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Remarks on Carleman estimates and exact
controllability of the Lamé system

Oleg Yu. Imanuvilov Masahiro Yamamoto

Abstract
In this paper we established the Carleman estimate for the two dimen-

sional Lamé system with the zero Dirichlet boundary conditions. Using this
estimate we proved the exact controllability result for the Lamé system with
with a control locally distributed over a subdomain which satisfies to a certain
type of nontrapping conditions.

Introduction

This paper is concerned with a Carleman estimates for the 2-D non stationary Lamé
system with the Dirichlet boundary conditions. Starting from the pioneering works
of Carleman the theory of Carleman’s inequalities has been rapidly developed over
the last forty years and now for a single partial differential equations many general
results are available (see [Hö, ?, E2], [?].) On the other hand, for the systems of
partial differential equations the situation is much less understood. To our best
knowledge the most general result in case of systems of P.D.E. is the Calderon’s
uniqueness theorem (see e.g. [E1, Zui]). The technique, developed by Calderon re-
duces the system of partial differential equations to the system of pseudodifferential
operators of the first order: dv

dx0
= M(x,Dx′)v + f where M(x,Dx′) is the matrix

pseudodifferential operator. After that by some change of variables v = Q(x,Dx′)ṽ
this matrix P.D.O. M will be reduced to Q−1MQ which consists of blocks of a small
size located on the main diagonal, such that in each block the principal symbols
of all operators located below the main diagonal are zero. In order, to construct
the matrix Q the eigenvalues and eigenvectors of the matrix M(x, ξ′) should be the
smooth function of the variables x and ξ and eigenvalues should not change the
multiplicity. This condition proved to be restrictive, especially in case when we are
looking for a Carleman estimate near boundary, and therefore choice for a variable
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x0 is limited. (For example the non stationary Lamé system in general it does not
satisfy to this condition.)

On the other hand, it is well known that thanks to the special structure of the
isotropic Lamé system div u, rotu satisfy to scalar wave equations (modulo lower
order terms.) The system of partial differential equations for a functions u, div u,
rotu is coupled via first order terms. This allows to apply the Carleman estimates
for a scalar hyperbolic equations in case when the function u has a compact support.
(see [EINT]). There are many results on uniqueness of the Cauchy problem for the
stationary Lamé system (see [DR, W1, W2]). Therefore the goal of this paper is
to obtain the Carleman estimate for u which does not vanish near boundary but
satisfies only to the zero Dirichlet boundary condition. The structure of the proof
is in principle similar to the paper [Y1]. We work with two hyperbolic equations for
the functions zλ+2µ = esφ div u and zµ = esφ rotu : Pλ+2µ(x,D, s)zλ+2µ = (div f)esφ

; Pµ(x,D, s)zµ = (rot f)esφ. The main difficulty one should overcame is that there
are no boundary conditions for these functions. This problem is fixed in following
way. Microlocally, operators for zβ could be decomposed ,expect for a small set
in T ∗(Q), into the product of two pseudodifferential operators of the first order
Pβ(x,D, s) = P−,β(x,Dx′ , s)P+,β(x,Dx′ , s) where P±,β = Dx2−Γ±β (x,Dx′ , s), and x2

is normal to the boundary ∂Ω. Since the principal symbol of the operator Γ−β (x, ξ′, s)

satisfies the inequality − Im Γ−β (x, ξ′, s) ≥ C2|s| we have the a priori estimate for
P+,β(x,Dx′ , s)zβ|x2=0 in L2. These estimates combined with zero Dirichlet boundary
condition, for stress tensor u provide the H1 boundary a priori estimates for zβ.
The set on which the decomposition at least one of the operators Pβ(x,D, s)in the
product of the first order operators is impossible is studied in sections 3,4.

Among the applications of the Carleman estimate obtained in this paper first
we mention the controllability results for the Lamé system. First controllabil-
ity/observability results for the isotropic Lamé system with the constant coefficients
were obtained by J.L. Lions in [Li] using the multiplies methods and HUM method.
Later controllability and stabilizability properties for isotropic Lamé system and
related models were studied by J.L. Lions and J. Lagnese in [LL] and [La]. Also we
mention work [Y2], of K.Yamamoto where he studied the dissipation of the energy
of Lamé system outside the convex obstacle. The results obtained in this paper
could be easily converted in controllability results for the Lamé system using the
HUM method. Recently, the technique developed in [Li] were applied by Alabau
and Komornik [AK1, AK2] to prove the controllability/observability estimates were
obtained for symmetric anisotropic Lamé system with the constant coefficients. In
[B3], M. Bellassoued proved the approximate controllability for the isotropic Lamé
system with the control distributed on an arbitrary small portion of the boundary.

Another possible application of the Carleman estimate is the inverse problem of
the determination of the Lamé coefficients β, µ, λ using the finite number of mea-
surements on a subdomain Qω. (The corresponding problem when a finite number
of measurements are available on the whole [0, T ]× ∂Ω was treated in [IIY].)

There are many papers concerning the uniqueness of the Cauchy problem for
the Lamé system.( [DR, B3, W1]). The survey of resent results on the unique
continuation for the stationary Lamé system given in [W2].
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1. Main Result

Let us consider the 2-D Lamé system

Pu = ρ(x′)
∂2u

∂x2
0

− µ(x′)∆u− (µ(x′) + λ(x′))∇divu

− divu∇λ(x′)− (∇u+ (∇u)T )∇µ(x′) = f in Q = [0, T ]× Ω, (1)

u|(0,T )×∂Ω = 0, u(T, x′) = ux0(T, x
′) = u(0, x′) = ux0(0, x

′) = 0, (2)

where u = (u1, u2), f = (f1, f2) are the vector functions, Ω is a bounded domain in
R2 with ∂Ω ∈ C3, x = (x0, x

′), x′ = (x1, x2). Coefficients ρ(x′), µ(x′), λ(x′) ∈ C2(Q̄)
are assumed to be the positive functions

ρ(x′) > 0, µ(x′) > 0, λ(x′) > 0 in Ω̄. (3)

The goal of this paper is to establish a Carleman estimate for a system (1), (2).
Let ω ⊂ Ω be an arbitrary fixed subdomain. Denote by ν the outward unit normal
derivative to ∂Ω. By Qω we denote the cylinder Qω = (0, T ) × ω. Let ξ = (ξ′, ξ2),
ξ′ = (ξ0, ξ1). We set

p1(x, ξ) = ρ(x′)ξ2
0 − µ(x′)(|ξ1|2 + |ξ2|2),

p2(x, ξ) = ρ(x′)ξ2
0 − (λ(x′) + 2µ(x′))(|ξ1|2 + |ξ2|2).

