
Giovanni Forni & Adam Kanigowski
Multiple mixing and disjointness for time changes of bounded-type Heisenberg
nilflows
Tome 7 (2020), p. 63-91.

<http://jep.centre-mersenne.org/item/JEP_2020__7__63_0>

© Les auteurs, 2020.
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

L’accès aux articles de la revue « Journal de l’École polytechnique — Mathématiques »
(http://jep.centre-mersenne.org/), implique l’accord avec les conditions générales
d’utilisation (http://jep.centre-mersenne.org/legal/).

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

http://jep.centre-mersenne.org/item/JEP_2020__7__63_0
https://creativecommons.org/licenses/by/4.0/
http://jep.centre-mersenne.org/
http://jep.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 7, 2020, p. 63–91 DOI: 10.5802/jep.111

MULTIPLE MIXING AND DISJOINTNESS FOR

TIME CHANGES OF

BOUNDED-TYPE HEISENBERG NILFLOWS

by Giovanni Forni & Adam Kanigowski

Abstract. —We study time changes of bounded type Heisenberg nilflows (φt) acting on the
Heisenberg nilmanifold M . We show that for every positive τ ∈ W s(M), s > 7/2, every non-
trivial time change (φτt ) enjoys the Ratner property. As a consequence, every mixing time
change is mixing of all orders. Moreover, we show that for every τ ∈ W s(M), s > 9/2 and
every p, q ∈ N, p 6= q, (φτpt) and (φτqt) are disjoint. As a consequence, Sarnak conjecture on
Möbius disjointness holds for all such time changes.

Résumé (Mélange multiple et disjonction pour les reparamétrisations des flots nilpotents de type
borné)

Nous étudions les reparamétrisations (φτt ) des flots nilpotents de Heisenberg de type borné
sur une variété nilpotente de Heisenberg M . Nous montrons que, pour des fonctions positives
τ ∈ W s(M) (espace de Sobolev) avec s > 7/2, toute reparamétrisation non triviale (φτt ) a la
propriété de Ratner. En conséquence, toute reparamétrisation mélangeante est mélangeante de
tous les ordres. De plus, nous montrons que pour toutes les fonctions τ ∈W s(M), avec s > 9/2

et pour tous p, q ∈ N, p 6= q, les flots (φτpt) et (φτqt) sont disjoints. Il s’ensuit, en particulier, que
la conjecture de Sarnak sur la disjonction de la fonction de Möbius est valable pour toutes ces
reparamétrisations.
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64 G. Forni & A. Kanigowski

1. Introduction

In this paper we study ergodic properties of time changes of Heisenberg nilflows.
Nilsystems on (non-abelian) nilmanifolds are classical examples of systems which share
some features from both the elliptic and the parabolic world. They always have a non-
trivial Kronecker factor which is responsible for the elliptic behavior (in particular they
are never weakly mixing). On the other hand, orthogonally to the elliptic factor they
exhibit polynomial speed of divergence of nearby trajectories and are polynomially
mixing, which are properties characteristic of parabolic systems.

We are interested in the lowest dimensional (non-abelian) situation, i.e., nilflows on
3-dimensional Heisenberg nilmanifolds. In [3] it was shown that, for every (ergodic)
Heisenberg nilflow, there exists a dense set of smooth time changes which are mix-
ing. This result was strengthened in [13], where it was shown that for a full measure
set of Heisenberg nilflows a generic time change is mixing, and moreover one has a
“stretched-polynomial” decay of correlations for any pair of sufficiently smooth observ-
ables. For Heisenberg nilflows of bounded type the decay of correlations is estimated
in [13] to be polynomial, as expected according to the “parabolic paradigm” (see [18,
§8.2.f]). The mixing result of [3] was generalized in [27] to a class of nilflows on higher
step nilmanifolds, called quasi-Abelian, which includes suspension flows over toral
skew-shifts, and then recently to all non-Abelian nilflows in [4]. These general results
reach no conclusion about the speed of mixing.

For time changes of horocycle flows, polynomial decay of correlations, as well as the
property that the maximal spectral type is Lebesgue, were proved in [14]. A different
proof of the absolute continuity of the spectrum was given simultaneously and in-
dependently by R.Tiedra de Aldecoa [29] under the so-called Kushnirenko condition
(a positivity condition which holds for small time changes) and later in general [30].
More recently, B. Fayad and the authors [6] have proved that the spectrum is Lebesgue
of countable multiplicity, also for a class of Kochergin flows on the two-torus. Nothing
is known about the spectrum of smooth-time changes of nilflows beyond the mixing
results of [3] and [13]. In particular, even for Heisenberg nilflows of bounded type,
it is unclear whether the spectrum has an absolutely continuous component.

It follows from [3] and [13] that by a time change one can alter the dynamical
features of Heisenberg nilflows, i.e., the elliptic factor becomes trivial for the time-
changed flow and the mixing property holds (with polynomial decay of correlations for
bounded type nilflows). It is therefore natural to ask to what extent the time-changed
flow can behave, roughly speaking, as a “prototypical” parabolic flow (there is no
widely accepted formal definition of a parabolic system). One of the characteristic
features of parabolic systems is the Ratner property which quantifies the polynomial
speed of divergence of nearby trajectories. It was first established by M.Ratner in [25]
in the class of horocycle flows and was applied to prove Ratner’s rigidity phenomena
in this class. Moreover, in [26], M.Ratner showed that the Ratner property survives
under C1 smooth time changes of horocycle flows, hence similar rigidity phenomena
hold for time changes. One of the most important consequences of this property is
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Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows 65

that a mixing system with the Ratner property is mixing of all orders. Indeed, Ratner
showed that the Ratner property implies so-called PID property of the set of joinings
which in turn implies higher order mixing, as observed by del Junco and Rudolph.

Recently Ratner’s property (or its variants) was observed in a new class of (non-
homogeneous) systems, that of smooth flows on surfaces with finitely many (saddle-
like) singularities. In [7], the authors studied the case of smooth mixing flows on the
two-torus and established the SWR-property.(1) This property allows to establish the
Ratner-type divergence of orbits, either in the future or in the past (depending on
points), and moreover it has the same dynamical consequences as the original Ratner
property. Then the authors showed in particular that the SWR-property holds for a
full measure set of mixing flows with logarithmic singularities (Arnol’d flows) thereby
proving higher order mixing in this class. The result in [7] was strengthened in [20],
where the authors showed that the SWR-property holds for a full measure set of
Arnol’d flows on surfaces of higher genus.

It is therefore natural to ask whether a Ratner property holds in the class of
Heisenberg nilflows. In [21] it is shown that Ratner’s property implies in particular
that the Kronecker factor is trivial and hence no nilflow can enjoy it. The situation
is very different for non-trivial time changes of Heisenberg nilflows.

Let H denote the 3-dimensional Heisenberg group and let h denote its Lie algebra.
Let M := Γ\H denote a Heisenberg nilmanifold, that is, the quotient of H over a
(co-compact) lattice Γ < H. For anyW ∈ h, the flow (φWt ) generated by the projection
to M of the left-invariant vector field W on H, is called a Heisenberg nilflow (see
Section 2.4 for the definition).

For any W ∈ h and any positive function τ ∈ C1(M), let (φW,τt ) denote the time
change of the nilflow (φWt ), that is, the flow generated by the vector field τW on M .
The flow (φW,τt ) is a reparametrization of the nilflow (φWt ) in the sense that there
exists a function T : M × R→ R such that

φW,τt (x) = φWT (x,t), for all (x, t) ∈M × R.

One can verify that the group property of the flow (φW,τt ) implies that the function T

is a cocycle over (φW,τt ), in the sense that

T (x, t+ s) = T (φW,τt (x), s) + T (x, t),

and it is uniquely determined by the above cocycle condition and by the identity
∂

∂t
T (x, t)|t=0 = τ(x), for all x ∈M.

The time-change (φW,τt ) is called trivial if the cocycle T is cohomologous to a con-
stant, that is, there exist a constant c ∈ R and a measurable function u : M → R
such that

T (x, t)− c = (u ◦ φW,τt )(x)− u(x), for all (x, t) ∈M × R.

(1)Acronym for switchable weak Ratner. It was also shown that the original Ratner property does
not hold.
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66 G. Forni & A. Kanigowski

All trivial time changes (φW,τt ) are measurably conjugate to the nilflow (φWt ) and
the regularity of the conjugacy is equal to the regularity of the so-called transfer
function u on M .

A vector field W ∈ h and the corresponding flow (φWt ) are called of bounded
type if their projections on the Kronecker factor (which are respectively a constant
coefficients vector field and the corresponding linear flow on a 2-dimensional torus)
are of bounded type.

Our first main result establishes the Ratner property (see Section 3 for the defi-
nition) for time changes of bounded type Heisenberg nilflows in a very strong sense.
In fact our first main result is the following. For every s > 0, let W s(M) denote the
standard Sobolev space. By the Sobolev embedding theorem we have that W s(M) ⊂
Ck(M), for every s > 3/2 + k.

Theorem 1. — Let W ∈ h be of bounded type. For any positive function τ ∈ W s(M)

with s > 7/2, either the time change is trivial or the time-changed flow (φW,τt ) enjoys
the Ratner property.

Recall that the famous Rokhlin problem asks whether mixing implies mixing of all
orders. The above result implies that the answer to the Rokhlin problem is positive
for smooth time changes of bounded type Heisenberg nilflows:

Corollary 1.1. — Let W ∈ h be of bounded type and let

Ds(W ) = {(φW,τt ) : τ ∈W s(M), τ > 0}.

Then, for any s > 7/2, every element of Ds(W ) is mixing if and only if it is mixing
of all orders. As proved in [3] and [13], for s > 7/2 and W of bounded type, mixing is
generic in the set Ds(W ).

Moreover, by [21], we have the following strong dichotomy for time changes of
Heisenberg nilflows:

Corollary 1.2. — Let W ∈ h be of bounded type. Then for every positive function
τ ∈W s(M) with s > 7/2, either the time change is trivial or (φW,τt ) is mildly mixing
(no non-trivial rigid factors).

It turns out that Heisenberg nilflows of bounded type (as in Theorem 1) are the
only known examples, beyond horocycle flows and their time changes, for which the
original Ratner property holds.

