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Perturbations of the harmonic map equation

T. Kappeler

Abstract
We consider perturbations of the harmonic map equation in the case where

the source and target manifolds are closed Riemannian manifolds and the lat-
ter is in addition of nonpositive sectional curvature. For any semilinear and,
under some extra conditions, quasilinear perturbation, the space of classical
solutions within a homotopy class is proved to be compact. For generic per-
turbations the set of solutions is finite and we present a count of this set. An
important ingredient for our analysis is a new inequality for maps in a given
homotopy class which can be viewed as a version of the Poincaré inequality
for such maps.

0. Introduction

In this paper we report on joint work with S. Kuksin and V. Schroeder as well as J.
Latschev on semilinear and quasilinear perturbations of the harmonic map equation
τ(u) = 0 following the expositions in [KKS1],[KKS2],[KL].
The harmonic map equation is an equation for maps u : M → M ′ between Rieman-
nian manifolds, defined as the Euler-Lagrange equation for the energy functional

E(u) :=

∫
M

e(u)(x) d vol(x)

where e(u)(x) denotes the energy density,

e(u)(x) :=
1

2
gij(x)〈 ∂u

∂xi
,

∂u

∂xj
〉.

Here gij(x) is the inverse of the (smooth) metric tensor on M , d vol(x) the corre-
sponding volume element, and 〈·, ·〉 the scalar product in TM ′. In local coordinates
for M and M ′, the operator τ can be written as the Laplace-Beltrami operator,
perturbed by terms which are quadratic in the derivatives of u.

If not stated otherwise we assume throughout the paper that M and M ′ are
closed.
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Our aim is to consider perturbations of the equation τ(u) = 0 by a semilinear
term F (x, u(x)) with F being a x-dependent vector field on M ′, and by terms linear
in the derivatives of u and of sufficiently small size of the form

L(x, u(x)) u∗ (G(x, u(x)))

where L(x, u(x)) is a linear operator on Tu(x)M
′, u∗ the differential of u, and G a

y-dependent vector field on M, G(x, u(x)) ∈ TxM . More precisely we want to study
the set of solutions u : M → M ′ of

τ(u)(x) + F (x, u(x)) + L(x, u(x))u∗ (G(x, u(x))) = 0 (0.1)

in a given homotopy class ζ of C1-maps u : M → M ′,

u ∈ ζ. (0.2)

Note that (0.1) is not necessarily of variational form. The main assumption we
impose is that

M ′ has nonpositive sectional curvature . (0.3)

Unless otherwise stated this assumption will be made throughout the paper. Given
F, G and L of class Ck with k ≥ 2, denote by SF,G,L ≡ S

(k)
F,G,L the set of all Ck+1

solutions of (0.1). In the case L = 0 and G = 0 we simply write SF instead of SF,0,0.
We note that by the regularity theory of elliptic equations, given F of class Ck, any
C3-solution v ∈ S

(2)
F is Ck+1-smooth, i.e.

S
(2)
F = S

(k)
F .

Similarly, if dimM ≤ 3 and F, G and L are of class Ck, one has S
(2)
F,G,L = S

(k)
F,G,L.

It follows from [ES], [Ha] and [SY] that for any homotopy class ζ, the set S0 ∩ ζ of
harmonic maps in ζ is a nonempty, connected and compact subset of C∞(M, M ′).
Our aim is to investigate if the solution set S

(k)
F,G,L ∩ ζ has similar properties.

