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Journées Équations aux dérivées partielles
Roscoff, 30 mai–3 juin 2016
GDR 2434 (CNRS)

A note on KAM for gravity-capillary water waves
Riccardo Montalto

Abstract

We present the result and the ideas of the recent paper [8] (obtained in collaboration with
M. Berti) concerning the existence of Cantor families of small amplitude time quasi-periodic
standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional
ocean, with infinite depth, in irrotational regime, under the action of gravity and surface
tension at the free boundary. These quasi-periodic solutions are linearly stable.

1. Introduction

Consider a 2-dimensional ocean, with infinite depth, filled by an incompressible fluid, in irrotational
regime, under the action of gravity and capillarity at the surface. The fluid satisfies periodic
boundary conditions and occupies the free boundary region

Dη :=
{

(x, y) ∈ T× R : y < η(t, x) , T := R/(2πZ)
}
.

Since the velocity field is irrotational, it is the gradient of a velocity potential Φ(t, x, y). The
incompressibility condition means that Φ is an harmonic function on Dη. In this context, the Euler
equation for the motion of the fluid reduces to the Bernoulli equation. The water waves equations
are 

∂tΦ + 1
2 |∇Φ|2 + gη = κ

ηxx
(1 + η2

x)3/2 at y = η(x)

∆Φ = 0 in Dη
∇Φ→ 0 as y → −∞
∂tη = ∂yΦ− ∂xη · ∂xΦ at y = η(x)

(1.1)

where g is the acceleration of gravity, κ ∈ [κ1, κ2], κ1 > 0, is the surface tension coefficient and
ηxx

(1 + η2
x)3/2 = ∂x

(
ηx√

1 + η2
x

)
is the mean curvature of the free surface. The unknowns of the problem are the free surface y = η(x)
and the velocity potential Φ : Dη → R. The first equation in (1.1) is the Bernoulli condition (also
called dynamics condition) according to which the jump of pressure across the free surface is
proportional to the mean curvature. The last equation in (1.1) (also called kynematic condition)
expresses that the velocity of the free surface coincides with the one of the fluid particles, and
therefore the fluid particles on the free surface y = η(x, t) remain on it along the fluid evolution.
In the sequel we shall assume (with no loss of generality) that the gravity constant g = 1.

Following Zakharov [35] and Craig-Sulem [14], the evolution problem (1.1) may be written as
an infinite dimensional Hamiltonian system. At each time t ∈ R the profile η(t, x) of the fluid and
the value

ψ(t, x) = Φ(t, x, η(t, x))

MSC 2000: 76B15, 37K55, 76D45, 37K50.
Keywords: KAM for PDEs, water waves, quasi-periodic solutions.

VII–1

http://www.cnrs.fr


of the velocity potential Φ restricted to the free boundary uniquely determine the velocity potential
Φ in the whole Dη, solving (at each t) the elliptic problem

∆Φ = 0 in Dη, Φ(x+ 2π, y) = Φ(x, y) , Φ|y=η = ψ, ∇Φ(x, y)→ 0 as y → −∞ .

As proved in [35], [14], system (1.1) is then equivalent to the system
∂tη = G(η)ψ,

∂tψ + η + 1
2ψ

2
x −

1
2

(
G(η)ψ + ηxψx

)2
1 + η2

x

= κ
ηxx

(1 + η2
x)3/2

(1.2)

where G(η) is the so-called Dirichlet–Neumann operator defined by

G(η)ψ(x) :=
√

1 + η2
x ∂nΦ|y=η(x) = (∂yΦ)(x, η(x))− ηx(x) (∂xΦ)(x, η(x))

(we denote by ηx the space derivative ∂xη.) The operator G(η) is linear in ψ, self-adjoint with
respect to the L2 scalar product and semi positive definite, actually its Kernel are only the con-
stants. It depends in a analytic way with respect to the free boundary η(x) and its derivative with
respect to η is

dηG(η)[η̂]ψ = −G(η)(Bη̂)− ∂x(V η̂) (1.3)
where

B := B(η, ψ) := ηxψx +G(η)ψ
1 + η2

x

, V := V (η, ψ) := ψx −Bηx. (1.4)

The vector (V,B) = ∇x,yΦ is the velocity field evaluated at the free surface y = η(x). It is well
known since Calderon that the Dirichlet-Neumann operator G(η) is a pseudo-differential operator
with principal symbol |D|, actually G(η)− |D| ∈ OPS−∞, if η is C∞.

The equations (1.2) are the Hamiltonian system (see [35], [14])
∂tη = ∇ψH(η, ψ) , ∂tψ = −∇ηH(η, ψ)

∂tu = J∇uH(u) , u :=
(
η
ψ

)
, J :=

(
0 Id
−Id 0

)
, (1.5)

where ∇ denotes the L2-gradient, and the Hamiltonian

H(η, ψ) := 1
2(ψ,G(η)ψ)L2(Tx) +

∫
T

η2

2 dx+ κ

∫
T

√
1 + η2

x dx (1.6)

is the sum of the kinetic energy

K := 1
2(ψ,G(η)ψ)L2(Tx) = 1

2

∫
Dη
|∇Φ|2(x, y)dxdy ,

the potential energy and the energy of the capillarity forces (area surface integral) expressed
in terms of the variables (η, ψ). In light of (1.5) the variables (η, ψ) are symplectic “Darboux
coordinates” and the symplectic structure is the standard Darboux 2-form

W(u1, u2) := (u1, Ju2)L2(Tx) = (η1, ψ2)L2(Tx) − (ψ1, η2)L2(Tx) (1.7)
for all u1 = (η1, ψ1), u2 = (η2, ψ2).

The water-waves system (1.2)-(1.5) exhibits several symmetries. First of all, the mass∫
T
η dx

is a prime integral of (1.2). Moreover

∂t

∫
T
ψ dx = −

∫
T
η dx−

∫
T
∇ηK dx = −

∫
T
η dx

because
∫
T∇ηK dx = 0. This follows because R 3 c 7→ K(c+ η, ψ) is constant (the bottom of the

ocean is at −∞) and so 0 = dηK(η, ψ)[1] = (∇ηK, 1)L2(T). As a consequence the subspace∫
T
η dx =

∫
T
ψ dx = 0 (1.8)

is invariant under the evolution of (1.2) and we shall restrict to solutions satisfying (1.8).
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In addition, the subspace of functions which are even in x,

η(x) = η(−x) , ψ(x) = ψ(−x) , (1.9)

is invariant under (1.2). Thus we restrict (η, ψ) to the phase space of 2π-periodic even functions
with zero mean, i.e. which admit the Fourier expansion

η(x) =
∑

j≥1
ηj cos(jx) , ψ(x) =

∑
j≥1

ψj cos(jx) . (1.10)

In this case also the velocity potential Φ(x, y) is even and 2π-periodic in x and so the x-component
of the velocity field v = (Φx,Φy) vanishes at x = kπ, ∀k ∈ Z. Hence there is no flux of fluid
through the lines x = kπ, k ∈ Z, and a solution of (1.2) satisfying (1.10) physically describes the
motion of a liquid confined between two walls.

Another important symmetry of the capillary-gravity water waves system is reversibility, namely
the equations (1.2)-(1.5) are reversible with respect to the involution ρ : (η, ψ) 7→ (η,−ψ), or,
equivalently, the Hamiltonian is even in ψ:

H ◦ ρ = H , H(η, ψ) = H(η,−ψ) , ρ : (η, ψ) 7→ (η,−ψ) . (1.11)

As a consequence it is natural to look for solutions of (1.2) satisfying

u(−t) = ρu(t) , i.e. η(−t, x) = η(t, x) , ψ(−t, x) = −ψ(t, x) , ∀t, x ∈ R , (1.12)

namely η is even in time and ψ is odd in time. Solutions of the water waves equations (1.2)
satisfying (1.10) and (1.12) are called capillary-gravity standing water waves.

