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Out-of-equilibrium dynamics
and statistics of dispersive PDE

Zaher Hani

Abstract

The purpose of this note is to report on some recent advances in the study of out-of-
equilibrium behavior of dispersive PDE. One can address this problematic from two different
perspectives: a dynamical systems one, and a statistical physics one. The dynamical systems
perspective corresponds to constructing solutions exhibiting “energy cascade” between scales,
whereas the statistical physics perspective corresponds to deriving effective equations for the
dynamics under some “macroscopic limits” in what is often called wave turbulence theory.
The rigorous justification of this theory is an outstanding open problem from a rigorous
mathematical point of view, and we will touch on it here. We shall discuss some recent
attempts to better understand both of the above perspectives.

1. Introduction

Broadly speaking, the main problematic that we discuss here is out-of-equilibrium dynamics and
statistics of Hamiltonian systems. There are systems that can be written as

. O0H . OH
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Here, (pn(t), ¢n(t)), are functions of time and H(p,q) is the Hamiltonian function. N stands for
the number of degrees of freedom that could well be infinite. Indeed, we will be mostly interested in
the infininte dimensional case corresponding to Hamiltonian nonlinear PDE, but we shall start our
discussion by drawing some insight from a particularly illuminating finite dimensional problem.

1<n<N.

1.1. Baby turbulence: The FPU Paradox

In the early 1950’s, around the time when computers started to be used for numerical scientific
experimentation, Nobel Laureate Enrico Fermi, joined by the mathematician John Pasta, and
computer scientist Stan Ulam, decided to investigate numerically how a crystal evolves towards
thermal equilibrium. For this, they took a one dimensional model of a crystal given by a chain
of N-particles connected by springs. Denoting by (pn,¢n) € R x R the momentum-displacement
vector of the n — th particle and identifying (pn+1,qn+1) = (p1,¢1) (chain), this system is given
by Hamilton’s equations of motion:

{ H(p,@) = 53,102 + Vit — a0 V(e = 30 +5¢° 1)

in =G =Dni D=5 = VV(dn+1 = an) = VV(@n — u—1); 1< <N

Here o > 0. Notice that the interaction is a nearest-neighbor interaction in the sense that each
particle only interacts with the two particles on its left and right.

Z. H. is supported by NSF Grant DMS-1301647 and a Sloan Fellowship.

Keywords: Modified scattering, nonlinear Schrodinger equation, wave guide manifolds, energy cascade, weak turbulence.

V-1


http://www.cnrs.fr

When a = 0, the system is linear and can be solved by using Fourier series for example: Defining

A, = NLH 25:1 qk sin(ﬁ’fﬁ), then the system satisfied by {4, }_; is given by:

Ap+w2A, =0, 1<n<N; wn:2sinﬁ. (1.2)
In words, the system gets decoupled, and each mode A,, oscillates independently with its harmonic
frequency wy. So if energy is initially present only in the first mode A;, it will never migrate to
the rest of the modes. Systems that can be written as such are called completely integrable.

When « > 0, the modes get coupled to each other, and the right-hand side of (1.2) becomes
quadratic in {4, })_,. Thus, the FPU system is said to be a perturbation of the completely integrable
system corresponding to a = 0. Statistical mechanics asserts that such nonlinear systems should
approach, as t becomes large, an equilibrium configuration in which the initial (conserved) energy
is essentially equally distributed (at least if « is small enough) among all modes {4, }Y_;.

This is what Fermi, Pasta, and Ulam set on verifying in their numerical investigation. They
started by exciting only the first mode A; at time ¢ = 0 and left A,,(0) = 0 for n # 0 (with
N = 32). Much to their surprise, as time passed by and became very large, the energy did not get
equidistributed amongst all the modes A,,, but rather kept concentrated on the first five modes.
Not only did this not comply with the conclusions of statistical physics, but also it contradicted
Fermi’s own “ergodicity theorem” concerning the ergodicity of nonlinear systems. This became to
be known the FPU paradox, and Fermi is said to have remarked that these results might be one
of the most significant discoveries of his career [12].

