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1. Introduction

We study parabolic equations posed on the whole Euclidean space Rd ,{
(∂t +P ) f (t , x) =1ω(t )(x)u(t , x), x ∈Rd , t > 0,

f |t=0 = f0 ∈ L2(Rd ),
(1)

and controlled by a source term u locally distributed in a time-dependent control subset ω(t ) ⊂
Rd . The controllability of partial differential equations with moving control subsets is at the core
of current investigations and the topics of several recent works [8, 23, 28].

We consider in this work two specific classes of hypoelliptic quadratic parabolic equations,
and we aim at pointing out necessary or sufficient geometric conditions on the moving control
subsets (ω(t ))t∈I to ensure null-controllability. In order to ensure the well-posedness of the evolu-
tion equations (1), the moving control subsets are assumed to satisfy the following measurability
property:

Definition 1 (Moving control support). Let Ω be an open subset of Rd and I be an interval of
R. A moving control support on I in Ω is a family (ω(t ))t∈I of subsets of Rd such that the map
(t , x) ∈ I×Ω 7→1ω(t )(x) is measurable, where1ω(t ) denotes the characteristic function of the moving
set ω(t ).

The Cauchy problems (1) studied in this work will all be well-posed in the space
C 0([0,T ],L2(Rd )), for any initial datum f0 ∈ L2(Rd ) and control function u ∈ L2((0,T ) × Rd ).
The previous definition of moving control support (ω(t ))t∈I does not rule out the case when the
control subsets are empty ω(t ) = ; at certain times. Let us notice in particular that if (ω(t ))t∈I

is a moving control support in Rd , and E is a measurable subset of I , then the family of subsets
(ω̃(t ))t∈I defined as ω̃(t ) = ω(t ) if t ∈ E , or ω̃(t ) = ; if t ∈ I \ E , also defines a moving control
support in Rd , since 1ω̃(t )(x) =1E (t )1ω(t )(x) is a product of measurable functions.

Definition 2 (Null-controllability and control cost). Let T > 0 and (ω(t ))t∈[0,T ] be a moving
control support on the time interval [0,T ] in Rd . Equation (1) is said to be null-controllable on
the time interval [0,T ] if, for any initial datum f0 ∈ L2(Rd ), there exists a control function u ∈
L2((0,T )×Rd ), such that the solution of (1) satisfies f (T, · ) = 0. If the equation is null-controllable,
the control cost is defined as the smallest positive constant CT > 0 such that any initial datum
f0 ∈ L2(Rd ) can be steered to zero by means of a control function u ∈ L2((0,T )×Rd ) satisfying

‖u‖L2((0,T )×Rd ) ≤CT ‖ f0‖L2(Rd ).

We consider in this work two specific classes of hypoelliptic quadratic parabolic equations (1).
The first one is the class of evolution equations associated to non-autonomous Ornstein–
Uhlenbeck operators satisfying a generalized Kalman rank condition described in Section 1.1.
The null-controllability with fixed control subsetsω(t ) =ω0 of these non-autonomous equations
was studied by the first and third authors in [4], and the following sufficient condition for null-
controllability on fixed open control subsets was established in [4, Theorem 1.3],

∃ r,δ> 0,∀ y ∈Rd ,∃ y ′ ∈ω0, Bd (y ′,r ) ⊂ω0 and |y − y ′| < δ, (2)

where Bd (y ′,r ) denotes the open Euclidean ball centered at y ′ with radius r . The second class
studied in this article is the class of evolution equations associated to accretive non-selfadjoint
quadratic operators with zero singular spaces described in Section 1.2. The null-controllability
with fixed control subsets ω(t ) = ω0 of these hypoelliptic equations was studied by the first and
third authors in [5, Theorem 1.4], and was shown to hold for any fixed control subset satisfying
the very same geometric condition (2). The results in [4, 5] were some first steps outlining
and providing preliminary insights on the geometry of the control subsets needed to get null-
controllability for these two classes of hypoelliptic non-selfadjoint evolution equations. However,
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the geometric condition (2) was not expected to be sharp to ensure null-controllability, and a new
breakthrough was then made by Veselić and the second author in [10], who established that the
following notion of thickness is a necessary and sufficient condition on fixed control subsets to
ensure the null-controllability of the heat equation posed on the whole Euclidean space Rd in
some positive time, as well as in any positive time:

Definition 3 ((δ,α)-thick set). Let 0 < δ≤ 1 and α= (α1, . . . ,αd ) ∈ (0,+∞)d . A measurable subset
S ⊂Rd is a (δ,α)-thick set in Rd if the following estimate holds:

∀ x ∈Rd , λ
(
S ∩ (x + [0,α1]×·· ·× [0,αd ])

)≥ δ d∏
j=1

α j ,

with λ being the Lebesgue measure on Rd . A measurable subset S ⊂Rd is said to be thick in Rd if S
is a (δ,α)-thick subset in Rd , for some 0 < δ≤ 1 and α ∈ (0,+∞)d .

The very same result about the heat equation was obtained independently by Wang, Wang,
Zhang and Zhang in [48]. As the heat equation is a particular example of Ornstein–Uhlenbeck
equations which obviously enjoys the very specific features of being autonomous, elliptic, as
well as having only a diffusive structure with no transport part, it is then natural to wonder to
which extent this thickness condition is also relevant to ensure the null-controllability of gen-
eral Ornstein–Uhlenbeck equations, and whether the null-controllability results obtained in [4,5]
actually extend for thick control subsets. We therefore aim in this work at sharply understand-
ing which geometry on the control subsets rules the null-controllability of Ornstein–Uhlenbeck
equations, and how possible transport phenomena induced by these equations interplay with
the geometry of the control subsets. This geometry of the control subsets naturally ends up to be
time-dependent because of the transport phenomena associated to general Ornstein–Uhlenbeck
equations. The results given in Section 1.1 provide some necessary or sufficient geometric con-
ditions on the moving control subsets to ensure null-controllability. In the particular case when
the moving control subsets comply with the flow associated to the transport part of the Ornstein–
Uhlenbeck operators, a necessary and sufficient condition related to the thickness property of the
moving control subsets is derived. In a second part of this work, we consider evolution equations
associated to accretive non-selfadjoint quadratic operators with zero singular spaces. The results
given in Section 1.2 show how those established in [5] can actually extend in the framework of
moving control subsets. For this second class of hypoelliptic quadratic parabolic equations, we
unfortunately provide only a sufficient condition for null-controllability. It would be of course
most interesting to also derive a necessary condition for null-controllability as for Ornstein–
Uhlenbeck equations. However, the transport phenomena at play for this second class of equa-
tions are far more complex and this topic is not studied in this work.

1.1. Null-controllability of non-autonomous Ornstein–Uhlenbeck equations

1.1.1. Non-autonomous Ornstein–Uhlenbeck operators and generalized Kalman rank condition

We consider the evolution equation{
∂t f − 1

2 Tr(A(t )A(t )T ∇2
x f )−〈B(t )x,∇x f 〉 =1ω(t )(x)u,

f |t=0 = f0 ∈ L2(Rd ),
(3)

associated to the non-autonomous Ornstein–Uhlenbeck operator

P (t ) = 1

2
Tr

(
A(t )A(t )T ∇2

x

)+〈
B(t )x,∇x

〉= 1

2

d∑
i , j ,k=1

ai ,k (t )a j ,k (t )∂2
xi ,x j

+
d∑

i , j=1
bi , j (t )x j∂xi , x ∈Rd , (4)
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where

A = (ai , j )1≤i , j≤d , B = (bi , j )1≤i , j≤d ∈C∞(I , Md (R)),

are smooth mappings with values in real d × d matrices, with I being an open interval of R
containing zero, A(t )T standing for the transpose matrix of A(t ). The well-posedness of the
Cauchy problem (3) is proved in appendix (Section 6.1).

In order to ensure appropriate smoothing properties in Gevrey spaces, which are a key ingredi-
ent to establish null-controllability thanks to an adapted Lebeau–Robbiano method when using
the abstract observability result in Theorem 13, we assume that the following generalized Kalman
rank condition holds:

To that end, we define by induction the sequence of smooth mappings (Ãk )k≥0 ∈
C∞(I , Md (R))N by

∀ t ∈ I , Ã0(t ) = A(t ), (5)

∀ k ≥ 0,∀ t ∈ I , Ãk+1(t ) = d

dt
Ãk (t )+B(t )Ãk (t ). (6)

Definition 4 (Generalized Kalman rank condition). The generalized Kalman rank condition is
said to hold at some time T > 0, if T ∈ I and

Span{Ãk (T )x : x ∈Rd ,k ≥ 0} =Rd . (7)

The condition (7) was shown by Chang [7], and by Silverman and Meadows [40] to be sufficient
for the controllability of the linear control system ẋ =−B(t )x+A(t )u on the interval I . As noticed
in [9, p. 11], the two following vector spaces

Span{Ãk (T )x : x ∈Rd ,k ≥ 0} 6= Span{Ãk (T )x : x ∈Rd ,0 ≤ k ≤ d −1},

are in general distinct, as contrary to the constant case studied in Section 2.2, the Cayley–
Hamilton theorem does not apply. However, it was proved by Coron in [9, Proposition 1.19] that
when the condition (7) holds at some time T ∈ I , then there exists a positive constant ε> 0 such
that

∀ t ∈ I ∩ (T −ε,T +ε) \ {T }, Span
{

Ãk (t )x : x ∈Rd ,0 ≤ k ≤ d −1
}=Rd . (8)

This assertion (8) can be reformulated as

∀ t ∈ I ∩ (T −ε,T +ε) \ {T }, Rank
[

Ã0(t ), Ã1(t ), . . . , Ãd−1(t )
]= d , (9)

where [Ã0(t ), Ã1(t ), . . . , Ãd−1(t )] is the d × d 2 matrix obtained by writing consecutively the
columns of the matrices Ã j (t ). The above formula directly relate to the classical Kalman rank
condition (33) appearing in the autonomous case.

