norm, and spectral radius are well defined (see Section 4 for a detailed
explanation). Our main result is the following:

Theorem 1.2. — Let d ∈ N, k be a local field, and ‖.‖ be a submultiplicative norm on
Md(k). There exist constants N = N(d) 6

∏d
i=1

(
d
i

)
, r = r(d,N) 6 (Nd + 1)Nd

2+2,
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A new inequality about matrix products and a Berger-Wang formula 187

and C = C(d, ‖.‖) > 1 such that for all n > N and A1, . . . , An ∈Md(k):

(3) ‖An · · ·A1‖ 6 C
( ∏

16i6n

‖Ai‖
)

max
16α6β6n

( ρ(Aβ · · ·Aα)∏
α6i6β ‖Ai‖

)1/r
,

where the right hand side is treated as zero if one of the Ai is the zero matrix.

So for large enough n, if the norm of the product An · · ·A1 is comparable to (that
is, not much smaller than) the product of the norms, then there exists a subproduct
Aβ · · ·Aα whose spectral radius is comparable to (that is, not much smaller than)∏
α6i6β ‖Ai‖.
Note that inequality (3) is homogeneous in each variable Ai. We will later show

that the upper bound N(d) 6
∏d
i=1

(
d
i

)
is not sharp, because N(3) 6 5 (see Proposi-

tion 2.4). In addition, when k = C, the constant C in (3) may be chosen independent
of the norm ‖.‖ and found explicitly, provided that ‖.‖ is an operator norm (see
Proposition 4.2 and Remark 4.5).

The approach of using inequalities to prove results similar to (2) was first used by
Elsner [9] in his proof of the Berger-Wang formula (with an inequality of a different
nature from Bochi’s work). Inequalities like (3) also have been applied by I.Morris to
study matrix pressure functions [23] and by the author in the context of isometries
in Gromov hyperbolic spaces [24]. The novelty of the inequality presented here is
that it respects the order in which the matrices are multiplied. While previous works
considered a sum or a maximum over all possible subproducts of length N with
respect to a given alphabet of matrices, in Theorem 1.2 we consider just one product
of length N together with its subproducts, hence our inequality does not follow from
previously known Bochi-type results. In addition, our error in the upper bound in
terms of spectral radii is multiplicative (the constant C) and not additive as in the
case of Elsner’s work. These distinctions allow inequality (3) to be used in cases
where only some specific kinds of products are allowed (see Theorem 1.4 below), as
well to relate asymptotic quantities (like the joint spectral radius) to non-asymptotic
expressions, in a uniformly controlled way (see Theorem 4.4).

The proof of this inequality is based on the non trivial case of equality, where the
right hand side of (3) is zero but the matrices Ai are non-zero. This occurs when
ρ(Aj · · ·Ai) = 0 for all 1 6 i 6 j 6 N , that is, when Aj · · ·Ai are all nilpotent.
Denote by N d(k) the set of nilpotent elements of Md(k). Then define, for n > 1,
the set N n

d (k) of n-tuples (A1, . . . , An) ∈ Md(k)
n such that Aj · · ·Ai ∈ N d(k) for

all 1 6 i 6 j 6 n. The particular case of (3) that we highlighted can be restated as
follows:

Theorem 1.3. — For all d > 1 there exists an integer N = N(d) > 1 such that, for
every field k, if (A1, . . . , AN ) ∈ N N

d (k), then the product AN · · ·A1 is zero.

The proof of Theorem 1.3 is purely linear algebraic, exploiting the properties of
the n-exterior power functor. This result may be compared with Levitzki’s Theorem
[25, Th. 2.1.7], that asserts that for an algebraically closed field k, every semigroup
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188 E. Oregón-Reyes

S ⊂ Md(k) of nilpotent matrices is simultaneously triangularizable. That is, there is
some B ∈ GLd(k) such that BAB−1 is upper triangular with zero diagonal for every
A ∈ S (compare also with the Burnside-Schur Theorem for semigroups of matrices
[20]). In particular, if A1, . . . , Ad ∈ S, then the product A1 · · ·Ad is zero. As we show
in Section 2.1, the optimal N(d) in Theorem 1.3 is in general larger than d, therefore
the result presented here does not follow from Levitzki’s Theorem nor Burnside-Schur
Theorem, and we don’t expect to obtain any information about the semigroup gener-
ated by A1, . . . , AN . In general, the matrices satisfying the hypothesis of Theorem 1.3
admit no normal form as simple as in Levitzki’s Theorem.

Applications to Ergodic theory. — Let (X,F , µ) be a probability space, and let T :

X → X be a measure preserving map. By a linear cocycle over X, we mean a mea-
surable map A : X → Md(k) together with the family of maps An defined by the
formula

An(x) = A(Tn−1x) · · ·A(Tx)A(x), for n > 1, x ∈ X.
These maps satisfy the multiplicative cocycle relation Am+n(x) = Am(Tnx)An(x) for
all m,n > 1, x ∈ X.