For an arbitrary smooth functions φ(x, ξ), ψ(x, ξ) we define the Poisson bracket by
the formula {φ, ψ} =

∑2
i=0(

∂φ
∂ξi

∂ψ
∂xi

− ∂φ
∂xi

∂ψ
∂ξi

). We assume that the Lamé coefficients
µ, λ and the domains Ω, ω satisfy the following condition

Condition 1 There exists a function ψ ∈ C2(Q̄) such that

{pk, {pk, ψ}}(x, ξ) > 0 ∀k ∈ {1, 2}

∀ξ ∈ R3 \ {0}, pk(x, ξ) =< ∂pk

∂ξ
,∇ψ >= 0, x ∈ Q \Qω.

{pk(x, ξ − is∇ψ(x)), pk(x, ξ + is∇ψ(x))}/2is > 0

for all ξ ∈ R3 \ {0}, s 6= 0, pk(x, ξ+ is∇ψ(x)) =< ∂ξpk(x, ξ+ is∇ψ(x)),∇ψ(x) >=

0, x ∈ Q \Qω.
On the lateral boundary we assume

p1(x,∇ψ)|(0,T )×(∂Ω\∂ω) < 0,
∂ψ

∂~ν
|(0,T )×(∂Ω\∂ω) < 0. (4)

Let ψ(x) be the weight function from Condition 1.1. Using this function we
introduce the function φ(x) by formula

φ(x) = eλψ(x) λ > 1, (5)

where parameter λ will be fixed below.
Now we formulate our main result.
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Theorem 1 Let f ∈ L2(0, T ; (H1(Ω))2), function φ is given by (5) and Lamé coef-
ficients satisfy (3). Then there exist λ̂ such that for any λ > λ̂ exists s0 such that
for any solution u ∈ (H1

0 (Q))2∩L2(0, T ; (H2(Ω))2) to problem (1), (2) the following
estimate holds true∫

Q

(s2|∇u|2 + s4|u|2 + s|∇rotu|2 + s3|rotu|2 + s|∇divu|2 + s3|divu|2)e2sφdx

+ s‖∂u
∂ν
esφ‖2

(H1((0,T )×∂Ω))2 + s‖∂
2u

∂ν2
esφ‖2

(L2((0,T )×∂Ω))2 + s3‖∂u
∂ν
esφ‖2

(L2((0,T )×∂Ω)))2

≤ C1(s‖fesφ‖2
(L2((0,T )×∂Ω))2+

‖rot fesφ‖2
(L2(Q))2 + ‖div fesφ‖2

(L2(Q))2 +

∫
Qω

(s2|∇u|2 + s4|u|2)e2sφdx+∫
Qω

(s|∇rotu|2 + s3|rotu|2 + s|∇divu|2 + s3|divu|2)e2sφdx) ∀s ≥ s0(λ), (6)

where constant C1 is independent of s.

For controllability problems we need some variants of Carleman estimate (6). In
addition to Condition 1.1 we assume

∂φ(T, x′)

∂x0

< 0,
∂φ(0, x′)

∂x0

> 0 ∀x ∈ Ω. (7)

We have

Theorem 2 Let f ∈ (L2(Q))2, function φ is given by (5), satisfies (7) and Lamé
coefficients satisfy (3). Then there exist λ̂ such that for any λ > λ̂ exists s0 such
that for any solution u ∈ (H1(Q))2 to problem (1), (2) the following estimate holds
true∫

Q

(|∇u|2 + s2|u|2)e2sφdx

≤ C1(‖fesφ‖2
(L2(Q))2 +

∫
Qω

(|∇u|2 + s2|u|2)e2sφdx) ∀s ≥ s0(λ), (8)

where constant C1 is independent of s.

Corollary 1 Let f ∈ L2(0, T ; (H−1(Ω))2), function φ is given by (5) satisfies (7)
and Lamé coefficients satisfy (3). Then there exist λ̂ such that for any λ > λ̂ exists
s0 such that for any solution u ∈ (L2(Q))2 to problem (1), (2) the following estimate
holds true∫

Q

|u|2e2sφdx

≤ C1(‖fesφ‖2
L2(0,T ;(H−1(Ω))2) +

∫
Qω

|u|2e2sφdx) ∀s ≥ s0(λ), (9)

where constant C1 is independent of s.
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Now we would like to consider the applications of the Carleman estimates to the
exact controllability problem of the Lamé system:

Pu = f + χωv in Q, u|(0,T )×∂Ω = 0,

u(0, ·) = u0, ux0(0, ·) = u1, u(T, ·) = ux0(T, ·) = 0. (10)

Here the functions u0, u1, f are given and v is a control locally distributed in a
domain Qω. The following theorem is the direct corollary of the Carleman estimates
(8), (9) and the Hilbert Uniqueness Method.

Theorem 3 Let function ψ satisfies the Condition 1.1 and there exists τ ∈ (0, T )
such that

min
x′∈Ω̄

ψ(τ, x′) > max
x′∈Ω̄

{ψ(T, x′), ψ(−T, x′)}.

Then
A. If u0 ∈ (H1

0 (Ω))2, u1 ∈ (L2(Ω))2, f ∈ (L2(Q))2 then there exists a solution
to problem (5.45) a pair (u, v) ∈ (H1(Q))2 × (L2(Qω))

2.
B. If u0 ∈ (L2(Ω))2, u1 ∈ (H−1(Ω))2, f ∈ L2(0, T ; (H−1(Ω))2) then there exists a

solution to problem (10) a pair (u, v) ∈ (L2(Q))2×L2(0, T ; (H−1(Ω))2), supp v ⊂ Qω.

