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Journées Équations aux dérivées partielles
Roscoff, 1–5 juin 2015
GDR 2434 (CNRS)

Sharp parabolic regularity
and geometric flows on singular spaces

Rafe Mazzeo

Abstract

This is a brief survey about regularity expansions for solutions of elliptic and parabolic
problems on spaces with conic singularities. The results themselves are closely related to
classical results about elliptic boundary problems, and analogues of these are expected to
hold on quite general stratified spaces with incomplete iterated edge metrics. The emphasis
here is on the interpretation and application of these expansions to geometric problems.

1. Introduction

This short paper surveys a few recent results about elliptic and parabolic problems on singular
spaces. The focus here is on two nonlinear geometric flows, and the way that what we call sharp
regularity for solutions of the linearized problems enters into their analysis.

The study of elliptic and parabolic partial differential equations arising in geometric analysis on
stratified spaces has received substantial attention in the past few decades, and certain parts of the
subject are reaching some state of maturity. In the simplest geometric settings, isolated conic and
simple edge singularities, this linear theory is now quite well understood. Our aim here is to show
how some apparently purely technical results concerning ‘sharp regularity’ for solutions of such
linear and nonlinear equations turn out to have interesting geometric meaning. We explain a few
such results here. To keep the discussion simple, we focus primarily on spaces with isolated conic
singularities. In addition, our examples are in the lowest dimensional cases: the Gauss curvature
equation on surfaces with conic singularities and the associated Ricci flow equation, and the flow
by curvature of a network of curves in the plane or on a surface. One goal here is to explain why it
is fruitful to regard this latter problem as having a conic nature. We conclude by discussing some
known and expected extensions of these results to higher dimensions.

2. Surfaces with conic points

Fix a compact surface M and a conformal structure c on it. A metric g representing c is said to
have a conic singularity at a point p if in local holomorphic coordinates compatible with c it takes
the form

g = |z|2βe2φg,

where g is a smooth metric representing c and where φ is at least bounded (though we require
further regularity below). The number β determines the cone angle at p as follows. In the model
case g = |dz|2 and gβ = |z|2β |dz|2. In polar coordinates |dz|2 = dρ2+ρ2dθ2, so changing coordinates
by r = ρ1+β/(1 + β) yields that

gβ = ρ2βdρ2 + (1 + β)2ρ2β+2dθ2 = dr2 + (1 + β)2r2dθ2.
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Since θ ∈ S1 = R/2πZ, this space is the complete cone C(S1
2π(1+β)) over the circle of circumference

2π(1 + β). We always take β > −1, and shall focus almost entirely on the case where βj < 0, i.e.,
all cone angles are less than 2π.

The first question we consider here involves the relationship between the regularity of the
conformal factor φ and the Gauss curvature of the metric g = e2φgβ . More generally, if g1 and
g2 = e2φg1 are any two conformally related conic metrics, and φ is bounded, then we consider
the relationship between the regularity of φ and the Gauss curvatures K1 and K2 of g1 and g2,
respectively. To approach this, recall the classical transformation formula

∆1φ−K1 +K2e
2φ = 0.

When g1 and g2 are smooth, it is standard that φ gains precisely two orders of regularity from
the Kj . Thus for example if K1,K2 ∈ C0,α, then φ ∈ C2,α. The correct analogue of this statement
when g1 and g2 are conic lies at the heart of the sharp regularity of the title.

Before stating this result, we review a few facts about the linear problem ∆1u = f , when g1 is
conic. These are stated using weighted Sobolev and Hölder spaces,

rνHk
b = {u = rνv : v ∈ Hk

b }

rµCk,αb = {u = rµv : v ∈ Ck,αb }.

In terms of the modified polar coordinates near each cone point, v ∈ Hk
b if (r∂r)i∂jθv ∈ L2, i+j ≤ k,

while Ck,αb = {v : (r∂r)i∂jθv ∈ C
0,α
b for all i+ j ≤ k}, where v ∈ C0,α

b if sup |v| <∞ and

sup
(r,θ)6=(r′,θ′)

|v(r, θ)− v(r′, θ′)|(r + r′)α

|r − r′|α + (r + r′)α|θ − θ′|α <∞.

Notice that the vector fields r∂r and ∂θ are invariant under the homotheties (r, θ) 7→ (λr, θ), as
is the Hölder seminorm, so all these space are invariant under these scalings. These spaces are
the natural ones with respect to the vector fields r∂r, ∂θ; even the Hölder seminorm represents a
fractional derivative with respect to these vector fields.