1.1.2. Geometric conditions for null-controllability

The main result of null controllability for non-autonomous Ornstein–Uhlenbeck equations (3)
contained in this work is the following one:

Theorem 5. Let T > 0 and (ω(t ))t∈[0,T ] be a moving control support in Rd . We assume that the
generalized Kalman rank condition (7) holds at time T .

(i) (Sufficient condition). Let δ > 0, α ∈ (0,+∞)d and E be a measurable subset of [0,T ]
satisfying

∃ 0 < r0 ≤ T,∀ 0 < r ≤ r0, λ(E ∩ [T − r,T ]) > 0. (10)

If ω(t ) is a (δ,α)-thick subset in Rd for all t ∈ E, then the non-autonomous Ornstein–
Uhlenbeck equation (3) is null-controllable on [0,T ] from the moving control support
(ω(t ))t∈[0,T ].
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(ii) (Necessary condition). If the non-autonomous Ornstein–Uhlenbeck equation (3) is null-
controllable on [0,T ] from (ω(t ))t∈[0,T ], then the moving control support satisfies the
following integral thickness condition on [0,T ],

∃ r,δ> 0,∀ x ∈Rd ,
∫ T

0
λ
(
Bd (x,r )∩R(0,T − t )ω(t )

)
dt ≥ δ> 0, (11)

where Bd (x,r ) denotes the open Euclidean ball centered at x with radius r , and where R
stands for the resolvent of the time-varying linear system

Ẋ (t ) = B(T − t )X (t ),

that is, the solution of the system{
∂R
∂t1

(t1, t0) = B(T − t1)R(t1, t0),

R(t0, t0) = Id .
(12)

(iii) In particular, ifω(t ) = R(T−t ,0)ω0, withω0 a fixed subset ofRd , then the non-autonomous
Ornstein–Uhlenbeck equation (3) is null-controllable on [0,T ] from (ω(t ))t∈[0,T ], if and
only if ω0 is a thick subset in Rd .

The assertion (i) in Theorem 5 extends the result of [4, Theorem 1.3] to non necessarily open
and possibly moving control subsets since the geometric assumption (2) readily implies the thick-
ness condition. We also notice that in the assumptions of Theorem 5, the generalized Kalman
rank condition (7) is only supposed to hold at time T , and is allowed to fail for smaller times in
the limit of the constraints highlighted by (8). Regarding the assumption (10) in assertion (i), and
for a given subset E ⊂ R with positive Lebesgue measure, we observe that condition (10) holds
for almost every time T ∈ E , as it holds in particular for any Lebesgue point T in E , that is, points
satisfying the condition

lim
r→0
r>0

1

2r
λ(E ∩ [T − r,T + r ]) = 1. (13)

Indeed, condition (13) readily implies that

lim
r→0
r>0

1

r
λ(E ∩ [T − r,T ]) = 1.

The proof of assertion (i) relies on an adapted Lebeau–Robbiano method and an abstract ob-
servability result proved in Theorem 13, which is applied to the adjoint problem. The result of
Theorem 13 extends the abstract observability result established in [5, Theorem 2.1] to the non-
autonomous case and under weaker dissipation assumptions allowing a controlled blow-up for
small times in the dissipation estimates. This generalization with weaker dissipation assumptions
is motivated by various study cases, and is actually needed in Theorem 6 (even in the framework
of fixed control subsets) to derive the null-controllability of evolution equations associated to
accretive non-selfadjoint quadratic operators with zero singular spaces.

The assertion (ii) in Theorem 5 provides a necessary condition for the null-controllability,
which does take into account the transport phenomena induced by the drift term in the Ornstein–
Uhlenbeck equations associated to the drift matrices B . Notice that this condition implies in
particular that any point x ∈Rd is at distance less than r of the set R(0,T − t )ω(t ) on a time subset
whose Lebesgue measure is bounded from below as

∀ x ∈Rd , λ(I (x)) ≥ δ

Cd r d
,

with Cd > 0 being the measure of the unit open Euclidean ball in Rd , and

I (x) = {t ∈ [0,T ] : Bd (x,r )∩R(0,T − t )ω(t ) 6= ;}.
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The necessary condition (ii) is derived by trying out gaussian explicit solutions in the observabil-
ity estimate for the adjoint system. We observe that assertion (ii) turns out to be useful to produce
negative null-controllability results and can allow to find out cases when null-controllability may
require a positive minimal time as the integral thickness condition can fail for small times while
holding for large ones. We refer the reader to the various study cases in Section 2.

When the moving control subsets comply with the flow associated to the transport part
of the Ornstein–Uhlenbeck equations, that is, when ω(t ) = R(T − t ,0)ω0 for all 0 ≤ t ≤ T ,
with ω0 a fixed subset of Rd , assertion (iii) in Theorem 5 provides a necessary and sufficient
condition, namely the thickness condition on ω0 for null-controllability to hold on [0,T ]. This
result allows to directly recover the necessary and sufficient condition for null-controllability
of the heat equation established independently in [10] and [48], as in this case B = 0 and
ω(t ) = R(T − t ,0)ω0 = ω0 for all 0 ≤ t ≤ T . Regarding the proof of assertion (iii), the necessary
result is a direct consequence of (ii) as condition (11) implies that there exist δ,r > 0 such that for
all x ∈Rd ,

0 < δ≤
∫ T

0
λ
(
Bd (x,r )∩R(0,T − t )ω(t )

)
dt = Tλ

(
Bd (x,r )∩ω0

)
,

which by equivalence of norms in finite dimension, implies the thickness property of the subset
ω0 in Rd . On the other hand, if the subset ω0 is thick in Rd , there exist some positive constant
δ0,r0 > 0 such that

∀ x ∈Rd , λ
(
Bd (x,r0)∩ω0

)≥ δ0 > 0.

The control subsets ω(t ) = R(T − t ,0)ω0 are then (δ,α)-thick subsets in Rd for all 0 ≤ t ≤ T , since
for all 0 ≤ t ≤ T and x ∈Rd ,

λ
(
{x + [−r,r ]d }∩ω(t )

)≥λ(
Bd (x,r )∩ω(t )

)
= |detR(T − t ,0)|λ((

R(0,T − t )Bd (x,r )
)∩ω0

)
≥ c0λ

(
Bd (R(0,T − t )x,r0)∩ω0

)≥ c0δ0

with

r = r0 sup
t∈[0,T ]

‖R(T − t ,0)‖2 > 0,c0 = inf
t∈[0,T ]

|detR(T − t ,0)| > 0,δ= c0δ0

(2r )d
> 0,

and α = (2r, . . . ,2r ) ∈ (0,+∞)d . This proves that assertion (iii) is a direct consequence of asser-
tions (i) and (ii) in Theorem 5.

The following section provides some applications of Theorem 5 with several study cases of
Ornstein–Uhlenbeck equations including the detailed analysis of the general autonomous case.
We prove for instance that the Kolmogorov equation

(∂t + v∂x −∂2
v ) f (t , x, v) =1ω(x, v)u(t , x, v), (t , x, v) ∈ (0,T )×R×R, (14)

(i) is not null-controllable on [0,T ], for any arbitrary T > 0, when the control acts on the
fixed control subset ω made of parallel vertical strips

ω=
( ⋃

n∈Z
(n −ε|n|,n +ε|n|)

)
×R⊂Rx ×Rv ,

whose width 0 ≤ εn ≤ 1 defines (εn)n≥0 a non-increasing sequence vanishing at infinity
limn→+∞ εn = 0

(ii) is not null-controllable on [0,T ], for any arbitrary T > 0, when the control acts on the
cone

ω= {
(x, v =αx) ∈R2 : − tanθ0 <α< 0

}⊂Rx ×Rv with 0 < θ0 < π

2
(15)
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(iii) is not null-controllable on [0,T ] with T ≤ 2
tanθ0

, when the control acts on the cone

ω= {
(x, v =αx) ∈R2 : − tanθ0 <α< tanθ0

}⊂Rx ×Rv , (16)

with 0 < θ0 < π
2

We also prove that the Kolmogorov equation with the non-degenerate quadratic external poten-
tial V (x) = 1

2 x2,

(∂t + v∂x −x∂v −∂2
v ) f (t , x, v) =1ω(x, v)u(t , x, v), (t , x, v) ∈ (0,T )×R×R, (17)

(i) is not null-controllable on [0,T ], for any arbitrary T > 0, when the control acts on a strip
shaped control subset ω=R× (−L,L) ⊂Rx ×Rv , with L > 0

(ii) is not null-controllable on [0,T ] with T <π−θ0 when the control acts on the cone

ω= {
(x, v =αx) ∈R2 : 0 <α< tanθ0

}⊂Rx ×Rv with 0 < θ0 < π

4
(18)