Existence of small amplitude time periodic pure gravity (without surface tension) standing
wave solutions has been proved by Iooss, Plotnikov, Toland in [23], see also [19], [20], and in [30] in
finite depth. Existence of time periodic capillary-gravity standing wave solutions has been recently
proved by Alazard-Baldi [1]. The above results are proved via a Lyapunov Schmidt decomposition
combined with a Nash-Moser iterative scheme.

In [8] we have extended this result proving the existence of also time quasi-periodic capillary-
gravity standing wave solutions of (1.2) as well as their linear stability. This is the result presented
in Theorem 1.1. The reducibility of the linearized equations at the quasi-periodic solutions is not
only an interesting dynamical information but it is also the key for the existence proof.

We also mention that existence of small amplitude 2-d travelling gravity water wave solutions
dates back to Levi-Civita [24] (standing waves are not traveling because they are even in space,
see (1.9)). Existence of small amplitude 3-d traveling gravity-capillary water wave solutions with
space periodic boundary conditions has been proved by Craig-Nicholls [13] (it is not a small divisor
problem) and by Iooss-Plotinikov [21]-[22] in the case of zero surface tension (in such a case it is
a small divisor problem).

The first existence results of quasi-periodic solutions of PDEs with unbounded perturbations (i.e.
the nonlinearity contains derivatives) has been obtained by Kuksin [28] for KdV, see also Kappeler-
Pöschel [26], by Liu-Yuan [25], Zhang-Gao-Yuan [36] for derivative NLS, by Berti-Biasco-Procesi
[9]-[10] for derivative NLW. All these previous results still refer to semilinear perturbations, i.e.
the order of the derivatives in the nonlinearity is strictly lower than the order of the constant
coefficient (integrable) linear differential operator.

For quasi-linear, also fully nonlinear, perturbations the first KAM results have been recently
proved by Baldi-Berti-Montalto in [3], [5], [6] (see also [2], [4]) for Hamiltonian perturbations of
Airy, KdV and mKdV equations. These techniques have been applied by Feola-Procesi [18] also
to quasi-linear perturbations of 1-d Schrödinger equations and by Montalto [29] to the Kirchhoff
equation.

The gravity-capillary water waves system (1.2) is indeed a quasi-linear PDE. In suitable complex
coordinates (having introduced the good unknown of Alinach) it can be written in the symmetric
form

ut = iT (D)u +N(u, ū) , u ∈ C ,

where
T (D) := |D|1/2(1− κ∂xx)1/2
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is the Fourier multiplier which describes the linear dispersion relation of the water waves equations
linearized at (η, ψ) = 0 (see (1.13)-(1.16)), and the nonlinearity N(u, ū) depends on the highest
order term |D|3/2u as well.

1.1. Main result

We look for small amplitude quasi-periodic solutions of (1.2), and therefore it is of main importance
the dynamics of the linearized system at the equilibrium (η, ψ) = (0, 0) (flat ocean and fluid at
rest), namely {

∂tη = G(0)ψ,
∂tψ + η = κηxx

(1.13)

where G(0) = |Dx| is the Dirichlet-Neumann operator at the flat surface η = 0, namely

|Dx| cos(jx) = |j| cos(jx), |Dx| sin(jx) = |j| sin(jx) , ∀j ∈ Z .

In compact Hamiltonian form, the system (1.13) reads

∂tu = JΩu , Ω :=
(

1− κ∂xx 0
0 G(0)

)
, (1.14)

which is the Hamiltonian system generated by the quadratic Hamiltonian (see (1.6))

HL := 1
2(u,Ωu)L2(Tx) = 1

2(ψ,G(0)ψ)L2(Tx) + 1
2

∫
T

(
η2 + κη2

x

)
dx . (1.15)

The standing wave solutions of the linear system (1.13) are

η(t, x) =
∑

j≥1
aj cos(ωjt) cos(jx), ψ(t, x) = −

∑
j≥1

ajj
−1ωj sin(ωjt) cos(jx) ,

where aj ∈ R, and the linear frequencies of oscillations are

ωj := ωj(κ) :=
√
j(1 + κj2) , j ≥ 1 . (1.16)

Fix an arbitrary finite subset S+ ⊂ N+ := {1, 2, . . .} (tangential sites) and consider the linear
standing wave solutions

η(t, x) =
∑
j∈S+

√
ξj cos(ωjt) cos(jx), ψ(t, x) = −

∑
j∈S+

√
ξjj
−1ωj sin(ωjt) cos(jx) , ξj > 0 , (1.17)

which are Fourier supported in S+. The main result of [8] proves that such linear standing wave
solutions can be continued to solutions of the nonlinear water-waves Hamiltonian system (1.2) for
most values of the surface tension parameter κ ∈ [κ1, κ2]. Theorem 1.1 below states the existence
of quasi-periodic solutions

u(ω̃t, x) = (η, ψ)(ω̃t, x)
of (1.2), with frequency ω̃ := (ω̃j)j∈S+ (to be determined), close to the solutions (1.17) of (1.13),
for most values of the surface tension parameter κ ∈ [κ1, κ2].

Let ν := |S+| denote the cardinality of S+. The function u(ϕ, x) = (η, ψ)(ϕ, x), ϕ ∈ Tν , belongs
to the Sobolev spaces of (2π)ν+1-periodic real functions

Hs(Tν+1,R2) :=
{
u = (η, ψ) : η, ψ ∈ Hs

}
Hs := Hs(Tν+1,R) =

{
f =

∑
(`,j)∈Zν+1

f̂`j e
i(`·ϕ+jx) : ‖f‖2s :=

∑
(`,j)∈Zν+1

|f̂`j |2〈`, j〉2s < +∞
}
(1.18)

where 〈`, j〉 := max{1, |`|, |j|} with |`| := maxi=1,...,ν |`i|. For

s ≥ s0 :=
[ν + 1

2

]
+ 1 ∈ N

the Sobolev spaces Hs ⊂ L∞(Tν+1) are an algebra with respect to the product of functions.
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Theorem 1.1. (KAM for capillary-gravity periodic standing water waves [8]) For every
choice of finitely many tangential sites S+ ⊂ N+, there exists s̄ > s0, ε0 ∈ (0, 1) such that for every
|ξ| ≤ ε2

0, ξ := (ξj)j∈S+ , there exists a Cantor like set G ⊂ [κ1, κ2] with asymptotically full measure
as ξ → 0, i.e.

lim
ξ→0
|G| = κ2 − κ1 ,

such that, for any surface tension coefficient κ ∈ G, the capillary-gravity system (1.2) has a
time quasi-periodic standing wave solution u(ω̃t, x) = (η(ω̃t, x), ψ(ω̃t, x)), with Sobolev regular-
ity (η, ψ)(ϕ, x) ∈ H s̄(Tν × T,R2), of the form

η(ω̃t, x) =
∑

j∈S+

√
ξj cos(ω̃jt) cos(jx) + o(

√
|ξ|),

ψ(ω̃, x) = −
∑

j∈S+

√
ξjj
−1ωj sin(ω̃jt) cos(jx) + o(

√
|ξ|)

(1.19)

with a diophantine frequency vector ω̃ := ω̃(κ, ξ) ∈ Rν satisfying ω̃j − ωj(κ) → 0, j ∈ S+, as
ξ → 0. The terms o(

√
|ξ|) are small in H s̄(Tν × T,R2). In addition these quasi-periodic solutions

are linearly stable.