In two dimensions, near a cone point p with cone angle parameter β,

∆1 = e−2φ∆0, ∆0 = ∂2
r + 1

r
∂r + 1

(1 + β)2r2 ∂
2
θ .

Hence the linear problem ∆1u = f is the same as ∆0u = fe2φ.
The following discussion is local, and all of the results below are proved in [22]. The simplest

case is when f ≡ 0, and it is natural then to search for separable solutions u = A(r)B(θ). This
leads immediately to the family of such decomposable solutions

rj/(1+β)(a cos(jθ) + b sin(jθ)), j ∈ Z.
In the special case j = 0, the solutions are 1 and log r. A general solution of this homogeneous
equation is an infinite superposition of these. If f is smooth and vanishes to infinite order at r = 0,
then the correct conclusion is that if u is bounded, then

u ∼
∞∑
j=0

rj/(1+β)(aj cos(jθ) + bj sin(jθ)),

where the sequences aj and bj are rapidly decreasing. This is an example of a polyhomogeneous ex-
pansion. More generally, a polyhomogeneous expansion is one of the form u ∼

∑
a`,pr

γ`(log r)pφ`(θ)
where the γ` have real parts tending to infinity, there are only finitely many values of p ∈ N for
each `, and the φ` are C∞. These results can be restated as saying that if ∆0u = f and f is smooth
and vanishes to all orders, then u is polyhomogeneous. It is not hard to deduce from this that if f
is polyhomogeneous, then u us polyhomogeneous.

Now suppose that the conformal factor φ is polyhomogeneous at each conic point, and let u be
in the maximal domain of ∆1. This means that u ∈ L2 and ∆1u = f ∈ L2. A basic regularity
result shows that in this case,

u = ã0 log r + a0 + r1/(1+β)(a11 cos θ + a12 sin θ) + ũ, (2.1)
where ũ ∈ r2H2

b and a0, ã0 and the aij are constants. When β ∈ (0,−1/2) then 1/(1 + β) > 2
so the set of terms which have this exponent should be subsumed into the error term ũ. This is

VI–2



known as a partial expansion. To explain it, note first that local (scale-invariant) elliptic regularity
implies that u ∈ H2

b . However, this only guarantees that ∆1u ∈ r−2L2, so the extra information
that ∆1u = f ∈ L2 means that any term in the expansion for u vanishing less quickly than r2

must be annihilated by the operator. The extra initial terms in this partial expansion are precisely
of the form so that this happens.

There is a canonical densely defined subspace DFr, the so-called Friedrichs domain, which is
a self-adjoint extension of the Laplacian (or of ∆1 + V for any bounded V , for example). It is
characterized by the fact that u ∈ DFr if u∇u,∆1u ∈ L2. This condition on the gradient precludes
the log r term in the expansion. In particular, if a solution u to ∆1u = f is bounded, then it must
lie in the Friedrichs domain.

There is an analogue of this definition for weighted Hölder spaces. thus if f ∈ C0,α
b , then local

elliptic estimates (taking advantage of the scaling) shows that u ∈ C2,α
b . However, if this is all we

know, then ∆0u ∈ r−2C0,α
b . As before, this can only happen if there is some cancellation. One

proves that u has an expansion exactly as in (2.1), but now with ũ ∈ r2C2,α
b . The assumption that

u is bounded means that ã0 = 0. Accordingly, we define the Hölder-Friedrichs domain DHFr as the
set of u ∈ C2,α

b which are bounded and which satisfy ∆0u ∈ C0,α
b .

We now return to the nonlinear problem. These linear results can be easily adapted to prove
the following

Proposition 2.1. If the two metrics g1 and g2 have C2,α
b coefficients, have the same cone angles,

and are conformally related, g2 = e2φg1 where φ is bounded, and K1, K2 ∈ C0,α, then
φ = a0 + r1/(1+β)(a11 cos θ + a12 sin θ) + φ̃, φ̃ ∈ r2C2,α

b .