We also provide in Section 2 examples of moving control supports (ω(t ))t∈I that satisfy the
integral thickness condition (11) without being thick subsets in Rd . For instance, we prove that:

(i) The cone (16) satisfies the integral thickness condition (11) associated to the Kolmogorov
equation (14) if and only if T > 2

tanθ0
(ii) The cone (18) satisfies the integral thickness condition (11) associated to the Kolmogorov

equation with the quadratic external potential (17) when T >π−θ0

(iii) The moving control support (ω(t ))t∈[0,T ] defined by

ω(t ) =ω√
1+2µt , where ω= [−1,1]∪ ⋃

n≥1
(n2,n2 +n)∪ (−n2 −n,−n2),

with µ > 0, is not thick in R for any 0 ≤ t ≤ T , but does satisfy the integral thickness
condition (11) on [0,T ] associated to the one-dimensional heat equation

(∂t −∂2
x ) f (t , x) =1ω(t )(x)u(t , x), (t , x) ∈ (0,T )×R,

for any positive time T > 0

1.2. Evolution equations associated to accretive non-selfadjoint quadratic operators with
zero singular spaces

1.2.1. Miscellaneous facts about quadratic operators

Quadratic operators are pseudodifferential operators defined in the Weyl quantization

q w (x,Dx ) f (x) = 1

(2π)d

∫
R2d

e i (x−y)·ξq
( x + y

2
,ξ

)
f (y)dydξ, (19)

by symbols q(x,ξ), with (x,ξ) ∈Rd ×Rd , d ≥ 1, which are complex-valued quadratic forms

q :Rd
x ×Rd

ξ →C

(x,ξ) 7→ q(x,ξ).

These operators are actually differential operators with simple and fully explicit expression since
the Weyl quantization of the quadratic symbol xαξβ, with (α,β) ∈N2d , |α+β| = 2, is given by the
differential operator

xαDβ
x +Dβ

x xα

2
, Dx = i−1∂x .

Notice that these operators are non-selfadjoint as soon as their Weyl symbols have a non-zero
imaginary part. The maximal closed realization of the quadratic operator q w (x,Dx ) on L2(Rd ),
that is, the operator equipped with the domain

D(q w ) = {
f ∈ L2(Rd ) : q w (x,Dx ) f ∈ L2(Rd )

}
, (20)
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where q w (x,Dx ) f is defined in the distribution sense, is known to coincide with the graph closure
of its restriction to the Schwartz space [19, p. 425–426],

q w (x,Dx ) : S (Rd ) →S (Rd ).

Classically, to any quadratic form q : Rd
x ×Rd

ξ
→ C defined on the phase space is associated a

matrix F ∈ M2d (C) called its Hamilton map, or its fundamental matrix, which is defined as the
unique matrix satisfying the identity

∀ (x,ξ) ∈R2d ,∀ (y,η) ∈R2d , q((x,ξ), (y,η)) =σ((x,ξ),F (y,η)), (21)

where q( · , · ) is the polarized form associated with the quadratic form q , and where σ stands for
the standard symplectic form

σ((x,ξ), (y,η)) =
d∑

j=1
(ξ j y j −x jη j ), (22)

with x = (x1, . . . , xd ), y = (y1, . . . ., yd ), ξ= (ξ1, . . . ,ξd ) and η= (η1, . . . ,ηd ) ∈Cd . We observe from the
definition that

F = 1

2

(∇ξ∇x q ∇2
ξ

q

−∇2
x q −∇x∇ξq

)
,

where the matrices ∇2
x q = (ai , j )1≤i , j≤d , ∇2

ξ
q = (bi , j )1≤i , j≤d , ∇ξ∇x q = (ci , j )1≤i , j≤d , ∇x∇ξq =

(di , j )1≤i , j≤d are defined by the entries

ai , j = ∂2
xi ,x j

q, bi , j = ∂2
ξi ,ξ j

q, ci , j = ∂2
ξi ,x j

q, di , j = ∂2
xi ,ξ j

q.

The notion of singular space introduced in [14] by Hitrik and the third author is defined as the
following finite intersection of kernels

S =
(

2d−1⋂
j=0

Ker
[
ReF (ImF ) j ])∩R2d , (23)

where ReF and ImF stand respectively for the real and imaginary parts of the Hamilton map F
associated with the quadratic symbol q ,

ReF = 1

2
(F +F ), ImF = 1

2i
(F −F ).

As pointed out in [14, 17, 18, 33, 38, 39, 46], the notion of singular space plays a basic role in
the understanding of the spectral and hypoelliptic properties of (possibly non-elliptic) quadratic
operators, as well as the spectral and pseudospectral properties of certain classes of degenerate
doubly characteristic pseudodifferential operators [15, 16, 44, 45]. In particular, the work [14,
Theorem 1.2.2] provides a complete description for the spectrum of any non-elliptic quadratic
operator q w (x,Dx ) whose Weyl symbol q has a non-negative real part Re q ≥ 0, and satisfies a
condition of partial ellipticity along its singular space S,

(x,ξ) ∈ S, q(x,ξ) = 0 ⇒ (x,ξ) = 0. (24)

Under these assumptions, the spectrum of the quadratic operator q w (x,Dx ) is shown to be
composed of a countable number of eigenvalues with finite algebraic multiplicities and the
structure of this spectrum is similar to the one known for elliptic quadratic operators [41]. This
condition of partial ellipticity is generally weaker than the condition of ellipticity, S ( R2d , and
allows one to deal with more degenerate situations. An important class of quadratic operators
satisfying condition (24) are those with zero singular spaces S = {0}. In this case, the condition
of partial ellipticity trivially holds. More specifically, these quadratic operators have been shown
in [38, Theorem 1.2.1] to be hypoelliptic and to enjoy global subelliptic estimates of the type

∃C > 0, ∀ u ∈S (Rd ), ‖〈(x,Dx )〉2(1−δ)u‖L2 ≤C (‖q w (x,Dx )u‖L2 +‖u‖L2 ), (25)
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where ‖·‖L2 = ‖·‖L2(Rd ) and 〈(x,Dx )〉2 = 1+|x|2 +|Dx |2, with a sharp loss of derivatives 0 ≤ δ < 1
with respect to the elliptic case (case δ= 0), which can be explicitly derived from the structure of
the singular space.

In this work, we study the class of quadratic operators whose Weyl symbols have non-negative
real parts Re q ≥ 0, and zero singular spaces S = {0}. These quadratic operators are known [14,
Theorem 1.2.1] to generate contraction semigroups (e−t qw

)t≥0 on L2(Rd ), which are smoothing
in the Schwartz space for any positive time

∀ t > 0,∀ f ∈ L2(Rd ), e−t qw
f ∈S (Rd ).

In the recent work [18, Theorem 1.2], these regularizing properties were sharpened and these
contraction semigroups were shown to be actually smoothing for any positive time in the
Gelfand–Shilov space S1/2

1/2(Rd ): ∃C > 0, ∃ t0 > 0, ∀ f ∈ L2(Rd ), ∀α,β ∈Nd , ∀ 0 < t ≤ t0,

‖xα∂βx (e−t qw
f )‖L∞(Rd ) ≤

C 1+|α|+|β|

t
2k0+1

2 (|α|+|β|+2n+s)
(α!)1/2(β!)1/2‖ f ‖L2(Rd ), (26)

where s is a fixed integer verifying s > d/2, and where 0 ≤ k0 ≤ 2d − 1 is the smallest integer
satisfying (

k0⋂
j=0

Ker
[
ReF (ImF ) j ])∩R2d = {0}. (27)

The definition and few facts about the Gelfand–Shilov regularity are recalled in appendix (Sec-
tion 6.5). Notice that the definition (27) makes sense as the singular space is zero S = {0}. An inter-
esting example of accretive quadratic operator with zero singular space is the Kramers–Fokker–
Planck operator acting on L2(R2

x,v ),

K =−∆v + v2

4
+ v∂x −∇xV (x)∂v , (x, v) ∈R2, (28)

with a non-degenerate quadratic external potential V (x) = 1
2 x2 for which k0 = 1 in this case.

We refer the reader to the works [5, 33, 38] for other examples of accretive quadratic opera-
tors with zero singular spaces, as e.g. hypoelliptic Ornstein–Uhlenbeck or Fokker–Planck oper-
ators acting on L2-spaces weighted by invariant measures [5], quadratic operators appearing in
finite-dimensional Markovian approximations of the non-Markovian generalized Langevin equa-
tion [33], or models of chain of oscillators coupled at heat baths at each side [5, 33].