Let us make some comments.

1. No global in time existence results concerning the initial value problem of the water waves
equations (1.2) under periodic boundary conditions are known so far. The present Nash-
Moser-KAM iterative procedure selects many values of the surface tension parameter κ ∈
[κ1, κ2] which give rise to the quasi-periodic solutions (1.19), which are defined for all times.

The fact that we find quasi-periodic solutions restricting to a proper subset of parameters
is not a technical issue. The capillary-gravity water-waves equations (1.2) are not expected
to be integrable (albeit a rigorous proof is still lacking): yet the third order Birkhoff normal
form possesses multiple resonant triads (Wilton ripples), see Craig-Sulem [15].

2. In the proof of Theorem 1.1 all the estimates depend on the surface tension coefficient
κ > 0 and the result does not hold at the limit of zero surface tension κ → 0. Because of
capillarity the linear frequencies (1.16) grow asymptotically ∼

√
κj3/2 as j → +∞. Without

surface tension the linear frequencies grow asymptotically as ∼ j1/2 and a different proof is
required.

3. The quasi-periodic solutions (1.19) are mainly supported in Fourier space on the tangential
sites S+. The dynamics of the water waves equations (1.2) restricted to the symplectic
subspaces

HS+ :=
{
v =

∑
j∈S+

(
ηj
ψj

)
cos(jx)

}
, H⊥S+ :=

{
z =

∑
j∈N\S+

(
ηj
ψj

)
cos(jx) ∈ H1

0 (Tx)
}
, (1.20)

is quite different. We call v ∈ HS+ the tangential variable and z ∈ H⊥S+ the normal one.
On the finite dimensional subspace HS+ we shall describe the dynamics by introducing the
action-angle variables (θ, I) ∈ Tν × Rν as in (2.2). The quasi-periodic solutions (1.19) of
(1.2) are therefore close to Tν×{ξ}×{z = 0}, ξ ∈ Rν+. On the infinite dimensional subspace
H⊥S+ the solution stays forever close to the elliptic equilibrium z = 0, in some Sobolev norm.

A first key observation is that, for most values of the surface tension parameter κ ∈ [κ1, κ2],
the unperturbed linear frequencies (1.16), regrouped into the tangential and normal com-
ponents

~ω(κ) := (ωj(κ))j∈S+ , ~Ω(κ) := (Ωj(κ))j∈N+\S+ := (ωj(κ))j∈N+\S+ , (1.21)
respectively, are diophantine, namely

|~ω(κ) · `| ≥ γ

|`|τ
, ∀` ∈ Zν \ {0} ,

and satisfy also non-resonance conditions between the tangential and the normal frequencies,
called first and second order Melnikov non-resonance conditions, see (2.11). For such values
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of κ ∈ [κ1, κ2], the solutions (1.17) of the linear equation (1.13) are already sufficiently good
approximate quasi-periodic solutions of the nonlinear water waves system (1.2). Since the
parameter space [κ1, κ2] is fixed, the small divisor constant γ can be taken γ = o(εa) with
a > 0 small as needed. As a consequence for proving the continuation of (1.17) to solutions
of the nonlinear water waves system (1.2), all the terms which are at least quadratic in
(1.2) are already perturbative (i.e. in (2.1) it is sufficient to regard the vector field εXPε as
a perturbation of the linear vector field JΩ).

Linear stability. The quasi-periodic solutions u(ω̃t) = (η(ω̃t), ψ(ω̃t)) found in Theorem 1.1 are
linearly stable. This is not only a dynamically relevant information but also an essential ingredient
of the existence proof (it is not necessary for time periodic solutions as in [1], [19], [20], [23]). Let
us state precisely the result. Around each invariant torus there exist symplectic coordinates

(φ, y, w) = (φ, y, η, ψ) ∈ Tν × Rν ×H⊥S+

(see [11]) in which the water waves Hamiltonian reads

ω · y + 1
2K20(φ)y · y +

(
K11(φ)y, w

)
L2(Tx) + 1

2
(
K02(φ)w,w

)
L2(Tx) +K≥3(φ, y, w)

where K≥3 collects the terms at least cubic in the variables (y, w). In these coordinates the quasi-
periodic solution reads t 7→ (ωt, 0, 0) (for simplicity we denote the frequency ω̃ of the quasi-periodic
solution by ω) and the corresponding linearized water waves equations are

φ̇ = K20(ωt)[y] +KT
11(ωt)[w]

ẏ = 0
ẇ = JK02(ωt)[w] + JK11(ωt)[y] .

Thus the actions y(t) = y(0) do not evolve in time and the third equation reduces to the forced
PDE

ẇ = JK02(ωt)[w] + JK11(ωt)[y(0)] . (1.22)
The self-adjoint operator K02(ωt) is, up to a finite dimensional remainder, the restriction to H⊥S+

of the linearized water-waves vector field ∂u∇H(u(ωt)), which is explicitly computed in (2.17).
Denote Hs

⊥ := Hs
⊥(Tx) := Hs(Tx) ∩ H⊥S (real or complex valued). We prove the existence of

bounded and invertible maps Wm,∞(ϕ), m = 1, 2 such that ∀ϕ ∈ Tν , s ≥ s0,

Wm,∞(ϕ) :
(
Hs(Tx,C)×Hs(Tx,C)

)
∩H⊥S+

→
(
Hs(Tx,R)×Hs− 1

2 (Tx,R)
)
∩H⊥S+

, (1.23)

W−1
m,∞(ϕ) :

(
Hs(Tx,R)×Hs− 1

2 (Tx,R)
)
∩H⊥S+

→
(
Hs(Tx,C)×Hs(Tx,C)

)
∩H⊥S+

, (1.24)

and such that, under the quasi-periodic in time change of variables

w = (η, ψ) = W1,∞(ωt)w∞ , w∞ = (w∞, w∞) ,

the equation (1.22) transforms into the diagonal system

∂tw∞ = −iD∞w∞ + f∞(ωt) , f∞(ωt) := W2,∞(ϕ)(ωt)−1JK11(ωt)[y(0)] =
(
f∞(ωt)
f∞(ωt)

)
(1.25)

where, denoting S0 := S+ ∪ (−S+) ∪ {0} ⊆ Z,

D∞ :=
(
D∞ 0

0 −D∞

)
, D∞ := diagj∈Sc0{µ

∞
j } , µ∞j ∈ R , (1.26)

is a Fourier multiplier operator of the form

µ∞j := m∞3
√
|j|(1 + κj2) + m∞1 |j|

1
2 + r∞j , j ∈ Sc0 , r∞j = r∞−j , (1.27)

where, for some a > 0,

m∞3 = 1 +O(εa) , m∞1 = O(εa) , sup
j∈Sc0
|r∞j | = O(εa) ,

see (2.12)-(2.13). The iµ∞j are the Floquet exponents of the quasi-periodic solution. The fact that
they are purely imaginary is a consequence of the reversible structure of the water waves equations.
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The second equation of system (1.25) is actually the complex conjugated of the first one, and
(1.25) reduces to the infinitely many decoupled scalar equations

∂tw∞,j = −iµ∞j w∞,j + f∞,j(ωt) , ∀j ∈ Sc0 .