Now consider the uniformization question in this setting. Fix a compact Riemann surface (M, c)
and suppose that p = {p1, . . . , pk} is a simple divisor, i.e., a set of distinct points on M , and
~β = {β1, . . . , βk} is a k-tuple of cone angle parameters. We ask whether there is a metric g
representing c, with these specified cone angles at the points pj , and with constant curvature K.
This can be recast as a PDE as follows by starting with any conic metric g1 in this conformal class
with these specified cone angles, and which has smooth or polyhomogeneous coefficients in (r, θ).
Then g2 = e2φg1, solves this uniformization problem if

∆1φ−K1 +Ke2φ = 0.
We can of course use this equation as a way to find solutions. There is a constraint given by the
analogue of the Gauss-Bonnet formula in this setting, namely that if a solution exists, then∫

M

Kg0 dAg0 =
∫
M

K0 dAg = 2π

χ(M) +
k∑
j=1

βj


If all the cone angles are less than 2π, then a complete answer is known: this problem has a

solution which is unique up to some obvious symmetries if and only if χ(M) ≤ 0 or else χ(M) > 0
and ~β must satisfy

βj >
∑
i 6=j

βi for all j. (2.2)

This is called the Troyanov condition; it is the lowest dimensional version of the K-stability con-
dition in Kähler geometry.

Theorem 2.2 (McOwen [27], Troyanov [36]). If all cone angles are less than 2π, then there exists
a solution of this problem if and only if ~β satisfies the Troyanov condtion. This solution is unique
except when the solution metric g is flat, in which case there is a one-parameter family of scalings,
or else if M = S2, k = 2 and β1 = β2, in which case there is a one-parameter family of solutions
generated by the family of dilations of S2 which fix both conic points.

The existence and uniqueness (or more likely, multiplicity) theory when any of the cone angles
are greater than 2π is much less well understood. We refer to the work of Malchiodi and his
collaborators [5, 8, 20] and Mondello and Panov [28] for the best current results in these directions.

The deformation theory of conic metrics with constant curvature and all cone angles less than
2π has only recently been carried out [26]. That paper analyzes this deformation theory using
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tools of geometric analysis similar to Tromba [35] for smooth metrics without conic points. The
key new tools needed in the conic setting are the mapping and regularity properties of solutions of
the Laplacian on functions, 1-forms and symmetric two-tensors. Since one is dealing with exactly
hyperbolic metrics, the regularity theorem above prove that solutions of the various equations
encountered here are polyhomogeneous. Their complete asymptotic expansions involve the basic
terms rj/(1+β)(a cos(jθ) + b sin(jθ)). The mapping properties of these operators are proved in [22,
Section 4]. Refined regularity results about solutions of these various problems follow using the
techniques sketched above. To connect this with the general theme of this paper, however, the pre-
cise identification of the terms in these expansions with small exponents is required to understand
the nonlinear deformations.

We turn now to the associated dynamical problem: the behavior of conic metrics under the
Ricci flow. Fix an initial conic metric g0 and suppose that the 1-parameter family of g(t) satisfies
the normalized Ricci flow equation with g(0) = g0. In two dimensions Ric(g) = Rg, where R is the
scalar curvature of g, so the flow equation is

∂g

∂t
= ρg − Ric(g) = (ρ−R)g;

we include the renormalizing constant ρ = 2πχ(M)/Area(M, g0) to ensure that the area of (M, g(t))
remains constant. This flow preserves the conformal class, so we can rewrite this equation as a
scalar quasilinear problem in terms of the function u(t, ·), where g(t) = u(t)g0:

∂u

∂t
= ∆0 log u−Rg0 + ρu.

There are two separate issues. Unlike when M is smooth, short-time existence is not straight-
forward here, and even once that has been accomplished, long-time existence and convergence as
t→∞ present further interesting challenges.

The difficulty with short-time existence is that the problem is not well-posed. In fact, there are
multiple different solutions emanating from any initial conic metric g0. One of these is a solution
g(t) for which the conic singularity disappears entirely for t > 0. This was proved by M. Simon [34]
and in somewhat greater generality by Koch and Lamm [18]. Both of these papers study the
Ricci flow equation for manifolds with general Lipschitz initial data, of which metrics with a finite
number of conic singularities on surfaces are a very special case. Note that in higher dimensions,
conic singularities may not be smoothable since spaces with isolated conic singularities need not
even be topological manifolds. This result is not so surprising given the regularizing properties of
the flow. There is another solution to this flow which is much more surprising: for this solution,
produced by Giesen and Topping [12, 13], the incomplete conic metric onM \{p1, . . . , pk} becomes
instantaneously complete. Finally, a main result of [23] states that there is a unique family of conic
metrics g(t) for which the cone angles remain constant. Slightly more generally, there is a solution
with any prescribed smooth function ~β(t) of cone angle parameters. Another earlier approach to
this was given by Yin [37, 38] using an approximation technique. We also refer to the work of
Ramos [31]. We advertise the method of [23] however because it addresses the regularity issues
directly, and the asymptotics of solutions obtained this way are used in the long-time existence
and convergence steps. These asymptotics will also be helpful for studying further problems, for
example the evolution of global spectral invariants under the flow.