1.2.2. Sufficient geometric condition for null-controllability

The main result regarding evolution equations associated to accretive non-selfadjoint qua-
dratic operators with zero singular spaces is the following sufficient geometric condition for null-
controllability with moving control supports:

Theorem 6. Let q : Rd
x ×Rd

ξ
→ C be a complex-valued quadratic form with a non-negative real

part Re q ≥ 0, and a zero singular space S = {0}. Let T > 0, δ > 0, α ∈ (0,+∞)d , (ω(t ))t∈[0,T ] be
a moving control support in Rd and E be a measurable subset of [0,T ] with positive Lebesgue
measure λ(E) > 0. If ω(t ) is a (δ,α)-thick subset of Rd for all t ∈ E, then the parabolic equation{

∂t f (t , x)+q w (x,Dx ) f (t , x) =1ω(t )(x)u(t , x), x ∈Rd ,

f |t=0 = f0 ∈ L2(Rd ),
(29)

is null-controllable on [0,T ].
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The null-controllability from fixed control subsets of evolution equations associated to accre-
tive non-selfadjoint quadratic operators with zero singular spaces was studied in the previous
works [3,5], and was shown to hold for any fixed control subset satisfying the geometric assump-
tion (2) in [5, Theorem 1.4], and for any fixed thick subset in [3, Theorem 2.2]. The result of The-
orem 6 therefore extends these previous results in the framework of moving control supports.
In the case of fixed control subsets, let us mention that Theorem 6 actually provides an alterna-
tive proof to the one given in [3]. Indeed, the proof of Theorem 6 relies on an abstract observ-
ability result (Theorem 13), that extends the abstract observability result established in [5, The-
orem 2.1] from which is derived Theorem 2.2 in [3]. However, the abstract observability results
are applied with different families of orthogonal projections. In the work [3], the orthogonal pro-
jections at play are the projections onto the first Hermite modes, whereas in the present work,
the orthogonal projections are frequency cutoff projections. The spectral estimates (46) and the
dissipation estimates (47) are therefore of different kinds in the two proofs, and are linked to
smoothing effects in different types of regularity. In [3], the dissipation estimates are derived
from a Gelfand–Shilov smoothing effect, that is, some Gevrey type smoothing effects both for
the solutions and their Fourier transforms. In the present work, the dissipation estimates are de-
rived from a weaker smoothing effect only given by a Gevrey type smoothing effect for the solu-
tions. Regarding the spectral estimates (46), we use in this work the quantitative version of the
Logvinenko–Sereda Theorem established by Kovrijkine [21], whereas it was needed in [3] to de-
rive an adapted version of the Logvinenko–Sereda Theorem for finite combinations of Hermite
functions. The proof given in the present work is then somehow more natural than the one de-
rived in [3]. However, it is actually most interesting to be able to use two different approaches for
establishing null-controllability. On one hand, one can indeed consider more degenerate cases
of evolution equations associated to accretive non-selfadjoint quadratic operators with possibly
non zero singular spaces. This question was recently addressed by Alphonse in [1, Theorem 1.12],
who obtained some null-controllability results from fixed thick subsets for evolution equations
associated to certain classes of quadratic operators with non zero singular spaces that enjoy only
partial Gelfand–Shilov smoothing effects. Theorem 1.12 in [1] is actually derived from the abstract
observability result (Theorem 13) established in the present work and used with frequency cut-
off projections. On the other hand, the other approach based on the Gelfand–Shilov smoothing
effects and projections onto the first Hermite modes which applies only for evolution equations
associated to quadratic operators with zero singular spaces can be push further by taking advan-
tage of the up to now unused exponential decay of the solutions in order to weaken the thickness
assumption of the control support. This is the topic of a work in preparation by Martin and the
third author [27].

1.3. Structure of this article

Section 2 is devoted to provide some applications of Theorem 5 and to study specific non-
autonomous Ornstein–Uhlenbeck equations with various moving control supports including the
general autonomous case and various examples of non-thick control supports that still satisfy
the integral thickness condition (11) for some positive time. The main result in Section 3 is
Theorem 13 which extends the abstract observability result established in [5, Theorem 2.1] to
the non-autonomous case and under weaker dissipation assumptions allowing a controlled
blow-up for small times in the dissipation estimates. This abstract result is key in the proofs of
Theorems 5 and 6. Theorem 5 is established in Section 4, whereas the proof of Theorem 6 is given
in Section 5. The appendix in Section 6 recalls various results needed in the core of this work as the
well-posedness of the homogeneous and inhomogeneous Cauchy problems associated to non-
autonomous Ornstein–Uhlenbeck equations in Section 6.1; the Hilbert uniqueness method in the
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framework of moving control supports in Section 6.2; some key uncertainty principles related to
thick subsets in Rd in Section 6.3; basic facts and estimates on Hermite functions in Section 6.4;
and the definition and various characterizations of the Gelfand–Shilov regularity in Section 6.5.

2. Some study cases of Ornstein–Uhlenbeck equations

This section provides some applications of Theorem 5 with several study cases of Ornstein–
Uhlenbeck equations.

2.1. Heat equation

By applying Theorem 5 to the heat equation, that is, the autonomous Ornstein–Uhlenbeck
equation with A(t ) =p

2Id and B(t ) = 0,{
(∂t −∆x ) f (t , x) =1ω(x)u(t , x), (t , x) ∈ (0,T )×Rd ,

f |t=0 = f0 ∈ L2(Rd ),
(30)

we recover the following result established for fixed control subsets ω⊂Rd in [10, 48]:

Corollary 7. Let ω be a measurable subset of Rd . The following assertions are equivalent:

(i) The subset ω is thick in Rd

(ii) The heat equation (30) is null-controllable from ω for some time T > 0
(iii) The heat equation (30) is null-controllable from ω in any time T > 0

Proof. We first notice that the generalized Kalman rank condition (7) holds at any positive time
T > 0, as Ã0(T ) =p

2Id . Corollary 7 is then a direct consequence of assertion (iii) in Theorem 5,
as here B = 0 and ω(t ) = R(T − t ,0)ω=ω for all 0 ≤ t ≤ T . �

2.2. Abstract autonomous hypoelliptic Ornstein–Uhlenbeck equations

We consider Ornstein–Uhlenbeck equations on Rd in the autonomous case{
∂t f (t , x)− 1

2 Tr[Q∇2
x f (t , x)]−〈B x,∇x f (t , x)〉 =1ω(t )u(t , x),

f |t=0 = f0 ∈ L2(Rd ),
(31)

with Q,B ∈ Md (R), where Q is a symmetric positive semidefinite matrix. We assume that general-
ized Kalman rank condition holds at some time T > 0, that is,

Span
{

B kQ
1
2 x : x ∈Rd ,k ≥ 0

}
=Rd , (32)

with Q
1
2 the symmetric positive semidefinite matrix given by the square root of Q. In the au-

tonomous case, notice that if the generalized Kalman rank condition holds at some positive time,
then it holds at any positive time. According to the Cayley–Hamilton theorem, condition (32) is
equivalent to the classical Kalman rank condition

Rank
[

B
∣∣∣ Q

1
2

]
= d , (33)

where [
B

∣∣∣ Q
1
2

]
=

[
Q

1
2 ,BQ

1
2 , . . . ,B d−1Q

1
2

]
,

is the d × d 2 matrix obtained by writing consecutively the columns of the matrices B j Q
1
2 . By

applying Theorem 5, we obtain the following result in the autonomous case:
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Corollary 8. Let T > 0 and (ω(t ))t∈[0,T ] be a moving control support in Rd . We assume that the
Kalman rank condition (33) holds.

(i) (Sufficient condition). Let δ> 0, α ∈ (0,+∞)d and E be a measurable subset of [0,T ] with
positive Lebesgue measure λ(E) > 0. If ω(t ) is a (δ,α)-thick subset in Rd for all t ∈ E, then
the autonomous Ornstein–Uhlenbeck equation (31) is null-controllable on [0,T ] from the
moving control support (ω(t ))t∈[0,T ].

(ii) (Necessary condition). If the autonomous Ornstein–Uhlenbeck equation (31) is null-
controllable on [0,T ] from the moving control support (ω(t ))t∈[0,T ], then the moving
control support satisfies the following integral thickness condition on [0,T ],

∃ r,δ> 0,∀ x ∈Rd ,
∫ T

0
λ
(
Bd (x,r )∩e(t−T )Bω(t )

)
dt ≥ δ> 0, (34)

where Bd (x,r ) denotes the open Euclidean ball centered at x with radius r .
(iii) In particular, ifω(t ) = e(T−t )Bω0, withω0 a fixed subset ofRd , then the following assertions

are equivalent:
(a) The subset ω0 is thick in Rd

(b) The autonomous Ornstein–Uhlenbeck equation (31) is null-controllable on [0,T ]
from the moving control support (ω(t ))t∈[0,T ] for some positive time T > 0

(c) The autonomous Ornstein–Uhlenbeck equation (31) is null-controllable on [0,T ]
from the moving control support (ω(t ))t∈[0,T ] in any positive time T > 0

Proof. The assertions (ii) and (iii) of Corollary 8 are a direct rephrasing of the corresponding
statements in Theorem 5, since here R(t1, t0) = e(t1−t0)B , with t1, t0 ∈ R. It therefore remains to
prove assertion (i). If E is a subset of [0,T ] with positive Lebesgue measure, we can find 0 < T ′ ≤ T
such that

∃ 0 < r0 ≤ T ′,∀ 0 < r ≤ r0, λ(E ∩ [T ′− r,T ′]) > 0,

as it is sufficient to take any Lebesgue point T ′ of E . The Kalman rank condition (33) implies
that the generalized Kalman rank condition (7) holds at time T ′. The assertion (i) in Theorem 5
provides the null-controllability of the autonomous Ornstein–Uhlenbeck equation (31) on [0,T ′]
from the moving control support (ω(t ))t∈[0,T ′]. We therefore obtain the null-controllability on
[0,T ] from the moving control support (ω(t ))t∈[0,T ] by extending the control function to zero on
[T ′,T ]. �

2.3. Translation example with the Kolmogorov equation

The Kolmogorov equation

(∂t + v∂x −∂2
v ) f (t , x, v) =1ω(x, v)u(t , x, v), (t , x, v) ∈ (0,T )×R×R, (35)

with T > 0, is an autonomous Ornstein–Uhlenbeck equation (31) with the matrices

B =
(
0 −1
0 0

)
, Q =

(
0 0
0 2

)
.