We usually denote a linear cocycle by A = (X,T,A), and say that A is integrable
if max(log ‖A‖, 0) is integrable. In this case, Kingman’s theorem implies that, for
µ-almost all x ∈ X, the limit λ(x) = limn→∞

log ‖An(x)‖
n ∈ [−∞,∞) exists, and

moreover, λ is T -invariant. This function is the upper Lyapunov exponent of A, and
is one of the most important concepts in multiplicative ergodic theory.

As an application of our inequality, we reprove the following theorem due to
I.Morris (first tested numerically in [11] and proved by Avila-Bochi for SL2(R) in
[1, Th. 15]).

Theorem 1.4. — [21, Th. 1.6] Let T be a measure-preserving transformation of a prob-
ability space (X,F , µ) and let A : X →Md(k) be an integrable linear cocycle. If λ is
as before, then for µ-almost all x ∈ X we have

(4) lim sup
n→∞

log(ρ(An(x)))

n
= λ(x).

While Morris’s proof of this result relies on Oseledets Theorem, we will mainly use
Theorem 1.2 and a quantitative version of Poincaré’s Recurrence Theorem.

Organization of the paper. — In Section 2 we prove Theorem 1.3 and compute N(d)

for d = 2, 3. Then in Section 3, via Nullstellensatz we translate this theorem into
a polynomial identity, from which we deduce Theorem 1.2 in Section 4. We prove
Theorem 1.4 in Section 5, and discuss some geometric consequences and analogies of
this result in Section 6.

Acknowledgment. — I am very grateful to J. Bochi for very interesting and valuable
discussions throughout all this work. I also thank G.Urzúa for valuable discussions
about Nullstellensatz, and the referee for the detailed report and the suggestions and
corrections to the text.
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A new inequality about matrix products and a Berger-Wang formula 189

2. Proof of Theorem 1.3

We begin the proof of Theorem 1.3 with some useful results. For a given vector
space V (over an arbitrary field), let End(V ) be the algebra of linear endomorphisms
of V . The dimension of the image of a linear transformation T ∈ End(V ) will be
denoted as rank(T ). Also, let N n(V ) be the set of n-tuples (T1, . . . , Tn) ∈ End(V )n

such that Tj · · ·Ti is nilpotent for all 1 6 i 6 j 6 n. With our previous notation, we
have N n(kd) = N n

d (k).

Proposition 2.1. — Let n > 1 and (T1, . . . , Tn) ∈ N n(V ) be such that rank(Tj) 6 1

for all 1 6 j 6 n− 1. If v ∈ V and Tn · · ·T1v 6= 0, then v, T1v, T2T1v, . . . , Tn · · ·T1v
are all distinct and form a linearly independent set.

Proof. — We will use induction on n. The case n = 1 comes from the nilpotence of T1.
So, assume that the result holds for tuples in N n−1(V ) and let (T1, . . . , Tn) ∈ N n(V )

and v ∈ V be as in the hypothesis. Take a linear combination of v, T1v, . . . , Tn · · ·T1
of the form
(5) λ0v + λ1T1v + · · ·+ λn−1Tn−1 · · ·T1v + λnTn · · ·T1v = 0,

and suppose that this linear combination is non trivial. As (T1, . . . , Tn−1) ∈ N n−1(V )

also satisfies the hypothesis with respect to v, by our inductive assumption we have
λn 6= 0. Now, apply Tn · · ·T1 in (5). The rank condition over the maps Tj and the
fact that (T1, . . . , Tn) ∈ N n(V ) imply that (Tj · · ·T1)2 = 0, for all 1 6 j 6 n. Hence,
the left hand side of (5) becomes λ0Tn · · ·T1v, forcing λ0 = 0. But in that case, equa-
tion (5) would be a non trivial linear combination of {w, T2w, T3T2w, . . . , Tn · · ·T2w},
with w = T1v. This is impossible by our inductive assumption, since (T2, . . . , Tn) ∈
N n−1(V ) satisfies the hypothesis of the proposition with respect to w. We conclude
that all linear combinations of v, T1v, T2T1v, . . . , Tn · · ·T1v of the form (5) are trivial,
and hence this set is linearly independent with exactly n+ 1 elements. �

Corollary 2.2. — If (T1, . . . , Td) ∈ N d(V ) and rank(Tj) 6 1 for all 1 6 j 6 d− 1,
then Td · · ·T1 = 0.

Proof. — Assume the contrary and let v ∈ V be such that Td · · ·T1v 6= 0. Then by
Proposition 2.1, the set {v, T1v, T2T1v, . . . , Td · · ·T1v} would be a linearly independent
set of cardinality greater than dimV . A contradiction. �

For the next steps in our proof we need some fact about exterior powers. Recall
that if V is a vector space of dimension d, the r-fold exterior power Λr V is the vector
space of alternating r-linear forms on the dual space V ∗ (see e.g. [18, XIX.1]). Given
a basis {v1, . . . , vd} of V , the set {vi1 ∧ · · · ∧ vir : 1 6 i1 < · · · < ir 6 d} is a basis of
Λr V . Hence dimΛr V =

(
d
r

)
.