1. Compactness

First we prove that for any F, G, L of class Ck with k ≥ 2, SF ∩ ζ is compact in the
Ck+1 topology and, if dimM ≤ 3, SF,G,L ∩ ζ is compact in the Ck+1 topology for G
and L of sufficiently small size,

max
x∈M
y∈M ′

(
‖L(x, y)‖ · ‖G(x, y)‖

)
≤ c∗

where c∗ > 0 is a constant which only depends on ζ and the manifolds M and M ′.
Here ‖L(x, y)‖ denotes the operator norm of L(x, y) : TyM

′ → TyM
′ and ‖G(x, y)‖

is the norm of G(x, y) in TxM .
In fact we prove slightly stronger results. To state them we first need to introduce

some more notation. Let us denote by Ck the space of Ck-maps from M to M ′, by
F (k) the vector space of x-dependent vector fields F (x, y) on M ′ of class Ck in x
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and y, by G(k) the vector space of y-dependent vector fields G(x, y) on M of class
Ck in x and y and by L(k) the vector space of linear operators L(x, y) on TyM

′ of
class Ck in x and y. Let

M(k)
ζ := {(u, F ) | F ∈ F (k) ; u ∈ SF ∩ ζ}

considered as a subset of Ck+1 ×F (k) and, for any c∗ > 0

N (k)
ζ,c∗

:=
{
(u, F, G, L) | (F, G, L) ∈ F (k) × G(k) × L(k) ; u ∈ SF,G,L ∩ ζ ;

max
x,y

‖L(x, y)‖ · ‖G(x, y)‖ < c∗
}

considered as a subset of Ck+1 × F (k) × G(k) × L(k). By π we denote the natural
projections

π : M(k)
ζ → F (k) or π : N (k)

ζ → F (k) × G(k) × L(k).

Recall that a continuous map between topological spaces is called proper if the
preimage of any compact set is compact.

The main results in [KKS1] are the following ones:

Theorem 1.1 Let M and M ′ be closed Riemannian manifolds with M ′ having non-
positive sectional curvature and ζ be a homotopy class of C1-maps from M to M ′.
Then for any k ≥ 2, the projection π : M(k)

ζ → F (k) is proper.

Theorem 1.2 Let M and M ′ be closed Riemannian manifolds with M ′ having
nonpositive sectional curvature and ζ be a homotopy class of C1-maps from M
to M ′. Assume that k ≥ 2 and dimM ≤ 3. Then there exists c∗ > 0 such that
π : N (k)

ζ,c∗
→ F (k) × G(k) × L(k) is proper.

In particular, Theorem 1.1 contains the following extension of a result due to
Schoen-Yau for harmonic maps [SY] (cf also Hartman [Ha]) concerning the com-
pactness of the space of harmonic maps within a homotopy class.

Corollary 1.3 Let F ∈ F (k) with k ≥ 2. Then SF ∩ ζ is compact in the Ck+1-
topology.

We note that a corollary of Theorem 1.2 similar to Corollary 1.3 holds.
Simple examples show that the stated result of Corollary 1.3 does not need to

hold if M ′ is not of nonpositive sectional curvature and the statement of Theorem 1.2
is not necessarily true if the perturbation is not affine in the differential u∗ or the
part which is linear in u∗ is not sufficiently small.

We remark that no efforts have been made to see if Theorem 1.1 and Theorem 1.2
hold for k smaller than two. Moreover, most likely Theorem 1.2 holds for manifolds
M of arbitrary dimension.

Our results are similar in flavour to the compactness results due to Kuksin
[Ku] for double periodic solutions of quasilinear Cauchy-Riemann equations which
originated in a compactness result of Gromov [Gr] for J-holomorphic curves. In
future work we plan to establish similar results for other important nonlinear elliptic
equations.
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The main ingredient of the proof of Theorem 1.1 and Theorem 1.2 in [KKS1] is
an apriori estimate for the energy E(u) for a solution u of (0.1) in a given homotopy
class ζ: As a first step we introduce canonical distance functions Np(u, v)(p ≥ 1)
between two maps u, v : M → M ′ in ζ and prove that if u, v are of class C3 the
energy E(u) can be bounded by

E(u) ≤ ‖F‖C0N1(u, v) +
√

2‖G‖C0E(u)1/2N2(u, v) + E(v).

Here Np(u, v) is defined by

Np(u, v) := inf{Np(H) | H is a C1-homotopy between u and v}

with

Np(H) :=

(∫
M

(∫ 1

0

∥∥ d

ds
Hs(x)

∥∥ds

)p

d vol(x)

)1/p

.