Our second main result deals with disjointness properties of time changes of Heisen-
berg nilflows. It is based on a variant of a parabolic disjointness criterion from [22].
We have:

Theorem 2. — Let W ∈ h be of bounded type. For any positive function τ ∈ W s(M)

with s > 9/2, if the time change is non-trivial, then the flows (φW,τpt ) and (φW,τqt ) are
disjoint for all p, q ∈ N, p 6= q.
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As mentioned above, if the time-change τ is trivial, then (φWpt ) and (φWqt ) are
not disjoint (since (φWt ) has a non-trivial Kronecker factor). However, L. Flaminio,
K. Fra̧czek, M. Lemańczyk and J.Kułaga-Przymus [11] have recently proved that any
ergodic nilsystem satisfies the AOP-property: as p, q → +∞, the set of joinings be-
tween (φWpt ) and (φWqt ) weakly converges to the product measure.

The above theorem should be compared with analogous disjointness results for
other flows with Ratner’s property. It follows from the renormalization equation for
the horocycle flow, which states that gsht = he−2stgs for all s, t ∈ R, that hpt and hqt
are isomorphic (and hence not disjoint) for any p, q ∈ R r {0}. In [26], joinings
of time changes of horocycle flows were completely characterized by M.Ratner. From
Ratner’s work one can derive that distinct powers of the same time change are disjoint
unless the time change is trivial [10]. A different proof of this result, based on a new
disjointness criterion for parabolic flows, was given recently in [22]. Moreover, in [22] it
is proved that for almost every Arnol’d flow on T2 the same assertion as in Theorem 2
holds. Therefore, among known flows with Ratner’s property, the horocycle flow is the
only one for which the conclusion of Theorem 2 does not hold. The heuristic reason for
that is that the Ratner property for the horocycle flow depends only on the distance
between points, and not on their position in space (since the space is homogeneous).
In all other examples (for flows as in Theorem 2 in particular) the divergence depends
also on position which allows to get stronger consequences (see Section 4).

Let us now briefly discuss the connection between Theorem 2 and Sarnak’s conjec-
ture on Möbius disjointness [28], which is recently under extensive study, see e.g. [8].
We say that a continuous flow (Tt) on a compact metric space (X, d) is Möbius dis-
joint, if for every F ∈ C(X) and every x ∈ X and every t ∈ R we have

(1) lim
N→+∞

1

N

∑
n6N

F (Tntx)µ(n) = 0,

here µ denotes the classical Möbius function.(2)

Möbius disjointness for horocycle flows was proved by J. Bourgain, P. Sarnak and
T. Ziegler [5]. Moreover, as explained in [10], it follows from Ratner’s work [26] that
Möbius disjointness also holds for non-trivial time changes of horocycle flows. More-
over, in view of a criterion due to I.Kátai [23] and to Bourgain, Sarnak and Ziegler [5],
for non-trivial time changes of horocycle flows the convergence in (1) is uniform in
x ∈ X. It is an open question whether for horocycle flows the convergence in (1)
(for fixed F and t ∈ R r {0}) is uniform with respect to x ∈ X. A corollary of The-
orem 2, again by the Kátai-Bourgain-Sarnak-Ziegler (KBSZ) criterion [23], [5], is the
following:

Corollary 1.3. — Let W ∈ h be of bounded type. For any positive function τ ∈
W s(M) with s > 9/2, if the time change is non-trivial, then (φW,τt ) is Möbius disjoint.
Moreover, the convergence in formula (1) is uniform with respect to x ∈M .

(2)Sarnak’s conjecture states that every system of zero topological entropy is Möbius disjoint.
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68 G. Forni & A. Kanigowski

It follows from the work of B.Green and T.Tao [17] that, if the time change is
trivial, then (φW,τt ) is Möbius disjoint and the convergence in formula (1) is also
uniform (the uniform convergence in (1) follows also from the AOP property, [11]).

The structure of the paper is as follows. In Section 2 we recall some basic definitions
of the theory of joinings and recall the definition Heisenberg nilflows and their special
flow representations over skew-shifts of the 2-torus. In Section 3 we recall the Ratner
property and then formulate a version of it for special flows. In Section 4 we state a
disjointness criterion (Proposition 4.1) and then formulate a version of it for special
flows (Lemma 4.3). In Section 5 we derive from results of [9] (see also [12]) estimates
on Birkhoff sums for smooth functions over skew-shifts of the 2-torus. Finally, in
Sections 6 and 7 we prove our main theorems by applying the estimates from Section 5.

2. Definitions

2.1. Joinings and disjointness. — We refer the reader to [16] for basic theory of
joinings. Let (φt) : (X,B, µ) → (X,B, µ) and (ψt) : (Y,C , ν) → (Y,C , ν) be two
ergodic flows. A joining of (φt) and (ψt) is any (φt ×ψt) invariant measure such that
ρ(X × B) = µ(X)ν(B) and ρ(C × Y ) = µ(C)ν(Y ). The set of joinings of (φt) and
(ψt) is denoted by J((φt), (ψt)). Notice that µ ⊗ ν ∈ J((φt), (ψt)). We say that (φt)

and (ψt) are disjoint (denoting (φt) ⊥ (ψt)) if J((φt), (ψt)) = {µ⊗ ν}.

2.2. Heisenberg nilflows. — The (three-dimensional) Heisenberg group H is given
by

H :=


1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 .

Let Γ be a lattice in H. A Heisenberg manifold M is a quotient Γ\H. It is known that
up to an automorphism of H

Γ = ΓK =


1 m p/K

0 1 n

0 0 1

 : m,n, p ∈ Z

 ,

where K is a positive integer. Notice that M has a (normalized) volume element vol

given by the projection of the (bi-invariant) Haar measure on H.
Since the Abelianized Lie group H := H/[H,H] is isomorphic to R2 (as a Lie group)

and ΓK := ΓK/[ΓK ,ΓK ] is a lattice in H, the Heisenberg nilmanifold M fibers over a
2-dimensional torus M = H/ΓK , with fibers isomorphic to a circle.

Let W be any element of the Lie algebra h of H. The Heisenberg nilflow for W is
given by

φWt (x) = x exp(tW ), for all (x, t) ∈M × R.
Every Heisenberg nilflow (φWt ) on M preserves the volume element vol on M . The
classical ergodic theory of nilflows (see [2]) implies that a Heisenberg nilflow (φWt ) is
uniquely ergodic iff it is ergodic iff it is minimal iff the projected flow on M (which
is isomorphic to its Kronecker factor) has rationally independent frequencies. More
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Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows 69

generally, the Diophantine properties of a vector W ∈ h, and of the corresponding
nilflow (φXt ), under the renormalization dynamics introduced in [9] can be entirely
read from the Diophantine properties of the projection W of W onto the Abelianized
Lie algebra h := h/[h, h], which is also isomorphic to R2 (as a Lie algebra). In partic-
ular, a vector W ∈ h is called of bounded type if and only if is projection W ∈ R2 is
of bounded type.

Let τ ∈ L1(M), τ > 0. The flow (φW,τt ) is called a time change (or a reparametriza-
tion) of the flow (φWt ) if

φW,τt (x) = φWT (x,t)(x), for all (x, t) ∈M × R,

where the (φW,τt )-cocycle T (x, t) is uniquely defined by the condition that

∂

∂t
T (x, t)|t=0 = τ(x), for all x ∈M.

The above condition is equivalent to either of the following integral conditions∫ t

0

τ(φW,τs (x))ds = T (x, t) and
∫ T (x,t)

0

1/τ(φWs (x))ds = t.

By definition the time change is trivial if the (φW,τt )-cocycle T is cohomologous to a
constant. It follows from the above formula that the time change is trivial if and only
if the function τ is (φW,τt )-cohomologous to constant, in the sense that there exist a
constant c ∈ R and a function u : M → R such that

u ◦ φW,τt (x)− u(x) = τ(φW,τt (x))− c, for all (x, t) ∈M × R,

or, infinitesimally, if and only if τWu = τ − c. Finally we see that this condition is
equivalent to the property that the function 1/τ is (φWt )-cohomologous to constant,
that is, −Wu/c = 1/τ − 1/c or, equivalently,

(−u/c) ◦ φWt − (−u/c) = 1/τ(φWt (x))− (1/c).

We have thus reduced the condition that a time change of a nilflow be trivial to the
existence of solutions of cohomological equation for the nilflow itself, a question that
can be analyzed by Fourier analysis [24], [9], [3], [12].

2.3. Special flows. — Let Φ : (X,B, µ, d) → (X,B, µ, d) be an ergodic automor-
phism of a compact metric probability space and let f : X → R be strictly positive.

We recall that the special flow (Φt) := (Φft ) constructed above Φ and under f acts
on Xf := {(x, s) : x ∈ X, 0 6 s < f(x)} by

Φt(x, s) = (ΦN(x,s,t)(x), s+ t− SN(x,s,t)(f)(x)),

where N(x, s, t) is the unique integer such that

0 6 s+ t− SN(x,s,t)(f)(x) 6 f(ΦN(x,s,t)(x)),
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70 G. Forni & A. Kanigowski

and

SN (f)(x) =


f(x) + · · ·+ f(Φn−1x) if n > 0

0 if n = 0

−(f(Φnx) + · · ·+ f(Φ−1x)) if n < 0.

Notice that the flow (Φt) preserves the measure µf = µ⊗λR restricted toXf , where λR
denotes the Lebesgue measure on R. Let moreover df denote the product metric (of d
and the absolute value metric on R).

2.4. Special flow representation of nilflows. — It is classical that an ergodic
nilflow (φWt ) can be represented as a special flow, where the base automorphism
Φα,β : T2 → T2 is given by Φα,β(x, y) = (x + α, y + x + β) for α ∈ [0, 1) r Q, β ∈ R
and under a constant roof function f(x, y) = CW > 0.

Let (qn)+∞n=1 denote the sequence of denominators of α ∈ [0, 1)rQ. The vector field
W ∈ h is of bounded type if and only if α is of bounded type, i.e., there exists Cα > 0

such that qn+1 6 Cαqn for every n ∈ N.
For any function f ∈ L1(T2), f > 0, let (Φf,α,βt ) denote the special flow over Φα,β

and under f . Then every time change φW,τt is isomorphic to a special flow (Φfτ ,α,βt ),
where the roof function fτ is as smooth as τ . In view of the above representation,
Theorems 1 and 2 are respectively equivalent to the following two theorems:

Theorem 3. — Let α ∈ RrQ be of bounded type and let f ∈W s(T2), with s > 7/2,
be a positive function. Then the flow (Φf,α,βt ) has the Ratner property.