The exterior power also induces a map Λr : End(V ) → End(Λr V ) given by the
linear extension of (Λr T )(w1 ∧ · · · ∧wr) = (Tw1 ∧ · · · ∧ Twr). This map is functorial:
The relation Λr(ST ) = Λr(S)Λr(T ) holds for all S, T ∈ End(V ). This functor also
induces a map Λr : N (V )→ N (Λr V ) that extends to N n(V )→ N n(Λr V ) for all
n > 1.

J.É.P. — M., 2020, tome 7



190 E. Oregón-Reyes

Another important fact is that, when T ∈ N (V ) and rank(T ) = r > 0, then
rank(Λr T ) = 1. This is because the image of Λr T is generated by any r-form asso-
ciated to the r-dimensional subspace T (V ). This remark is crucial in the end of our
proof.

Lemma 2.3. — Let 1 6 r 6 d and m =
(
d
r

)
. Given (T1, . . . , Tm) ∈ N m(V ), with

rank(Tj) 6 r for all 1 6 j 6 m− 1, we have rank(Tm · · ·T1) < r.

Proof. — If that is the case then we will have rank(TjTj−1 · · ·Ti) 6 r for all 1 6 i 6
j 6 m−1. Then the tuple (Λr T1, . . . ,Λ

r Tm) ∈ N m(Λr V ) will satisfy the hypothesis
of Corollary 2.2, and hence Λr(Tm · · ·T1) = 0, which implies that rank(Tm · · ·T1) < r.

�

Proof of Theorem 1.3. — Let 1 6 ` < d and r(`) =
(
d
1

)
· · ·
(
d
`

)
. We claim that for all

(T1, . . . , Tr(`)) ∈ N r(`)(V ) we have rank(Tr(`) · · ·T1) < d− `. If so, the result follows
with N = r(d− 1) =

(
d
1

)
· · ·
(
d
d−1
)
.

We will argue by induction. The case ` = 1 is Lemma 2.3 with r = d − 1.
Now, assume the result for some ` < d, and for 1 6 j 6

(
d
`+1

)
, define T̂j =

Tr(`)j · · ·Tr(`)(j−1)+1. Then (T̂1, . . . , T̂( d
`+1)

) ∈ N ( d
`+1)(V ), and by our inductive hy-

pothesis, we obtain rank(T̂j) 6 d − ` − 1. So, we are in the assumption of 2.3 with
r = d−`−1 and we conclude that rank(Tr(`+1) · · ·T1) = rank(T̂( d

`+1)
· · · T̂1) < d−`−1.

This proves the claim and concludes the proof of the theorem. �

2.1. Some computations in low dimension. — Let N(d) be the least value of N for
which Theorem 1.3 (and therefore also Theorem 1.2) holds true. From the proof of
Theorem 1.3, we can obtain the bound N(d) 6

(
d
1

)(
d
2

)
· · ·
(
d
d−1
)
for all d. Also, since

for all d we can construct a matrix A ∈ Nd(k) of rank d − 1, the tuple (A, . . . , A) ∈
N d−1(kd) satisfies Ad−1 6= 0 and hence we have the lower bound N(d) > d. In
particular, we conclude that N(2) = 2, and for higher dimensions we get the bounds
3 6 N(3) 6 9 and 4 6 N(4) 6 96. We end this section by finding a better bound for
N(3).

Proposition 2.4. — For any field k, we have N(3) 6 5. In addition, if char k 6= 2,
then N(3) = 5.

To prove this, we need a lemma:

Lemma 2.5. — Let (C,B,A) ∈ N 3(k3). If rankB = 1, then AB = λB or BC = λB

for some λ ∈ k.

Proof. — Assume that

B =

0 0 0

0 0 1

0 0 0

 , A =

a b c

d e f

g h i

 and C =

p q r

s t u

v w x

 .

J.É.P. — M., 2020, tome 7



A new inequality about matrix products and a Berger-Wang formula 191

Then

AB =

0 0 b

0 0 e

0 0 h

 and BC =

0 0 0

v w x

0 0 0

 .

The nilpotence of AB and BC implies h = TrAB = w = TrBC = 0. Then

ABC =

bv 0 bx

ev 0 ex

0 0 0

 ,

and by the nilpotence of ABC, bv = TrABC = 0. The case b = 0 is AB = eB and
the case v = 0 is BC = xB. �

Corollary 2.6. — If (C,B,A) ∈ N 3(k3) and rank(B) 6 1, then ABC = 0.

Proof. — Assume that rank(B) = 1, and AB,BC 6= 0. By Lemma 2.5 and after
rescaling A or C, we may suppose that BC = B or AB = B. In the first case we will
have (C2, B,A) ∈ N 3(k3), and by Corollary 2.2, ABC = A(BC)C = ABC2 = 0.
For the case AB = B, applying a similar argument to the tuple (At, Bt, Ct) of the
transposes of A,B,C, we will obtain (ABC)t = CtBt(At)2 = 0, and hence ABC = 0.