Consider first the linearized problem
∂φ

∂t
= L0φ := ∆0φ−R0φ. (2.3)

To preserve the cone angle, we require that φ remain bounded near r = 0. This determines which
solution operator for this parabolic problem we must use. Namely, following the earlier discussion,
we must choose the solution such that φ(t, ·) lies in the Hölder-Friedrichs domain for L0 for each
t > 0. (This is the solution given by the heat semigroup corresponding to the Friedrichs extension
of L0.)

There are two types of parabolic Hölder spaces here. The first, Ck+α,(k+α)/2
b0 , is based on differen-

tiations with respect to the vector fields r2∂t, r∂r, ∂θ. These spaces are fully dilation invariant with
respect to the parabolic rescalings (t, r, θ) 7→ (λ2t, λr, θ). These do not control regularity in t when
r = 0, and so do not give information about the terms in the expansion of a solution as r → 0 for
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t > 0. To focus on this region, we also use spaces Ck+α,(k+α)/2
b , which are based on differentiations

with respect to ∂t, r∂r, ∂θ. The clear advantage here is that these control regularity in t even at
the conic tip where r = 0; the downside is that it is harder to prove estimates for the solution
operator on these spaces. In fact, it is necessary to first obtain estimates in the former spaces,
which can be done rather simply using scaling arguments and classical local parabolic regularity
estimates, and pass from these to estimates on the latter spaces, which is done using commutator
and interpolation arguments.

The following is proved in [23].

Proposition 2.3. If f ∈ Ck+α,(k+α)/2
b then the unique solution u to

∂u

∂t
= L0u+ f, u(0, ·) = 0

lies in Ck+2+α,(k+2+α)/2
b For all t > 0 there is a decomposition

u(t, ·) = u0(t) + r1/(1+β)(u11(t) cos θ + u12(t) sin θ) + ũ

where ũ ∈ r2Ck+2+α,(k+2+α/2)
b .

An interpretation of the part of this result concerning expansions is that the Hölder-Friedrichs
domain propagates under this linear evolution. It is straightforward to deduce from this that there
exists a solution φ to the nonlinear Ricci flow equation for some small time interval 0 < t < T
which is bounded and has a partial expansion near each cone point. If the initial metric g0 is
polyhomogeneous, then g(t) is polyhomogeneous for each fixed t > 0. This also implies that if K0
is bounded, then Kg(t) is also bounded when t > 0.

We shall not say much about how these results are obtained, referring to [23] for a careful
explanation. The main point, however, is that we rely on a detailed geometric description of the
Schwartz kernel of the heat operator. This is a distribution on R+×M ×M , and the result which
we borrow from geometric microlocal analysis is that the heat kernel lifts to a resolution of this
space as a function which is polyhomogeneous at all boundary faces. This structure was proved
originally in [29] and used in [16] to obtain certain mapping properties, but ones which do not go
as far as the ones stated here.

The next issue is long-time existence of the flow. Hamilton [14] laid out an effective strategy for
proving this on surfaces. A key ingredient is the existence of a potential function f for the flow.
By definition this is a solution to the equation ∆g(t)f = Rg(t) − ρ such that both f and |∇f | are
bounded for each t. We have already explained that f must have an expansion as in (2.1), and if we
choose the solution in the Hölder-Friedrichs domain, then ã0 = 0 so f is bounded. This expansion
also implies that |∇f | is bounded, but interestingly this only holds when all cone angles are less
than 2π. It is possible to follow Hamilton’s argument through in the conic case for cone angles in
this range; long-time existence when some of the cone angles are greater than 2π is not known and
might possibly fail.