Theorem 4. — Let α ∈ [0, 1)rQ be of bounded type and let f ∈W s(T2), with s > 9/2,
be a positive function. Then the flows (Φf,α,βpt ) and (Φf,α,βqt ) are disjoint for all p, q ∈ N
with p 6= q.

Remark 2.1. — It seems to the authors that a necessary condition for the Ratner
property (or any of its variants) to hold in

Ds(W ) = {(φW,τt ) : τ ∈W s(M), τ > 0, (φW,τt ) is a non-trivial time-change}

is that W is of bounded type.

3. Ratner’s property

Let (φt) : (X,B, µ, d) → (X,B, µ, d) be an ergodic flow on a σ-compact metric
probability space.

Definition 3.1. — Let P = {−1, 1} and let t0 ∈ R. The flow (φt) has the
R(t0, P )-property if for every ε > 0 and N ∈ N, there exist κ = κ(ε), δ = δ(ε,N) and a
set Z = Z(ε,N) with µ(Z) > 1−ε, such that: for every x, y ∈ Z with d(x, y) < δ and x
not in the orbit of y, there exist p = p(x, y) ∈ P and M = M(x, y), L = L(x, y) > N ,
L/M > κ, for which

#{n ∈ [M,M + L] ∩ Z : d(φnt0(x), φnt0+p(y)) < ε} > (1− ε)L.
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The flow (φt) is said to have Ratner’s property if

{s ∈ R : (φt) has property R(s, P )}

is uncountable.

3.1. Ratner’s property for special flows. — In what follows Φ : (X,B, µ, d) →
(X,B, µ, d) is an ergodic automorphism of a σ-compact metric probability space and
f ∈ L+

1 (X). We have the following proposition (see [19, Prop. 4.1]):

Proposition 3.2. — Let P = {−1, 1}. If for every ε > 0 and N ∈ N there exist
κ = κ(ε) > 0, δ = δ(ε,N) > 0 and a set Z = Z(ε,N) ⊂ X with µ(Z) > 1 − ε, such
that, for every x, y ∈ Z with d(x, y) 6 δ, there exist M,L > N , L/M > κ and p ∈ P
such that for every n ∈ [M,M + L] ∩ Z

d(Φnx,Φny) < ε and |Sn(f)(x)− Sn(f)(y)− p| < ε,

then the special flow (Φft ) satisfies the Ratner property.

In [19], Proposition 3.2 was proved for the SR-property, which is a modification
of Ratner’s property in which one allows for divergence either in the future or in the
past. However the proof in [19] immediately extends to a proof of Proposition 3.2.

We will use Proposition 3.2 to prove Theorem 3.

4. Disjointness criterion

Let (φt) : (X,B, µ, d1) → (X,B, µ, d1) and (ψt) : (Y,C , ν, d2) → (Y,C , ν, d2) be
two weakly mixing flows (and X,Y are σ-compact). In this section we prove the
following proposition:

Proposition 4.1 (Disjointness criterion). — Let P ′ ⊂ R be a compact set and let
v′ 6= 0. Fix 1 > c > 0. Assume there exists (Ak) ⊂ Aut(Xk,B|Xk , µ|Xk), such that
µ(Xk) → µ(X), Ak → Id uniformly. Assume moreover that for every ε > 0 and
N ∈ N there exist (Ek = Ek(ε)) ⊂ B with µ(Ek) > cµ(X), 0 < κ = κ(ε) < ε,
δ = δ(ε,N) > 0, a set Z = Z(ε,N) ⊂ Y with ν(Z) > (1 − ε)ν(Y ), such that for all
y, y′ ∈ Z satisfying d2(y, y′) < δ, every k such that d1(Ak, Id) < δ and every x ∈ Ek,
x′ := Akx, there are M > N , L > 1, L/M > κ and V ∈ P ′, v ∈ {−v′, v′}, for which
the following holds:

(2) max(d1(φtx, φt+V+vx
′), d2(ψty, ψt+V y

′)) < ε

for t ∈ U ⊂ [M,M + L] with λR(U) > (1− ε)L.

Then (φt) and (ψt) are disjoint.

The proof of the above proposition follows similar lines to the proof of [22, Th. 3].
We provide a proof for completeness.
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Proof. — Let ρ ∈ J((φt)t∈R, (ψt)t∈R) be an ergodic joining with ρ 6= µ×ν. Since (φt)

is weakly mixing it follows that, for v ∈ {−v′, v′}, the map φv is ergodic and hence
disjoint from Id. Therefore, there exist Bv ∈ B and Cv ∈ C such that

(3) |ρ(φ−v(Bv)× Cv)− ρ(Bv × Cv)| > η

for some 0 < η < 1. Let V 1
ε (Bv) := {x ∈ X : d1(x,Bv) < ε} and similarly V 2

ε (Cv) :=

{y ∈ Y : d2(y, Cv) < ε}. There exists ε ∈ (0, cη/1000) such that

max
(∣∣µ(V 1

ε (Bv))− µ(Bv)
∣∣ , ∣∣ν(V 2

ε (Cv))− ν(Cv)
∣∣) < η/32.

Since ρ is a joining, by the triangle inequality, for each t ∈ R, we have

(4) |ρ(φ−tV
1
ε (Bv)× V 2

ε (Cv))− ρ(φ−tBv × Cv)| <
η

16
.

By applying Birkhoff point-wise ergodic theorem to the joining flow (φt × ψt, ρ)

and to the characteristic functions of the sets φ−vBv ×Cv and φ−vV 1
ε (Bv)× V 2

ε (Cv)

for v ∈ {−v′, v′}, it follows that there exist N0 ∈ N, κ > 0 and a set U1 ∈ B ⊗ C ,
with ρ(U1) > (1 − c/100)ρ(X × Y ), such that, for every L,M > N0 with L/M > κ

and v ∈ {−v′, v′} ∪ {0}, and for all (x, y) ∈ U1, we have∣∣∣∣ 1L
∫ M+L

M

χφ−vBv×Cv (φtx, ψty) dt− ρ(φ−vBv × Cv)
∣∣∣∣ < η

16
,(5) ∣∣∣∣ 1L

∫ M+L

M

χφ−vV 1
ε (Bv)×V 2

ε (Cv)(φtx, ψty) dt− ρ(φ−vV
1
ε (Bv)× V 2

ε (Cv))

∣∣∣∣ < η

16
.(6)

Let U2 := U1 ∩ (X × Z), where Z = Z(ε,N0) comes from our assumptions. Then
ρ(U2) > (1− c/50)ρ(X ×Y ). Note also that since X ×Y is σ-compact, the measure ρ
is regular, and hence we can additionally assume that U2 is compact. Define proj :

X × Y → X, proj(x, y) = x. Then the fibers of proj are σ-compact, and since U2 is
compact, the fibers of the map proj |U2

: U2 → proj(U2) ⊂ X are also σ-compact and
proj(U2) is also compact. Thus, by Kunugui’s selection theorem (see e.g. [15, Th. 4.1]),
it follows that there exists a measurable (selection) sY : proj(U2) → X × Y such
that (x, sY (x)) ∈ U2. Note that µ(proj(U2)) > ρ(U2) > (1 − c/50)µ(X). By Luzin’s
theorem there exists Xcont ⊂ proj(U2), with µ(Xcont) > (1− c/50)µ(X), such that sY
is uniformly continuous on Xcont. Finally, we set

Ũ := U2 ∩ (Xcont × Y ).

We have ρ(Ũ) > (1 − c/10)ρ(X × Y ). Moreover, for the set UX := proj(Ũ) we have
µ(UX) > ρ(Ũ) > (1− c/10)ρ(X×Y ). Hence, by the definitions of sequences (Ak) and
(Ek) = (Ek(ε)), it follows that there exists k0 = k0(ε) such that for k > k0,

(7) µ(A−k(UX ∩Xk) ∩ (UX ∩Xk) ∩ Ek) > 0.

Let δ = δ(ε,N0) come from the assumptions of our theorem. By the uniform continuity
of sY : Xcont → Y it follows that there exists 0 < δ′ < δ such that d1(x1, x2) < δ′

implies d2(sY (x1), sY (x2)) < δ for each x1, x2 ∈ Xcont. Since Ak → Id uniformly and
Ũ ⊂ Xcont × Y , there exists k1 = k1(ε) such that for k > k1, d2(sY (x), sY (Akx)) < δ

for x ∈ Xk ∩ Xcont. Fix k > max(k0, k1 + 1) (so that d1(Ak, Id) < δ′). Let x ∈
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A−k(UX ∩Xk)∩ (UX ∩Xk)∩Ek. Such a point does exist in view of (7). Set x′ = Akx,
y = sY (x), y′ = sY (x′). By definition, (x, y), (x′, y′) ∈ Ũ and d2(y, y′) < δ and all
other assumptions of our theorem are satisfied for (x, y), (x′, y′) (so that we obtain
M,L, V, v depending on (x, y) and (x′, y′) satisfying (2)).

We claim that

(8) ρ(φ−v(Bv)× Cv) > ρ(Bv × Cv)−
η

2
.

Indeed, in view of (4), the estimate (8) follows if we can prove that

ρ(φ−v(V
1
ε (Bv))× V 2

ε (Cv)) > ρ(Bv × Cv)−
η

4
.

Using (2) (for v = v′), (5) (for v = 0) and (x, y) ∈ Ũ ⊂ U1, we obtain that

1

L

∫ M+L

M

χV 1
ε (Bv)×V 2

ε (Cv)(φt+V+vx
′, ψt+V y

′) dt

>
1

L

∫ M+L

M

χBv×Cv (φtx, ψty) dt− ε > ρ(Bv × Cv)− ε−
η

16
.

Hence to complete the proof of Claim (8), it is enough to show that

(9) 1

L

∫ M+L

M

χV 1
ε (Bv)×V 2

ε (Cv)(φt+V+vx, ψt+V y) dt < ρ(φ−vV
1
ε (Bv) × V 2

ε (Cv)) +
η

8
.

Notice however that

1

L

∫ M+L

M

χV 1
ε (Bv)×V 2

ε (Cv)(φt+V+vx, ψt+V y) dt

=
1

L

∫ M+V+L

M+V

χφ−v(V 1
ε (Bv))×V 2

ε (Cv)(φtx, ψty) dt,

hence the estimate in (9) follows from (6) with M = M + V and L = L.
By a similar reasoning, we get

(10) ρ(φ−v(Bv)× Cv) < ρ(Bv × Cv) +
η

2
,

so putting together (8) and(10) we derive the estimate

|ρ(φ−v(Bv)× Cv)− ρ(Bv × Cv)| <
η

2
.