Proof of Theorem 1.1. Withought the loss of generality we may assume ρ ≡ 1.
First we note that instead of (6) it suffices to prove more simple estimate∫

Q

(s|∇rotu|2 + s3|rotu|2 + s|∇divu|2 + s3|divu|2)e2sφdx

+ s‖∂u
∂ν
esφ‖2

(H1((0,T )×∂Ω))2 + s‖∂
2u

∂ν2
esφ‖2

(L2((0,T )×∂Ω))2 + s3‖∂u
∂ν
esφ‖2

(L2((0,T )×∂Ω))2

≤ C2(s‖fesφ‖2
(L2((0,T )×∂Ω))2 + ‖rotfesφ‖2

(L2(Q))2 + ‖divfesφ‖2
(L2(Q))2

+

∫
Qω

(s|∇rotu|2 + s3|rotu|2 + s|∇divu|2 + s3|divu|2)e2sφdx) ∀s ≥ s0(λ̂). (11)

This fact is the simple corollary of the following proposition

Proposition 1 There exists λ̂ > 1 such that for any λ > λ̂ exist s0(λ) that∫
Q

(|∇u|2 + s2|u|2)e2sφdx ≤ C3(‖rotu esφ‖2
L2(Q) + ‖divuesφ‖2

L2(Q)

+

∫
Qω

(|∇u|2 + s2|u|2)e2sφdx) ∀s ≥ s0(λ), u ∈ (H1
0 (Q))2.

Denote by �β the following hyperbolic operator �β = ∂2

∂x2
0
− β(x)∆. It is well

known that the functions rotu, divu satisfy the equations

�µrot u = q1 inQ, �λ+2µdiv u = q2 inQ, (12)

q1 = K1rotu+K2divu+ rotf, q2 = K3rotu+K4divu+ divf, (13)
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where Ki are the first order differential operators with L∞ coefficients.
We observe that it suffices to prove Theorem 1.1 only locally, assuming

suppu ⊂ Bδ, (14)

where Bδ is the ball of the radius δ > 0 centered at some point y∗. When Bδ ∩
(0, T )× ∂Ω = ∅ the situation is trivial (see e.g. [ Hö]). Therefore, without the loss
of generality we may assume that y∗ = (y∗0, 0, 0). Moreover the parameter δ > 0
could be chosen an arbitrary small. Assume that locally near zero the boundary ∂Ω
is given by equation x2 − `(x1) = 0. Moreover since the function ũ = Ou(t,O−1x)
satisfies the system (1),(2) with f̃ = Of(t,O−1x) for any orthogonal matrix O we
may assume that

`′(0) = 0.

Making the change of variables y1 = x1, y2 = x2 − `(x1) we reduce equations (1) to
the form

∂2u1

∂y2
0

− µ(
∂2u1

∂y2
1

− 2`′(y1)
∂2u1

∂y1∂y2

+ (1 + |`′(y1)|2)
∂2u1

∂y2
2

) + µ`
′′
(y1)

∂u1

∂y2

− (λ+ µ)
∂

∂y1

(divu− ∂u1

∂y2

`′) + (λ+ µ)
∂

∂y2

(divu− ∂u1

∂y2

`′)`′ = f1,

∂2u2

∂y2
0

− µ(
∂2u2

∂y2
1

− 2`′(y1)
∂2u2

∂y1∂y2

+ (1 + |`′(y1)|2)
∂2u2

∂y2
2

) + µ`
′′
(y1)

∂u2

∂y2

− (λ+ µ)
∂

∂y2

(divu− ∂u1

∂y2

`′) = f2,

where by f1, f2 we denote f after the change of variables. After the change of
variables equations (12), (13) have the form

Pµz1 =
∂2z1

∂y2
0

− µ
(∂2z1

∂y2
1

− 2`′(y1)
∂2z1

∂y1∂y2

+ (1 + |`′(y1)|2)
∂2z1

∂y2
2

)
+ µ`

′′
(y1)

∂z1

∂y2

= m1 in G , R2 × [0, κ̂],

Pλ+2µz2 =
∂2z2

∂y2
0

− (λ+ 2µ)
(∂2z2

∂y2
1

− 2`′(y1)
∂2z2

∂y1∂y2

+ (1 + |`′(y1)|2)
∂2z2

∂y2
2

)
+ (λ+ 2µ)`

′′
(y1)

∂z2

∂y2

= m2 in G,

and m1,m2 are the functions q1, q2 after the change of variables.
Without the loss of the generality we may assume κ̂ = 1. Next we introduce the

operators
Pµ,s = e|s|φPµe

−|s|φ, Pλ+2µ,s = e|s|φPλ+2µe
−|s|φ.
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Now we note that in order to prove estimate (11) it suffices to establish the following
estimate for the function w = (w1, w2):

‖w‖2
∗ ≡ s‖w‖2

(H1(G))2 + s3‖w‖2
(L2(G))2 + s‖ ∂w

∂y2

‖2
(L2(∂G))2 + |w‖2

(H1(∂G))2

+ s3‖ ∂w
∂y2

‖2
(L2(∂G))2 ≤ C4(‖Pλ+2µ,sw2‖2

L2(G) + ‖Pµ,sw1‖2
L2(G) + s‖g‖2

(L2(∂G))2

+ s‖w‖2
(H1(Gω))2 + s3‖w‖2

(L2(Gω))2) ∀s ≥ s0(λ),

and for all w ∈ H2(G), w(·, T ) = w(·, T ) = wy0(·, 0) = wy0(·, T ) = 0 such that

∂w1

∂y2

=
λ+ 2µ

µ

∂w2

∂y1

+ sφy2(y
∗)w1 − s

λ+ 2µ

µ
φy1(y

∗)w2 + g1, on ∂G,

∂w2

∂y2

= − µ

λ+ 2µ

∂w1

∂y1

+ sφy2(y
∗)w2 + s

µ

λ+ 2µ
φy1(y

∗)w1 + g2, on ∂G.

We denote as pµ(y, ξ0, ξ1, ξ2), pλ+2µ(y, ξ0, ξ1, ξ2) respectively the principal symbols of
the operators Pµ, Pλ+2µ. Then the principal symbols of the operators Ps,µ, Ps,λ+2µ

principal are given by formulas

pµ(y, ξ0 + i|s|φy0 , ξ1 + i|s|φy1 , ξ2 + i|s|φy2),
pλ+2µ(y, ξ0 + i|s|φy0 , ξ1 + i|s|φy1 , ξ2 + i|s|φy2).