The final issue is convergence of the solution as t→∞, which is more difficult. We prove in [23]
that if ~β does satisfy the Troyanov condition, then g(t) converges exponentially quickly to the
uniformizing constant curvature metric. However, if ~β does not satisfy the Troyanov condition
then one cannot expect such convergence since there is no stationary solution to which g(t) could
flow. In this case we prove that there exists a unique point p ∈ M = S2 such that u ↗ ∞ in any
small ball Bε(p) (measured with respect to the initial metric g0), and u ↘ 0 on M \ Bε(p). We
also show the existence of a family Ft of diffeomorphisms of M such that F ∗t g(t) converges to a
metric g∞ which is either smooth and has constant curvature or is a soliton metric with either 1 or
2 conic points. The natural conjecture is that the point of divergence p is one of the conic points
(and in fact is the unique point for which (2.2) fails), and furthermore that the diffeomorphism Ft
by which one pulls back are conformal. A different approach to convergence using more powerful
geometric machinery which includes these stronger results was given by Phong et al. [30].

3. The network flow

We now discuss a rather different looking geometric problem which turns out to have very similar
analytic underpinnings. This is the flow by curvature of networks of curves in the plane, or in an
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arbitrary surface. This extends the well-known theory, studied in the early days of geometric flows
by Gage and Hamilton, Grayson and others, concerning the evolution problem

∂γ

∂t
= κn, (3.1)

where γ is a curve, n its unit normal and κ its curvature. There is a beautiful and complete
theory when γ is either closed or else is an arc and satisfies some natural boundary conditions
(e.g. the boundary points could be fixed, or the curve could be required to meet a given boundary
orthogonally). If the initial curve γ0 is C2 and embedded, then γ(t) exists on some finite interval
0 ≤ t < T∗; no matter the shape of γ0, there exists an intermediate time T0 < T∗ such that γ(t) is
convex for t > T0, and becomes increasingly circular and shrinks to a point as t↗ T∗.

The generalization we have in mind is motivated by applications to the evolution of grain
boundaries. One considers a network of curves, i.e., a locally finite collection of curve segments
{γj}, with various subcollections meeting at internal nodes. These curves might also have external
boundary points satisfying some auxiliary boundary conditions, but we do not specify these or
discuss these further here. One then seeks to flow this entire ensemble according to the evolution
law (3.1). This equation makes sense away from the boundary points of each curve, but it is not
immediately apparent how to formulate this problem near these points. The first successful attempt
was carried out by Brakke [6], who interpreted Γ as a varifold and studied a weak formulation of this
curvature flow. This is an efficient and beautiful setup, but as usual with any weak interpretation,
leaves open many questions about the geometry of the evolving varifolds. In particular, solutions
of this flow are not necessarily unique, and more to the point, one does not obtain easy information
about the geometry of these evolving curves and how their intersections vary.

This leads to the goal of interpreting this problem in a strong sense using partial differential
equations. The basic formulation is as follows. We first add a tangential term to (3.1) and suppose
that each curve γj

∂tγj = ∂2
sγj
|∂sγj |2

. (3.2)

This extra tangential term allows the internal vertices to move. As for the ‘internal boundary
conditions, if γ1, . . . , γk intersect at some node p, corresponding to parameter value s = 0 on each
curve, then we require that

γ1(t, 0) = . . . = γk(t, 0),
k∑
j=1

∂sγj(t, 0)
|∂sγj(t, 0)| = 0. (3.3)

The geometric content of (3.3) is that the unit tangents to all curves in the network meeting at
p must be equally spaced. It is discussed in [6] that the stable configurations are those for which
only three curves meet. Thus we call a node regular if it is trivalent and if the curves meeting there
make a mutual angle of 2π/3. A network is regular if all of its nodes are regular.

It was proved by Bronsard and Reitich [7] that these nonlinear boundary conditions satisfy the
Lopatinski-Shapiro property, and it can then be proved that if an initial network Γ0 is regular,
and if a set of higher order compatibility conditions are satisfied at each vertex, then this system
admits at least a short-time solution. The proof invokes standard results for quasilinear parabolic
problems in ordinary Hölder spaces. The higher order compatibility conditions are what make it
possible to work in these function spaces. A later paper by Mantegazza, Novaga and Tortorelli [21]
clarifies and sharpens this analysis, and shows that a short-time solution still exists even without
these compatibility conditions, but still requiring that all nodes of Γ0 are regular.

The full story about the long-time behavior of this flow is not well understood. Complications
include that certain curves can pinch off and the evolving network may cease to be regular at these
points of time. Results in this direction are obtained [21, 15].