This however contradicts (3), hence the argument is complete. �

4.1. Disjointness criterion for special flows. — In this section we assume that
(Φt) = (Φft ) and (Ψt) = (Ψg

t ) are special flows over ergodic Φ ∈ Aut(X,B, µ, d1),
Ψ ∈ Aut(Y,C , ν, d2) respectively and under f ∈ L1

+(X,B, µ), g ∈ L1
+(Y,C , µ). Let

(Φft ) act on Xf with metric df1 and (Ψg
t ) act on Xg with metric dg2. For (x, s) ∈ Xf

and t ∈ R we denote by n(x, s, t) ∈ Z the unique number for which

Sn(x,s,t)(f)(x) 6 t+ s < Sn(x,s,t)+1(f)(x),

i.e.,
Φft (x, s) = (Φn(x,s,t)x, s+ t− Sn(x,s,t)(f)(x)).
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We define m(y, r, t) analogously for (y, r) ∈ Y g. We tacitly assume that

f and g are bounded away from zero.

Before we state a disjointness criterion for special flows, we need the following general
lemma:

Lemma 4.2. — Fix ε such that infXf/10 > ε > 0. Let t ∈ R and (x, s), (x′, s′) ∈ Xf

be such that |s− s′| < ε2, d1(Φn(x,s,t)x,Φn(x,s,t)x′) < ε2 and

Φft (x, s) ∈ {(x, s) : ε < s < f(x)− ε}.

Let V (t) = V (x, s, x′, s′, t) := Sn(x,s,t)(f)(x)− Sn(x,s,t)(f)(x′). Then

df1 (Φft (x, s),Φft−V (t)(x
′, s′)) 6 2ε2.

Proof. — Notice that since Φft (x, s) ∈ {(x, s) : ε < s < f(x) − ε} and |s − s′| < ε2,
we have

Sn(x,s,t)(f)(x′) 6 t− V (t) + s′ 6 Sn(x,s,t)+1(f)(x′).

Therefore, Φft−V (t)(x
′, s′) = (Φn(x,s,t)x′, t− V (t) + s′ − Sn(x,s,t)(f)(x′)). By definition

Φft (x, s) = (Φn(x,s,t)x, t+ s−Sn(x,s,t)(f)(x)). The statement follows by the definition
of V (t) since df1 is the product metric and we have d1(Φn(x,s,t)x,Φn(x,s,t)x′) < ε2 and
|s− s′| 6 ε2. �

Lemma 4.3. — Let V ∈ R and P = {−p′, p′} for p′ 6= 0 and ζ :=
∫
X
fdµ/

∫
Y
gdν. Let

Ak ∈ Aut(X,B, µ), Ak → Id uniformly. Assume moreover that for every ε′ > 0 and
N ′ ∈ N there exist 0 < κ′ = κ′(ε′) < ε′, δ′ = δ′(ε′, N ′) > 0, such that for all y, y′ ∈ Y
satisfying d2(y, y′) < δ′, every k such that d1(Ak, Id) < δ′ and every x, x′ := Akx ∈ X
there are M ′ > N ′, L > 1, L′/M ′ > κ′ and p ∈ P satisfying:

|SM ′(f)(x)− SM ′(f)(x′)| < V,(11)
|(SM ′(f)(x)− SM ′(f)(x′))− (S[ζM ′](g)(y)− S[ζM ′](g)(y′))− p| < ε′,(12)

d1(Φwx,Φwx′), d2(Ψwy,Ψwy′) < κ′(13)

for w ∈ [0,max(1, ζ)(M ′ + L′)] ∩ Z; and for h = {f, g},

(14) |(Sw(h)(x)− Sw(h)(x′))− (Su(h)(x)− Su(h)(x′))| < ε′,

for every w, u ∈ [0, 2 max(1, ζ)(M ′ + L′)], |w − u| 6 L′. Then (Φft ) and (Ψg
t ) are

disjoint.

The proof of the above proposition follows similar lines (although is simpler) than
the proof of [22, Prop. 4.1]. We provide a proof here for completeness.

Proof of Lemma 4.3. — We will show that the assumptions of Proposition 4.1 are
satisfied. Let P ′ := [−2V − |p′|, 2V + |p′|] and v′ = p′. Let c = 1, and Afk(x, s) =

(Akx, s) on Xf (then Afk → Id uniformly). Fix ε > 0 and N ∈ N. Let ε′ = ε4, N’=
and let κ′, δ′ be as in Lemma 4.3. Define κ := κ′2 and δ := min(ε10, δ′2).
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By the ergodic theorem for Φft there exist N ′′ ∈ R and a set E = E(ε) ⊂ Xf ,
µf (E) > 1 − ε, such that for every M,L > N ′′, L/M > κ and every (x, s) ∈ E,
we have

(15) λR
({
t ∈ [M,M + L] : Φft (x, s) ∈ {(x, s) : ε3/2 < s < f(x)− ε3/2}

})
> (1− ε4/3)L

and for t ∈ R such that n(x, s, t) ∈ [M,M + L], we have

(16) |t− n(x, s, t)

∫
X

fdµ| < κ′2t.

Similarly, by the ergodic theorem for Ψg
t there exist N ′′ ∈ R and Z = Z(ε) ⊂ Y f ,

νg(Z) > 1−ε such that for everyM,L > N ′′, L/M > κ and every (y, r) ∈ Z, we have

(17) λR
({
t ∈ [M,M + L] : Ψg

t (y, r) ∈ {(y, r) : ε3/2 < r < g(y)− ε3/2}
})
> (1− ε4/3)L,

and for t ∈ R such that m(y, r, t) ∈ [M,M + L], we have

(18) |t−m(y, r, t)

∫
Y

gdν| < κ′2t.

For k ∈ N let Ek = Ek(ε) := E. Fix E 3 (x, s), (x′, s) = Ak(x, s) with
df1 ((x, s), (x′, s)) < δ and (y, r), (y′, r′) ∈ Z with dg2((y, r), (y′, r′)) < δ. Let M ′, L′, p
come from Lemma 4.3 for x, x′ and y, y′. Define M,L by n(x, s,M)

∫
X
fdµ = M ′ and

n(x, s,M + L)
∫
X
fdµ = M ′ + L′. It follows by (16) that L/M > κ and M > N .

Let U ⊂ [M,M + L] be such that for t ∈ U , we have

Φft (x, s) ∈ {(x, s) : ε3/2<s<f(x)−ε3/2}, Ψg
t (y, r) ∈ {(y, r) : ε3/2<r<g(y)−ε3/2}

and
d1(Φn(x,s,t)x,Φn(x,s,t)x′), d2(Ψm(y,r,t)y,Ψm(y,r,t)y′) < ε2.

By (15), (17) and (13) it follows that |U | > (1− ε)L. Let us then set
V (t) = Sn(x,s,t)(f)(x)− Sn(x,s,t)(f)(x′),

W (t) = Sm(y,r,t)(g)(y)− Sm(y,r,t)(g)(y′).

By Lemma 4.2 (for (Φft ) and (Ψg
t )) it follows that

df1 (Φft (x, s),Φft−W (t)+(W (t)−V (t))(x
′, s)) 6 2ε2

and
dg2(Ψg

t (y, r),Ψ
g
t−W (t))(y

′, r′)) 6 2ε2.

Notice that for t ∈ [M,M + L], by (14) (and (16),(18)), we have

|V (t)− V (M)|, |W (t)−W (M))| 6 ε2

Moreover, by (12) and (14), we have

|V (M)−W (M)− p| < ε2.
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Hence
df1 (Φft (x, s),Φft−W (M)+p)(x

′, s)) 6 4ε2.

and
dg2(Ψg

t (y, r),Ψ
g
t−W (M))(y

′, r′)) 6 4ε2.

Finally, by (11) and (14) it follows that |W (M)| 6 |V (M)| + p + 2ε2 6 2V + p and
hence W (M) ∈ P . This finishes the proof. �

We will use Lemma 4.3 to prove Theorem 4.

5. Birkhoff sums over toral skew-shifts

In what follows Φα,β(x, y) = (x + α, y + x + β) is a (linear) skew-shift on T2,
with α of bounded type and g ∈W s(T2), with s > 7/2 and

∫
T2 gdλT2 = 0, where λT2

denotes the normalized (Haar) Lebesgue measure on T2. We also assume that g is not
a coboundary (although some lemmas below are true also for coboundaries).

5.1. Cohomological equation for skew-shifts. — The cohomological equation for
(linear) skew-shifts on T2 can be completely solved by Fourier series (see [24], [3]).
Let Φα,β : T2 → T2 be given for α ∈ [0, 1) rQ by the formula

Φα,β(x, y) = (x+ α, y + x+ β).

It follows (see [1]) that

L2(T2) =
⊕

(m,n)∈Z|n|×Zr{0}
Hm,n,

where the spaces Hm,n are Φα,β-invariant and

Hm,n =
⊕
j∈Z

Cem+jn,n ⊂ L2(T2)

with ea,b(x, y) = exp(2πi(ax+ by)), for all (a, b) ∈ Z2.

Theorem 5 ([24, Th. 11.25], [3, Th. 10]). — For every (m,n) ∈ Z2, there exists a
unique distributional obstruction to the existence of a smooth solution u ∈ C∞(Hm,n)

of the cohomological equation
u ◦ Φα,β − u = g

with right hand side g ∈ C∞(Hm,n). Such an obstruction is the invariant distribution
Dm,n ∈W−s(T2) for all s > 1/2 defined as follows:

Dm,n(ea,b) :=

{
e−2πi[(αm+βn)j+αn(j2)] if (a, b) = (m+ jn, n);

0 otherwise.

The solution of the cohomological equation, for any function g ∈ C∞(Hm,n) such that
Dm,n(g) = 0, is given by the following formula. If g =

∑
j∈Z gjem+jn,n, the solution
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u =
∑
j∈Z ujem+jn,n has Fourier coefficients:

uj = −e2πi[(αm+βn)j+αn(j2)]
j∑

k=−∞

gke
−2πi[(αm+βn)k+αn(k2)]

= e2πi[(αm+βn)j+αn(j2)]
∞∑

k=j+1

gke
−2πi[(αm+βn)k+αn(k2)].