So, what’s going on?! This leads us to the broad question under which falls all the problems we
discuss below:

Main Problematic Q.) How does energy get transferred and redistributed among the degrees
of freedom in Hamiltonian systems?

The FPU paradox arises due to a clash between two perspectives to address this question:

I) The dynamical systems perspective: which studies individual orbits and their long-time behav-
iour, in order to answer whether energy gets redistributed or not;

IT) The statistical mechanics perspective: which studies, instead of individual orbits, invariant mea-
sures for the dynamics, (i.e. ones for which p(A) = u(S:A) for any measurable set A, where S; is
the solution operator for any t € R).

For the Hamiltonian system (1.1), the invariant measure is non-other than the Liouville measure
(i.e. restricted Lebesgue measure on the level set H(p, q) = Hy) which gives essentially equal weight
to each harmonic mode A,,. However, the orbits that the FPU team found kept all the weight in
the first five modes and not the rest!

It should be mentioned here that statistical mechanics derives from considerations extrinsic to
dynamical principles (compare the reversibility of Hamilton’s equations (1.1) to the irreversibility
of the second law of thermodynamics pretaining to entropy increase in the forward direction of
time). The link between the statistical mechanics and dynamical systems perspectives is usually
provided by ergodic theorems (or laws of large numbers) that typically look like: Suppose that f
is a smooth test function then, given an orbit X,

. I
lim - | f(Xs)ds = f(z)du (1.3)
t—o0 t 0
—— ———
Temporal average along an orbit Spatial average w.r.t the invariant measure

Definitely, this ergodicity did not hold for the orbit that FPU found (simply take f to supported
on the last modes A,, with n > 5).

The first key to the puzzle came in 1954 in Kolmogorov’s address to the International Congress
of Mathematicians, in which he showed that for a small perturbation of a completely integrable
system (small « here), “many” (in a measure theoretic sense) of the decoupled (highly non-ergodic!)
orbits of the unperturbed system (1.2) persist under the perturbation. This (which evolved later to
what is now known as Kolmogorov-Arnold-Moser (KAM) theory) obviously presents an obstruction
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to energy transfer between the degrees of freedom in Hamiltonian systems. In particular, statistical
physics does not seem to give the right conclusions at low energies for systems with a small number
of degrees of freedom.

But this begs the question: When are the laws of statistical physics upheld? The following is
now believed to be true: Suppose that Mg n is the set of initial data with energy F for which
the energy does not eventually get equidistributed amongst the modes (i.e. for which (1.3) does
not hold): Then, in an appropriate sense of measure, the measure of Mg n should go to — 0 as
N — oo. In other words, the laws of statistical physics are expected to hold only in the limit as
N — o0.

Despite attracting a huge amount of research over the past 60 years (cf. [14]), the above “conjec-
ture” is still not proved rigorously. As we shall emphasize later, this is rather common for questions
bridging statistical physics and dynamics, at least in deterministic settings, and apart from very
few exceptions (see [39, 33, 9, 13] and references therein). That being said, we should point out
that such problems becomes considerably more tractable in the presence of a stochastic element
in the system. For instance, if one attaches the chain system given by (1.1) to a heat bath on the
left with temperature 77 and one on the right with temperature Tx, which is equivalent to only
replacing the equations for p; and py in (1.1) by

p1=VV(ez — 1) —yp1 + V29T1dBy; PN =—=VV(gn —qn-1) — PN + /29T NdByN
where dB; and dB; are independent white noise terms, then one can prove ergodicity statements

like (1.3) as well as dynamical convergence towards the invariant measure of the system (cf. [10,
21, 20]).

1.2 Out-of-equilibrium behavior for dispersive PDE

The takeaway message from “baby turbulence” above can be summarized as follows: 1) Even
in finite dimensions, questions of energy transfer and redistribution in Hamiltonian systems are
highly non-trivial; 2) There are two perspectives to address such questions: a dynamical systems
one, and a statistical physics one; 3) Reconciling the two perspectives, or equivalently giving a
rigorous justification of statistical physics from dynamical systems principles, is a very deep and
hard problem in the deterministic setting; 4) However, this problem can be more tractable if a
stochastic element is present in the system.