�

Proof of Proposition 2.4. — Let (E,D,C,B,A) ∈ N 5(k3). Then (E,BCD,A) be-
longs to N 3(k3), and by Lemma 2.3 with d = 3, r = 2, rank(BCD) 6 1. Then,
by Corollary 2.6, ABCDE = 0 and N(3) 6 5. Moreover, when char k 6= 2, it is a
straightforward computation to show that (D,C,B,A) ∈ N 4(k3), with

A=

−2 −6 1

3 9 16

−1 −3 −7

 , B=

0 1 0

0 0 1

0 0 0

 , C=

 1 1 0

1 1 4

−1 −1 −2

 , D=

−1 3 16

1 −3 −16

1 2 4


and

ABCD =

 4 8 16

−6 −12 −24

2 4 8

 6= 0. �

Remark 2.7. — This last proposition shows that, in general we cannot expect
N(d) = d. For that reason, the hypothesis of Theorem 1.3 does not imply any kind of
simultaneous triangularization or nilpotency of the semigroup generated by sequences
in N n(kd). In fact, it is not hard to prove that the matrices in the last example we
gave in N 4(k3) are not simultaneously triangularizable, since A and B do not have
a common invariant subspace of dimension 1.

3. A polynomial identity

For the proof of Theorem 1.2 we need some notation. Let k be a field with algebraic
closure k. For d,N ∈ N, consider Nd2 variables xi,j with 1 6 i 6 N , 1 6 j 6 d2

and let Rd,N be the polynomial ring k[xi,j ]. If A1, . . . , AN ∈ Md(k) and f ∈ Rd,N ,

J.É.P. — M., 2020, tome 7



192 E. Oregón-Reyes

by f(A1, . . . , AN ) we mean the element f((ai,j)i,j) where (ai,j)j are the coefficients
of Ai in some fixed order.

Recall that a polynomial f ∈ k[y1, . . . , ym] is homogeneous of degree λ > 0 if
it is of the form

∑
i1+···+im=λ ci1...imy

i1
1 . . . yimm for some ci1...im ∈ k, i1, . . . , im > 0.

We say that a monomial f ∈ Rd,N is multihomogeneous of multidegree mdeg f =

(λ1, . . . , λN ) ∈ NN if it is of the form f((xi,j)i,j) = c
∏
i,j x

ui,j
i,j , where c ∈ k, ui,j > 0

and
∑
j ui,j = λi for all 1 6 i 6 N , and that a polynomial p ∈ Rd,N is multihomo-

geneous of multidegree mdeg p if it is a finite sum of multihomogeneous monomials
of multidegree mdeg p. This is equivalent to say that, for each 1 6 i 6 N , p is
homogeneous of degree λi in the variables xi,1 . . . xi,d2 . Note there is a direct sum
decomposition

(6) Rd,N =
⊕
λ∈NN

Rd,N,λ,

where Rd,N,λ denotes the vector space of multihomogeneous polynomials of multide-
gree λ.

For 1 6 j 6 d2 denote by fj the polynomial in Rd,N representing the map that
sends the N -tuple (A1, . . . , AN ) ∈ k

Nd2 to the j-th entry of AN · · ·A1. Also, for
1 6 ` 6 d and 1 6 α 6 β 6 N , let T `α,β ∈ Rd,N be the polynomial that represents the
map (A1, . . . , AN ) 7→ TrΛ`(Aβ · · ·Aα).

It is not hard to see that fj are multihomogeneous of multidegree (1, 1, . . . , 1, 1)

and that T `α,β are multihomogeneous of multidegree (0, . . . , 0, `, . . . , `, 0, . . . , 0), with
the `’s in positions α, α+ 1, . . . , β.

Our purpose is to prove the following:

Theorem 3.1. — If N=N(d) is given by Theorem 1.3, there is some r6(Nd+1)Nd
2+2

such that for all 1 6 j 6 d2 there exist multihomogeneous polynomials pα,βj,` ∈ Rd,N of
multidegree rmdeg fj −mdeg T `α,β ∈ NN such that

(7) (fj)
r =

∑
α,β,`

pα,βj,` T
`
α,β .

The natural tool to prove this result is Hilbert’s Nullstellensatz. If I ⊂ k[y1, . . . , ym]

is an ideal, let Z(I) be its zero locus in km. Also, for Z ⊂ km, let I(Z) ∈ k[y1, . . . , ym]

be the ideal of polynomials f that vanish on Z. The effective version of Nullstellen-
satz that we will use comes from applying Rabinowitsch’s proof of Nullstellensatz by
assuming weak Nullstellensatz (see e.g. [10, §1.7]) and an effective version of weak
Nullstellensatz [28]):

Theorem 3.2 (Effective Nullstellensatz). — If I =⊂ k[y1, . . . , ym] is an ideal, then
I(Z(I)) is equal to

√
I, the radical ideal of I. Moreover, if g ∈

√
I and I is generated

by polynomial f1, . . . , fs satisfying max(deg f1, . . . ,deg fs,deg g) = k, then there is
some r 6 (k + 1)m+2 and p1, . . . , ps ∈ k[y1, . . . , ym] such that

gr = p1f1 + p2f2 + · · ·+ psfs.