By variation of constants the solutions are

w∞,j(t) = cje
−iµ∞j t + v∞,j(t) where v∞,j(t) :=

∑
`∈Zν

f∞,j,` eiω·`t

i(ω · `+ µ∞j ) , ∀j ∈ Sc0 . (1.28)

Since the first Melnikov conditions (2.11) are satisfied at a solution, the denominators in (1.28) are
different from zero and v∞,j(t) is well defined. Moreover (1.23) implies ‖f∞(ωt)‖Hsx×Hsx ≤ C|y(0)|.
As a consequence the Sobolev norm of the solution of (1.25) with initial condition w∞(0) ∈
Hs0(Tx), s0 < s (in a suitable range of values), satisfies

‖w∞(t)‖Hs0
x ×H

s0
x
≤ C(s)(|y(0)|+ ‖w∞(0)‖Hs0

x ×H
s0
x

) ,

and, for all t ∈ R, using (1.23), (1.24), we get

‖(η, ψ)(t)‖
H

s0
x ×H

s0− 1
2

x

≤ ‖(η(0), ψ(0))‖
H

s0
x ×H

s0− 1
2

x

which proves the linear stability of the quasi-periodic solution. Note that the profile η ∈ Hs0(Tx)
is more regular than the velocity potential ψ ∈ Hs0− 1

2 (Tx), as it is expected in presence of surface
tension.

Clearly a crucial point is the diagonalization of (1.22) into (1.26). With respect to [1] this
requires to analyze more in detail the pseudo-differential nature of the operators obtained after
each conjugation and to implement a KAM scheme with second order Melnikov non-resonance
conditions, as we shall explain in detail below. We now present the main ideas of the proof.
Acknowledgements. This research was partially supported by the Swiss National Foundation (SNF).

2. Ideas of the proof

We prove Theorem 1.1 by a Nash-Moser iterative scheme in Sobolev spaces formulated as a “Theo-
rem of hypothetic conjugation” á la Herman (section 2.1) plus a degenerate KAM theory argument
to perform the measure estimates with respect to the 1-dimensional parameter κ ∈ [κ1, κ2]. The
core of the Nash-Moser scheme is to prove that the linearized operators obtained at any approx-
imate solution are invertible, with an inverse that satisfies tame estimates in Sobolev spaces. We
explain how to prove this property in section 2.3.

First of all, instead of working in a shrinking neighborhood of the origin, it is a convenient
devise to rescale the variable u 7→ εu with u = O(1), writing (1.2), (1.5) as

∂tu = JΩu+ εXPε(u) (2.1)

where JΩ is defined in (1.14) and XPε(u) is the Hamiltonian vector field generated by the Hamil-
tonian

Hε(u) := ε−2H(εu) = HL(u) + εPε(u)
where H is the water-waves Hamiltonian (1.6) and HL is defined in (1.15).

We decompose the phase space as in (1.20),

H1
0,even = HS+ ⊕H⊥S+ ,

and we introduce action-angle variables on the tangential sites by setting

ηj :=
√

2
π

Λ1/2
j

√
ξj + Ij cos(θj), ψj := −

√
2
π

Λ−1/2
j

√
ξj + Ij sin(θj) ,

Λj :=
√
j(1 + κj2)−1 , j ∈ S+ , (2.2)

where ξj > 0, j = 1, . . . , ν, are positive constants, and |Ij | < ξj . The symplectic 2-form in (1.7)
then reads

W :=
(∑

j∈S+
dθj ∧ dIj

)
⊕W|H⊥

S+
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and the Hamiltonian system (2.1) transforms into the new Hamiltonian system
θ̇ = ∂IHε(θ, I, z) , İ = −∂θHε(θ, I, z) , zt = J∇zHε(θ, I, z) (2.3)

generated by the Hamiltonian
Hε := Hε ◦A = ε−2H ◦ εA (2.4)

where

A(θ, I, z) := v(θ, I) + z :=
∑
j∈S+

√
2
π

(
Λ1/2
j

√
ξj + Ij cos(θj)

−Λ−1/2
j

√
ξj + Ij sin(θj)

)
cos(jx) + z . (2.5)

We denote by
XHε := (∂IHε,−∂θHε, J∇zHε)

the Hamiltonian vector field in the variables (θ, I, z) ∈ Tν ×Rν ×H⊥S+ . The involution ρ in (1.11)
becomes

ρ̃ : (θ, I, z) 7→ (−θ, I, ρz) . (2.6)
By (1.6) and (2.4) the Hamiltonian Hε reads (up to a constant which is irrelevant for the dynamics)

Hε = N + εP , N := HL ◦A = ~ω(κ) · I + 1
2(z,Ωz)L2

x
, P := Pε ◦A , (2.7)

where ~ω(κ) is the vector of the tangential linear frequencies defined in (1.21) and Ω is the linear
operator in (1.14). We look for an embedded invariant torus

i : Tν → Tν × Rν ×H⊥S+ , ϕ 7→ i(ϕ) := (θ(ϕ), I(ϕ), z(ϕ))
of the Hamiltonian system (2.3) filled by quasi-periodic solutions with some diophantine frequency
ω ∈ Rν .

2.1. Nash-Moser theorem of hypothetic conjugation
The Hamiltonian Hε in (2.7) is a perturbation of the isochronous system with Hamiltonian N .
The expected quasi-periodic solutions of the corresponding Hamiltonian system (2.3) will have a
shifted frequency vector ω -to be found- close to the vector ~ω(κ) of the linear frequencies in (1.21),
which depend on the nonlinear term P and the amplitudes ξj .

In view of that we introduce the family of Hamiltonians

Hα := Nα + εP , Nα := α · I + 1
2(z,Ωz)L2

x
, α ∈ Rν , (2.8)

which depend on a constant vector α ∈ Rν . For the value α = ~ω(κ) we have Hα = Hε. Then we
look for a zero (i, α) of the nonlinear operator

F(i, α) := F(i, α, ω, κ, ε) := ω ·∂ϕi(ϕ)−XHα = ω ·∂ϕi(ϕ)− (XNα + εXP )(i(ϕ)) (2.9)

:=

 ω ·∂ϕθ(ϕ)− α− ε∂IP (i(ϕ))
ω ·∂ϕI(ϕ) + ε∂θP (i(ϕ))

ω ·∂ϕz(ϕ)− J(Ωz + ε∇zP (i(ϕ)))


for some diophantine vector ω ∈ Rν . If F(i, α) = 0 then ϕ 7→ i(ϕ) is an embedded torus, invariant
for the Hamiltonian vector field XHα , filled by quasi-periodic solutions with frequency ω.

Since each Hamiltonian Hα in (2.8) is reversible, we look for reversible solutions of F(i, α) = 0,
namely satisfying %̃i(ϕ) = i(−ϕ) (see (2.6)), i.e.

θ(−ϕ) = −θ(ϕ) , I(−ϕ) = I(ϕ) , z(−ϕ) = (%z)(ϕ) . (2.10)
The Sobolev norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ)− (ϕ, 0, 0) := (Θ(ϕ), I(ϕ), z(ϕ)) , Θ(ϕ) := θ(ϕ)− ϕ ,
is

‖I‖s := ‖Θ‖Hsϕ + ‖I‖Hsϕ + ‖z‖s
where ‖z‖s := ‖z‖Hsϕ,x = ‖η‖s + ‖ψ‖s, see (1.18). Our goal is to prove that, for ε small enough,
for “most” parameters (ω, κ) in a suitable Cantor-like Cγ∞, there exists a value of the constants
α := α∞(ω, κ, ε) ' ω and a ν-dimensional embedded torus T = i∞(Tν) close to Tν × {0} × {0},
invariant for the Hamiltonian vector field XH(α∞(ω,κ,ε),·) and supporting quasi-periodic solutions
with frequency ω. This is equivalent to look for zeros of the nonlinear operator F(i, α, ω, κ, ε) = 0

VII–8



defined in (2.9). This equation is solved by a Nash-Moser iterative scheme. The value of α :=
α∞(ω, κ, ε) is adjusted along the iteration in order to control the average of the first component
of the Hamilton equation (2.9).