Now we turn to our main focus, which is addressing the question of non-equilibrium behavior
and energy transfer for dispersive and wave PDE. In this setting, the main question of interest, both
mathematically and physically, is how energy (which can refer to the “kinetic energy” [ |Vu(t)|? dz
or the “mass” [ |u(t)|? dz) changes its concentration zones in frequency space. In fact, the frequency
(or Fourier) modes play here the role of the coordinates A,, for FPU: they are completely decoupled
at the linear level, where they satisfy the same kind of equation as (1.2) (with w, being the
dispersion relation); Moreover, they indicate the spatial oscillations of the solution. Hence, the
Main Problematic Q.) posed in Section 1.1 translates here to:

Question (Energy Cascade): Suppose the energy of the dispersive system is concentrated at
time t = 0 in a certain region of Fourier space (say at low frequencies (a.k.a. large scales)), how
will this energy be redistributed as time evolves? Will it keep its original concentration zones, or
will it cascade to characteristically different scales?

This question is central to many areas of physics like oceanography, plasma physics, and su-
perfluidity'. The relevant mathematical models here are nonlinear dispersive equations posed on
compact domains (possibly very large, like the ocean), as opposed to making the infinite volume
approximation from the start and posing them on R?. Indeed, as we will explain in Section 1.4, one
has to take particular care in passing to the right infinite-volume approximation (when working
on very large domains) in a way that captures correctly the energy transfer phenomenon.

IThe ocean is excited by the wind at large scales (small frequencies) and this energy is dissipated at much smaller
scales through wave breaking or dissipation. This energy transfer between scales is the main driving force of ocean
wave dynamics. In plasma physics, studying energy dynamics is central to control plasma inside a tokamak, or even
understanding the feasibility of controlled nuclear fusion. In superfluidity, reverse (mass) cascade is the mechanism
to forming Bose-Einstein condensates.



Remark 1.1 (Dispersive equations on R?). Qut-of-equilibrium dynamics is not a particularly
generic phenomenon for dispersive PDE on R%. There, linear solutions decay in L™ norm, and,
as a result, the typical behavior of small nonlinear solutions is scattering (asymptotically linear
behavior). This precludes any significant energy cascade between scales (e.g. all high Sobolev norms
are uniformly bounded). While it is interesting to study the possibility of energy cascade for large
initial data on R?, our main interest here is energy dynamics of solutions with small initial data
on compact domains. There, unlike R%, one cannot make any uniform asymptotic statements
(like scattering) that would hold for all small solution. The system can sustain a zoo of different
behaviors, even starting from arbitrary small neighborhoods of zero.

Just like for other Hamiltonian systems, there are two perspectives to address such questions
of long-time behavior and energy cascade: a dynamical systems perspective based on constructing
orbits exhibiting the energy cascade phenomena, and a statistical physics perspective which is based
on deriving effective equations for the dynamics, and often goes by the name of “wave turbulence
theory”. We will split our discussion for the rest of this note accordingly.

2. Dynamical systems perspective: Energy cascade and Sobolev norm growth

2.1. Background

The question here is to construct solutions to nonlinear dispersive PDE that exhibit a strong
form of energy cascade. We will restrict attention to the forward cascade phenomenon in which
an energy (here the kinetic energy [ |Vu|?dz) moves its concentration zones from low frequencies
to high frequencies, while remaining bounded in time. Similar questions and results hold for the
backward cascade phenomenon in which an energy moves its concentration zone from high to low
frequencies. For instance, for the cubic NLS equation that we will consider below, it is expected
that the kinetic energy cascades towards high frequencies, whereas the mass would cascade towards
low frequencies.

A good way to capture the forward movement of kinetic energy is to look at the behavior of the
Sobolev norms H* of the solution. On the torus T%, one has

a7y = D IV ullFapay ~ Y (1 +Inl)la(n)?,
la|<s nezd

so we directly notice that these norms penalize large frequencies much more than they penalize
low frequencies. This implies that if the energy of the solution moves to high frequencies, then this
should be accompanied by a growth of such norms. The question then becomes whether we can
exhibit solutions whose Sobolev norms grow in time.