Not only to understand how to continue the flow past these singular times, but also just to have
a complete theory, it is necessary to consider the problem of short-time existence when the initial
network Γ0 is not regular, and this is our principal interest here.

The first step toward this is to classify the expanding soliton solutions. By definition, an ex-
panding soliton is a solution of this system on R2 such that Γ(t) is a dilate of the solution at t = 1;
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the scaling which arises in a natural parametrization is that
γj(t, s) =

√
t γ̃j(s/

√
t).

The initial network for an expanding soliton is a union of rays emanating from the origin, and
the directions of these rays are the same as the asymptotic directions of each of the curves in
the soliton network at later times which extend to infinity. If there are only three such rays and
they already meet with an angle of 2π/3, then this configuration remains the same for all time.
The next case is when Γ0 consists of three ray meeting at unequal angles. The soliton solutions
for such configurations were obtained by Schnürer and Schulze [33]. A later paper by the author
and Saez [24] provides a sort of classification of all expanding solitons, which can be described as
follows. It is sufficient to consider the network at t = 1. Each curve Γj in the network Γ(1) satisfies
a dimensional reduction of the flow equations which is in fact simply the geodesic equations for
the metric gs = e|z|

2 |dz|2 on R2. This is a complete metric with negative curvature, so it is
natural to compactify (R2, gs) as the interior of the disk B2. The k rays in the initial configuration
correspond to k points q1, . . . , qk on the circle at infinity. The network Γ(1) is then a minimizing
geodesic Steiner tree with asymptotic boundary at these k points. The local regularity theory for
such minimizing trees ensures that each interior node is regular. The existence of at least one
such minimizing geodesic Steiner tree for any given collection of points q1, . . . , qk ∈ S1 is proved
in [24] using fairly simple arguments from geometric measure theory. Simple examples show that
there may be more than one solution. In other words, for an initial network of k intersecting rays,
there is at least one, and usually many different ways that it can ‘explode’ into a regular network.
The single node at the origin bursts into a set of k − 2 separate nodes for t > 0, and the inital
configuration of k rays becomes a network of 2k − 3 curves, k of which extend to infinity.

We can now formulate the general short-term existence theorem.

Proposition 3.1. Let Γ0 be any initial network of curves such that at any interior vertex p, no two
curves meet tangentially. (We prescribe some good boundary conditions at each external vertex.)
For each internal vertex, consider the tangent array Γ0(p), which is the set of k rays emanating
from 0 which are the tangent-rays for the curves meeting at p. Choose any expanding soliton
solution Γss(p) which desingularizes Γ0(p). Then there exists a unique solution to the network flow
associated to this data which exists for some small time interval 0 < t < T∗. The rays in Γ(t) are
smooth up to their endpoints for all t > 0.

There is a better regularity statement which requires some additional notation to describe
properly. Consider the space R+

t ×R2, with the initial network Γ0 lying in {0} ×R2. Now pass to
a new space P by taking the parabolic blowup of each of the points (p, 0), where p is an internal
vertex of Γ0. Namely, for each internal vertex p, translate the coordinates so that p is at the origin.
There is a polar coordinate system adapted to the parabolic dilations (t, x) 7→ (λ2t, λx), namely
R =

√
t+ |x|2, ω = (ω0, ω

′), with ω0 = t/R2, ω′ = x/R. Then P is obtained by removing each
of the points (0, p) and replacing it with the hemisphere S2

+ parametrized by ω at R = 0. The
network Γ0 lifts to a collection of curves on the main boundary component at t = 0 of P which
connect these various hemispheres. For each such p, its associated hemisphere S(p) is projectively
identified with R2, and the Np curves in Γ0 which meet at p determine N boundary points on the
hemisphere, or equivalently, Np asymptotic directions in this R2. Any choice of expanding soliton
Γss for each p gives a system of curves on that hemisphere, and the union of these ‘closes up’ the
lift of Γ0 to a network which extends over all the boundary components of P.

The corresponding solution of the network flow provided by the theorem determines a set of
parallel networks {t} × Γ(t) which fit together into a union of smooth sheets. We can now state
the precise regularity theorem, which asserts that if the curves in Γ0 are smooth and polyhomoge-
neous up to their endpoints, then these sheets extend to ∂P to be polyhomogeneous surfaces with
boundary, where the union of the intersection of these sheets with S(p) is precisely the soliton
Γss(p). This is better visualized with the picture below. The gist of this entire result is that the
apparent discontinuity of the evolution of this solution to the network flow at t = 0 is resolved by
the passage to the space P, and that with this interpretation, solutions appear to be completely
smooth.