The Kalman rank condition holds since

[Q
1
2 ,BQ

1
2 ] =

(
0 0 0 −p2
0
p

2 0 0

)
.

Notice that in this case, the characteristics associated to the drift matrix B follow horizontal lines
and are translations along the x-axis since

∀ t > 0, e−tB =
(
1 t
0 1

)
. (36)

The following result holds true:
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Proposition 9.

(i) If ω is a thick subset in R2
x,v , then the Kolmogorov equation (35) is null-controllable on

[0,T ] from the fixed control subset ω for any positive time T > 0
(ii) If ω is made of parallel vertical strips whose width vanishes to zero at infinity

ω=
( ⋃

n∈Z
(n −ε|n|,n +ε|n|)

)
×Rv , where 0 ≤ εn ≤ 1 and lim

n→+∞εn = 0,

with (εn)n≥0 being a non-increasing sequence, then, for any arbitrary time T > 0, the
Kolmogorov equation (35) is not null-controllable on [0,T ] from the fixed control subset ω

(iii) If ω is a cone of the type

ω= {
(x, v =αx) ∈R2

x,v : − tanθ0 <α< 0
}

with 0 < θ0 < π

2
,

then, for any arbitrary time T > 0, the Kolmogorov equation (35) is not null-controllable
on [0,T ] from the fixed control subset ω

(iv) If ω is a cone of the type

ω= {
(x, v =αx) ∈R2

x,v : − tanθ0 <α< tanθ0
}

with 0 < θ0 < π

2
,

then:
(a) The integral thickness condition (34) on [0,T ] holds if and only if T > 2

tanθ0
(b) The Kolmogorov equation (35) is not null-controllable on [0,T ] from the fixed control

subset ω when

0 < T ≤ 2

tanθ0
(c) The null-controllability of the Kolmogorov equation (35) on [0,T ] from the fixed

control subset ω when

T > 2

tanθ0
,

is not covered by the previous results and is an open problem

Proof. The assertion (i) in Proposition 9 is a consequence of (i) in Corollary 8. Regarding the
proof of assertion (ii) in Proposition 9, we first observe that the strip-shaped control subset ω is
not thick in R2, since

∀ N ≥ 1,∀ n ≥ N , λ
(
{(n,0)+ [−N , N ]2}∩ω)≤ n+N∑

j=n−N
4ε j N ≤ 4N (2N +1)εn−N ,

tends to zero when n → +∞. The sufficient condition given by assertion (i) in Proposition 9
therefore does not hold. According to (36), the subset e−tBω is composed by parallel strips with
the angle arctan t with respect to the v-axis as shown in Figure 1. It follows that for all t ≥ 0, N ≥ 1
and n ≥ ([t ]+2)N +1,

λ
(
{(n,0)+ [−N , N ]2}∩e−tBω

)≤ n+([t ]+2)N+1∑
j=n−([t ]+2)N−1

4ε j N ≤ 4N
(
2([t ]+2)N +3

)
εn−([t ]+2)N−1,

where [ · ] denotes the floor function. The necessary condition for the null controllability (34)
therefore does not hold on [0,T ] for any T > 0, as for all T > 0, N ≥ 1 and n ≥ ([T ]+2)N +1

0 ≤
∫ T

0
λ
(
{(n,0)+ [−N , N ]2}∩e−tBω

)
dt ≤ 4T N

(
2([T ]+2)N +3

)
εn−([T ]+2)N−1,

tends to zero when n →+∞. For any arbitrary T > 0, the Kolmogorov equation (35) is therefore
not null-controllable on [0,T ] from the fixed control subset ω.

We now give a proof of assertion (iii). Let 0 < θ0 < π
2 , T > 0 and r > 0. We denote by

D1 = {(x, v) ∈R2 : v =−x tanθ0} and D0 = {(x,0) : x ∈R}, (37)
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a) t = 0

x

−3 −2 −1 0 1 2 3

v b) t > 0

x

−3 −2 −1 0 1 2 3

v

Figure 1. Motion of the union of strips with parameter εn = 2−n , n ≥ 0 under rotation of
angle arctan t with respect to the v-axis.

the straight lines composing the boundary of the conic subset ω. We notice that (e−tBω)t∈[0,T ]

is an increasing family of cones whose boundaries are given by the straight lines e−tB D1 and
e−tB D0 =D0. For any t > 0, the line

e−tB D1 =
{

(x, v) ∈R2 : x = −1+ t tanθ0

tanθ0
v

}
, (38)

never coincides with D0. In particular, the subset

R2 \
⋃

t∈[0,T ]
e−tBω=R2 \ e−T Bω,

is a non-empty open cone. By picking X = (x, v) ∈R2 with a sufficiently large norm in this set, we
can ensure that

Bd (X ,r )∩e−tBω=;,

for all t ∈ [0,T ]. Such a point X violates the integral thickness condition (34) in time T . For any
arbitrary T > 0, the Kolmogorov equation (35) is therefore not null-controllable on [0,T ] from the
fixed control subset ω.

a) t = 0

θ0

D1

D0

v

a) t > 0

θ0

e−tB D1

e−tB D0

v

Figure 2. Motion of the cone under rotation when t > 0.

We now give a proof of assertion (iv). Let 0 < θ0 < π
2 . We denote

D1 =
{
(x, v) ∈R2 : v =−x tanθ0

}
, D2 =

{
(x, v) ∈R2 : v = x tanθ0

}
,
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the straight lines composing the boundary of the conic subset ω. We notice that (e−tBω)t∈[0,T ] is
a family of cones whose boundaries are given by the straight lines e−tB D1 and e−tB D2. For any
t > 0, the straight line e−tB D1 is given by (38), whereas

e−tB D2 =
{

(x, v) ∈R2 : x = 1+ t tanθ0

tanθ0
v

}
,

is a straight line with positive slope with the x-axis and converging to the x-axis when t →+∞.

a) t = 0

θ0θ0

D2

D1

x

v

b) 0 < t < 1
tanθ0

θ0

e−tB D1

e−tB D2

x

v

Figure 3. Family of cones (e−tBω)t∈[0,T ].

We observe that the setR2\e−tBω is a non-empty cone for any time t ≥ 0. As above, this implies
in particular that for any t ≥ 0, e−tBω is not a thick subset inR2 and that assertion (i) in Corollary 8
does not apply.

Let 0 < T ≤ 2
tanθ0

, r > 0 and y = (x, v) ∈ R2 be such that the open Euclidean ball Bd (y,r ) is

contained in the cone R2 \ e−T Bω and tangent to D2 as in Figure 4. This ball intersects the set
e−tBω only on a time interval t ∈ [0,`(y)) ⊂ [0,T ] whose length `(y) tends to zero when |y |→+∞.
It follows that∫ T

0
λ
(
Bd (y,r )∩e(t−T )Bω

)
dt =

∫ T

0
λ
(
Bd (y,r )∩e−tBω

)
dt

=
∫ `(y)

0
λ
(
Bd (y,r )∩e−tBω

)
dt ≤λ(

Bd (0,r )
)
`(y) −→

|y |→+∞
0.

The integral thickness condition (34) is therefore violated on [0,T ] when 0 < T ≤ 2
tanθ0

. It follows
from the assertion (ii) in Corollary 8 that the Kolmogorov equation (35) is not null-controllable
on [0,T ] from the fixed control subset ω, when 0 < T ≤ 2

tanθ0
.

c) t = 1
tanθ0

θ0
e−tB D2

e−tB D1

x

v

d) 1
tanθ0

< t ≤ 2
tanθ0

θ0

e−tB D1

D2

e−tB D2

x

v

Figure 4. Family of cones (e−tBω)t∈[0,T ].
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e) t > 2
tanθ0

e−tB D2

e−tB D1

θ0

x

v

Figure 5. Family of cones (e−tBω)t∈[0,T ].

Let T > 2
tanθ0

. We aim at proving that the integral thickness condition (34) holds on [0,T ]. Let
2

tanθ0
< T1 < T , θ1 be the angle between the x-axis and the straight line e−T B D1, θ̃1 be the angle

between the x-axis and the straight line e−T1B D1. We observe that 0 < θ1 < θ̃1 < θ0. We can choose
the parameter T1 close enough to 2

tanθ0
so that there exists 0 < T2 < T such that

e−T2B D2 = e−T1B D1.

For any X = (x, v) ∈R2 \ {0} with x ≥ 0, we introduce

arg(X ) =


arctan( v

x ) if x > 0,

−π
2 if x = 0, v < 0,

π
2 if x = 0, v > 0.