The set of parameters (ω, κ) ∈ Cγ∞ for which the invariant torus exists has an explicit form and
it depends only on the final torus i∞. Its explicit expression is given by

Cγ∞ :=
{

(ω, κ) ∈ Ω× [κ1, κ2] : |ω · `| ≥ γ〈`〉−τ , ∀` ∈ Zν \ {0}, (2.11)

|ω · `+ µ∞j (ω, κ)| ≥ 4γj 3
2 〈`〉−τ , ∀` ∈ Zν , j ∈ N+ \ S+ (1-Melnikov conditions)

|ω · `+ µ∞j (ω, κ)− ςµ∞j′ (ω, κ)| ≥ 4γ|j 3
2 − ςj′ 32 |
〈`〉τ

,∀` ∈ Zν , j, j′ ∈ N+ \ S+, ς = ±1 ,

(2-Melnikov)
}

where
Ω :=

{
ω ∈ Rν : dist

(
ω, ~ω[κ1, κ2]

)
< δ , δ > 0

}
and µ∞j : Ω× [κ1, κ2]→ R, j ∈ N+ \ S+ are k0-times differentiable functions of the form

µ∞j (ω, κ) = m∞3 (ω, κ)j 1
2 (1 + κj2) 1

2 + m∞1 (ω, κ)j 1
2 + r∞j (ω, κ) (2.12)

satisfying
m∞3 − 1, m∞1 = O(ε) , sup

j∈Sc
|r∞j | = O(ε) , (2.13)

where k0 ∈ N is an absolute constant fixed by the degenerate KAM theory of Section 2.2.
In order to prove the existence of quasi-periodic solutions of the water waves equation (1.2), and
not only of the system with modified Hamiltonian Hα with α := α∞(ω, κ, ε), we have then to
prove that the curve of the unperturbed linear frequencies

[κ1, κ2] 3 κ 7→ ~ω(κ) := (
√
j(1 + κj2))j∈S+ ∈ Rν

intersects the image α∞(Cγ∞), under the map α∞ of the Cantor set Cγ∞, for “most” values of
κ ∈ [κ1, κ2], namely we have to estimate the measure of the set

Gε :=
{
κ ∈ [κ1, κ2] : α−1

∞ (~ω(κ), κ) ∈ Cγ∞
}

(2.14)

This is proved by using degenerate KAM theory. For any value of the parameter κ in Gε, we have
found a quasi-periodic solution of (1.2) with diophantine frequency ωε(κ) := α−1

∞ (~ω(κ), κ).
The above functional setting perspective is in the spirit of the Théoréme de conjugaison hy-

pothétique of Herman proved by Fejoz [17] for finite dimensional Hamiltonian systems, see also the
discussion in [11]. A relevant difference is that in [17], in addition to α, also the normal frequen-
cies are introduced as independent parameters, unlike in our strategy. Actually for PDEs it seems
more convenient the present formulation: it is a major point of the work to know the asymptotic
expansion (1.27) of the Floquet exponents.

2.2. Degenerate KAM theory
A first key observation is that, for most values of the surface tension parameter κ ∈ [κ1, κ2],
the unperturbed linear frequencies (1.16) are diophantine and satisfy also first and second order
Melnikov non-resonance conditions. More precisely the unperturbed tangential frequency vector
~ω(κ) := (ωj(κ))j∈S+ satisfies

|~ω(κ) · `| ≥ γ〈`〉−τ , ∀` ∈ Zν \ {0},

and it is non-resonant with the normal frequencies
~Ω(κ) := (Ωj(κ))j∈N+\S+ = (ωj(κ))j∈N+\S+ ,

i.e.

|~ω(κ) · `+ Ωj(κ)| ≥ γj 3
2 〈`〉−τ , ∀` ∈ Zν , j ∈ N+ \ S+ ,

|~ω(κ) · `+ Ωj(κ)± Ωj′(κ)| ≥ γ|j 3
2 ± j′ 32 |〈`〉−τ ,∀` ∈ Zν , j, j′ ∈ N+ \ S+ .
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This is a problem of diophantine approximation on submanifolds. It can be solved by degenerate
KAM theory (explained below) exploiting that the linear frequencies κ 7→ ωj(κ) are analytic, sim-
ple, grow asymptotically as j3/2 and are non-degenerate in the sense of Bambusi-Berti-Magistrelli
[7]. This is verified as in [7] by using a Van der Monde determinant. We deduce that ∃k0 > 0,
ρ0 > 0 such that, for all κ ∈ [κ1, κ2],

max
0≤k≤k0

∣∣∂kκ(~ω(κ) · `+ Ωj(κ)− Ωj′(κ)
)∣∣ ≥ ρ0〈`〉 , ∀(`, j, j′) 6= (0, j, j), j, j′ ∈ N+ \ S+ , (2.15)

and similarly for the 0-th, 1-th and the 2-th order Melnikov non-resonance condition with the sign
+. For such values of κ ∈ [κ1, κ2], the solutions (1.17) of the linear equation (1.13) are already
sufficiently good approximate quasi-periodic solutions of the nonlinear water waves system (1.2).
Since the parameter space [κ1, κ2] is fixed, the small divisor constant γ can be taken γ = o(εa)
with a > 0 small as needed. As a consequence for proving the continuation of (1.17) to solutions
of the nonlinear water waves system (1.2), all the terms which are at least quadratic in (1.2) are
already perturbative (in (2.1) it is sufficient to regard the vector field εXPε as a perturbation of the
linear vector field JΩ). Actually we need to verify, for most parameters κ ∈ [κ1, κ2], the Melnikov
conditions for the perturbed frequencies µ∞j (see (2.12), (2.13)), namely

|~ω(κ) · `+ µ∞j (~ω(κ), κ)| ≥ γj 3
2 〈`〉−τ , ∀` ∈ Zν , j ∈ N+ \ S+ ,

|~ω(κ) · `+ µ∞j (~ω(κ), κ)± µ∞j′ (~ω(κ), κ)| ≥ γ|j 3
2 ± j′ 32 |〈`〉−τ ,∀` ∈ Zν , j, j′ ∈ N+ \ S+ .

This follows since the perturbed frequencies satisfy

max
0≤k≤k0

∣∣∂kκ(~ω(κ) · `+ µ∞j (~ω(κ), κ)− µ∞j′ (~ω(κ), κ)
)∣∣ ≥ ρ0〈`〉 ,

∀(`, j, j′) 6= (0, j, j), j, j′ ∈ N+ \ S+ , (2.16)

(0-th, 1-th and the 2-th order Melnikov non-resonance condition with the sign +). This can be
proved by a perturbative argument, using (2.15). As a consequence, by applying a classical Rüss-
mann lemma (Theorem 17.1 in [33]) we prove that the Cantor like set of non-resonant parameters
Gε has measure κ2 − κ1 −O(γ1/k0).

2.3. Analysis of the linearized operators

In addition to the previous bifurcation analysis, the other key step for the Nash-Moser iterative
scheme is to prove that the operator dα,iF obtained linearizing (2.9) at any approximate solution
is, for most values of the parameters (ω, κ), invertible, and that its inverse satisfies tame estimates
in Sobolev spaces.