If g ∈ W s(Hm,n) for any s > 1 and Dm,n(g) = 0, then the above solution u belongs
to W t(Hm,n) for all t < s− 1 and there exists a constant Cs,t > 0 such that

‖u‖t 6 Cs,t ‖g‖s.

The results below establish the quantitative behavior of the square mean of ergodic
averages for smooth functions under the skew-shift.

Lemma 5.1 ([3, Lem. 15] or [13, Lem. 8.1]). — Let (m,n) ∈ Z|n| × Z r {0} and let
s > 1/2. There exists a constant Cs > 0 such that, for any g ∈W s(Hm,n),

C−1s |Dm,n(g)| 6 lim inf
N→+∞

1

N1/2

∥∥∥∥N−1∑
k=0

g ◦ Φkα,β

∥∥∥∥
L2(T2)

6 lim sup
N→+∞

1

N1/2

∥∥∥∥N−1∑
k=0

g ◦ Φkα,β

∥∥∥∥
L2(T2)

6 Cs|D(m,n)(g)|.

5.2. General estimates

Lemma 5.2. — There exists a constant Cα,g > 0 such that, for every N ∈ N and every
(x, y) ∈ T2, we have

|SN (g)(x, y)| 6 Cα,gN1/2.

Proof. — Since α ∈ R r Q is of bounded type, the statement follows from [12,
Lem. 1.4.9] or from [13, Lem. 6.1 & Th. 6.2]. In fact, since any constant roof suspen-
sion of Φα,β is smoothly isomorphic to a Heisenberg nilflow (φWt ) on a nilmanifoldM ,
generated by a bounded type vector field W ∈ h, for any g ∈ W s(T2) and every
(x, y) ∈ T2, there exist a function G ∈W s(M) and p ∈M such that

SN (g)(x, y) =

∫ N

0

G ◦ φWt (p)dt.

By [12, Lem. 1.4.9], for any Heisenberg triple F := (X,Y, Z) and for any σ > 2,
there exists a function Bσ(F , T ) (defined [12, Eq. (1.71)]) such that, for any function
f ∈Wσ(M) and for all (p, T ) ∈M × R,∣∣∣∣ 1

T

∫ T

0

f ◦ φXt (p)dt

∣∣∣∣ 6 Bσ(F , T )

T
‖f‖σ.
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For X = W of bounded type, by definition there exists a constant C > 0 such that
Bσ(F , T ) 6 CσT 1/2, hence we derive

|SN (g)(x, y)| 6
∣∣∣∣∫ N

0

G ◦ φWt (p)dt

∣∣∣∣ 6 CσN1/2‖G‖s

(see also the comments after the proof of [12, Lem. 1.4.9]). Alternatively, from [13,
Th. 6.2] we derive that for a = (X,Y, Z) satisfying an explicit Diophantine condi-
tion (depending only on Y ) and for any f ∈ W s(M), there exists a Hölder cocycle
βf (a, p, T ) such that∣∣∣∣∫ T

0

f ◦ φXt (p)dt− βf (a, p, T )

∣∣∣∣ 6 Cs(a)‖f‖s,

and [13, Lem. 6.1] implies that whenever X = W is of bounded type, the cocycle
βf (a, p, T ) satisfies the upper bound

|βf (a, p, T )| 6 Cs(a)T 1/2‖f‖s,

which again implies our statement. �

Lemma 5.3. — There exists a constant c′′g > 0 such that for every N ∈ N,

‖SN (g)‖C0(T2) > c
′′
gN

1/2.

Proof. — Since g has zero average, but it is not a coboundary, and α ∈ R r Q has
bounded type, we can assume that g ∈W s(Hm,n), for some (m,n) with n 6= 0. In fact,
otherwise g is the pull back of a function on the circle T, which belongs to W s(T)

with s > 7/2, and since α is of constant type, it follows by Fourier series that g
is a coboundary with transfer function u ∈ W t(T) for all t < s − 1 (in particular
u ∈ C2(T)).

By orthogonality of the decomposition W s(T2) as a direct sum of components
W s(Hm,n), for all s ∈ R, we can assume that g ∈ W s(Hm,n), for some (m,n) with
n 6= 0, hence by Lemma 5.1 there exists c′′′g > 0 such that, for all N ∈ N,

‖SN (g)‖L2(T2) > ‖SN (gm,n)‖L2(T2) > c
′′′
g N

1/2.

This finishes the proof. �

Lemma 5.4. — For every χ > 0, ζ > 1 there exists Vχ,ζ > 1 such that for every T > 0

there exists nχ,Kχ ∈ [T, Vχ,ζT ] for which

‖Snχ(g)‖C0(T2) > (1− χ)ζ−1/2‖S[ζnχ](g)‖C0(T2)

and, for q = ζp,

‖SqKχ(g)‖C0(T2) > (1− χ)ζ1/2‖SpKχ(g)‖C0(T2).
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Proof. — For χ > 0 let k ∈ N be such that (1 − χ)k < c′′/Cα,g and let Vχ,ζ := ζk.
By contradiction, if the statement is not true, then

c′′T 1/2 6 ‖ST (g)‖C0(T2) < (1− χ)ζ−1/2‖S[ζT ](g)‖C0(T2) 6 · · ·

6 (1− χ)kζ−k/2‖S[ζkT ](g)‖C0(T2) 6 Cα,g(1− χ)kT 1/2.

This contradicts the choice of k. The proof of the second inequality follows the same
lines. �

For (a, b), (c, d) ∈ T2 let d1((a, b), (c, d)) = ‖a− c‖ and d2((a, b), (c, d)) = ‖b− d‖.

Lemma 5.5. — There exists C ′ = C ′α,g > 0 such that, for every (x, y), (x′, y′) ∈ T2

and for every n ∈ N, we have

|Sn(g)(x, y)− Sn(g)(x′, y′)| 6 C ′
(
n3/2d1((x, y), (x′, y′)) + n1/2d2((x, y), (x′, y′))

)
.

Proof. — By the mean value theorem for Sn(g), we have for some θn ∈ T2

(19) |Sn(g)(x, y)− Sn(g)(x′, y′)| =
∣∣∣∣∂Sn(g)

∂x
(θn)(x− x′) +

∂Sn(g)

∂y
(θn)(y − y′)

∣∣∣∣ .
By the chain rule and Lemma 5.2∣∣∣∂Sn(g)

∂y
(θn)

∣∣∣ = |Sn(∂g/∂y)(θn)| 6 Cα,gn1/2.

Moreover, by the chain rule, we have∣∣∣∂Sn(g)

∂x
(θn)

∣∣∣ 6 |Sn(∂g/∂x)(θn)|+
∣∣∣∣n−1∑
i=0

i
∂g

∂x
(Φiα,βθn)

∣∣∣∣
and by summation by parts∣∣∣∣n−1∑

i=0

i
∂g

∂x
(Φiα,βθn)

∣∣∣∣ 6 |nSn(∂g/∂x)(θn)|+
∣∣∣∣n−1∑
r=0

Sr(∂g/∂x)(θn)

∣∣∣∣.
By Lemma 5.2, for some C > 0,

|nSn(∂g/∂x)(θn)| < Cn3/2 and
∣∣∣∣n−1∑
r=0

Sr(∂g/∂x)(θn)

∣∣∣∣ < Cn3/2.

Using the above estimates in (19) finishes the proof. �

Lemma 5.6. — Fix q ∈ N. For every η > 0 there exists Dη > 1 such that for every
n,m ∈ N and every (x, y) ∈ T2, we have

max
i∈{m,...,m+Dηn}

|Sn(g)(Φiqα,β(x, y))| > (1− η)‖Sn(g)‖C0(T2).

Proof. — Since α is of bounded type, there existsDη>1 such that for every (x, y)∈T2

and every n ∈ N, the orbit {Φiqα,β(x, y)}Dηni=0 is (η2/n, η2)-dense in T2. Notice that, if
(a, b) ∈ T2 is any point such that |Sn(g)(a, b)| = ‖Sn(g)‖C0(T2) and ‖a − c‖ 6 η/n

and ‖b− d‖ 6 η2, then by Lemma 5.5, |Sn(g)(a, b)− Sn(g)(c, d)| 6 2C ′η2n1/2, which
together with Lemma 5.3 finishes the proof is η > 0 is small enough. �
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Recall that (qn) denotes the sequence of denominators of α. The following simple
lemma is a consequence of the pigeonhole principle:

Lemma 5.7. — Fix p, q ∈ N. For every η > 0 there exists Lη > 0 such that for every
(x, y), (z, w) ∈ T2 and for every n ∈ N, there exists `1,n, `2,n ∈ {0, . . . , Lη}, `1,n 6= `2,n
such that

d2(Φ
q`1,nqn
α,β (x, y), (Φ

q`2,nqn
α,β (x, y))) < η and d2(Φ

p`1,nqn
α,β (z, w), (Φ

p`2,nqn
α,β (z, w))) < η.

Proof. — Let Lη := 2η−2. By the pigeonhole principle there exist positive inte-
gers `1, . . . , `[η−1]+1 ∈ {0, . . . , Lη} such that d2(Φq`qnα,β (x, y), (Φq`

′qn
α,β (x, y))) < η for

`, `′ ∈ {`1, . . . , `[η−1]+1}. Again by the pigeonhole principle, there exist positive in-
tegers `1,n, `2,n ∈ {`1, . . . , `[η−1]+1} such that d2(Φ

p`1,nqn
α,β (z, w), (Φ

p`2,nqn
α,β (z, w))) < η.

This finishes the proof. �

Lemma 5.8. — There exists a constant C ′′′ > 0 such that for any (a, b), (c, d) ∈ T2,
for every W,K ∈ N with W 6 ‖a− c‖−1, we have

|SK(g)(ΦWα,β(a, b))− SK(g)(ΦWα,β(c, d))−WSK(
∂g

∂y
)(ΦWα,β(a, b))(a− c)|

6 C ′′′
(
K1/2W 2‖a− c‖2 +K3/2‖a− c‖+K1/2‖b− d‖

)
.

Proof. — Let

θW = (a+Wα, d+Wc+W (W − 1)α/2)

θ′W = (a+Wα, b+Wc+W (W − 1)α/2).and

Then

SK(g)(ΦWα,β(a, b))− SK(g)(ΦWα,β(c, d)) =
(
SK(g)(ΦWα,β(a, b))− SK(g)(θ′W )

)
+
(
SK(g)(θ′W )− SK(g)(θW )

)
+
(
SK(g)(θW )− Sk(g)(ΦWα,β(c, d))

)
.