J.É.P. — M., 2020, tome 7



A new inequality about matrix products and a Berger-Wang formula 193

Proof of Theorem 3.1. — Let I ⊂ Rd,N be the ideal generated by the polynomials T `α,β
and letW = Z(I). Note that for a matrix A of order d×d, the non leading coefficients
of its characteristic polynomial are precisely (−1)` TrΛ`(A), with 1 6 ` 6 d. By this
observation, the setW is precisely the set of N -tuples (A1, . . . , AN ) ∈ N N

d (k). Hence,
by our choice of N , Theorem 1.3 guarantees us that fj(P ) = 0 for all P ∈ W . Then
Nullstellensatz applies and fj ∈ I(Z(W )) =

√
I.

Since max(deg fj ,deg T `α,β) = Nd, by Theorem 3.2 there is some r 6 (Nd+1)Nd
2+2

and polynomials pα,β,γj,` ∈ Rd,N satisfying (7) for all j. Finally, by the direct sum
decomposition (6) and by comparing multidegrees, we may assume that pα,β,γj,` are
multihomogeneous of multidegree rmdeg fj −mdeg T `α,β,γ . �

4. Proof of Theorem 1.2

Theorem 3.1 is the fundamental relation that we will need to prove inequality (3).
For the next we will assume that k is a local field. That is, a field together with an
absolute value |.| : k → R+ that induces a non-discrete locally compact topology on k
via the induced metric. Examples of these include R,C with the standard absolute
values and fields of p-adic numbers Qp for a prime p. For more information about
local fields, see [19].

We will work on the finite dimensional vector space kd, where k is a local field
with absolute value |.|. In this situation, we consider the norm on Md(k) given by
‖A‖0 = max16j6d2 |aj |, where aj are the entries of A. Since the absolute value on k
extends in a unique way to an absolute value on k (see Lang’s Algebra [18, XII.2,
Prop. 2.5]), the spectral radius of a matrix A ∈ Md(k) is then defined in the usual
way. The height h(f) of a polynomial f ∈ k[y1, . . . , ym] is defined as the logarithm of
the maximum modulus of its coefficients.

We begin with a lemma.

Lemma 4.1. — If f ∈ Rd,N is a multihomogeneous polynomial of multidegree
(λ1, . . . , λN ) and height h(f) 6 H, then

|f(A1, . . . , AN )| 6 eH
N∏
i=1

(
d2 − 1 + λi

λi

)
‖A1‖λ1

0 · · · ‖AN‖
λN
0

for all A1, . . . , AN ∈Md(k).

Proof. — If f is a multihomogeneous monomial with h(f)6H, then f(X1, . . . , XN ) =

c
∏N
i=1

∏λi
j=1Xi,`i,j , for some 1 6 `i,j 6 d2 and c ∈ k with |c| 6 eH . So, given

A1, . . . , AN ∈Md(k),

|f(A1, . . . , AN )| = |c|
N∏
i=1

λi∏
j=1

|Ai,`i,j | 6 eH
N∏
i=1

‖Ai‖λi0 .

The lemma then follows by noting that a multihomogeneous polynomial of multidegree
(λ1, . . . , λN ) is sum of at most

∏N
i=1

(
d2−1+λi

λi

)
multihomogeneous monomials of the

same multidegree. �
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Proof of Theorem 1.2. — Let N = N(d) and r > 1 be given by Theorems 1.3 and 3.1
respectively, and consider first n = N and the norm ‖.‖0. Let A1, . . . , AN ∈ Md(k).
First, note that for 1 6 α 6 β 6 N and 1 6 ` 6 d, T `α,β(A1, . . . , AN ) is the
`-th symmetric polynomial evaluated at the eigenvalues of Aβ · · ·Aα. Hence we have
|T `α,β(A1, . . . , AN )| 6

(
d
`

)
ρ(Aβ · · ·Aα)`. Also, as the polynomials pα,βj,` in the statement

of Theorem 3.1 have multidegree (r, . . . , r, r− `, . . . , r− `, r, . . . , r), by Lemma 4.1 we
have

|pα,βj,` (A1, . . . , AN )| 6 eH
(
d2 − 1 + r

r

)N−β+α−1(
d2 − 1 + r − `

r − `

)β−α+1

×
( N∏
s=1

‖As‖0
)r( β∏

t=α

‖At‖0
)−`

for all j, α, β, `. Thus, from (7) we obtain the following:

‖AN · · ·A1‖r0 = max
j
|fj(A1, . . . , AN )|r

6 max
j

∑
α,β,`

|pα,βj,` (A1, . . . , AN )||T `α,β(A1, . . . , AN )|

6 C1

( N∏
i=1

‖Ai‖0
)r

max
α,β,`

(
ρ(Aβ · · ·Aα)∏β

t=α ‖At‖0

)`
,

for

C1 = eH
∑
α,β,`

(
d2 − 1 + r

r

)N−β+α−1(
d2 − 1 + r − `

r − `

)β−α+1(
d

`

)
.