The linearized operator dα,iF is quite complicated because all the (θ, I, z) components in the
system (2.9) are coupled among them. Therefore we first implement the procedure developed in
Berti-Bolle [11], and used in [5], [6], which consists in introducing a convenient set of symplectic
variables near the approximate invariant torus such that the linearized equations become (approxi-
mately) decoupled in the action-angle components and the normal direction. As a consequence, the
problem reduces to “almost-approximately” invert a quasi-periodic linear operator restricted to the
normal directions. Actually, since this symplectic change of variables modifies, up to a translation,
only the finite dimensional action component, this operator turns out to be just the linearized
water-waves system in the original coordinates, restricted to the normal directions. More precisely

Π⊥S+L|H⊥
S+

where L := ω ·∂ϕI2 − J∂u∇uH(U(ϕ))

is obtained linearizing (1.2), (1.5) at an approximate solution U(ϕ) = (η, ψ)(ϕ, x), changing ∂t  
ω ·∂ϕ, and denoting the 2× 2-identity matrix by

I2 :=
(

Id 0
0 Id

)
.

Using formula (1.3) the linearized operator L is computed to be

L = ω ·∂ϕI2 +
(

∂xV +G(η)B −G(η)
(1 +BVx) +BG(η)B − κ∂xc∂x V ∂x −BG(η)

)
(2.17)
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where the functions B := B(ϕ, x), V := V (ϕ, x) are defined by (1.4) and c := c(ϕ, x) := (1 +
η2
x)−3/2. The operator L is real, even and reversible.
Notation. In (2.17) and hereafter any function a is identified with the corresponding multiplication
operators h 7→ ah, and, where there is no parenthesis, composition of operators is understood. For
example, ∂xc∂x means: h 7→ ∂x(c∂xh).

The key part of the analysis consists now in diagonalizing (actually it is sufficient to “almost”
diagonalize) the quasi-periodic linear operator L, via linear changes of variables close to the identity,
which map Sobolev spaces into itself and satisfy tame estimates. These changes of variables have
two well different tasks:

1. Transform L to an operator of the form (2.18) which has constant coefficients up to pseudo-
differential remainders of order zero (actually more regularizing on the off-diagonal terms).
These steps are exposed in sections 2.3.1-2.3.5.

2. Reduce quadratically the size of the perturbative terms R, Q, see section 2.3.6.

For the search of periodic solutions, i.e. [1], [23], [19], [20], [30], there is no need to perform
the task 2, because it is possible to invert the linearized operator in (2.18) simply by a Neumann-
argument. Indeed, for periodic solutions, a sufficiently regularizing operator in the space variable is
also regularizing in the time variable, on the characteristic Fourier indices which correspond to the
small divisors. This is clearly not true for quasi-periodic solutions. That is why we will completely
diagonalize the linear operator in (2.18) by a KAM scheme. For that we need to analyze more in
detail the pseudo-differential nature of the remainders after each conjugation step.

The approximate solution U(ϕ, x) at which we linearize is assumed to be bounded in a low
Sobolev norm (as it is satisfied by any approximate solutions along the Nash-Moser iteration).
Moreover U(ϕ, x) is supposed to be C∞(Tνϕ × Tx) because, along the Nash-Moser iteration, each
approximate solution is actually a trigonometric polynomial in (ϕ, x) (with clearly more and more
harmonics). As a consequence, all the coefficients of the linearized operator L in (2.17) are C∞.
This allows to work in the usual framework of C∞ pseudo-differential symbols. For the Nash-Moser
convergence we shall then perform quantitative estimates in Sobolev spaces.

2.3.1. Reduction of L to constant coefficients in decreasing symbols

The goal of the first steps is to reduce L to a quasi-periodic linear operator of the form

(h, h̄) 7→
(
ω ·∂ϕ + im3T (D) + im1|D|

1
2
)
h+Rh+Qh̄ , h ∈ C , (2.18)

where m3, m1 ∈ R are constants coefficients, satisfying m3 ≈ 1, m1 ≈ 0, the principal symbol operator

T (D) = |D|1/2(1− κ∂xx)1/2 ,

and the remainders R := R(ϕ), Q := Q(ϕ) are small O(ε) bounded operators acting in the Sobolev
spaces Hs, which satisfy tame estimates. More precisely, in view of a KAM reducibility scheme
that will completely diagonalize the operator (2.18) (section 2.3.6) we need that all the derivatives

∂βϕ∂
k
ω,κR , ∂βϕ∂

k
ω,κQ , |β| ≤ β0 , |k| ≤ k0 , (2.19)

for β0 large enough (depending on the diophantine exponent τ), satisfy tame estimates.

2.3.2. Symmetrization and space-time reduction of L at the highest order

The first part of the analysis is similar to Alazard-Baldi [1]. We first conjugate the linear operator
L in (2.17) by the change of variable

Z :=
(

1 0
B 1

)
, Z−1 =

(
1 0
−B 1

)
obtaining

L0 := Z−1LZ = ω ·∂ϕI2 +
(

∂xV −G(η)
a− κ∂xc∂x V ∂x

)
(2.20)
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for some function a(ϕ, x). This step amounts to introduce (a linearized version of) the “good
unknown of Alinhac”, ω = ψ −Bη.

As a second step we conjugate L0 with an operator of the form SQB where B is a change of
variable

(Bh)(ϕ, x) := h(ϕ, x+ β(ϕ, x)) (2.21)
induced by a ϕ-dependent family of diffeomorphisms of the torus

y = x+ β(ϕ, x) ⇔ x = y + β̃(ϕ, y) , (2.22)

Q is a matrix valued multiplication operator

Q :=
(

1 0
0 q

)
, Q−1 :=

(
1 0
0 q−1

)
,

for a function q(ϕ, x) close to 1, and S is the vector valued Fourier multiplier

S =
(

1 0
0 G

)
, G := |D|− 1

2 (1− κ∂xx) 1
2 ∈ OPS1/2 .

Choosing properly the small periodic functions β(ϕ, x) and q(ϕ, x)− 1 one gets

L1 = S−1Q−1B−1L0BQS = ω ·∂ϕI2

+
(

a1∂x + a2 −m3(ϕ)T (D) +
√
κ a3H|D|

1
2 +R1,B

m3(ϕ)T (D)− a4√
κ
|D| 12H+m3(ϕ)π0 +R1,C a1∂x +R1,D

)
(2.23)

for suitable functions a1, a2, a3, a4 and pseudo-differential operators R1,B , R1,C , R1,D ∈ OPS0

which are O(ε) small, in low Sobolev norm. All the coefficients and the operators depend in a tame
way, i.e. at most linearly, in the high Sobolev norm of the approximate solution ‖U‖s+σ with a
possible fixed loss of derivatives σ. Note that the coefficient m3(ϕ) of the highest order operator L1
in (2.23) is independent of the space variable. The operator π0 is the L2 projector on the constants,
that, for simplicity of exposition, we neglect in the sequel.

We then write L1 as an operator acting on the complex variables

h := η + iψ , h̄ := η − iψ ,

obtaining

L1 = ω·∂ϕI2 +im3(ϕ)T(D)+A1(ϕ, x)∂x+i(A(I)
0 (ϕ, x)+A(II)

0 (ϕ, x))H|D| 12 +R(I)
1 +R(II)

1 (2.24)

where

T(D) :=
(
T (D) 0

0 −T (D)

)
, A1(ϕ, x) :=

(
a1(ϕ, x) 0

0 a1(ϕ, x)

)
,

A(I)
0 (ϕ, x) :=

(
a5(ϕ, x) 0

0 −a5(ϕ, x)

)
, A(II)

0 (ϕ, x) :=
(

0 a6(ϕ, x)
−a6(ϕ, x) 0

)
,

and

R(I)
1 :=

(
r

(I)
1 (x,D) 0

0 r
(I)
1 (x,D)

)
, R(II)

1 :=
(

0 r
(II)
1 (x,D)

r
(II)
1 (x,D) 0

)
∈ OPS0 (2.25)

are O(ε)-pseudo-differential operators. Note that L1 in (2.24) is block-diagonal (in (u, ū)) up to
order |D|1/2.