By Lemma 5.5, we have∣∣SK(g)(θ′W )− SK(g)(θW )
∣∣ 6 C ′K1/2‖b− d‖

and ∣∣SK(g)(θW )− SK(g)(ΦWα,β(c, d))
∣∣ 6 C ′K3/2‖a− c‖.

Finally, by Taylor formula and the chain rule, for some θK ∈ T2,

SK(g)(ΦWα,β(a, b))− SK(g)(θ′W )

= SK(∂g/∂y)(ΦWα,β(a, b))W (a− c) + SK(∂2g/∂2y)(θK)(W (a− c))2,

and by Lemma 5.2, we get

SK(∂2g/∂y2)(θK)(W (a− c))2 6 C ′′K1/2W 2‖a− c‖2.

This finishes the proof. �
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5.3. Estimates of second order terms. — In what follows p, q ∈ N, ζ = q/p, and a
zero-mean non-coboundary h ∈ W s(M), s > 5/2 is fixed. We assume WLOG that
q > p, that is ζ > 1.

The following lemma is important, it crucially uses the fact that p 6= q:

Lemma 5.9. — There exist D′, d′ > 0 such that, for any (x, y), (z, w) ∈ T2 and any
T > 0, for some n′ ∈ [0, D′T ], we have

(20) |Sn′(h)(z, w)− ζ−1/2S[ζn′](h)(x, y)| > d′T 1/2.

Proof. — We will consider only numbers of the form n′ = pk, for k ∈ N. We will show
that there exist D′, d′ > 0 such that

(21)
∣∣∣(SpK(h)(ΦpWα,β(z, w))− SpK(h)(ΦpWα,βΦpQα,β(z, w))

)
− ζ−1/2

(
SqK(h)(ΦqWα,βx, y)− SqK(h)(ΦqWα,βΦqQα,β(x, y))

)∣∣∣ > 16d′T 1/2,

for some K,W,Q 6 D′T . This will finish the proof since by cocycle identity
SpK(h)(ΦpWα,β(z, w))− SpK(h)(Φ

p(W+Q)
α,β (z, w))

= Sp(W+Q)(h)(z, w)− Sp(K+W+Q)(h)(z, w) + Sp(K+W )(h)(z, w)− SpW (h)(z, w)

and the same splitting for SqK(h)(·). Hence (20) then holds for n′ being one of
{pW, p(K +W ), p(W +Q), p(K +W +Q)}.

Let η > 0 be small. By Lemma 5.4, let K ∈ [T, Vη,ζT ] be such that

(22) ‖SqK(∂h/∂y)‖C0(T2) > (1− η)ζ1/2 ‖SpK(∂h/∂y)‖C0(T2) .

Let now n = n(K, η) > 0 be the smallest number such that η3/2qn+1/Lη > DηqK

(Lη from Lemma 5.7 and Dη > 1 from Lemma 5.6). Let `1,n, `2,n ∈ {0, . . . , Lη} be as
in Lemma 5.7 for n, x, y, z, w and let `n = `2,n − `1,n. Denote (x, y) = Φ

q`1,nqn
α,β (x, y)

and (z, w) = Φ
p`1,nqn
α,β (z, w).

Notice that by definition, 2(η1/2qn+1/`n)−η1/2qn+1/`n > DηqK, hence by Lemma
5.6 there exists W ∈ [η1/2qn+1/`n, 2η

1/2qn+1/`n] such that

(23) |SqK(∂h/∂y)(ΦqWα,β(x, y))| > (1− η)‖SqK(∂h/∂y)‖C0(T2) (> c′q1/2K1/2).

Therefore,

(24) |SqK(∂h/∂y)(ΦqWα,β(x, y))|q2W`n‖qnα‖ > c′q5/2K1/2W`n‖qnα‖.

Since W`n‖qnα‖ ∈ [η1/2/2, 2η1/2], if η � min(p, q), we have for b ∈ {p, q}

η1/10c′q5/2K1/2W`n‖qnα‖ > (bK)1/2(Wb2`n‖qnα‖)2,

similarly
η1/10c′q5/2K1/2W`n‖qnα‖ > (bK)1/2η,

and since W > η1/2qn+1/2`n > η−1DηqK/2, for η > 0 sufficiently small, we have

η1/10c′q5/2K1/2W`n‖qnα‖ > (bK)3/2b`n‖qnα‖.
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Notice that by Lemma 5.8 for (a, b) = (x, y) and (c, d) = Φq`nqnα,β (x, y), by for-
mula (24) and the three above equations for b = q, we have∣∣SqK(h)(ΦqWα,β(x, y))− SqK(h)(ΦqWα,β(Φq`nqnα,β (x, y)))

∣∣
>
∣∣SqK(∂h/∂y)(ΦqWα,β(x, y))

∣∣q2W`n‖qnα‖

− C ′′′
(

(qK)1/2(Wq2`n‖qnα‖)2 + (qK)1/2η + (qK)3/2q`n‖qnα‖
)

> (1− 3η1/10C ′′′)
∣∣SqK(∂h/∂y)(ΦqWα,β(x, y))

∣∣q2W`n‖qnα‖.

Moreover, by (23) and (22), we have∣∣SqK(∂h/∂y)(ΦqWα,β(x, y))
∣∣ > (1− η)2ζ1/2

∣∣SpK(∂h/∂y)(ΦpWα,β(z, w))
∣∣.

Therefore, by Lemma 5.8, (24) and the three above equations for b = p, we have

|SpK(h)(ΦpWα,β(z, w))− SpK(h)(ΦpWα,β(Φp`nqnα,β (z, w)))|

6
∣∣SpK(∂h/∂y)(ΦpWα,β(z, w))

∣∣p2W`n‖qnα‖

+ C ′′′
(

(pK)1/2(p2W`n‖qnα‖)2 + (pK)1/2η + (pK)3/2p`n‖qnα‖
)

6 (p2(1− η)−2ζ−1/2 + 3η1/10C ′′′′q2)
∣∣SqK(∂h/∂y)(ΦqWα,β(x, y))

∣∣W`n‖qnα‖.

Let dp,q,η := q2 − p2(1− η)−2ζ−1 −C ′′′′(3 + ζ−1/2)η1/10q2; then dp,q,η > 0 if η > 0

is small enough (since q > p).
We have by the above∣∣SqK(h)(ΦqWα,β(x, y))− Sqk(h)(ΦqWα,β(Φq`nqnα,β (x, y)))

∣∣
− ζ−1/2

∣∣SpK(h)(ΦpWα,β(z, w))− SpK(h)(ΦpWα,β(Φp`nqnα,β (z, w)))
∣∣

> dp,q,η
∣∣SqK(∂h/∂y)(ΦqWα,β(x, y))

∣∣W`n‖qnα‖

> d′p,q,η(qK)1/2W`n‖qnα‖ > d′′p,q,ηK1/2.

Since K > T and by the definition of (x, y), (z, w), this finishes the proof of (21) with
K = K,W = W+`1,nqn and Q = `nqn, hence the proof of Lemma 5.9 is complete. �

For (x, y), (x, y′) ∈ T2, let δy = |y − y′|. We also have the following lemma:

Lemma 5.10. — There exist D′′ = D′′(α, f, p, q) > 0, d′′ = d′′(α, f, p, q) > 0 such that
for every (x, y), (x, y′), (z, w), (z, w′) ∈ T2, if T ′ := min(δ−2y , δ−2w ) � 1, then there
exists s ∈ [0, D′′T ′] such that

(25)
∣∣(Ss(p−1f)(z, w)− Ss(p−1f)(z, w′)

)
−
(
S[ζs](q

−1f)(x, y)− S[ζs](q
−1f)(x, y′)

)∣∣
> d′′.

Proof. — Notice that by Taylor formula and the chain rule, for some θ ∈ T2

Ss(p
−1f)(z, w)− Ss(p−1f)(z, w′)

= (w − w′)p−1Ss(∂f/∂y)(z, w) + (w − w′)2p−1Ss(∂2f/∂2y)(θ),

J.É.P. — M., 2020, tome 7



Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows 83

and by Lemma 5.2 for ∂2f/∂2y

|(w − w′)2p−1Ss(∂2f/∂2y)(θ)| 6 Cα,fp−1δ2ws1/2 < T ′−1/3

for s 6 T ′11/10. An analogous reasoning for S[ζs](q
−1f)(x, y)−S[ζs](q

−1f)(x, y′) shows
that (25) follows by showing that there exist D′′, d′′ > 0 such that

(26) |(w − w′)p−1Ss(∂f/∂y)(z, w)− (y − y′)q−1S[ζs](∂f/∂y)(x, y)| > 2d′′

for some s ∈ [0, D′′T ′].
To simplify notation let h = ∂f/∂y. Let χ ∈ (0, 1) be a small number, χ� d′/D′

(d′, D′ from Lemma 5.9). We will consider two cases.
(A)

∣∣|(w − w′)q1/2/(y − y′)p1/2| − 1
∣∣ > χ.

We will (WLOG) assume that |(w − w′)q1/2| > (1 + χ)|(y − y′)p1/2|, the proof in
the case |(w−w′)q1/2| 6 (1−χ)|(y−y′)p1/2| is symmetric and follows the same lines.
Notice that in this case

T ′ 6
2p

q
δ−2w .

Let Vχ/3,ζ > 0 come from Lemma 5.4 and let n0 ∈ [T ′, Vχ/3,ζT
′] be as in the

statement of Lemma 5.4 for g = h. Then

(27) ‖Sn0
(h)‖C0(T2) > (1− χ/3)ζ−1/2‖S[ζn0](h)‖C0(T2).

Let Dχ/3 > 0 come from Lemma 5.3 and let u = u(n0) ∈ {0, . . . , Dχ/3n0} be such
that

(28) |Sn0
(h)(Φuα,β(z, w))| > (1− χ/3)‖Sn0

(h)‖C0(T2).

Let v = [ζ(n0 + u)]− [ζn0]. We will show that

(29) p−1|Sn0
(h)(Φuα,β(z, w))| |w−w′| > (1+χ/100)q−1|S[ζn0](h)(Φvα,β(x, y))| |y−y′|.