We notice that

• if arg(X ) ∈ [−θ0, θ̃1], then X belongs to e−tBω at least for all t ∈ [0,T2]
• if arg(X ) ∈ [θ̃1, π2 ], then X belongs to e−tBω at least for all t ∈ [T1,T ]
• if arg(X ) ∈ [−π

2 ,−θ0], then X belongs to e−tBω at least for all t ∈ [ 1
tanθ0

,T ]

We set T ∗ = min{T2,T − T1,T − 1
tanθ0

} > 0. By changing X to −X , we easily notice that any

point X = (x, v) ∈ R2 \ {0} belongs to e−tBω at least for all t in an interval I (X ) ⊂ [0,T ] of
length |I (X )| ≥ T∗. On the other hand, the point X = 0 belongs to the closed cone given by the
adherence of e−tBω for all 0 ≤ t ≤ T . By the conic structure of the set e−tBω, we can find ρ > 0
such that for all X ∈ R2 with |X | > ρ, and for all t ∈ I (X ), e−tBω contains at least half of the ball
Bd (X ,1). This implies in particular that for all X ∈R2, |X | > ρ,∫ T

0
λ
(
Bd (X ,1)∩e(t−T )Bω

)
dt =

∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ≥ 1

2
λ
(
Bd (0,1)

)|I (X )| ≥ πT∗
2

> 0.

By continuity of the translation in L1, we notice that the function

X ∈R2 7→
∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ,

is continuous onR2. Furthermore, this function is positive as any point X ∈R2 belongs to e−tBω at
least for all t in an interval I (X ) ⊂ [0,T ] of length |I (X )| ≥ T∗. By compactness of the set Bd (0,ρ),
the above function is therefore bounded from below by a positive constant on R2,

∃ δ> 0,∀ X ∈R2,
∫ T

0
λ
(
Bd (X ,1)∩e(t−T )Bω

)
dt =

∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ≥ δ.

The integral thickness condition (34) then holds on [0,T ] with r = 1 and δ. This ends the proof of
Proposition 9. �
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2.4. Rotation example with the Kolmogorov equation with a non-degenerate quadratic
external potential

The Kolmogorov equation with the non-degenerate quadratic external potential V (x) = 1
2 x2,

writes as

(∂t + v∂x −∂xV (x)∂v −∂2
v ) f (t , x, v) = (∂t + v∂x −x∂v −∂2

v ) f (t , x, v) =1ω(x, v)u(t , x, v), (39)

with (t , x, v) ∈ (0,T ) × R × R, is an autonomous Ornstein–Uhlenbeck equation (31) with the
matrices

B =
(
0 −1
1 0

)
, Q =

(
0 0
0 2

)
.

The Kalman condition holds since

[Q
1
2 ,BQ

1
2 ] =

(
0 0 0 −p2
0
p

2 0 0

)
.

Notice that in this case the characteristics are given by rotations as

∀ t > 0, e−tB =
(

cos t sin t
−sin t cos t

)
. (40)

Proposition 10.

(i) If the subset ω is thick in R2, then the Kolmogorov equation with external potential (39) is
null-controllable on [0,T ] from the fixed control subset ω for any positive time T > 0

(ii) If ω is made of a strip
ω=R× (−L,L) ⊂R2

x,v ,

with L > 0, then for any arbitrary T > 0, the Kolmogorov equation with external poten-
tial (39) is not null-controllable on [0,T ] from the fixed control subset ω

(iii) If ω is a cone of the type

ω= {
(x, v =αx) ∈R2 : 0 <α< tanθ0

}
,

with 0 < θ0 < π
4 , then

(a) The integral thickness condition (34) on [0,T ] associated to the Kolmogorov equation
with external potential (39) fails when T <π−θ0, and holds when T >π−θ0

(b) The Kolmogorov equation with external potential (39) is not null-controllable on
[0,T ] from the fixed control subset ω when T <π−θ0

(c) The null-controllability of the Kolmogorov equation with external potential (39) on
[0,T ] from the fixed control subset ω when T ≥π−θ0 is an open problem

Proof. The assertion (i) is a direct consequence of assertion (i) in Corollary 8. We now give a proof
of assertion (ii). The strip-shaped control subset

ω=R× (−L,L) ⊂R2
x,v ,

is obviously not thick in R2. The sufficient condition (i) in Proposition 10 therefore does not hold.
According to (40), the subset e−tBω is a strip with width 2L and angle −t with respect to the x-axis
(see Figure 6). Let T > 0 and N be the smallest integer satisfying T

π ≤ N . Let r > 0 and y ∈R2 \ {0}.
For any µ> 0, the strip e−tBω intersects the ball Bd (µy,r ) on a union of at most N time intervals

t ∈I (µ) = I1(µ)∪·· ·∪ IN (µ),

with length |Ik (µ)| converging to zero when µ→+∞. It follows that∫ T

0
λ
(
Bd (µy,r )∩e(t−T )Bω

)
dt =

∫ T

0
λ
(
Bd (µy,r )∩e−tBω

)
dt

=
∫

t∈I (µ)
λ
(
Bd (µy,r )∩e−tBω

)
dt ≤λ(

Bd (0,r )
)|I (µ)| −→

µ→+∞ 0.
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The integral thickness property (34) therefore does not hold on [0,T ]. The Kolmogorov equation
with external potential (39) is then not null-controllable on [0,T ] from the fixed control subsetω.

a) t = 0

L

−L

x

v

2L

t

b) t > 0

x

v

Figure 6. Motion of the strip R× (−L,L) under a rotation of angle −t with respect to the
x-axis.

We now give a proof of assertion (iii). Let 0 < θ0 < π
4 . For t ≥ 0, the subset e−tBω is the cone ω

rotated with angle −t , see Figure 7.

a) t = 0

θ0

x

v

θ0

b) t > 0

t
x

v

Figure 7. Motion of the cone under rotation of angle −t .

For any t ≥ 0, this subset is never thick in R2. The sufficient condition (i) in Proposition 10
therefore does not hold. If 0 < T <π−θ0, R2 \∪t∈[0,T ]e−tBω is a non-empty open subset of R2. Let
r > 0. If the point X = (x, v) ∈R2 is chosen in this set with a sufficiently large norm, then

Bd (X ,r )∩e−tBω=;,

for all t ∈ [0,T ]. The cone ω does not satisfy the integral thickness condition (34) on [0,T ]
associated to the Kolmogorov equation with the quadratic external potential (39) when 0 < T <
π−θ0. We now consider the case when T >π−θ0 and set T∗ = inf(T +θ0−π,θ0) > 0. There exists a
positive constant ρ > 0 such that for any X = (x, v) ∈ R2 with |X | > ρ, there exists a time set I (X )
with Lebesgue measure λ(I (X )) ≥ T∗ > 0 such that

∀ t ∈I (X ), λ
(
Bd (X ,1)∩e−tBω

)≥ 1

2
λ
(
Bd (0,1)

)
.
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It implies that

∀ |X | > ρ,
∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ≥ 1

2
λ
(
Bd (0,1)

)
T∗ > 0.

By continuity of the translation in L1, we notice that the function

X ∈R2 7→
∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ,

is continuous onR2. Furthermore, this function is positive as any point X ∈R2 belongs to e−tBω at
least for all t in a time set Ĩ (X ) ⊂ [0,T ] with Lebesgue measureλ(Ĩ (X )) ≥ T∗ > 0. By compactness
of the set Bd (0,ρ), the above function is therefore bounded from below by a positive constant
on R2,

∃ δ> 0,∀ X ∈R2,
∫ T

0
λ
(
Bd (X ,1)∩e(t−T )Bω

)
dt =

∫ T

0
λ
(
Bd (X ,1)∩e−tBω

)
dt ≥ δ.

The integral thickness condition (34) then holds on [0,T ] with r = 1 and δ. This ends the proof of
Proposition 10. �

Figure 8. Trace of the ball of radius one when the cone rotates.

2.5. Dilation example

We consider the one-dimensional heat equation

(∂t −∂2
x ) f (t , x) =1ω(t )(x)u(t , x), (41)

with the moving control support

ω(t ) =ω√
1+2µt , where ω= [−1,1]∪ ⋃

n≥1
(n2,n2 +n)∪ (−n2 −n,−n2),

with µ> 0. The subset ω is not thick in R. Indeed, for all r > 0, there exists n0 ≥ 1 such that for all
n ≥ n0, (

n2 + 3n

2
− r,n2 + 3n

2
+ r

)
∩ω=;.

Equivalently, for any t > 0, the subset ω(t ) is not thick in R. However, the following proposition
shows that the heat equation (41) satisfies the integral thickness condition (34) on [0,T ] with
the moving control support (ω(t ))t∈[0,T ], for any positive time T > 0. The null-controllability of
the one-dimensional heat equation (41) with the moving control subset (ω(t ))t∈[0,T ] is an open
problem.

Proposition 11. For all T > 0, there exist some positive constants r,δ> 0 such that

∀ x ∈R,
∫ T

0
λ
(
(x − r, x + r )∩ω(t )

)
dt ≥ δ> 0. (42)
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a) t = 0

)(
−32

)(
−22

( )
22

( )
32

( )
42

( )
52

( )
62

( )
72

)2(−2

b) t > 0, α=√
1+2µt

)(
−32α

)(
−22α

( )
22α

( )
32α

( )
42α

( )
52α

)2α(−2α

Figure 9. The control subsets ω(t ) =ω√
1+2µt at time t = 0 and t > 0.

Proof. Let T > 0. By symmetry, it is sufficient to establish (42) when x ≥ 0. We begin by studying
the case when x > max(5,

√
1+2µT ). We first prove that for all x > max(5,

√
1+2µT ),∫ T

0
λ
(
(x −1, x +1)∩ω(t )

)
dt ≥ (x −1)2

µ

∑
k∈I (x)

1

k4

(
1−

(
x +1

x −1

)2 1

(1+ 1
k )2

)
, (43)

with

I (x) =
{

k ≥ 2 :

p
x −1

(1+2µT )
1
4

≤ k ≤
p

4x +5−1

2

}
.