In order to prove the Carleman estimate it is convenient for us to introduce new
variable σ and consider s as a dual variable to σ. Following [T1, Chapter 14] we
consider the pseudodifferential operators

Pβ(y,Dσ, Dy0 , Dy1 , Dy2)v =∫
R3

pβ(y, ξ0 + i|s|φy0 , ξ1 + i|s|φy1 , Dy2 + i|s|φy2)v̂(s, ξ0, ξ1, y2)e
i(<y′,ξ′>+σs)dσdξ′,

where ξ′ = (ξ0, ξ1), y
′ = (y0, y1). Let v(σ, y) = (v1(σ, y), v2(σ, y)) be the function

with the domain Q = R2 × R1
+ × R1(Σ = ∂Q.) and w(s, y) = (w1(s, y), w2(s, y)) be

the Fourier transform of v respect to the variable σ. Let h(s) = (1 + s2)
1
4 . Using

the method developed in [T1] we obtain that in order to prove (11) it suffices to
establish the following estimate

|||v|||2 ,
1∑
j=0

‖h(Dσ)
3−2jv‖2

L2(R1;(Hj(G))2)+‖h(Dσ)
3−2jv‖2

(Hj(±))2+‖h(Dσ)
∂v
∂y2

‖(L2(Σ))2

≤ C10(‖Pλ+2µ(y,D)v1‖2
L2(Q) + ‖Pµ(y,D)v2‖2

L2(Q)

+ ‖h(Dσ)q‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2), (15)

where g = 1√
2π

∫ +∞
−∞ qe−isσdσ, suppv ⊂ (−σ0, σ0) × Bδ with the parameter σ0 > 0

which can be chosen an arbitrary small, and

B1(w1, w2) , −∂w1

∂y2

+
λ+ 2µ

µ

∂w2

∂y1

+ |s|φy2(y∗)w1 − |s|
λ+ 2µ

µ
φy1(y

∗)w2 = g1, on Σ,

(16)
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B2(w1, w2) , −∂w2

∂y2

− µ

λ+ 2µ

∂w1

∂y1

+ |s|φy2(y∗)w2 + |s| µ

λ+ 2µ
φy1(y

∗)w1 = g2, on Σ,

(17)

where

w =
1√
2π

∫ +∞

−∞
ve−isσdσ.

This fact can be proved in exactly the same way as in [T1, Chapter 14 ,section 2].
Consider the finite covering of the unit sphere s2 + ξ2

0 + ξ2
1 = 1: S2 ⊂ ∪ζ∗∈S2{ζ =

(s, ξ0, ξ1) ∈ S2||ζ−ζ∗| < δ1} and submitted to this covering partition of unity χν(ζ):∑N
ν=1 χν(ζ) = 1 for any ζ ∈ S2 and supp χν ⊂ {ζ ∈ S2||ζ−ζ∗ν | < δ1}. We extend this

function on the set |ζ| > 1 as the homogeneous function of the order zero in a such a
way that suppχν ⊂ O(δ1) = {ζ|| ζ|ζ|−ζ

∗| < δ1}. Let us consider the pseudodifferential
operator χν(D) and the function χν(D)v. Obviously equalities (16), (17) holds true
with wν = 1√

2π

∫ +∞
−∞ χν(D)ve−isσdσ, gν = 1√

2π

∫ +∞
−∞ χν(D)qe−isσdσ.

We claim that instead of (15) it suffices to prove the following estimate

|||χν(D)v||| ≤ C10(ν)(‖Pλ+2µχν(D)v‖L2(Q) + ‖Pµχν(D)v‖L2(Q)

+ ‖h(Dσ)χν(D)q‖L2(Σ) + ‖v‖(H1(Q))2), (18)

where

B1(w1,ν , w2,ν) = g1,ν , B2(w1,ν , w2,ν) = g2,ν . (19)

The principal symbol of the operator Pβ,s has the form

p(y, s, ξ0, ξ1) = −(ξ0 + i|s|φy0)2 + β[(ξ1 + i|s|φy1)2 − 2`′(ξ1 + i|s|φy1)(ξ2 + i|s|φy2)
+ (ξ2 + i|s|φy2)2|G|], (20)

where |G| = 1 + (`′)2. The roots of this polynomial respect to variable ξ2 are

Γ±β (y, s, ξ0, ξ1) = −i|s|φy2 + α±β (y, s, ξ0, ξ1), (21)

α±β (y, s, ξ0, ξ1) =
(ξ1 + i|s|φy1)`′(y1)

|G|
±
√
rβ(y, s, ξ0, ξ1), (22)

rβ(y, ζ) =
((ξ0 + i|s|φy0)2 − β(ξ1 + i|s|φy1)2)|G|+ β(ξ1 + i|s|φy1)2(`′)2

β|G|2
. (23)

Denote γ = (y∗, ζ∗). Suppose that rβ(γ) 6= 0. Now we claim that there exists δ0 > 0

such that for all δ, δ1 ∈ (0, δ0) there exists a constant Ĉ14 > 0 such that for one of
the roots of the polynomial (20) , which we denote as Γ−β we have

− Im Γ−β (y, s, ξ0, ξ1) ≥ Ĉ14|s| ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1).

In some situations we may represent the operator Pβ as a product of two first order
pseudodifferential operators.
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Proposition 2 Let rβ(γ) 6= 0 and supp V̂ ⊂ O(δ1). Then we could decompose the
operator Ps,β into the product of two first order P.D.O.

PβV = (Dy2 − Γ−β (y,D))(Dy2 − Γ+
β (y,D))V + TβV, (24)

where Tβ is the continuous operator

Tβ : L2(0, 1;H1(R3)) → L2(0, 1;L2(R3)).

Let us consider the equation

(Dy2 − Γ−β (y,D))V = q, V |y2=1 = 0.

For solutions of this problem we have the a priori estimate:

Proposition 3 There exists a constant C15 > 0 such that

‖h(Dσ)V |y2=0‖L2(R3) ≤ C15‖q‖L2(Q).