Then∣∣(w − w′)p−1Sn0
(h)(Φuα,β(z, w))− (y − y′)q−1S[ζn0](h)(Φvα,β(x, y))

∣∣
> (1− (1 + χ/100)−1)|w − w′|p−1|Sn0

(h)(Φuα,β(z, w))| > d′′|w − w′|n1/20

> d′′(χ)δwT
′1/2 > d′′(χ),

for some d′′(χ) > 0. But then by cocycle identity we know that (26) holds for s = n0
or s = n0 + u and d′(χ) = d′′(χ)/2 > 0.

Therefore, it only remains to show (29). By (28) and (27) and the assumptions
of (A), we have

p−1|Sn0
(h)(Φuα,β(z, w))| |w − w′|

> p−1(1− χ/3)2ζ−1/2‖S[ζn0](h)‖C0(T2) (1 + χ)
p1/2

q1/2
|y − y′|

> q−1(1 + χ/100) |S[ζn0](h)(Φvα,β(x, y))| |y − y′|.

This finishes the proof of (29) and hence also the proof of case (A).
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(B)
∣∣|(w − w′)q1/2/(y − y′)p1/2| − 1

∣∣ 6 χ.
In this case the LHS in (26) is larger than

|w − w′|p−1
∣∣Ss(h)(z, w)− ζ−1/2S[ζs](h)(x, y)

∣∣− χ|y − y′|q−1|S[ζs](h)(x, y)|.

By Lemma 5.9 for T = T ′ and the definition of T ′, there exists an s0 ∈ [0, D′T ′] such
that

|w − w′|p−1
∣∣Ss0(h)(z, w)− ζ−1/2S[ζs0](h)(x, y)

∣∣ > p−1d′.
Moreover, by Lemma 5.2 and the definition of T ′ for h it follows that

χ|y − y′| q−1 |S[ζs0](h)(x, y)| 6 Cα,h(D′)1/2ζ1/2q−1χ < p−1
d′

10
,

if χ > 0 is sufficiently small. This finishes the proof of Lemma 5.10. �

6. Ratner’s property: proof of Theorem 3

In this section we will use the estimates from Section 5 to prove Theorem 3.
We will use Proposition 3.2. Before we do that, we will prove a crucial proposition:
For (x, y), (x′, y′) ∈ T2 denote |x− x′| = δx and |y − y′| = δy.

Proposition 6.1. — For any α ∈ R r Q of bounded type and for any f ∈ W s(T2),
s > 7/2, there exists a constant Dα,f > 0 such that the following holds. For every
(x, y), (x′, y′) ∈ T2, if T := min(δ

−2/3
x , δ−2y ), there exists n0 = n0((x, y), (x′, y′)) ∈

[0, Dα,fT ] ∩ Z such that

(30)
∣∣Sn0

(f)(x, y)− Sn0
(f)(x′, y′)

∣∣ > 1.

Proof. — Denote an = Sn(f)(x, y) − Sn(f)(x′, y′), let η < 1/100 and let Dη > 0

come from Lemma 5.6 for g = ∂f/∂y. Let moreover c′′ > 0 be as in Lemma 5.3 for
g = ∂f/∂y and C ′ > c′′ > 0 be as in Lemma 5.5 for g = f −

∫
T2 fdλT2 . Let k :=

[100T/c′′2]+1. We will show that there existsm ∈ [10C ′k/c′′, (10C ′k/c′′)+Dηk+1]∩Z
such that

(31)
∣∣Sk(f)(Φmα,β(x, y))− Sk(f)(Φmα,β(x′, y′))

∣∣ > 3.

This will finish the proof since then, by cocycle identity |am+k − ak| > 3 and con-
sequently (30) holds for n0 = m + k or n0 = k. By Lemma 5.6 and 5.3 there exists
m1 ∈ [10C ′k/c′′, (10C ′k/c′′) + Dηk + 1] ∩ Z and m2 ∈ [10m1, 10m1 + Dηk + 1] such
that

(32)
∣∣Sk(∂f/∂y)(Φmα,β(x, y))

∣∣ > (1− η)c′′k1/2, for m = m1,m2.

Moreover, since m2 > 10m1, by the triangle inequality we have

max
m∈{m1,m2}

|m(x− x′) + (y − y′)| > max
(m1

2
δx,

δy
2

)
.

Let now m denote the element above which attains the maximum. Since m >
10C ′k/c′′, we have

(33) (1− η)c′′
∣∣m(x− x′) + (y − y′)

∣∣k1/2 > 2C ′δxk
3/2.
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Let zm := (x+mα, y′ +mx′ +m(m− 1)α/2). Notice that

(34) Sk(f)(Φmα,β(x, y))− Sk(f)(Φmα,β(x′, y′)) =
(
Sk(f)(Φmα,β(x, y))− Sk(f)(zm)

)
+
(
Sk(f)(zm)− Sk(f)(Φmα,β(x′, y′))

)
.

By Lemma 5.5 for g = f −
∫
T2 fdλT2 , we have∣∣Sk(f)(Φmα,β(x′, y′))− Sk(f)(zm)

∣∣ 6 C ′δxk3/2.
By Taylor formula (and chain rule), for some θk ∈ T2,

Sk(f)(Φmα,β(x, y))− Sk(f)(zm) = (m(x− x′) + (y − y′))Sk(∂f/∂y)(Φmα,β(x, y))

+ (m(x− x′) + (y − y′))2Sk(∂2f/∂y2)(θk).

Sincem 6 C ′′′T (for some C ′′′ > 0), we have |m(x−x′)+(y−y′)| 6 mδx+δy 6 T−1/3,
for T > 1 large enough, and therefore by Lemma 5.2 for g = ∂f/∂y, we have∣∣(m(x− x′) + (y − y′))2Sk(∂2f/∂y2)(θk)

∣∣ 6 1/100.

Therefore, by (33), (32) and (34), we have∣∣Sk(f)(Φmα,β(x, y))− Sk(f)(Φmα,β(x′, y′))
∣∣

> (1− η)c′′|mδx + δy|k1/2 − 1/100− C ′δxk3/2

>
c′′

3
|mδx + δy| k1/2 − 1/100.

However, since m1 > 10C ′k/c′′ > 10k, we have
c′′

3
|mδx + δy| k1/2 >

c′′

3
max

(m1

2
δx,

δy
2

)
k1/2 > 2,

the last inequality since k = [100T/c′′2] + 1. This finishes the proof of (31) and hence
also the proof of Proposition 6.1. �

Now we can prove Theorem 3:

Proof of Theorem 3. — We will use Proposition 3.2. Fix ε > 0 and N ∈ N. Let Z = T2

(see Definition 3.1), and take any (x, y), (x′, y′)∈T2 with d((x, y), (x′, y′))=δx + δy<δ

(we will specify δ and κ in the proof). Let

(35) T := min(δ−2/3x , δ2y).

Denote ak = Sk(f)(x, y)− Sk(f)(x′, y′) and let Dα,f > 0 be as in Proposition 6.1.
Notice that for every k ∈ [0, 2Dα,fT ], we have

d1((Φkα,β(x, y)), (Φkα,β(x′, y′))) = |x− x′| = δx

and d2((Φkα,β(x, y)), (Φkα,β(x′, y′))) 6 kδx + δy 6 2Dα,fδ
1/3
x + δy,

(36)

hence by Lemma 5.5 and by the cocycle identity, for any ε > 0 there exists δε > 0

such that for δ ∈ (0, δε), we have that |ak+1 − ak| < ε/4 for every k ∈ [0, Dα,fT ].
Since by Proposition 6.1, there exists n0 ∈ [0, Dα,fT ] such that |an0 | > 1, it follows
that there exists M ∈ [0, Dα,fT ] such that

min{|aM + 1|, |aM − 1|} 6 ε/3.
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Notice that by Lemma 5.5, for every N ∈ N there exists δN > 0 such that for
δ ∈ (0, δN ), we have M > N . Let L = κM . Notice that [M,M +L] ⊂ [0, 2Dα,fT ] and
therefore

(37) d(Φnα,β(x, y),Φnα,β(x′, y′)) < ε, for every n ∈ [M,M + L].

Moreover, by the cocycle identity, for every n ∈ [M,M + L], we have

|an − aM | =
∣∣Sn−M (f)(ΦMα,β(x, y))− Sn−M (f)(ΦMα,β(x′, y′))

∣∣.
By Lemma 5.5 (for g = f −

∫
T2 fdλT2), (36) for k = M and (35), we have (since

n−M 6 L = κM 6 Dα,fκT ), there exists κε > 0 such that for κ ∈ (0, κε), we have∣∣Sn−M (f)(ΦMα,β(x, y))− Sn−M (f)(ΦMα,β(x′, y′))
∣∣

6 C ′(Dα,fκT )3/2δx + C ′(Dα,fκT )1/2(2Dα,fδ
1/3
x + δy)

6 C ′(Dα,fκ)3/2 + C ′(Dα,fκ)1/2(2Dα,f + 1) 6 ε/3.

Therefore, for every n ∈ [M,M + L],

|an + 1| 6 |an − aM |+ |aM + 1| 6 ε or |an − 1| 6 |an − aM |+ |aM − 1| 6 ε.

This property, together with (37), finishes the proof of the hypotheses of Proposi-
tion 3.2 and hence also the proof of Theorem 3. �

7. Disjointness: proof of Theorem 4

Notice that if (Φft ) is a special flow over T and under f then (Φfrt) is isomorphic
to (Φr

−1f
t ). We will therefore use Lemma 4.3 for (Φα,p

−1f
t ) and (Φα,q

−1f
t ) (notice that

by Corollary 1.2 we know that (Φα,ft ), and hence also (Φα,p
−1f

t ) and (Φα,q
−1f

t ), are
weakly mixing).

We assume WLOG that ζ = q/p > 1. Recall that for (x, y), (x′, y′) ∈ T2,
δx = |x− x′| and δy = |y − y′|. For the proof of Theorem 4 we need the following
crucial proposition:

Proposition 7.1. — There exists D′′′=D′′′(α, f, p, q) > 0 and d′′′=d′′′(α, f, p, q) > 0

such that for every (x, y), (x′, y′), (z, w), (z, w′) ∈ T2 if

T := min(δ−2/3x , δ−2y , δ−2w ),

then for some s ∈ [0, D′′′T ], we have

(38)
∣∣(Ss(p−1f)(z, w)−Ss(p−1f)(z, w′)

)
−
(
S[ζs](q

−1f)(x, y)−S[ζs](q
−1f)(x′, y′)

)∣∣
> d′′′.