Let x > max(5,
√

1+2µT ). For any 0 < t < T and k ≥ 2, the set inclusion

(x −1, x +1) ⊂√
1+2µt (k2,k2 +k),

is equivalent to the two estimates√
1+2µtk2 ≤ x −1, x +1 ≤√

1+2µt (k2 +k),

or, equivalently
1

2µ

((
x +1

k2 +k

)2

−1

)
≤ t ≤ 1

2µ

((
x −1

k2

)2

−1

)
.

We observe that the set inclusion(
1

2µ

((
x +1

k2 +k

)2

−1

)
,

1

2µ

((
x −1

k2

)2

−1

))
⊂ (0,T ),

is equivalent to the condition k ∈I (x). We finally obtain that∫ T

0
λ
(
(x −1, x +1)∩ω(t )

)
dt ≥

∫ T

0
λ

(
(x −1, x +1)∩ ⋃

k∈I (x)

√
1+2µt (k2,k2 +k)

)
dt

= ∑
k∈I (x)

∫ T

0
λ
(
(x −1, x +1)∩√

1+2µt (k2,k2 +k)
)
dt

and ∫ T

0
λ
(
(x −1, x +1)∩ω(t )

)
dt ≥ ∑

k∈I (x)

1

µ

((
x −1

k2

)2

−
(

x +1

k2 +k

)2)
.

It proves the estimate (43). Next, we prove that there exist some positive constants A > 1 and C > 0
such that for all x > A, ∫ T

0
λ
(
(x −1, x +1)∩ω(t )

)
dt ≥ C

4µ
. (44)
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We first notice that there exists η> 0 such that for all 0 < x < η,

1

(1+x)2 ≤ 1− x

2
.

There exists a positive constant A′ > max(5,
√

1+2µT ) such that for all x > A′,
p

x −1

(1+2µT )
1
4

> 1

η
.

We obtain that for all x > A′ and k ∈I (x),

1

k
≤ (1+2µT )

1
4p

x −1
< η.

It implies that for all x > A′ and k ∈I (x),

1

(1+ 1
k )2

≤ 1− 1

2k
. (45)

We can find some positive constants C > 0, C ′ > 0 and A′′ > A′ such that for all x > A′′,

∑
k∈I (x)

1

k4 ≤ 1+2µT

(x −1)2 #I (x) ≤ 1+2µT

(x −1)2

(p
4x +5−1

2
−

p
x −1

(1+2µT )
1
4

+1

)
≤ C ′

x3/2

and ∑
k∈I (x)

1

k5 ≥ 25

(
p

4x +5−1)5
#I (x) ≥ C

x2 .

According to (43) and (45), we obtain that for all x > A′′,∫ T

0
λ
(
(x −1, x +1)∩ω(t )

)
dt ≥ (x −1)2

µ

∑
k∈I (x)

1

k4

(
1−

(
x +1

x −1

)2

+
(

x +1

x −1

)2 1

2k

)

≥−4x

µ

( ∑
k∈I (x)

1

k4

)
+ (x +1)2

2µ

( ∑
k∈I (x)

1

k5

)

≥− 4C ′

µ
p

x
+ C

2µ
.

Finally, there exists a positive constant A > A′′ such that for all x > A,

4C ′

µ
p

x
≤ C

4µ
,

which establishes the estimate (44). We now conclude with a compactness argument when
|x| ≤ A. For any x ∈ [−A, A], we notice that for all 0 < t < T ,

(−1,1) ⊂ (x −2A, x +2A)∩ω(t ).

It implies that

∀ |x| ≤ A,
∫ T

0
λ
(
(x −2A, x +2A)∩ω(t )

)
dt ≥ 2T > 0.

It gives the conclusion with r = 2A and δ= min{ C
4µ ,2T }, as when x > A,

(x −1, x +1) ⊂ (x −2A, x +2A),

since A > 1. This ends the proof of Proposition 11. �
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3. An adapted Lebeau–Robbiano method with moving control subsets

Definition 12. Let (X ,‖·‖X ) be a Banach space. A two-parameters family of bounded linear
operators U (t , s), 0 ≤ s ≤ t ≤ T is an evolution system of contractions of X if the following three
conditions are satisfied:

(i) ∀ 0 ≤ s ≤ T, U (s, s) = IdX ; ∀ 0 ≤ s ≤ r ≤ t ≤ T, U (t ,r )U (r, s) =U (t , s)
(ii) (t , s) 7→U (t , s) ∈Lc (X ) is strongly continuous for all 0 ≤ s ≤ t ≤ T

(iii) ∀ 0 ≤ s ≤ t ≤ T, ‖U (t , s)‖Lc (X ) ≤ 1

where IdX denotes the identity operator on X and Lc (X ) stands for the set of bounded linear
operators on X .

The following result extends the abstract observability result established in [5, Theorem 2.1]
to evolution systems and time-varying control subsets. It also allows some controlled blow-ups
for small times in the dissipation estimates that is not covered by the result of [5, Theorem 2.1],
and that is absolutely needed for various study cases and in particular for the proof of Theorem 6
in the present work. Despite these improvements, the following proof essentially follows the very
same lines as the one given in [5, Theorem 2.1].

Theorem 13. Let Ω be an open subset of Rd ; T > 0; (ω(t ))t∈[0,T ] be a moving control support
in Ω; (πk )k≥1 be a family of orthogonal projections defined on L2(Ω); U (t , s), 0 ≤ s ≤ t ≤ T be
an evolution system of contractions on L2(Ω); δ1,m2 ≥ 0; δ2,c1,c ′1,c2,c ′2, a,b,m1 > 0 be positive
constants with a < b and 0 ≤ δ1 < δ2 ≤ T ; E be a measurable subset of [δ1,δ2] with positive
Lebesgue measure. If the following uniform spectral estimates with respect to t ∈ E,

∀ t ∈ E ,∀ g ∈ L2(Ω),∀ k ≥ 1, ‖πk g‖L2(Ω) ≤ c ′1ec1ka‖πk g‖L2(ω(t )), (46)

and the following dissipation estimates with controlled blow-up

∀ g ∈ L2(Ω),∀ k ≥ 1,∀ δ1 ≤ s < t ≤ δ2,

‖(1−πk )U (t , s)g‖L2(Ω) ≤
1

c ′2(t − s)m2
e−c2(t−s)m1 kb‖g‖L2(Ω), (47)

hold, then there exists a positive constant C > 0 such that the following observability estimate holds

for a.e. t∗ ∈ E ,∀ R > 0,∃ t0 ∈ (t∗, t∗+R)∩E ,∀ g ∈ L2(Ω),

‖U (t0, t∗)g‖2
L2(Ω) ≤ exp

(
C

(t0 − t∗)
am1
b−a

)∫
(t∗,t0)∩E

‖U (t , t∗)g‖2
L2(ω(t ))dt . (48)

In particular, there exists a positive constant C1 > 0 such that

∀ g ∈ L2(Ω), ‖U (T,0)g‖2
L2(Ω) ≤C1

∫
E
‖U (t ,0)g‖2

L2(ω(t ))dt . (49)

More specifically, let C > 0 be a positive constant verifying

C > c
b

b−a
1 c

− a
b−a

2

2αββ

γγ(β−γ)β−γ
, (50)

with

γ= am1

b −a
> 0, β= 2γ+ abm1

(b −a)2 > 0, α= γ+1+a + a2

b −a
> 0.

Then, there exists T0 > 0 such that, if E = [δ1,δ2] = [0,T ] with 0 < T ≤ T0, then

‖U (T,0)g‖2
L2(Ω) ≤ exp

(
C

T
am1
b−a

)∫ T

0
‖U (t ,0)g‖2

L2(ω(t ))dt . (51)
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The proof of Theorem 13 relies on a telescopic series argument due to [29] (see also [30]), and
already used in [2, 37, 49]. The proof of the observability estimate (48) uses the following result
which is already stated in [47, Lemma 2.3] and briefly proved in [25, p. 256–257]. For the sake of
completeness of the present work, a proof is given:

Proposition 14. Let 0 ≤ δ1 < δ2 < +∞ and E be a measurable subset of [δ1,δ2] with positive
Lebesgue measure. There exist some positive constants 0 < ρ < 1 and C0,C ′

0 > 0 such that for almost
every t∗ ∈ E and for all R > 0, there exists a decreasing sequence (t j ) j≥0 of (t∗, t∗+R)∩E such that

t j −→
j→+∞

t∗,

∀ j ≥ 1, λ

((
t j ,

t j + t j−1

2

)
∩E

)
≥ ρ

(
t j−1 − t j

2

)
> 0, (52)

∀ j ≥ 1, t j − t j+1 ≥C0(t j−1 − t j ) > 0 (53)

and

t0 − t1 ≥C ′
0(t0 − t∗) > 0. (54)

Proof. The above result is proved here with the constants ρ = 3
4 , C0 = 1

12 and C ′
0 = 1

4 . The proof
can actually be performed with any 0 < ρ < 1 and related constants C0(ρ) > 0 and C ′

0(ρ) > 0. For a
given measurable subset A of R, we recall that a Lebesgue, or density, point of A is a point x ∈ A
satisfying

1

2r
λ
(
[x − r, x + r ]∩ A

)= 1

2r

∫ x+r

x−r
1A(y)dy −→

r→0
r>0

1.