Let β > 0 and w̃(s, y) be a function which for almost all s ∈ R1 satisfies the
scalar second order hyperbolic equation

Pβ,sw̃ = q in G, ∂w̃

∂y2

|y2=1 = w̃|y2=1 = 0, supp w̃ ⊂ Bδ × R1.

Let P ∗β,s be the formally adjoint operator to Ps,β, where β ∈ [µ, λ+ 2µ]. Set L+,β =
(Pβ,s + P ∗β,s)/2 and L−,β = (Pβ,s − P ∗β,s)/2. One may easily check that the operator
L−,β is given by the formula

L−,βw̃ = −2|s|φy0
∂w̃

∂y0

+ β
(
2|s|φy1

∂w̃

∂y1

− 2|s|`′(y1)
(
φy2

∂w̃

∂y1

+ φy1
∂w̃

∂y2

)
+ 2|s|

(
1 + `′(y1)

2
)
φy2

∂w̃

∂y2

)
.

Obviously L+,βw̃ + L−,βw̃ = q. For almost all s ∈ R1 the following equality holds
true

Bβ + ‖L−,βw̃‖2
L2(G) + ‖L+,βw̃‖2

L2(G) + Re([L+,β, L−,β]w̃, w̃)L2(G) = ‖q‖2
L2(G),

where

Bβ = Re
∫
∂G
p̃β(y,∇φ,−~e2)(|s|p̃β(y,∇w̃)− |s|3p̃β(y,∇φ,∇φ)w̃2)dy0dy1

+ Re
∫
∂G
p̃β(y,∇w̃,−~e2)L−,βw̃dy0dy1, (25)

~e = (0, 0, 1) and

p̃β(y, ξ, ξ̃) = ξ0ξ̃0 − β(ξ1ξ̃1 − `′(y1)(ξ1ξ̃2 + ξ2ξ̃1) + (1 + |`′(y1)|2)ξ2ξ̃2).
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It is convenient for us to rewrite (25) in the form

Bβ = B
(1)
β +B

(2)
β ,

B
(1)
β = Re

∫
y2=0

2|s|β ∂w̃
∂y2

(β
∂w̃

∂y1

φy1(y
∗) + β

∂w̃

∂y2

φy2(y
∗)− ∂w̃

∂y0

φy0(y
∗))dy0dy1

+

∫
y2=0

|s|βφy2(y∗)(|
∂w̃

∂y0

|2 − β(| ∂w̃
∂y1

|2 + | ∂w̃
∂y2

|2)

− |s|2(φ2
y0

(y∗)− β(φ2
y1

(y∗) + φ2
y2

(y∗))|w̃|2)dy0dy1.

and

|B(2)
β | ≤ ε0(s‖

∂w̃

∂y2

‖2
L2(∂G) + |s|‖w̃‖2

H1(∂G) + |s|3‖w̃‖2
L2(∂G)). (26)

It is known (see e.g. [Im]) that there exists a parameter λ̂ > 1 such that for any
λ > λ̂ there exists s0(λ) such that

‖L−,βw̃‖2
L2(G) + ‖L+,βw̃‖2

L2(G) + Re([L+,β, L−,β]w̃, w̃)L2(G) ≥
C18(s‖w̃‖2

H1(G) + |s|3‖w̃‖2
L2(G)) ∀s ≥ s0(λ), (27)

where C18 > 0 is independent of s. Denote by Ξβ =
∫∞
−∞Bβds, Ξ

(j)
β =

∫∞
−∞B

(j)
β ds

j = 1, 2. Therefore integrating (27) respect to s on R1 we have

C19(‖h(s)w̃‖2
H1(Q) + ‖h3(s)w̃‖2

L2(Q)) + Ξβ ≤ ‖q‖2
L2(Q) + C20‖w̃‖2

H1(Q), (28)

where C19 > 0, and by (26)

|Ξ(2)
β | ≤ ε‖( ∂w̃

∂y2

, w̃)‖2
X , (29)

where

‖( ∂w̃
∂y2

, w̃)‖2
X = ‖h(s) ∂w̃

∂y2

‖2
L2(Σ) + ‖h(s)w̃‖2

L2(R1;H1(R2)) + ‖h(s)w̃‖2
L2(Σ)

and the parameter ε could make an arbitrary small taking δ in (14) sufficiently small.
Later we will need to apply (28), (29) to the functions w1,ν = Fσχν(D)v1, w2,ν =

Fσχν(D)v2,ν since we would like to take the advantage of (18). Formally it is
impossible since the condition suppχν(D)v ⊂ Bδ × R1 in general does not hold
true. On the other hand using the fact that∫

R2\B2δ

∫
R1

h4(s)
∑
|α|≤2

|Dαwi,ν |2dy0dy1ds ≤ C21‖v‖2
(H1(Q))2 .

we obtain slightly modified analog of (28), (29):

C22(‖h(s)wi,ν‖2
H1(Q) + ‖h3(s)wi,ν‖2

L2(Q)) + Ξβ ≤ ‖Pβ,sw1,ν‖2
L2(Q) + C23‖v‖2

(H1(Q))2 ,

(30)

where C22 > 0, and β = µ for i = 1, β = λ+ 2µ for i = 2

|Ξ(2)
β | ≤ ε‖(∂wi,ν

∂y2

, wi,ν)‖2
X + C23‖v‖2

(H1(Q))2 . (31)
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2. Case rµ 6= 0 and rλ+2µ 6= 0.