Proof. — Let Cp,q > 1 be a large constant (specified at the end of Case 1). We will
consider the following cases.

J.É.P. — M., 2020, tome 7



Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows 87

Case 1. δw > Cp,q max(δy, δ
1/3
x ) or δw 6 C−1p,q max(δy, δ

1/3
x ).

If δw > Cp,q max(δy, δ
1/3
x ), then T = δ−2w . By Proposition 6.1 for (z, w) and (z, w′)

we have ∣∣Ss(p−1f)(z, w)− Ss(p−1f)(z, w′)
∣∣ > p−1

for some s 6 Dα,fT . Moreover, by Lemma 5.5, for (x, y) and (x′, y′) we have∣∣S[ζs](q
−1f)(x, y)− S[ζs](q

−1f)(x′, y′)
∣∣

6 C ′q−1
(
(ζDα,fT )3/2δx + (ζDα,fT )1/2δy

)
6
C ′q−1ζ3/2D

3/2
α,f

Cp,q
6
p−1

2
,

if Cp,q > 1 is large enough.
Similarly, if δw 6 C−1p,q max(δy, δ

1/3
x ), using Proposition 6.1 for (x, y) and (x′, y′) we

have ∣∣S[ζs](q
−1f)(x, y)− S[ζs](q

−1f)(x′, y′)
∣∣ > q−1,

for some s 6 ζ−1Dα,fT . Moreover, by Lemma 5.5, for (z, w) and (z, w′) we have

∣∣Ss(p−1f)(z, w)− Ss(p−1f)(z, w′)
∣∣ 6 p−1C ′D1/2

α,f ζ
−1/2

Cp,q
6
q−1

2
,

if Cp,q > 1 is large enough. This finishes the proof of Case 1.

Case 2. Cp,q max(δy, δ
1/3
x ) > δw > C−1p,q max(δy, δ

1/3
x ).

Let R′ = R′p,q > 1 be a constant to be specified later (at the end of the proof of
Subcase 1).

We consider two subcases.

Subcase 1. R′δ1/3x 6 δy. — Notice that, by Lemma 5.5, we have, for all k ∈ N,∣∣S[ζk](q
−1f)(x′, y′)− S[ζk](q

−1f)(x, y′)
∣∣ 6 q−1C ′(ζk)3/2δx 6

q−1C ′(ζk)3/2

R′3T 3/2
.

Moreover, in this case we have T = min(δ−2y , δ−2w ), hence by Lemma 5.10, there exists
s ∈ [0, D′′T ] such that∣∣(Ss(p−1f)(z, w)− Ss(p−1f)(z, w′)

)
−
(
S[ζs](q

−1f)(x, y)− S[ζs](q
−1f)(x, y′)

)∣∣ > d′′.
Hence if only q−1C ′(ζD′′T )3/2/R′3T 3/2 6 d′′/2 (which is true if R′ is large enough),
then (38) follows by triangle inequality.

Subcase 2. R′δ1/3x > δy. — Notice that by Lemma 5.5, for every k,m ∈ N

(39)
∣∣Sk(p−1f)(Φmα,β(z, w))− Sk(p−1f)(Φmα,β(z, w′))

∣∣ 6 C ′p−1k1/2δw.
Moreover, for every m ∈ N denote hm = (x′ +mα, y +mx+m(m− 1)α/2). Then

(40) S[ζk](q
−1f)(Φmα,β(x, y))− S[ζk](q

−1f)(Φmα,β(x′, y′))

=
(
S[ζk](q

−1f)(Φmα,β(x, y))− S[ζk](q
−1f)(hm)

)
+
(
S[ζk](q

−1f)(hm)− S[ζk](q
−1f)(Φmα,β(x′, y′))

)
.
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By Lemma 5.5 for g = f −
∫
T2 fdλT2 , we have

(41)
∣∣S[ζk](q

−1f)(Φmα,β(x, y))− S[ζk](q
−1f)(hm)

∣∣ 6 q−1ζ3/2C ′δxk3/2.
By Taylor formula (and the chain rule), for some θk ∈ T2,

(42) S[ζk](q
−1f)(Φmα,β(x′, y′))− S[ζk](q

−1f)(hm)

= (m(x− x′) + (y − y′))S[ζk](q
−1∂f/∂y)(Φmα,β(x′, y′))

+ (m(x− x′) + (y − y′))2S[ζk](q
−1∂2f/∂y2)(θk).

For m 6 T 1+1/10, we have |m(x− x′) + (y − y′)| 6 mδx + δy 6 T−1/3 and therefore,
by Lemma 5.2 for g = ∂2f/∂y2,∣∣(m(x− x′) + (y − y′))2Sk(∂2f/∂y2)(θk)

∣∣ 6 T−1/10.
Let now R′′ � R′ (to be specified later) and let

m ∈ [R′′max(k, T ), R′′max(k, T ) +Dηζk]

(see Lemma 5.6) be such that

S[ζk](q
−1∂f/∂y)(Φmα,β(x′, y′)) > c′q−1ζ1/2k1/2.

Then since R′δ1/3x > δy and we are in Case 2, for R′′ > 1 large enough we have the
inequalities mδx > R′′Tδx > 10δy, hence by (42) we have

(43)
∣∣S[ζk](q

−1f)(Φmα,β(x′, y′))− S[ζk](q
−1f)(hm)

∣∣ > c′

2
q−1ζ1/2k1/2mδx.

Since R′δ1/3x > δy, m > R′′max(k, T ) and we are in Case 2, for R′′ > 1 large enough
we have the following lower bound:

c′

2
q−1ζ1/2k1/2mδx > 10 max(C ′p−1k1/2δw, q

−1ζ3/2C ′k3/2δx)

and, for any k > T , we have (c′/2)q−1ζ1/2k1/2mδx > d′′′ > 0. This, together with
(40), (43), (41) and (39), implies that∣∣(Sk(p−1f)(Φmα,β(z, w))− Sk(p−1f)(Φmα,β(z, w′))

)
−(

S[ζk](q
−1f)(Φmα,β(x, y))− S[ζk](q

−1f)(Φmα,β(x′, y′))
)∣∣ > d′′′/2.

Thus, by cocycle identity, (38) follows for s = k or s = k + m. This finishes the
proof. �

We can now prove Theorem 4.

Proof of Theorem 4. — We will prove that the hypotheses of the disjointness criterion
for special flows given in Lemma 4.3 are satisfied. Theorem 4 will then follow.

Let Ak : (T2, λT2) → (T2, λT2) be given by Ak(x, y) = (x, y + 1/k). Obviously
Ak → Id uniformly. Fix ε > 0 and N ∈ N. Let us consider any (x, y), (x′, y′) ∈ T2

with d((x, y), (x′, y′)) < δ and any (z, w), (z, w′) = Ak(z, w) with k < δ−1. Let

T := min(δ−2/3x , δ−2y , δ−2w ).
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Let us define as := a1,s − a2,s with
a1,s := Ss(p

−1f)(z, w)− Ss(p−1f)(z, w′),

a2,s := S[ζs](q
−1f)(x, y)− S[ζs](q

−1f)(x′, y′).

Let D′′′ > 0 be as in Proposition 7.1. For every s ∈ [0, 2D′′′T ], we have
d2((Φsα,β(z, w)), (Φsα,β(z, w′))) = δw,

d1((Φsα,β(x, y)), (Φsα,β(x′, y′))) = δx

and d2((Φsα,β(x, y)), (Φsα,β(x′, y′))) 6 sδx + δy 6 2D′′′δ1/3x + δy.

(44)

Hence (since f is C1), for every κ > 0 there exists δκ > 0 such that, for δ ∈ (0, δκ)

and for every s ∈ [0, 2D′′′T ], we have

|as+1 − as| < κ.

Thus by Proposition 7.1 there exists M ∈ [0, D′′′T ] such that

min{|aM + d′′′|, |aM − d′′′} 6 ε/3.

This gives (12). Notice that, for any given N ∈ N, there exists δN > 0 such that, for
δ ∈ (0, δN ) we have M > N , and by Lemma 5.5 (for a1,M , a2,M ), by the definition of
T > 0, there exist V > 0, independent of ε > 0, δ > 0 and N ∈ N , such that

|aM | 6 V,

for some V > 0. This gives (11).
Let L = κM . Notice that [0, (1 + ζ)(M + L)] ⊂ [0, 2D′′′T ] and therefore by (44)

d(Φnα,β(x, y),Φnα,β(x′, y′)) < ε, for every n ∈ [0,max(1 + ζ)M + L]

and analogously for (z, w), (z, w′). This gives (13).
By the cocycle identity and by Lemma 5.5, there exists κ′′′ε > 0 such that for

κ ∈ (0, κ′′′ε ), for all u,w ∈ [0, 2ζ(M + L)] with |u− w| 6 κM , we have

|a1,w − a1,u| =
∣∣Sw−u(p−1f)(Φuα,β(z, w))− Sw−u(p−1f)(Φuα,β(z, w′))

∣∣
6 C ′′|u− w|1/2δw 6 C ′′κ1/2D1/2T 1/2δw 6 ε.

Analogously we show that |a2,u − a2,w| 6 ε/10:

|a2,w − a2,u| =
∣∣Sζw,u(q−1f)(Φ

[ζu]
α,β (x, y))− Sζw,u(q−1f)(Φ

[ζu]
α,β (x′, y′))

∣∣,
for some ζw,u 6 ζC0|w − u|. By Lemma 5.5 (for g = f −

∫
T2 fdλT2) and (44) for

s = [ζM ], there exist C ′′ > 0 and κ′ε > 0 such that for κ ∈ (0, κ′′ε ), we have (since
|w − u| 6 L = κM 6 D′′′κT ) (for some C ′′′ > 0)∣∣Sζw,u(q−1f)(Φ

[ζu]
α,β (x, y))− Sζw,u(q−1f)(Φ

[ζu]
α,β (x, y′))

∣∣
6 C ′′′(D′′′κT )3/2δx + C ′′′(D′′′κT )1/2(2D′′′δ1/3x + δy)

6 C ′′′(D′′′κ)3/2 + κ1/2C ′′′D′′′(2D′′′ + 1) 6 ε/10.

This finishes the proof of (14) and hence by Lemma 4.3 completes the proof of
Theorem 4. �
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