We shall discuss this problem for the nonlinear Schrodinger equation (NLS) for simplicity, but
the same questions could be asked (but are still mostly open) for any other dispersive or wave
PDE. The (NLS) equation is given by

(i0; + A)u(t, z) = Nu(t, z)[*u(t, z); u(0) = uo(z), A € {+1, -1}, (NLS)

posed first on the unit torus T¢ 5 2. The problem of energy cascade for this equation was well-
known for a long time, but its Sobolev norm formulation started with the works of Bourgain [2, 3]
who asked in [4]: Does there exist global solutions to the cubic NLS equation whose Sobolev norm
H?® (with some s > 1) grows indefinitely in time, i.e. for which

lim sup ||u(t)|| g = 400 for some s > 0,s # 1 7? (2.1)
t—o0

We will refer to such solutions as unbounded or infinite-cascade orbits. Such growth cannot happen
for s = 0 or 1 due to the conservation laws of the equation which control the H'! norm in the
defocusing case, and for small data in the focusing case. Upper bounds on the rate of any possible
growth of H*® norms were studied by Bourgain[2], Staffilani[41], Sohinger[40], among others.

2.2. Recent results

The starting point of all recent progress on this problem (cf. [2, 3, 32] for earlier work) is a
celebrated result of Colliander, Keel, Staffilani, Takaoka, and Tao [8] who constructed solutions
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exhibiting large but finite growth of Sobolev norms. To state precisely their theorem, let us start
by introducing a notion that will be useful for us below:

Definition 2.1. We say that the flow exhibits long-time strong instability near some ¢ € H*(T%)
if for any 0 < § < 1 and any K > 1, there exists a solution u(t) to (NLS) and a time T such that

u(0) = llgs(ray <0 and  |Ju(T)||gs(rey > K. (2.2)

With this definition in hand, the result of CKSTT [8] can be stated as follows: The nonlinear
Schrédinger flow exhibits long-time strong instability near 0 in H*(T%) with s > 1. Guardia and
Kaloshin revisited the proof in [18] and obtained quantitative upper bounds on the time 7" required
for the growth to happen. Those results were generalized to the higher-order analytic nonlinearities
in [29, 19].

Despite being key to all the later progress, the above mentioned result in [8], corresponding to
¢ = 0 in the above definition, is still considerably weaker than Bourgain’s question. Indeed, giving
a positive answer to this question on the torus T? remains one of the biggest outstanding problems
in the field.

That being said, it was noticed in [23, 24] that a sufficient extension of this result does yield the
existence, and possible genericness, of unbounded orbits as in (2.1). Indeed, the key observation
can be vaguely stated as follows:

Proposition 2.2 (H. [23, 24]). If a Hamiltonian flow exhibits long-time strong instability near
“sufficiently many” initial data in H®, then unbounded orbits as in (2.1) exist and are “generic”
in an appropriate topological sense.

For instance, if “sufficiently many” means dense, then “generic” would mean co-meager in the
sense of Baire-Category; but less restrictive versions can also be formulated [24]. This proposition
suggests a program to prove infinite cascade results like (2.1) by proving long-time strong instability
near “sufficiently many” data. This program witnessed at least two instances of success: A) In [24],
the author constructed infinite cascade solutions as in (2.1) for a family of equations (F,) that
converge to cubic (NLS) as n — oo. In particular, this family includes the important resonant
(NLS) system (defined below in (3.2)). This was crucial for the progress that we report on next.
B) More recently, P. Gérard and S. Grellier used this program to obtain generic unbounded orbits
for the cubic Szegd equation [15].