In this section we consider the conic neighborhood O(δ1) of the point (y∗, ζ∗) such
that

|rµ(y∗, ζ∗)| 6= 0 and |rλ+2µ(y
∗, ζ∗)| 6= 0. (32)

In that case thanks to (32) and Proposition 1.2 decomposition (24) holds true for
β = µ and β = λ+ 2µ. Therefore we have

(Dy2 − Γ+
µ (y,D))v1,ν |y2=0 = V +

µ (·, 0), (33)

(Dy2 − Γ+
λ+2µ(y,D))v2,ν |y2=0 = V +

λ+2µ(·, 0). (34)

By Proposition 1.3 we have the a priori estimate

‖h(Dσ)V
+
µ (·, 0)‖2

L2(Σ) + ‖h(Dσ)V
+
λ+2µ(·, 0)‖2

L2(Σ)

≤ C1(‖Pλ+2µv2‖2
L2(Q) + ‖Pµv1‖2

L2(Q) + ‖v‖2
(H1(Q))2). (35)

Using (19) we may rewrite (33), (34) as

λ+ 2µ

µ

(∂v2,ν

∂y1

− |Dσ|φy1(y∗)v2,ν

)
− iα+

µ (y,D)v1,ν = V +
µ (·, 0)− q1,ν ,

µ

λ+ 2µ

(
−∂v1,ν

∂y1

+ |Dσ|φy1(y∗)v1,ν

)
− iα+

λ+2µ(y,D)v2,ν = V +
λ+2µ(·, 0)− q2,ν .

Let B(y,D) be the matrix P.D.O. with the symbol

B(y, ζ) =

(
−iα+

µ (y, ζ) λ+2µ
µ

(iξ1 − |s|φy1)
µ

λ+2µ
(−iξ1 + |s|φy1) −iα+

λ+2µ(y, ζ)

)
.

By (22), (23) the set {ζ∗ ∈ S2|detB(y∗, ζ∗) = 0} is empty.
Then there exists a parametrix of the operator B(y,D) (see [T2]) which we

denote as B−1(y,D) such that

(v1,ν , v2,ν) = B−1(y,D)(V +
µ (·, 0)− q1,ν , V

+
λ+2µ(·, 0)− q2,ν) +K(v1,ν , v2,ν), (36)

where
K : (L2(Q)) → (H1(Q))2,

By (35), (36)

|Ξµ|+ |Ξλ+2µ| ≤ C2(‖Pµv1‖2
L2(Q) + ‖Pλ+2µv2‖2

L2(Q) + ‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2).

(37)

By (37), (28), (29) we obtain (18).
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3. Case rµ = 0.

In this section mainly we treat the case when suppχν ⊂ O(δ1), and γ = (y∗, ζ∗) be
a point on Σ× S2 such that rµ(γ) = 0.

We remind that by (30), (31) there exists C1 > 0, C2 > 0 such that

C1(‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q)) + Ξ(1)
µ ≤ C2‖Pµv1‖2

L2(Q) + ε(δ)‖(∂w1,ν

∂y2

, w1,ν)‖2
X ,

(38)

and the parameter ε could be taken sufficiently small, if we decrease δ. Note that
Ξ

(1)
µ could be written in the form

Ξ(1)
µ =

∫
Σ

(|s|µ2φy2(y
∗)|∂w1,ν

∂y2

|2 + |s|3µ2φ3
y2

(y∗)|w1,ν |2)dΣ

+Re

∫
Σ

2|s|µ∂w1,ν

∂y2

(µφy1(y
∗)
∂w1,ν

∂y1

− φy0(y
∗)
∂w1,ν

∂y0

)dΣ

+

∫
Σ

|s|µφy2(y∗)(ξ2
0 − µξ2

1 − s2φ2
y0

(y∗) + s2µφ2
y1

(y∗))|v̂1,ν |2dΣ =

J1 + J2 + J3. (39)

We shall consider the two cases. Let us introduce the set M by formula

M = {ζ = (s, ξ0, ξ1) ∈ O(δ1)|
µ

2
φy2(y

∗)Ĉs2 >

4µ2
φ2
y1

(y∗)

|φy2(y∗)|
ξ2
1 + 4

φ2
y0

(y∗)

|φy2(y∗)|
ξ2
0 + (|ξ0|2 + |ξ1|2)}, (40)

where Ĉ = miny∈Bδ
{−p1(y,∇φ)}. From (4) it follows that Ĉ is positive.

Case A. Assume that
supp v̂ν ⊂ O(δ1) ⊂M.

Applying the Cauchy-Bunyakovskii inequality and using (40) and (4) we obtain that
there exists a constant C3 > 0 such that

Ξ(1)
µ ≥

∫
Σ

|s|µ2φy2(y
∗)|∂w1,ν

∂y2

|2 − |s|3µφy2(y∗)p(y∗,∇φ(y∗))|w1,ν |2 dΣ

−
∫

Σ

1

2
|s|µ2φy2(y

∗)|∂w1,ν

∂y2

|2 + 4|s|µ2
φ2
y1

(y∗)

|φy2(y∗)|
|∂w1,ν

∂y1

|2 + 4|s|
φ2
y0

(y∗)

|φy2(y∗)|
|∂w1,ν

∂y0

|2 dΣ

≥ C3

∫
Σ

1

2
|s|µ2φy2(y

∗)|∂w1,ν

∂y2

|2+|s||∂w1,ν

∂y1

|2+|s||∂w1,ν

∂y0

|2+1

2
|s|3µφy2(y∗)Ĉ|w1,ν |2 dΣ.

(41)

We remind that by (19) we have the equality

∂w2,ν

∂y2

− |s|φy2(y∗)w2,ν = − µ

λ+ 2µ
(
∂w1,ν

∂y1

− |s|φy1(y∗)w1,ν) + g2,ν .
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Taking the L2 norm of the left and right hand sides of this equality and using the
estimate (35) we obtain∫

Σ

h(s)|∂w2,ν

∂y2

|2 + h3(s)φ2
y2

(y∗)|w2,ν |2 dΣ

≤ C4

(
Ξ(1)
µ + ‖h(s)g‖2

(L2(Σ))2 + ε(σ0)‖(
∂w1,ν

∂y2

, w1,ν)‖2
X

+

∫
Σ

|∂w2,ν

∂y2

|2 + s2φ2
y2

(y∗)|w2,ν |2 dΣ
)
,

where ε(σ0) → 0 as σ0 → 0. By (40), (19)∫
Σ

h(s)
(
|∂w2,ν

∂y1

|2 + |∂w2,ν

∂y0

|2
)
dΣ ≤ C5

(
Ξ(1)
µ + ‖h(s)g‖2

(L2(Σ))2

+

∫
Σ

|∂w2,ν

∂y2

|2 + s2φ2
y2

(y∗)w2
2,ν dΣ

)
. (42)

If we consider (30) with β = λ+ 2µ then (38), (41), (42) immediately imply (18).
Now we assume that supp vν ⊂ O(δ1) and rµ(γ) = 0. The parameter δ1 > 0 we’ll

fix later. By (21)-(23) there exists C6 > 0 such that

|ξ2
0 − s2φ2

y0
(y∗)− µξ2

1 + µs2φ2
y1

(y∗)|+ |ξ0sφy0(y∗)− µsξ1φy1(y
∗)|

≤ δ1C6(|ξ1|2 + |ξ0|2 + s2), ∀ζ ∈ O(δ1). (43)

Now we suppose that δ1 is assumed to be a sufficiently small, such that there exists
a constant C7 > 0 such that

|ξ0|2 ≤ C7(|ξ1|2 + s2) ∀ζ ∈ O(δ1).