Now, let

Λ = max
α,β

(ρ(Aβ · · ·Aα)∏β
t=α ‖At‖0

)
.

An easy computation shows that ‖AB‖0 6 d‖A‖0‖B‖0 for all A,B ∈ Md(k). More-
over, by the Gelfand’s formula ρ(A) = limn→∞ ‖An‖01/n we obtain ρ(A) 6 d‖A‖0
for all A ∈ Md(k). These facts together imply that Λ 6 dN+1, and hence
Λd 6 d(N+1)(d−1)Λ. Also, depending on whether Λ is greater than 1 or not, we
have Λ` 6 max(Λ,Λd) 6 d(N+1)(d−1)Λ for all 1 6 ` 6 d. Thus we conclude

‖AN · · ·A1‖r0 6 d(N+1)(d−1)C1

( N∏
i=1

‖Ai‖0
)r
· Λ.

Applying r-th root to the last inequality, we obtain (3) with

C = C(‖.‖0) := C1
1/rd(N+1)(d−1)/r.

Now, consider an arbitrary submultiplicative norm ‖.‖ on Md(k). Since in a fi-
nite dimensional vector space over a local field all norms are equivalent [18, XII.2,
Prop. 2.2], there is some D > 1 such that D−1‖A‖ 6 ‖A‖0 6 D‖A‖ for all A ∈Md(k).
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This implies
‖AN · · ·A1‖ 6 D‖AN · · ·A1‖0

6 DC

( ∏
16i6N

‖Ai‖0
)

max
16α6β6N

( ρ(Aβ · · ·Aα)∏
α6i6β ‖Ai‖0

)1/r
6 DN+1C

( ∏
16i6N

‖Ai‖
)

max
16α6β6N

( ρ(Aβ · · ·Aα)∏
α6i6β ‖Ai‖

)1/r
and proves the statement for n = N . For a general n > N the result follows by
applying (3) to the sequence A1, . . . , AN−1, ANAN+1 · · ·An, and then using the sub-
multiplicativity of ‖.‖. �

4.1. The case of the complex numbers. — When the base field is k = C we can say
a little more. Recall that for a norm ‖.‖ on Cd, the operator norm on Md(C) (also
denoted by ‖.‖) is defined by ‖A‖ = supv∈Cd\{0} ‖Av‖/‖v‖.

Proposition 4.2. — For d ∈ N and N(d) given by Theorem 1.2, there is a constant
C = C(d) > 1 such that if n > N , the inequality (3) holds for all operator norms ‖.‖
on Md(C) and A1, . . . , An ∈Md(C).

We will need the following lemma which is a consequence of John’s ellipsoid theorem
[27, Th. 10.12.2] (see also [4, Lem. 3.2]):

Lemma 4.3. — For all d ∈ N and for every two operator norms ‖.‖ and ‖.‖1 onMd(C)

there exists some S ∈ GLd(C) such that for every A ∈Md(C):

d−1‖A‖ 6 ‖SAS−1‖1 6 d‖A‖.

Proof of Proposition 4.2. — Since operator norms are submultiplicative, we may as-
sume that n = N . Fix the `1-operator norm ‖A‖1 = maxj

∑d
i=1 |aij | on Md(C),

where aij are the entries of A. Since ‖A‖1 6 ‖A‖0 6 d‖A‖1 for all A, by the proof of
Theorem 1.2 we have C(‖.‖1) = dN+1C(‖.‖0) with C(‖.‖0) as in the end of the proof
of Theorem 1.2. If ‖.‖ is an arbitrary operator norm on Md(C), let S ∈ GLd(C) be
relating ‖.‖ and ‖.‖1 as in Lemma 4.3.

Given A1, . . . , AN ∈Md(C) let Bi = SAiS
−1 for all i. We have

‖AN · · ·A1‖ 6 d‖BN · · ·B1‖1

6 dN+2C(‖.‖0)

( ∏
16i6N

‖Bi‖1
)

max
16α6β6N

( ρ(Bβ · · ·Bα)∏
α6i6β ‖Bi‖1

)1/r
6 d2N+2C(‖.‖0)

( ∏
16i6N

‖Ai‖
)

max
16α6β6N

(dβ−α+1ρ(Aβ · · ·Aα)∏
α6i6β ‖Ai‖

)1/r
6 d3N+2C(‖.‖0)

( ∏
16i6N

‖Ai‖
)

max
16α6β6N

( (ρ(Aβ · · ·Aα)∏
α6i6β ‖Ai‖

)1/r
.

It is clear that C(d) := d3N+2C(‖.‖0) does not depend on ‖.‖. �

Proposition 4.2 allows us to conclude the following inequality:
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Theorem 4.4. — Given d ∈ N, let C(d) be as in Proposition 4.2. Then the following
inequality is valid for all bounded sets M ⊂Md(C):

R(M ) 6 C(d) max
16j6N(d)

(sup {ρ(A1 · · ·Aj) : Ai ∈M })1/j .