Nonetheless, a remarkable fact is that much more can be said if one adds one non-compact
direction to T¢, and studies the cubic NLS equation on the spatial domain M = R x T¢. In this
case, one can take advantage of the decay of linear solutions on M (coming from the R-direction)
to get global control on nonlinear solutions. Indeed, we were able (with B. Pausader, N. Tzvetkov,
and N. Visciglia [26]) to give a positive answer to Bourgain’s question (2.1) in this case:

Theorem 2.3 ([26, 27]). For any d > 2, there exists global H®(s > 30) solutions to the cubic
(NLS) equation on R x T? satisfying: lim sup,_, . ||[u(t)|| g = +o00o. Indeed, there exists a sequence
tr, — oo of times, such that ||[u(ty)| s > c(loglogt)C for some constants c,C > 0.

It is worth mentioning here why such a result is possible on R x T¢, but remains quite challenging
on the T?. This is surprising because adding a non-compact direction to T¢ leads to the decay
of solutions, which is a mechanism of stability rather than non-equilibrium. In fact, if one adds
more than one non-compact direction, and studies the equation on R™ x T¢ with n > 2, then small
solutions scatter in H*® [44]; in particular if they start at size €, they would stay of size O(e) for all
later times. The reason why Theorem 2.3 holds is because of a combination of the following two
facts which also constitute the two main components of the proof:

1. Modified Scattering towards resonant dynamics: This means that solution of (NLS) on R x T¢
starting from small (in appropriate norms) initial data converge as t — oo to solutions of
the resonant cubic system on R x T?. This system is given by

i0,G(t) = R[G(t),G(t),G(t)], defined via
i0,G(€,p) = Y GEp)GEp)GE ps). (RS)

(p1,p2,p3)ER(p)
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where for (&,p) € R x Z4, @(f,p) denotes the Fourier transform JFpr,1¢G(&,p). Notice that
for each & this system is an infinite system of ODE, and it is nothing but the resonant
NLS system on T9! The latter is given below in (3.2) and is obtained from the cubic NLS
equation by removing all non-resonant interactions. This steps constitutes the bulk of the
proof, and effectively gives that the asymptotic dynamics of (NLS) on R x T? is dictated
by (RS) above.

2. Infinite cascade solutions for (RS) The second component is to show that there exists
solutions of (RS) that exhibit infinite growth in time. This is done by noticing that since
the dependence on & is merely parametric in (RS), one only needs to have solutions to
system (3.2) that exhibit infinite growth. This was already done in [23, 24] as we discussed
before (relying on the CKSTT work [8]), but without any estimate on the growth rate. In
[26], we revisit this question relying on the more precise work [18] instead, which allows to
obtain the loglogt; growth in Theorem 2.3.

3. Statistical physics perspective: Kinetic formalism of wave turbulence

3.1. Background

We now turn to the statistical physics perspective to addressing out-of-equilibrium behavior of dis-
persive PDE. This is presented by wave turbulence theory, which is the theory of non-equilibrium
statistical mechanics for dispersive systems. It was many similarities in its conclusions with Kol-
mogorov’s theory of fluid turbulence (see [36] for a comparison), but takes a different formalism
that appears more systematic at some points as we shall see below.

The standard setting in this theory is to start by posing a dispersive equation, such as (NLS),
on the box T¢ = [0, L]¢ of size L with periodic boundary conditions. The solution is assumed to
have characteristic size € (say in the conserved L? norm). To emphasize the size of the solution,
we shall adopt the ansatz u(t, z) = ev(t, ), so that v satisfies:

(10 + A)v(t,z) = Ae?|v(t, z)|*v(t, z); x € TY. (3.1)

The smallness of the data is now reflected in the “weakness” of the nonlinearity, which explains
why the theory is sometimes called weak turbulence. From now on, we set A = 1: The sign of the
nonlinearity plays little role in this theory, partly because it deals with small solutions.