In a second step we show that N2(v, u) can be bounded in terms of E(u) and
E(v):

Theorem 1.4 Let M and M ′ be closed Riemannian manifolds with M ′ having non-
positive sectional curvature and ζ be a homotopy class of C1-maps from M to M ′.
Then there exists a constant C > 0 such that for any u, v ∈ ζ

N2(u, v) ≤ C
(
E(u)1/2 + E(v)1/2 + 1

)
. (1.1)

Our proof of Theorem 1.4 uses in an essential way that M ′ has nonpositive
sectional curvature. The main ingredient of the proof is a version of the apriori
estimate (1.1) for maps from a metric graph to M ′ which we discuss in the subsequent
section.

In [KKS2] we prove a sharper version of Theorem 1.4: In the case where M ′ has
negative sectional curvature there is a constant C ′ > 0 so that for any homotopic
maps u, v : M → M ′ inequality (1.1) holds with C replaced by C ′.

Estimate (1.1) is a new inequality which can be viewed as a version of the
Poincaré inequality for maps between manifolds and is of independent interest. It
also has the flavour of a quadratic isoperimetric inequality. We illustrate this by
considering the case when M = S1. Viewing E(u)1/2 as a measure for the length
of u, inequality (1.1) says that there exists a homotopy such that the area of the
cylinder given by the homotopy can be bounded in terms of the square of the length
of its boundary. Here the area of the cylinder is measured in terms of its L2-averaged
"length" N2(u, v) and the length of its boundary by E(u)1/2 + E(v)1/2. We recall
that for a Hadamard space X the following isoperimetric inequality holds: given
any simple, closed curve γ in X of length L, there exists a disc D with ∂D = γ so
that area (D) ≤ πL2.

2. Short homotopies between graphs

Let M ′ = X ′/Γ be a compact Riemannian manifold with nonpositive sectional
curvature. In this section we show that two homotopic maps from a graph into M ′

can be joined by a short homotopy.
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Let G be a finite metric graph, i.e. a finite graph, where every edge has some
positive length (cf [BH] I.1.9). We also assume for simplicity that G has no terminals,
i.e. that every edge is incident to at least two edges. A map u : G → M ′ is called
differentiable, if the restriction of u to every edge is differentiable. In an obvious
way one defines the length L(u) of a differentiable map u : G → M ′ by summing up
the lengths of the restriction of u to any of the edges of G. The following result is
the main ingredient in the proof of Theorem 1.4.

Theorem 2.1 Let ζ be a homotopy class of C1-maps from G to M ′. Then there is
a constant C0 > 0 such that for any u, v ∈ ζ there exists a homotopy H : G×[0, 1] →
M ′ from v to u, with the property that for any point z ∈ G,

`H(z) ≤ C0 (L(u) + L(v) + 1) .

The constant C0 does not depend on the choice of the metric on G. Here `H(z)
denotes the length of the curve s 7→ H(z, s).

We outline the proof in the special case where G is a circle with a given metric,
the homotopy class ζ is nontrivial, and the sectional curvature of M ′ is strictly
negative. Denote by T ⊂ R an interval of the same length as G and by p+, p− its
two endpoints. Let ϕ : T → G be the canonical map identifying p+ and p−, choose
t0 = p+ ∈ T as a basepoint and let HG : G× [0, 1] → M ′ be a given homotopy from
v to u. Consider the map HT : T × [0, 1] → M ′ defined by HT (t, s) = HG(ϕ(t), s)

which can be lifted to a map H
T

: T × [0, 1] → X ′. Since HT (p+, s) = HT (p−, s)
for any 0 ≤ s ≤ 1 and Γ acts discretely, there is a deck transformation γ ∈ Γ so
that γH