The next step is to remove the dependence on ϕ from the highest order term im3(ϕ)T(D), by
applyling a quasi periodic time reparametrization

P I2 =
(
P 0
0 P

)
, (Ph)(ϕ, x) := h(ϕ+ ωp(ϕ), x) ,

induced by the diffeomorphism

ϑ := ϕ+ ωp(ϕ) ⇔ ϕ = ϑ+ ωp̃(ϑ)
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where p(ϕ) is a small periodic function. Choosing properly p and assuming ω to be diophantine,
we get

L2 := ω ·∂ϕI2 + im3T(D) + B1(ϕ, x)∂x + i
(
B(I)

0 (ϕ, x) + B(II)
0 (ϕ, x)

)
H|D| 12 + R(I)

2 + R(II)
2

(2.26)

where

B1 =
(
a7(ϕ, x) 0

0 a7(ϕ, x)

)
, B(I)

0 =
(
a8(ϕ, x) 0

0 −a8(ϕ, x)

)
,

B(II)
0 =

(
0 a9(ϕ, x)

a9(ϕ, x) 0

)
and R(I)

2 ,R(II)
2 are O(ε) pseudo differential operators in OPS0, of the same form as in (2.25). All

the previous transformations are real, even, and reversibility preserving, so that L2 is a real, even
and reversible operator.

From this point we have to proceed quite differently with respect to [1].

2.3.3. Block-decoupling

The next step is to conjugate the operator L2 in (2.26) to an operator of the form

LM := Φ−1
M L2ΦM = ω ·∂ϕI2 + im3T(D) + B1(ϕ, x)∂x + iB(I)

0 (ϕ, x)H|D| 12 + R(I)
M + R(II)

M (2.27)

where the remainders

R(I)
M :=

(
r

(I)
M (ϕ, x,D) 0

0 r
(I)
M (ϕ, x,D)

)
∈ OPS0 , R(II)

M :=
(

0 R(II)
M

R(II)
M 0

)
∈ OPS 1

2−M

are O(ε) small. This is achieved by applying iteratively M -times a conjugation map which trans-
forms the off-diagonal block operators into 1-smoother ones. Notice that the operator LM in (2.27)
is block-diagonal up to the smoothing remainder R(II)

M ∈ OPS 1
2−M . The coefficients of R(II)

M de-
pend O(M)-derivatives of the approximate solution. In any case, the number of regularizing steps
M will be fixed (independently on s, depending just on the diophantine exponent τ), determined
by the KAM reducibility scheme.

2.3.4. Egorov analysis. Space reduction of the order ∂x.

The goal is now to eliminate the first order vector field B1(ϕ, x)∂x from LM . We conjugate LM
by the flow

Φ(ϕ, t) :=
(

Φ(ϕ, t) 0
0 Φ(ϕ, t)

)
generated by the system

∂t

(
u
u

)
= i
(
a(ϕ, x) 0

0 −a(ϕ, x)

)
|D| 12

(
u
u

)
(2.28)

where a(ϕ, x) is a small real valued function to be determined. Thus Φ(ϕ, t) is the flow of the scalar
linear pseudo-PDE

∂tu = ia(ϕ, x)|D| 12u . (2.29)
Conjugating the operator LM in (2.27) by the time one flow operator Φ(ϕ) := Φ(ϕ, 1) we get

L(1)
M = ΦLMΦ−1 = ω ·∂ϕI2 + Φ(ϕ)P0(ϕ, x,D)Φ(ϕ)−1 + Φ(ϕ)ω ·∂ϕ{Φ(ϕ)−1}+ ΦR(II)

M Φ−1

where we have denoted

P0(ϕ, x,D) = im3T(D) + B1(ϕ, x)∂x + iB(I)
0 (ϕ, x)H|D| 12 + R(I)

M

the diagonal part of LM . Note that the terms Φ(ϕ)P0(ϕ, x,D)Φ(ϕ)−1 and Φ(ϕ)ω ·∂ϕ{Φ(ϕ)−1}
are block-diagonal. They are classical pseudo-differential operators and can be analyzed by an
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Egorov type argument. On the other hand the off-diagonal term ΦR(II)
M Φ−1 is very regularizing

and satisfy tame estimates. Let us see how evolves the operator

P(ϕ, t) = Φ(ϕ, t)P0Φ(ϕ, t)−1 =
(
P (ϕ, t) 0

0 P (ϕ, t)

)
,

P (ϕ, t) := Φ(ϕ, t)p0(ϕ, x,D)Φ−1(ϕ, t) . (2.30)

under the flow of (2.28). The operator P (ϕ, t) solves the usual Heisenberg equation{
∂tP (ϕ, t) = i[A(ϕ), P (ϕ, t)]
P (ϕ, 0) = P0 := p0(ϕ, x,D)

where A(ϕ) = a(ϕ, x)|D| 12 . (2.31)

The equation (2.31) can be solved in decreasing symbols using the fact that the order of the
commutator [A(ϕ), Q(ϕ)] with a classical pseudo-differential operator Q is strictly less than the
order of Q. More precisely (2.31) has an approximate solution Q(ϕ, t) := q(t, ϕ, x,D) expanded in
decreasing orders

q(t, ϕ, x, ξ) =
M∑
n=0

qn(t, ϕ, x, ξ) , qn(t, ϕ, x, ξ) ∈ S 1
2 (3−n) , ∀n = 0, . . . ,M (2.32)

where q0 = p0 and the other lower order symbols qn are recursively computed. This shows that the
diagonal term P (ϕ, t) remains pseudo-differential along the conjugation. More precisely we prove
that P (ϕ, t) is equal to Q(ϕ, t) plus a term which is very regularizing and satisfies tame estimates
in Sobolev spaces. One can analyze Φ(ϕ)ω ·∂ϕ{Φ(ϕ)−1} in the same way.

As an outcome, choosing properly the function a(ϕ, x), and using the fact that the operator L2
is even, one can eliminate the order ∂x getting an operator of the form

L(1)
M = ω ·∂ϕI2 + im3T(D) + i

(
C1(ϕ, x) + C0(ϕ, x)H

)
|D| 12 + R(1)

M + Q(1)
M (2.33)

where
C1(ϕ, x) :=

(
a10 0
0 −a10

)
, C0(ϕ, x) :=

(
a11 0
0 −a11

)
.

Remark 2.1. Alazard-Baldi [1] uses a semi-Fourier integral operator Op(eia(ϕ,x)
√
|ξ|) ∈ OPS0

1
2 ,

1
2
.