The fundamental equations of wave turbulence aim to describe the effective dynamics and energy
distribution in frequency space. As such, we start by Fourier expanding

o(t,z) = Y B(t, K)e' )
Kezd
where Z¢ := (L7'Z)? is the Fourier dual of T¢. Setting ax(t) = e4ﬂ2i|K|2tﬁ(t7K), the equation
satisfied by the modes {v(¢, K)} Kezd s equivalent to the following infinite system of ODE for
G,K(t):

ihar(t) =Y ax, (Har, Dar, (e K e f = (L7'z) (FNLS)
S(K)
where S(K) = {(K1, K2, K3) € Z¢ : Ky — Ko + K3 = K} and Q(K) < K2 — |Kof? +

|K3|? — |K|?. Equation (FNLS) describes how the mode ax is excited by other modes through
the nonlinear interactions included in S(K). Of all those interactions, a particular sub-family
stands out in its crucial effect on the dynamics, namely resonant interactions corresponding to
(K1, K5, K3) € S(K) such that Q(K) = 0. Restricting (FNLS) to those interactions we arrive at
the resonant NLS system

Z‘at'rK(t) =é Z Ky (t)TKQ (t)TK3 (t) (32)

R(K)

where R(K) = {(K1, K2, K3) € S(K) : Q(K) = |K1|?>—|K2|*+|K3|?—|K|? = 0}. The fundamental
importance of system (3.2) in approzimating the long-time behavior of (NLS) for small € has been
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pointed out in Section 2.2 for constructing energy cascade solutions [24, 26, 27], and has been
exploited in many works (see [34, 8, 7, 25]).

Starting from a random distribution of initial data (taking each ax(0) as an independent ran-
dom variable), one would now like to write an effective equation for the mass density defined
by n?(K,t) = E(|lax(t)?), where af(t) solves (FNLS) with those random initial data. A direct
computation shows that

onE (K, t) = 2¢*Re E(drak (t)ax (t)) = 262 Z Im [67477 UE(ag, (Har, (H)ax, t)ax ()] .
S(K)

(3.3)
In other words, the only way to study the dynamics of n” (K, ) is to understand that of the forth-
order correlations E(ak, (t)ax, (t)ax,(t)ak,(t)). Those correlations satisfy themselves an equation
involving the sixth-order correlations E(ag, (t) . .. ak,(t)) and so on. This gives an infinite hierarchy
of equations for the N—th order correlations, instead of a closed scalar equation describing the
effective dynamics of n*(K,t). Going from this hierarchy to a closed equation describing the
effective dynamics of n” (K, t) is called a closure problem, and it is reminiscent of the derivation of
Boltzmann'’s kinetic equation for an ideal gas of particles (cf [33, 13]). To get to this closed equation,
physicists perform several, rather cavalier and formal, manipulations or limiting arguments, which
we summarize in the following three steps:

(S1): Statistical averaging: These are particularly non-rigorous manipulations that involve
mathematically unjustified (at least not a priori) ergodicity assumption on the dynamics,
particularly on the phases of a (t). Formally, such assumptions allow replacing higher order
correlations by products of lower order ones and error terms.

(S2): Weak-nonlinearity limit (¢ — 0): This is essentially a time-averaging step and, in effect,
restricts the dynamics to resonant (or near-resonant) interactions, in a way similar to the
approximation of (3.2) to (FNLS) when ¢ is small.

(S3): Large-box limit (L — 00): in which L is sent to oo, and hence n’(K) which was previ-
ously a function on Z¢ = (L71Z)? becomes approximated by a function n(K), defined on
R? that describes the effective behavior of n%(K) := E(|ax (t)|?) for large enough domains.

After all these formal manipulations, one obtains the following equation for n(K,t):

1 1 1 1
(k) =¢* [ st mtacyotacs s (s = s+ ey ~ i) (WKE)
Opa (K1 — Ko + K3 — K)op(|K1)? — | K2|? + | K3]? — |K|?)dK dKod K.

It is called the wave-kinetic equation (WKE) and represents the wave-analog of Boltzmann’s equa-
tion of particle interactions (“wave collisions” in a dispersive system).

Even though the derivation of this equation is not rigorous yet, its analysis suggests very strong
and important implications on the out-of-equilibrium dynamics of NLS. This is reflected by its sta-
tionary solutions, called Kolmogorov-Zakharov spectra?, which can be understood as corresponding
to invariant steady states or measures for NLS dynamics. We won’t go into the details of these
all-important solutions here due to lack of space, but they play a big role in many fields like
oceanography and plasma physics.