This inequality was first proved by Bochi in [4] (without giving and effective bound
on N(d)), and it has Theorem 1.1 as an immediate consequence. In [5, Lem. 2.1],
Breuillard gave another proof of this inequality valid for arbitrary local fields: in the
Archimedean case the same conclusion of Theorem 4.4 holds with N(d) = d2, while
for a non Archimedean field k and for every bounded set M ⊂ Md(k) we have the
identity

inf
S∈GLd(k)

‖SMS−1‖0 = max
16j6d2

(sup {ρ(A1 · · ·Aj) : Ai ∈M })1/j .

Breuillard used this result to study semigroups of invertible matrices.

Proof of Theorem 4.4. — For 1 6 j 6 N(d), define ρj = sup {ρ(A1 · · ·Aj) : Ai ∈M }.
For an arbitrary operator norm ‖.‖ on Md(C), take supremum for Ai ∈ M in both
sides of (3). We obtain

R(M )N 6 sup
Ai∈M

‖AN · · ·A1‖

6 C(d) max
16j6N

(
sup
A∈M

‖A‖N−j/r · (ρj)1/r
)
.(8)

Now, recall that R(M ) = inf‖.‖ supA∈M ‖A‖, where the infimum is taken over all
operator norms onMd(C) (for a proof, see [26]), and let ‖.‖n be a sequence of operator
norms on Md(C) such that supA∈M ‖A‖n → R(M ). Taking a subsequence, we may
assume that for all ‖.‖n, the maximum in the right hand side of (8) is achieved by
the same index j ∈ {1, . . . , N}. Then, taking limit as n tends to infinity in (8) we will
have

(9) R(M )N 6 C(d)(ρj)
1/r ·R(M )N−j/r

(here is where we use Proposition 4.2 since C(d) does not depend on n). If R(M ) = 0

the conclusion is obvious. Otherwise, dividing by R(M )N−j/r and taking j/r-th root
in (9) we obtain the desired inequality. �

Remark 4.5. — In the proof of Theorem 1.2 the constant C(‖.‖0) depends on H, the
maximum on the heights of the polynomials pα,βj,` . In the case of the complex numbers
we can give an effective upper bound on H by means of the effective arithmetic
Nullstellensatz [17, Th. 1]. Applied to our case, we obtain r 6 4(Nd2 + 1)(dN)Nd

2+1

and

H6 log 2(Nd2+(N(d2+1))r)+r(Nd2+2)(log(d
(
N+1
2

)
+1)+(Nd2+8) log(Nd2+2)dN).
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Hence
C(d) = d3N+2C(‖.‖0)

= eH/rd3N+2+(N+1)(d−1)/r
(∑
α,β,`

(
d2−1+r

r

)N−β+α−1(
d2−1+r−`

r−`
)β−α+1(

d
`

))1/r

.

5. Ergodic-theoretical consequences

For the proof of Theorem 1.4, we will need the following result which may be seen
as a quantitative version of Poincaré’s Recurrence theorem for measure preserving
transformations. It is a consequence of Birkhoff Ergodic Theorem, and the fact that
for a measurable set U of positive measure, for almost all points x in U , the frequency
of points of the sequence x, Tx, T 2x, . . . that belong to U is positive (compare with
the subbaditive ergodic theorem of Karlsson-Gouëzel [12, Th. 1.1]). For a detailed
proof, see [3, Lem. 3.12].

Lemma 5.1. — Let T : X → X be a measure preserving map over the probability
space (X,F , µ), and let U ∈ F have positive measure. Given γ > 0, there exists a
measurable map N0 : U → N such that, for µ-a.e. x ∈ U and for every n > N0(x)

and t ∈ [0, 1] there is some ` ∈ {1, . . . , n} with T `(x) ∈ U and |(`/n)− t| < γ.

Proof of Theorem 1.4. — Fix an operator norm ‖.‖ on Md(k), and let

Y = {x ∈ X : λ(x) ∈ R}.

This is a measurable T -invariant set, and since ρ(A) 6 ‖A‖ for all A ∈Md(k), we have
that both sides of(4) equal −∞ for µ-almost all x ∈ X\Y . So we only have to check
the result µ-a.e. in Y .

Assume the contrary. That is, assume the existence of some ε > 0,K ∈ N and a
measurable set U ⊂ Y of positive measure such that, for all x ∈ U , if n > K, then
log ρ(An(x))/n+ ε 6 λ(x). By Egorov’s theorem, and restricting to a smaller subset
if necessary, we may assume that on U , log ‖An(x)‖/n converges uniformly to λ(x).

Let N, r and C be as in the statement of Theorem 1.2 and let ε′ = ε/(2 + 6Nr).
By the uniform convergence assumption, there is some M > 1 such that, n > M

implies

(10) | log ‖An(x)‖ − nλ(x)| < nε′ for all x ∈ U.