Next we introduce the set M̃ by formula

M̃ = {ζ = (s, ξ0, ξ1) ∈ O(δ1)|
µ

4
φy2(y

∗)Ĉs2 <

4µ2
φ2
y1

(y∗)

|φy2(y∗)|
ξ2
1 + 4

φ2
y0

(y∗)

|φy2(y∗)|
ξ2
0 + (|ξ0|2 + |ξ1|2)}.

Obviously O(δ1) ⊂M∪ M̃.
By (43)

|J3| ≤ δ1µφy2(y
∗)‖(∂w1,ν

∂y2

, w1,ν)‖2
X . (44)

Case B. Assume that
supp v̂ν ⊂ M̃.

We observe that decomposition (24) with β = λ + 2µ holds true. We set V +
λ+2µ =

(Dy2 − Γ+
λ+2µ(y,D))v2,ν . Then

Pλ+2µv2,ν = (Dy2 − Γ−λ+2µ(y,D))V +
λ+2µ + Tλ+2µv2,ν ,
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where Tλ+2µ ∈ L(H1(Q), L2(Q)). This decomposition and the Proposition 1.2 im-
mediately imply∥∥∥h(Dσ)

(
Dy2 − Γ+

λ+2µ(y,D)
)
v2,ν |y2=0

∥∥∥
L2(Σ)

≤ C5

(
‖Pλ+2µ,sw2,ν‖L2(Q) + ‖v‖(H1(Q))2

)
.

Now we need again to estimate Ξ(1)
µ . In view of (44) it suffices to estimate the term

J2.
Let us consider the equation

− µ

λ+ 2µ
(
∂v1,ν

∂y1

− |Dσ|φy1(y∗)v1,ν)− iα+
λ+2µ(y,D)v2,ν = iV +

λ+2µ(·, 0)− µ

λ+ 2µ
q2,ν .

(45)

Since rλ+2µ(γ) 6= 0 then α+
λ+2µ(γ) 6= 0. Therefore by Proposition from [T2] there

exists a parametrix of the operator α+
λ+2µ(y,D) which we denote as (α+

λ+2µ(y,D))−1.
From (45) we obtain

v2,ν = −1

i
(α+

λ+2µ(y,D))−1(
µ

λ+ 2µ
(
∂v1,ν

∂y1

− |Dσ|φy1(y∗)v1,ν)

+ iV +
λ+2µ(·, 0)− µ

λ+ 2µ
q2,ν) + T0v2,ν , (46)

where T0 ∈ L(L2(Σ), H1(Σ)). Using (46), (19) we may transform J2 to the form

J2 = Re
∫

Σ

−2|Dσ|µ
sign(ξ∗1)

i

√
λ+ µ

λ+ 2µ
(
∂v1,ν

∂y1

− |Dσ|φy1(y∗)v1,ν)(µ
∂v1,ν

∂y1

φy1(y
∗)

−∂v1,ν

∂y0

φy0(y
∗))dΣ +Reκ3.

where

|κ3| ≤ ε
∥∥(∂wν
∂y2

, wν)
∥∥2

X
+ C10

(
‖h(s)g‖2

(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2
L2(Q)

)
Since J2 = Reκ3 we have

|J2| ≤ ε‖(∂wν
∂y2

, wν)‖2
X + C11(‖h(s)g‖2

(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2),

(47)

Next we observe that there exists C > 0 such that

‖(∂wν
∂y2

, wν)‖2
X ≤ C12(

∫
Σ

(h(s)|∂w1,ν

∂y2

|2 + h3(s)|w1,ν |2)dΣ + ‖h(s)g‖2
(L2(Σ))2). (48)

Inequalities (38), (39), (44) (47), (48) imply

‖(∂wν
∂y2

, wν)‖2
X + ‖h(s)w1,ν‖2

H1(Q) + ‖h3(s)w1,ν‖2
L2(Q) ≤ ε‖(∂wν

∂y2

, wν)‖2
X+

C14(‖v‖2
(H1(Q))2 + ‖h(s)gν‖2

(L2(Σ))2 + ‖Pµ,sw2,ν‖2
L2(Q)).

From this inequality and (30) with β = λ+ 2µ we obtain (18). �
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4. Case rλ+2µ = 0.

Let γ = (y∗, ζ∗) be a point on Σ× S2 such that rλ+2µ(γ) = 0 and suppχν ⊂ O(δ1).
We consider several cases.

Case A. Assume that

s∗ = 0 and lim
ζ→ζ∗

Im rµ(y
∗, ζ)/|s| = 0.

In that case there exists a constant C2 > 0 such that

− Im Γ±µ (y, ζ) ≥ C2|s| ∀(y, ζ) ∈ Bδ ×O(δ1)

provided that |δ|+ |δ1| is sufficiently small. We set V ±
µ = (Dy2−Γ±µ (y,D))v1,ν . Then

Pµv1,ν = (Dy2 − Γ∓µ (y,D))V ±
µ + T±µ v1,ν ,

where T±µ ∈ L(H1(Q), L2(Q)). This decomposition and the Proposition 1.2 imme-
diately imply

‖h(Dσ)(Dy2 − Γ±µ (y,D))v1,ν |y2=0‖L2(Σ) ≤ C4(‖Pµv1,ν‖L2(Q) + ‖v‖(H1(Q))2). (49)

Obviously

V +
µ (·, 0)− V −

µ (·, 0) = (α+
µ (y,D)− α−µ (y,D))v1,ν on Σ.