Unfortunately, the very formal nature of the manipulations used to derive (WKE) in the physics
literature breaks any backward logical implication (i.e. pulling information from the wave-kinetic
equation back to (NLS)). This causes problems even at the level of physics in some models [35, 36],
and emphasizes the desperate need of putting this theory on more solid mathematical foundation.

2They are the analogs of the all-important Kolmogorov spectra in hydrodynamic turbulence.
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3.2. Recent progress
3.2.1. The Continuous Resonant Equation

In [11] and [5], we take the first step towards understanding the limits involved in the derivation
of the fundamental equation (WKE) of wave turbulence. More precisely, we dispense with the
statistical averaging step (S1), but still perform steps (S2) and (S3) corresponding to the weak-
nonlinearity and the large-box limit for the NLS equation posed on the periodic box T¢ of size
L. In [11] we treated the 2D case using elementary number theoretic techniques, while in [5]
we generalized, streamlined, and sharpened the proof and results. This allowed us to treat any
dimension and any analytic power nonlinearity replacing the cubic one in (NLS). The outcome of
the analysis is a new equation that describes 1) the effective dynamics of {ax (t)} xezz when L is

large enough?®, and 2) The effective dynamics of high-frequncy envelopes of NLS solutions on the
unit torus T¢. We will mostly elaborate on the first description here.

The weak-nonlinearity limit (S2) corresponds to approximating the dynamics (FNLS) of NLS
with that of the resonant system (3.2). This is done rigorously using a normal forms transformation,
which is a change of coordinate transformation that allows regarding the contribution of non-
resonant interactions as errors. Up to logarithmic corrections in L, this approximation holds for
small enough e and for times up to L?e 2, where € is the characteristic size of the initial data.

The next step is to take the large-box limit of (3.2), which amounts to thinking of the sum in (3.2)
as a Riemann sum, that should be approximated by an appropriate integral if L is large enough.
Unfortunately, the sum in (3.2) is not a regular Riemann sum due to the nonlinear restriction to
the set {Q(K) = 0}. This necessitates studying quantitatively the distribution of lattice points on
the algebraic variety defined by {Q(K) = 0}. More precisely, we would like to be able to say that
for a sufficiently smooth and decaying function F(K7, Ko, K3), it holds that

Z F(Ky, Ky, K3) z Zd(L)/ s F(K1, K3, K3)dv + lower order errors (3.4)
(K1,K2,K3)€ER
R(K) Q(K)=0

for some constant Z4(L) and a measure dv supported on {Q(K) = 0} to be determined, where we

recall that R(K) = {(K1, K2, K3) € S(K) : Q(K) < K, |2 — || + | K32 — |K|? = 0}.

This type of questions turns out to be a deep problem in analytic number theory. The main
method to handle such problems is the Hardy-Littlewood circle method which was first developed to
answer the classical Waring’s problem (i.e. identifying Z;(L) when F' is the characteristic function
of a unit ball). In [5], we adapt (and improve in some aspects) a relatively new version of this
method due to Heath-Brown [31], and obtain that (3.4) holds with dv being the Dirac measure on
the (singular) variety Q(K) = 0 and

Z4(L @LQlogL ra=2 h is the Ri functi
a(L) = Ccd(;)l)de_2 itd>3 where ((-) is the Riemann ¢ function.

As a result of all this analysis, we can show that the effective dynamics of ax(¢) (for large L

and small ) is given by the following nonlinear equation, now set on R?, given by

i0g(&,t) = / 9(61)9(62)9(&3)0(E1—Ea+E3—E)d (11| —[Eal *+]&3|° — |€|*)dErdEades (CR)
(€1,€2,83)€R??

We call this the continuous resonant (CR) equation. It is new to the best of our knowledge, and

can be thought of as a deterministic analog of the wave kinetic equations (WKE).