The use of the flow Φ(ϕ) of (2.29) is simpler because the proof that Φ, as well as its inverse Φ−1,
is a bounded operator on Sobolev spaces Hs and satisfies tame estimates, follows by simple energy
estimates (the vector field ia(ϕ, x)|D|1/2 is skew-adjoint at the highest order, see Appendix of
[8]). �

The fact that the diagonal terms on the conjugated operator (2.33) are still pseudo-differential
is a relevant information. Indeed the flow Φ(ϕ) ∼ Op(eia(ϕ,x)

√
|ξ|) maps Sobolev spaces in itself,

but each derivative
∂ϕΦ(ϕ) ∼ Op

(
eia(ϕ,x)

√
|ξ| i∂ϕa(ϕ, x)

√
|ξ|
)

is an unbounded operator which loses |D|1/2 derivatives. Actually ∂kω,κ∂
β
ϕΦ(ϕ) loses |D|

|β|+|k|
2

derivatives. Since the conjugated operator
P+(ϕ) := Φ(ϕ)P0Φ(ϕ)−1 = Op(c(ϕ, x, ξ)) , c(ϕ, x, ξ) ∈ Sm , (2.34)

is a classical pseudo-differential operator, the differentiated operator
∂ϕP+(ϕ) = Op(∂ϕc(ϕ, x, ξ)) ∈ OPSm

is still a pseudo-differential operator of the same order of P0 with just a symbol ∂ϕc less regular
in ϕ. The loss of regularity for ∂ϕc may be compensated by the usual Nash-Moser smoothing
procedure in ϕ. This is the reason why we require that the diagonal remainder R(I)

M ∈ OPS0 is
just of order zero.

On the other hand, the off-diagonal term R(II)
M ∈ OPS−M evolves, under the flow Φ(ϕ, t),

according to the “skew-Heisenberg” equation obtained replacing in (2.31) the commutator with
the skew-commutator. As a consequence the symbol of (R(II)

M )+ := Φ(ϕ)R(II)
M Φ(ϕ)−1 assumes the

form eia(ϕ,x)
√
|ξ|q(ϕ, x, ξ) where q(ϕ, x, ξ) ∈ S−M is a classical symbol (actually we do not prove it
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explicitly because it is not needed). Thus the action of each ∂ϕ on (R(II)
M )+ produces an operator

which loses |D| 12 derivatives in space more than QM . This is why we have performed previously a
large number M of regularizing steps for the off-diagonal components R(II)

M .

2.3.5. Space reduction of the order |D|1/2

Finally we eliminate the x-dependence of the coefficient in front of |D| 12 in the operator L(1)
M in

(2.33), conjugating L(1)
M by a matrix valued multiplication operator of the form

V :=
(
V 0
0 V

)
, V := Op(v) , v := v(ϕ, x, ξ) ∈ S0 .

Choosing properly the function v(ϕ, x) one finally gets

L(2)
M := ω ·∂ϕI2 + im3T(D) + im1Σ|D|

1
2 + R(2)

M + Q(2)
M , where Σ :=

(
1 0
0 −1

)
(2.35)

which has the form stated in (2.18). We remark that all the previous transformations are real,
even, and reversibility preserving, so that L(2)

M is real, even and reversible.

2.3.6. KAM-reducibility scheme

We are now in position to apply an iterative quadratic scheme to reduce the size of the the terms
R(2)
M and Q(2)

M (if possible) of the operator in (2.35). Let us explain the main idea. Consider a
linear real, even, and reversible operator acting on H⊥S+ (recall (1.20)),

L = ω ·∂ϕI⊥2 + D + εP , (2.36)

with diagonal part

D =
(

iΛ 0
0 −iΛ

)
, Λ = diagj∈N+\S+µj , µj = m3

√
j(1 + κj2) + m1j

1
2 + rj ,

with

m3, m1 ∈ R , m3 − 1, m1 = O(ε) , rj ∈ R , ∀j ∈ N+ \ S+ , sup
j∈N+\S+

|rj | = O(ε) ,

(at the first step µj = m3
√
j(1 + κj2) + m1j

1
2 by (2.35)), and a bounded perturbation

P =
(
P1 P2
P 2 P 1

)
.

Transform L under the flow Φ(ϕ) having the form

Φ(ϕ) = I⊥ +W (ϕ) , I⊥ =
(

IdH⊥
S+

0
0 IdH⊥

S+

)
, W(ϕ) =

(
W1 W2
W 2 W 1

)
is a bounded map, to be determined. The conjugated operator L+ = Φ(ϕ)−1LΦ(ϕ) is given by

L+ = L + [εW(ϕ),L(0)] +O(ε2) = ω · ∂ϕ + D + ε
{
P + ω · ∂ϕW(ϕ) + [W,D]

}
+O(ε2) .

The goal is to eliminate the ε-term ω · ∂ϕW(ϕ) + [W,D] + P (if possible). This amounts to solve

ω · ∂ϕW1(ϕ) + i(W1(ϕ)Λ− ΛW1(ϕ)) + P1(ϕ) = [[P1(ϕ)]]
ω · ∂ϕW2(ϕ) + i(W2(ϕ)Λ + ΛW2(ϕ)) + P2(ϕ) = 0 ,

where [[P1(ϕ)]] := diag([P1(ϕ)]jj). Expanding in Fourier seriesWi(ϕ) =
∑
`∈Zν Wi(`)ei`·ϕ we are led

to the following equations

iω · `W1(`) + i(W1(`)Λ− ΛW1(`)) + P1(`) = [[P1(`)]]
iω · `W2(`) + i(W2(`)Λ + ΛW1(`)) + P2(`) = 0 .
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Representing Wi(`) =
(
[Wi(`)]jk

)
j,k∈N+\S+ as a matrix with respect to the basis {cos(jx) : j ∈

N+ \ S+} for even functions in x, we get the infinitely many scalar equations

iω · `[W1(`)]jk + i[W1(`)]jk(µj − µk) + [P1(`)]jk = [P1(`)]kj
iω · `[W2(`)]jk + i[W2(`)]jk(µj + µk) + [P2(`)]jk = 0 .

These equations admit the solutions

[W1(`)]jk =
[P1(`)]jk

i(ω · `+ µj − µk) , ∀(`, j, k) 6= (0, j, j) ,

[W2(`)]jk =
[P2(`)]jk

i(ω · `+ µj + µk) , ∀(`, j, k)

if the corresponding denominators do not vanish. We actually require a quantitative lower bound
for the denominators as

|ω · `+ µj − µk| ≥
|j3/2 − k3/2|

γ〈`〉τ
, |ω · `+ µj + µk| ≥

|j3/2 + k3/2|
γ〈`〉τ

.

These conditions are called the second order Melnikov non-resonance conditions and appear in the
Cantor set (2.11). After this conjugation step we have obtained a linear operator of the same form
(2.36), but with a smaller O(ε2) perturbation and a new diagonal part corrected by the matrix
[[P1(0)]] = diag[P1(0)]jj . Since P is reversible then [P1(0)]jj are purely imaginary. In order to apply
the above classical KAM reducibility scheme to the operator L(2)

M in (2.35) a difficulty is that the
remainders R(2)

M , Q(2)
M satisfy tame estimates. For technical details of the proof we refer to [8].

Here we just mention that for the convergence we need the tame conditions (2.19). In conclusion
the operator L(2)

M defined in (2.35) may be conjugated to a diagonal operator of the form

ω ·∂ϕI⊥2 + iD∞ , D∞ =
(

iΛ 0
0 −iΛ∞

)
,

with
Λ∞ = diagj∈N+\S+µ∞j , µ∞j = m3

√
j(1 + κj2) + m1j

1
2 + r∞j , sup

j∈N+\S+
r∞j = O(ε) .

It is then sufficient to require the first order Melnikov conditions

|ω · `+ µ∞j | ≥ 2γj 3
2 〈`〉−τ , ∀` ∈ Zν , j ∈ N+ \ S+

to prove the invertibility of the diagonal operators ω ·∂ϕI⊥2 + iD∞. These conditions appear in
(2.11).

Since all the transformations that we have performed in sections 2.3.2-2.3.6 above are bounded
map between Sobolev spaces (of high norm) we get the required tame estimates for the inverse of
the original operator L defined in (2.17).
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