Since α+
µ (y∗, ζ∗)− α−µ (y∗, ζ∗) = 2

√
rµ(y∗, ζ∗) 6= 0 by (49) and Garding’s inequality∫

Σ

(h(s)(|∂w1,ν

∂y1

|2 + |∂w1,ν

∂y0

|2) + h3(s)|w1,ν |2)dΣ ≤ C5(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2).

(50)

From this inequality and (49) we obtain the estimate for ∂w1,ν

∂y2
:

∫
Σ

h(s)|∂w1,ν

∂y2

|2dΣ ≤ C6(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2). (51)

And finally (50), (51) combined with (19) give the estimate

‖(∂w2,ν

∂y2

, w2,ν)‖2
X ≤ C7(‖Pµ,sw1,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2 + ‖h(s)g‖2

(L2(Σ))2). (52)

By (50)-(52), (30), (31) we obtain (18).
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Case B. Assume that

s∗ = 0 and lim
ζ→ζ∗

Im rµ(y
∗, ζ)/|s| 6= 0.

In that case first we note that since s∗ = 0 then Re rµ(y
∗, ζ∗) > 0. Set I =

sign limζ→ζ∗ Im rµ(y
∗, ζ)/|s|. For all (y, ζ) ∈ Bδ ×O(δ1) we have

Γ+
µ (y, ζ) = I

√
Re rµ(y∗, ζ) + b̃1(y, ζ), (53)

where for the P.D.O. b̃1(y,D) we have the estimate

‖h(s)b̃1(y,D)w1,ν‖L2(Σ) ≤ ε(δ, δ1)‖(
∂w1,ν

∂y2

, w1,ν)‖2
X , (54)

where ε(δ, δ1) → 0 as |δ|+ |δ1| → 0.

We may assume that |δ|+ |δ1| is so small that there exists C8 > 0

I Im rµ(y
∗, ζ)/|s| ≥ C8|ζ| ∀ζ ∈ O(δ1). (55)

Let us consider formula (32) from the previous section. One may easily see that the
term J3 is nonnegative. On the other hand (53)-(54) imply

J2 ≥
∫

Σ

2µ
√
Re rµ(y∗, ζ)| Im rµ(y

∗, ζ)||v̂1,ν |2dΣ−

C9ε(δ, δ1)‖(
∂w1,ν

∂y2

, w1,ν)‖2
X − C10(δ, δ1)(‖Pµ,sw1,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2). (56)

Inequalities (55), (56) imply

J2 ≥ C11

∫
Σ

h(s)
(
|∂w1,ν

∂y1

|2 + |∂w1,ν

∂y0

|2
)

+ h3(s)|w1,ν |2 dΣ

− C9ε(δ, δ1)
∥∥(∂w1,ν

∂y2

, w1,ν)
∥∥2

X
− C10(δ, δ1)

(
‖Pµ,sw1,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2

)
.

By (56) we have that there exists a constant C14 > 0

Ξ(1)
µ ≥ C14‖(

∂w1,ν

∂y2

, w1,ν)‖2
X − C10(δ, δ1)(‖Pµ,sw1,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2).

This inequality and (19)

Ξ(1)
µ ≥ C15‖(

∂wν
∂y2

, wν)‖2
X − C16(δ, δ1)(‖Pµ,sw1,ν‖2

L2(Q) + ‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2).

(57)

From (57), (30), (31) we obtain (18).
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Case C. Assume that s∗ 6= 0. Then if δ1 > 0 is small enough there exists a
constant C17 > 0 such that

|ξ0φy1(y∗)− (λ+ 2µ)ξ1φy1(y
∗)|2 ≤ δ2

1C18(|ξ1|2 + s2). (58)

By (30) there exists C18 > 0 such that

Ξ
(1)
λ+2µ + C18

(
‖h(s)w2,ν‖2

H1(Q) + ‖h3(s)w2,ν‖2
L2(Q)

)
≤ C19

(
‖Pλ+2µv2‖2

L2(Q) + ‖v‖2
(H1(Q))2

)
+ ε
∥∥(∂w2,ν

∂y2

, w2,ν)
∥∥2

X
.

Note that Ξ(1)
λ+2µ could be written in the form

Ξ
(1)
λ+2µ = J̃1 + J̃2 + J̃3,

J̃1 =

∫
Σ

|s|(λ+ 2µ)2φy2(y
∗)|∂w2,ν

∂y2

|2 + |s|3(λ+ 2µ)2φ3
y2

(y∗)|w2,ν |2 dΣ,

J̃2 = Re
∫

Σ

2|s|(λ+ 2µ)
∂w2,ν

∂y2

(
(λ+ 2µ)φy1(y

∗)
∂w2,ν

∂y1

− φy0(y
∗)
∂w2,ν

∂y0

)
dΣ,

J̃3 =

∫
Σ

|s|(λ+ 2µ)φy2(y
∗)
(
ξ2
0 − (λ+ 2µ)ξ2

1 − s2φ2
y0

(y∗)

+ s2(λ+ 2µ)φ2
y1

(y∗)
)
|v̂2,ν |2 dΣ. (59)

By (58), (??) we have

|J̃2 + J̃3| ≤ C21δ1
∥∥(∂w2,ν

∂y2

, w2,ν)
∥∥2

X
. (60)

By (60) we obtain from (59) that there exists a constant C22 > 0 such that

Ξ
(1)
λ+2µ ≥ −ε

∥∥(∂w2,ν

∂y2

, w2,ν)
∥∥2

X

+ C22

∫
Σ

h(s)(λ+ 2µ)2φy2(y
∗)|∂w2,ν

∂y2

|2 + h3(s)(λ+ 2µ)2φ3
y2

(y∗)|w2,ν |2 dΣ. (61)

From (61), inequality (49) for V +
µ (·, 0) and (19) we obtain the estimate

Ξ
(1)
λ+2µ ≥ C27

∥∥(∂wν
∂y2

, wν)
∥∥2

X

− C28(δ, δ1)
(
‖Pµ,sw1,ν‖2

L2(Q) + ‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2

)
, (62)

where C27 > 0. From (62), (30), (31) we obtain (18). �
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