Take x ∈ U and N0(x) ∈ N such that Lemma 5.1 holds with γ = 1/3N , and let
n > max(3NM, 3NK, 3Nr logC/ε′, N0(x)). Let m0 = 0, and given 1 6 i 6 N let mi

be such that 1 6 mi 6 n and

(11)
∣∣∣∣mi

n
− i

N

∣∣∣∣ < 1

3N

and Tmix ∈ U . We have

mi−mi−1 > (in/N −n/3N)− ((i− 1)/N +n/3N) = n/3N > max(M,K, r logC/ε′)

for all 1 6 i 6 N .
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Now apply Theorem 1.2 to Ai = Ami−mi−1(Tmi−1x). By the cocycle relation, we
obtain AN · · ·A1 = AmN (x), and hence

(12) log ‖AmN (x)‖ 6 logC +

N∑
i=1

log ‖Ami−mi−1(Tmi−1x)‖

+
1

r

(
log ρ(Amβ−mα−1(Tmα−1x))−

β∑
i=α

log ‖Ami−mi−1(Tmi−1x)‖
)

for some 1 6 α 6 β 6 N . But, by definition, Tmix∈U for all i, and asmi −mi−1>M ,
(10) applies. Combining it with (12) we have

log ρ(Am()β −mα−1T
mα−1x) >

β∑
i=α

log ‖Ami−mi−1(Tmi−1x)‖

+ r

(
log ‖AmN (x)‖ −

N∑
i=1

log ‖Ami−mi−1(Tmi−1x)‖ − logC

)
> (mβ −mα−1)(λ(x)− ε′)− r(logC + 2ε′mN )

= (mβ −mα−1)λ(x)− (ε′((mβ −mα−1) + 2rmN )) + r logC).

On the other hand, by (11) we have
mN

mβ −mα−1
<

n

n(β − α+ 1)/N − 2n/3N
6 3N.

But, since Tmα−1x ∈ U , and (mβ −mα−1) > max(K, r logC/ε′) we conclude
ε′((mβ −mα−1) + 2r(mN )) + r logC

mβ −mα−1
= ε′ +

ε′2r(mN )

(mβ −mα−1)
+

r logC

(mβ −mα−1)

6 ε′ + ε′6Nr +
r logC

(mα −mα−1)

6 (2 + 6Nr)ε′ = ε.

This is the desired contradiction and the proof is complete. �

6. Geometric remarks

We can observe that the main ingredients of the proof of Theorem 1.4 are Theo-
rem 1.2 and Poincaré’s recurrence Theorem. Therefore, if we have another situation
where an analogue of inequality (3) holds, then we should obtain a result similar to
Theorem 1.4. This is the case of cocycles of isometries of Gromov hyperbolic spaces.
For definition and further properties of Gromov hyperbolicity see [6, 7, 8].

As it was proved in [24, Th. 1.2], ifM is a Gromov hyperbolic space with distance d,
then there is a constant C > 0 such that, for all o ∈ M and f, g isometries of M we
have

d(fgo, o) 6 C+max
(
d(fo, o)+d∞(g), d∞(f)+d(go, o),

d(fo, o) + d(go, o) + d∞(fg)

2

)
,

where d∞(h) = limn→∞ d(hno, o)/n is the stable length.

J.É.P. — M., 2020, tome 7



A new inequality about matrix products and a Berger-Wang formula 199

In this context, given a probability space (X,F , µ) and a measure preserving map
T : X → X, a cocycle of isometries of M is a measurable map A : X → Isom(M),
where Isom(M) is the group of isometries of M , endowed with the Borel σ−algebra
induced by the compact-open topology. We say that the cocycle A is integrable if the
map x 7→ d(A(x)o, o) is integrable for some (and hence all) o ∈M . In the same way as
for linear cocycles, we define the family of maps An : X → Isom(M). For references
about cocycles of isometries, see e.g. [12, 15].

Following the same steps of the proof of Theorem 1.4, we can obtain the following:

Proposition 6.1. — Let M be a Gromov hyperbolic space, o ∈ M , and let T be a
measure-preserving transformation of a probability space (X,F , µ). Also, let A : X →
Isom(M) be an integrable cocycle of isometries of M . Then for µ-almost all x ∈ X
and we have the following limits exist in R+

0 and are equal:

lim sup
n→∞

d∞(An(x))

n
= lim
n→∞

d(An(x)o, o)

n
.

A result similar to Proposition 6.1 is far from being true if we do not assume a
negative curvature condition on M .

Example 6.2. — Let X = S1 and µ be the Lebesgue measure on X. If T (z) = z2 is the
doubling map on X, which preserves µ, and Ra(p) = p+a is the translation by a 6= 0

on R2, define a cocycle A : S1 → Isom(R2) by A(z)p = T (z)Ra(z−1p) for all p ∈ R2.
Note that An(z)p = Tn(z)Rna (z−1p) and hence the limit limn→∞ d(An(z)p, p)/n exists
and equals |a| > 0 for all z ∈ S1 and p ∈ R2. On the other hand, if z is not a periodic
point for T , then An(z) is not a translation and hence has a fixed point. Thus we
have that d∞(An(z)) = 0 for all n ∈ N and all z in the set of non periodic point of T ,
which is a full measure set with respect to µ.
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