T
(p+, s) = H

T
(p−, s) for any 0 ≤ s ≤ 1. Furthermore γ is not the trivial

element, since ζ is nontrivial. Denote by dγ the displacement function given by
dγ(x) := d(x, γx) where d is the distance function on X ′. As, by assumption, the
curvature is strictly negative, γ translates a unique geodesic which coincides as a
set with

MIN(γ) := {x ∈ X ′ | dγ(x) = inf
y∈X′

dγ(y)}

(cf section 6 in [BGS]). Using the convexity of the distance function on the Hadamard
space X ′ one can prove - see [KKS1], [BGS]

d
(
H

T
(t0, 1), MIN(γ)

)
≤ %dγ(H

T
(t0, 1)) + 1 ≤ %L(u) + 1 (2.1)

for some % > 0, only depending on ζ and M ′, and similarly,

d
(
H

T
(t0, 0), MIN(γ)

)
≤ %L(v) + 1. (2.2)

Let πMIN(γ) : X ′ → MIN(γ) be the metric projection onto MIN(γ). The cyclic group
〈γ〉 operates with compact quotient on the geodesic MIN(γ) - see [KKS1], [CS].
Thus there exists m ∈ Z such that for α = γm

d(απMIN(γ)H
T
(t0, 1), πMIN(γ)H

T
(t0, 0)) ≤ C (2.3)
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where C is the minimum of dγ which depends only on the homotopy class of ζ. With
the help of α we define a new homotopy ĤT : T × [0, 1] → X ′ by ĤT (t, s) = ct(s)

where for any t ∈ T , ct : [0, 1] → X ′ is the geodesic from H
T
(t, 0) to αH

T
(t, 1).

Since α commutes with γ it is easily checked that for any 0 ≤ s ≤ 1, γĤT (p+, s) =
ĤT (p−, s). Hence ĤT induces a homotopy H from v to u. By (2.1),(2.2) and (2.3)
we estimate

d(ĤT (t0, 1), ĤT (t0, 0))

≤ d(ĤT (t0, 1), απMIN(γ)H
T
(t0, 1)) + d(απMIN(γ)H

T
(t0, 1), πMIN(γ)H

T
(t0, 0))

+ d(πMIN(γ)H
T
(t0, 0), H

T
(t0, 0))

≤ (%L(v) + 1) + C + (%L(u) + 1) .

(2.4)

Let H : G× [0, 1] → M ′ be defined by composing ĤT with the projection X ′ → M ′.
Then the above inequality implies

`H(z0) ≤ C ′(L(u) + L(v) + 1)

for z0 = ϕ(t0) and C ′ is given by C ′ := C +2+% which is independent of the metric
on G. Using the triangle inequality we obtain

`H(z) ≤ (C ′ + 1) (L (u) + L (v) + 1)

for an arbitrary point z ∈ G. The argument in the general case is essentially the
same. The interval T has to be replaced by a suitable metric tree, MIN(γ) by
MIN(f) for a suitable function f =

∑m
i=1 dγi

and the group 〈γ〉 by the centralizer
Z(γ1, . . . γm) - see [KKS1] for details.

In the case M ′ has strictly negative sectional curvature Theorem 2.1 can be im-
proved. Denote by N(u, v) the following distance between two homotopic C1−maps
u, v : G → M ′,

N(u, v) := inf
H
{sup

z∈G
`H(z)}

where the infimum is taken over all C1−homotopies H : G × [0, 1] → M ′ between
u and v and `H(x) is the length of the curve s 7→ H(x, s). In [KKS2] we show the
following estimate.