The proof of these results will appear in a forthcoming paper by Lira, the author and Saez [19].
The main step is to introduce the picture above and then reinterpret it in a way that it may be
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Figure 3.1: The blowup and induced network at t = 0

Figure 3.2: The intersecting sheets of the flowout of the network

translated into a manifestly conic parabolic problem. As a hint of how to do this, consider the
simple case where there is a single interior vertex and four curves intersect there. As pictured in
Figure 1 above, the space P is a half-space with a single point on its boundary blown up to a
hemisphere. The initial network Γ0 is a collection of curves, each of which end at a set of distinct
points of this hemisphere. There are several desingularizing solitons in this case: there are two
disconnected solutions and two connected ones. Choosing any one of these caps off the lift of Γ0.
The sheets of the flowout are now of two types. There are four sheets, each corresponding to one
of the original curves and meeting the original boundary of P at that curve but also intersecting
S(p), and one new sheet which only meets ∂P in that hemisphere. We consider this as a collection

Figure 3.3: The space Q and the mapping into P

of mappings: U = (u1, u2, u3, u4, us). For j = 1, 2, 3, 4, uj is initially a map from R+
t × [0, 1]s into

R+
t × R2

x, but in fact lifts to a polyhomogeneous map of the space Q obtained from R+
t × [0, 1]s

by blowing up (0, 0) parabolically, and has image in P, which is of course a similar blowup of
R+
t × R2

x. The final map us is a map from R+
t × [0, 1]σ into P, where us(0, σ) parametrizes the

curve in the soliton Γss(p) which connects the interior vertices and does not touch the boundary
of the hemisphere. Thus altogether,

U : Q4 × R+ × [0, 1] −→ P.
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The original linking boundary conditions extend naturally to boundary conditions on the vertical
boundaries of this blown up domain space. The main observation is that when interpreted this
way, the underlying PDE is another example of a conic problem. The estimates from [23] may then
be invoked almost verbatim to prove the theorem.

We note that there is an earlier proof of short-time existence for this general network flow, along
with some long-time existence results, due to Ilmanen, Neves and Schulze [15]. Their approach uses
a method of approximation, and while very satisfactory from many points of view, does not contain
the sharp regularity statement at the vertices.

4. Extensions

We conclude this survey by mentioning a few natural generalizations of the problems considered
here along with some results and problems in these directions.

The natural class of spaces generalizing those with isolated conic singularities are the stratified
spaces with iterated edge metrics. There are now a number of limited results about linear elliptic
theory in this general setting, see [1, 2]. On the other hand, this theory for spaces with simple edge
singularities is now quite mature, see [22, 25].

The most direct generalization of the problem about constant curvature metrics with conic
singularities concerns the existence and nature of Kähler-Einstein metrics on a Kähler manifold
with edge singularities along a divisor. These metrics were considered initially by Tian in the early
’90’s, and more recently introduced by Donaldson as a crucial component of the resolution of the
log Fano conjecture. The paper [17] contains a proof of the existence of these ‘Kähler-Einstein edge
metrics’ with cone angles less than 2π, along with a complete regularity theory very similar to the
one outlined above. That paper contains many further references to other approaches and results
appearing in the now extensive literature on this problem. We also mention the work of Chen and
Wang [9], who extended the approach of Donaldson [10] to a parabolic theory which attacks the
dynamical study of this problem.

One may also consider the Ricci flow in higher dimensions on manifolds with conic and edge
singularities. We mention the work of Bahuaud, Dryden and Vertman [3, 4] as initial steps. However,
this problem has turned out to present some formidable technical obstacles and further progress
has been difficult.

As for generalizations of the network flow, the most obvious extension to higher dimensions is
to consider ‘fans’ of surfaces which meet along arcs and at vertices and to attempt to flow these by
mean curvature. Freire [11] provides the analogue of [21] in this setting. He establishes a short-time
existence result when the initial fan is ‘regular’ (this allows triples of surfaces to meet along a curve
with angle 2π/3. A more complicated configuration is also possible, where six surfaces meet at a
vertex in an arrangement like the cone over the barycenter of a regular simplex. The analogue of
the classification result of [24] for expanding fan solitons remains unknown. There are plausible
conjectures about what the general short-term existence result should look like, but this remains
an open problem.
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