(CR) has a very unique structure in terms of its surprising symmetries and dynamics. Such
dynamics inform on the long-time behavior of (NLS) thanks to rigorous approzimation results that
allow to approximate ar (t) solving (FNLS) with (a rescaled version of) g(K,t) for any K € Z¢,
when L is large enough, and ¢ us small enough (provided of course that ax (0) = ¢g(K,0)) [11, 5].
This can be roughly stated as follows:

Theorem 3.1 (Buckmaster, Germain, H., Shatah ’16 [5]). Let d > 2 and M,~ > 0 be arbitrary.
Suppose that g(t,€) is a sufficiently “nice” solution of the (CR) equation on an interval [0, M].

3Compared to the effective dynamics of |ax|? given by the wave kinetic equation (WKE).
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Suppose we start with an NLS solution such that ax(0) = go(K). If L is large enough, and if
€ < L™, then

t

— , K)||z2ar~ = 0o(1) L 00, te.it =-0as L — oo
Tr

lar () = g(

for all 0 <t < MTg where T = C(Cd(i)l) (5—22)

It is worth mentioning that the first result in this direction was obtained in 2D by E. Faou, P.
Germain, and the author [11] giving a logarithmic decay in L for the o(1) oo term (and requiring
a more restrictive ¢ — L relationship). The result in [5] generalizes the result to higher dimensions
and higher-order nonlinearities, as well as refines this o(1) decay into polynomial decay in L when
d > 3. When d = 2, it also identifies the logarithmically decaying terms. The less restrictive € — L
relationship is possible thanks to a normal form of very high order [5].

Finally, we remark that the approximation theorem is strong enough to project essentially any
nonlinear dynamics observed for (CR) into (NLS). Moreover, analogous results hold on the unit
torus T¢, where (CR) describes the dynamics of high-frequency envelopes of solutions [11, 5].

3.2.2. Analysis of the (CR) equation

Upon analyzing it, one soon realizes that (CR) enjoys many interesting properties, symmetries,
and even explicit solutions [11, 6]. This is particularly the case in the special dimension d = 2
(or d = 1 with the quintic nonlinearity), in which the (NLS) nonlinearity that we start with is
mass-critical. We mention some of those properties from [11, 16, 17]:

(CR) is invariant under the Fourier transform! In other words, if g(t) is a solution to (CR),
then so is its Fourier transform g(t).

(CR) leaves invariant each of the eigen-spaces of the harmonic oscillator —A + |z|? (the
union of which spans L?(R?)).

e (CR) is Hamiltonian, with Hamiltonian functional given by

H(g) = / / ei%8%2 o) dsdlr,
R JR2

a.k.a. the Lf’x Strichartz norm on R2.

the Gaussian

(CR) enjoys many stationary solutions, including (up to a phase factor e™?)
e3¢ and |€|7L. The latter corresponds exactly to the stationary solution n(¢) = |£]72 of

the wave kinetic equation (WKE)! (Recall that n(€) corresponds to |g(£)]?).

The dynamics of equation (CR) in 2D were further analyzed by P. Germain, L. Thomann, and
the author from the deterministic [16] and probabilistic [17] point of views. Finally, in a joint work
with Laurent Thomann[28], we exhibit the dynamics of (CR) in a completely independent fashion,
as an asymptotic system for NLS with partial harmonic trapping?:

(10 + H)u(t,z) = |u(t,z)|?u(t,x); H:=—Ags +|2'|* 2= (z1,2),z; €R, 2’ € R% (3.5)

More precisely, we show that solutions of (3.5) with small initial data (in appropriate spaces)
exhibit modified scattering towards (CR) dynamics: i.e. they converge as t — oo to solutions of
(CR) in an appropriate sense. The proof follows the modified scattering result we described in
Section 2.2 for the cubic NLS equation on R x T¢ [26]. This result allowed the justification, and
extension, of some heuristic multiple time-scale approximations in the theory of Bose-Einstein
condensation.

4This one of the main models in Bose-Einstein condensation used to describe cigar-shaped magnetic traps, and
was at theoretical basis of the first observations of dark solitons, recognized with a Nobel Prize in 2001.
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