Theorem 2.2 Let κ > 0 and % > 0 be given. Then for any Riemannian manifold
M ′ with sectional curvature bounded from above by −κ < 0 and injectivity radius
bounded from below by % > 0, but not necessarily compact, for any finite metric
graph G and for any homotopic C1 maps u, v : G → M ′ which are not in the trivial
homotopy class

N(u, v) ≤ 3(L(u) + L(v)) + C(κ, %/20)

where
C(κ, ε) := 8sh−1

κ (1) + sh−1
κ (1/shκ(ε))

with shκ(ε) := sinh(
√

κε). For u, v : G → M in the trivial homotopy class, one has
to assume that M ′ is compact and obtains in a straight forward way

N(u, v) ≤ 1

2
(L(u) + L(v)) + diameter(M ′).
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3. Count of solutions

Theorem 1.1 and 1.2 form the basis for a more detailed study of the set of solutions
of (0.1) in a given homotopy class ζ which is presented in [KL]. To simplify the
exposition we state our results in the case G = 0, i.e. for

ΦF (u) := τ(u) + F (x, u(x)) = 0 (3.1)

u ∈ ζ. (3.2)

For this section it is more convenient to work with Sobolev spaces. For any
j > n/2 we denote by H(j) the Hilbert manifold of maps from M to M ′ of Sobolev
class Hj. By the Sobolev embedding theorem H(j) is compactly embedded into
Ci(M, M ′) for any 0 ≤ i < j − n/2. The connected components H(j)

ζ of the space
H(j) correspond to the homotopy classes ζ of maps in H(j) from M to M ′. We now
fix an integer k > 2 + n+n′

2
, denote by F (k) the space of x−dependent vector fields

on M ′ of class Hk and define

M(k)
ζ := {(u, F ) ∈ H(k+2)

ζ ×F (k) | ΦF (u) = 0}.

We point out that Theorem 1.1 remains valid in this setting. One first observes
that M(k)

ζ is a C`-Hilbert manifold with 2 ≤ ` < k − n+n′

2
and that the projection

πk,ζ : M(k)
ζ 7→ F (k) is C`-smooth. Let us denote by F (k)

reg the set of regular values of
πk,ζ . As πk,ζ is proper, F (k)

reg is an open subset of F (k). By the Sard-Smale theorem
[Sm], it is dense in F (k) and, for any F ∈ F (k)

reg, the inverse image π−1
k,ζ(F ) is a

C`−submanifold of M(k)
ζ . It turns out that πk,ζ is a Fredholm map of index 0,

hence this submanifold is of dimension 0. As πk,ζ is proper it then follows that
π−1

k,ζ(F ) is a finite set.
The idea is to prove that there is a natural notion of degree associated to the

map πk,ζ . We follow a common approach using determinant line bundles defined for
a family of Fredhom operators of some fixed index - see [CMS] for a more general
framework of this construction.

Theorem 3.1 Let k > 2+(n+n′)/2 and ζ be a homotopy class of maps u : M → M ′

between closed Riemannian manifolds M, M ′ and assume that M ′ has a nonpositive
sectional curvature. Then the projection map πk,ζ : M(k)

ζ → F (k) admits a degree
Dζ which is independent of k. In particular, the equation ΦF (u) = 0 has at least
|Dζ | solutions in ζ for any F ∈ F (k)

reg and, in the case Dζ 6= 0, at least one solution
for any F ∈ F (k).

If in addition, the restriction of E to ζ is Morse-Bott, then

Dζ = ±χ(S0 ∩ ζ)

where S0 is the set of harmonic maps u : M → M ′ and χ(S0 ∩ ζ) denotes the
Euler characteristic of the submanifold S0 ∩ ζ ⊂ C∞(M, M ′).
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As an example let us consider the case where M ′ has negative sectional curvature.
In this case the restriction of the energy function E(u) to any homotopy class ζ
can be shown to be Morse-Bott and, according to [Ha], the set of harmonic maps
S0 ∩ [u] in the homotopy class [u] of a harmonic map u has the property that either
S0 ∩ [u] = {u} or S0 ∩ [u] consists of all constant maps, or u(M) is a closed geodesic
γ and any other element in S0 ∩ [u] is obtained by composing u with a translation
along γ. Hence the integer Dζ in each of the three cases is given by 1, χ(M ′) or 0
respectively.

Examples show that the inequality ] (SF ∩ ζ) ≥
∣∣χ (S0 ∩ ζ)

∣∣ is sharp.
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