This property readily implies in particular that

1

r
λ
(
[x, x + r ]∩ A

)= 1

r

∫ x+r

x
1A(y)dy −→

r→0
r>0

1. (55)

By Lebesgue theorem, almost every point of A is a density point of A.

Step 1. We begin by constructing a particular subset Ẽ of E satisfying λ(Ẽ) =λ(E). It will be then
sufficient to establish Proposition 14 for any t∗ ∈ Ẽ . For any m ≥ 1, we introduce the set

Em =
{
σ ∈ E : ∀ 0 < r < 1

m
, λ

(
[σ,σ+ r ]∩E

)≥ 3r

4

}
⊂ E .

Let Dm , respectively D , be the set of Lebesgue points of Em , respectively of E . The sequence of
subsets (Em)m≥1 is non-decreasing for the inclusion

∀ m ≥ 1, Em ⊂ Em+1.

The sequence of subsets (Dm)m≥1 is therefore also non-decreasing for the inclusion

∀ m ≥ 1, Dm ⊂ Dm+1.

According to (55), any Lebesgue point of E belongs to a subset Em for some m ≥ 1 sufficiently
large

D ⊂ ⋃
m≥1

Em .

By Lebesgue theorem, we have λ(D) =λ(E) and λ(Dm) =λ(Em) for all m ≥ 1. It follows that

λ(E) =λ(D) ≤λ
( ⋃

m≥1
Em

)
= lim

m→+∞λ(Em) = lim
m→+∞λ(Dm) =λ

( ⋃
m≥1

Dm

)
.

As
⋃

m≥1 Dm ⊂ E , we obtain that

λ(E) =λ
( ⋃

m≥1
Dm

)
.
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We set Ẽ = ⋃
m≥1 Dm . Let t∗ ∈ Ẽ and R > 0. There exists m∗ ≥ 1 such that t∗ ∈ Dm∗ . It follows

from (55) that
1

r
λ
(
[t∗, t∗+ r ]∩Em∗

)−→
r→0
r>0

1.

There exists 0 < r0 < min{R, 1
m∗ } such that

∀ 0 < r ≤ r0, λ
(
[t∗, t∗+ r ]∩Em∗

)≥ 3r

4
. (56)

Step 2. Next, we construct by induction a decreasing sequence (t j ) j≥0 of Em∗ ∩ (t∗, t∗+ r0) such
that

t j+1 ∈
[

t∗+ t j − t∗

4
, t∗+ 3(t j − t∗)

4

]
∩Em∗ ⊂ (t∗, t∗+ r0)∩Em∗ . (57)

According to (56), the set (t∗, t∗ + r0) ∩ Em∗ is not empty. We choose an arbitrarily point t0 ∈
(t∗, t∗+r0)∩Em∗ . Let us now assume that the points (tl )0≤l≤ j , with j ≥ 0, are already constructed
and satisfy (57) for all 0 ≤ l ≤ j − 1. We aim at finding t j+1 ∈ (t∗, t∗ + r0) satisfying (57). Since
0 < t j − t∗ < r0, we deduce from (56) that

λ
(
[t∗, t j ]∩Em∗

)≥ 3(t j − t∗)

4
.

The set
[

t∗+ t j −t∗
4 , t∗+ 3(t j −t∗)

4

]
∩Em∗ is therefore not empty, since otherwise the above measure

would necessarily be less or equal than
t j −t∗

2 . It is then sufficient to choose the point t j+1

arbitrarily in this set. The sequence (t j ) j≥0 is decreasing by construction of (t∗, t∗+R)∩E .

Step 3. Let j ≥ 1. Since by construction t j ∈ Em∗ and 0 < r := t j−1−t j

2 < r0
2 < 1

m∗ , we deduce from
the definition of the set Em∗ that

λ
(
(t j , t j + r )∩E

)≥ 3

4
r,

which proves (52) with ρ = 3
4 . Furthermore, it follows from (57) that for all j ≥ 0,

t j − t∗

4
≤ t j+1 − t∗ ≤ 3(t j − t∗)

4
,

which implies that

t0 − t1 ≥ t0 −
(

3

4
t0 + 1

4
t∗

)
= 1

4
(t0 − t∗).

This establishes (54) with C ′
0 = 1

4 . We finally obtain by using anew (57) that for all j ≥ 1,

t j − t j+1 ≥ t j −
(

3t j

4
+ t∗

4

)
= 1

4
(t j − t∗) ≥ 1

16
(t j−1 − t∗)

≥ 1

16

(
t j−1 − 4

3

(
t j −

t j−1

4

))
= 1

12
(t j−1 − t j ) > 0.

This proves the estimates (53) with C0 = 1
12 . �

We can now prove Theorem 13.

Proof. For simplicity, the notation ‖·‖ refers in this proof to the norm ‖·‖L2(Ω). We aim at
establishing (48) with the parameters t∗ and t0 given by Proposition 14. We first observe that the
estimate (49) is a direct consequence of the contraction property of the evolution system and (48).
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Indeed, by applying (48) to some allowed values of t∗ ∈ E and t0 ∈ (t∗, t∗+1)∩E , we obtain from
the contraction evolution system properties that for all g ∈ L2(Ω),

‖U (T,0)g‖2 = ‖U (T, t0)U (t0, t∗)U (t∗,0)g‖2 ≤ ‖U (t0, t∗)U (t∗,0)g‖2

≤ exp

(
C

(t0 − t∗)
am1
b−a

)∫
(t∗,t0)∩E

‖U (t , t∗)U (t∗,0)g‖2
L2(ω(t ))dt

≤C1

∫
E
‖U (t ,0)g‖2

L2(ω(t ))dt .

with

C1 = exp

(
C

(t0 − t∗)
am1
b−a

)
> 1.

Let us now prove the estimate (48). Let 0 < ρ < 1, C0,C ′
0 > 0 be as in Proposition 14. Let 0 < ε< 2.

We consider the positive constants

γ=

 (2+ε)c12a

(2−ε)c2C
bm1
b−a

0


1

b−a

> 0, M = (2+ε)c1(2γ)a > 0. (58)

By the definition (58) of the constant γ, we observe that

M = (2+ε)c1(2γ)a = (2−ε)c2γ
bC

bm1
b−a

0 . (59)

Let R > 0. There exists 0 < R̃ < R such that for all 0 < τ< R̃,

γ

τ
m1
b−a

> 1,
ρτ

2c ′21

≥ exp

(
−εc1

(2γ)a

τ
am1
b−a

)
,

2

C0c ′22 τ
2m2−1

≤ exp

εc2
γbC

bm1
b−a

0

τ
am1
b−a

 . (60)

Then, for all 0 < τ< R̃, there exists an integer k(τ) ≥ 1 verifying

1 < γ

τ
m1
b−a

≤ k(τ) ≤ 2γ

τ
m1
b−a

, (61)

since according to (60), the interval (γτ−
m1
b−a ,2γτ−

m1
b−a ) is of length greater than 1, and is contained

in (1,+∞). Let t∗ and (t j ) j≥0 be as in Proposition 14 applied with the constant R̃ > 0 defined
in (60). We define

∀ j ≥ 1, τ j =
t j−1 − t j

2
> 0.

We observe from (52) and (53) that

∀ j ≥ 1, 0 < τ j < R̃, (62)

∀ j ≥ 1, τ j ≤ 1

C0
τ j+1, (63)

∀ j ≥ 1, λ
(
(t j , t j +τ j )∩E

)≥ ρτ j . (64)

According to (61) and (62), we can define k j = k(τ j ) ≥ 1 such that

∀ j ≥ 1,
γ

τ
m1
b−a
j

≤ k j ≤ 2γ

τ
m1
b−a
j

. (65)
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Step 1. We begin by establishing the following estimate: ∀ j ≥ 1, ∀ g ∈ L2(Ω),

f (τ j )‖U (t j +τ j , t∗)g‖2− f (τ j+1)‖U (t j+1+τ j+1, t∗)g‖2 ≤
∫

(t j ,t j +τ j )∩E
‖U (t , t∗)g‖2

L2(ω(t ))dt , (66)

where

f (s) = exp

(
− M

s
am1
b−a

)
, s > 0. (67)

By using successively (64), the contraction property of the evolution system, the Pythagorean
identity, the spectral estimates (46), the triangular inequality and ‖·‖L2(ω(t )) ≤ ‖·‖, we obtain that
for all j ≥ 1,

ρτ j
e
−2c1ka

j

2c ′21

‖U (t j +τ j , t∗)g‖2 ≤ e
−2c1ka

j

2c ′21

∫
(t j ,t j +τ j )∩E

‖U (t , t∗)g‖2dt

≤ e
−2c1ka

j

2c ′21

∫
(t j ,t j +τ j )∩E

(
‖πk j U (t , t∗)g‖2 +‖(1−πk j )U (t , t∗)g‖2

)
dt

≤
∫

(t j ,t j +τ j )∩E

(
1

2
‖πk j U (t , t∗)g‖2

L2(ω(t )) +‖(1−πk j )U (t , t∗)g‖2
)

dt

that is

ρτ j
e
−2c1ka

j

2c ′21

‖U (t j +τ j , t∗)g‖2 ≤
∫

(t j ,t j +τ j )∩E

(
‖U (t , t∗)g‖2

L2(ω(t )) +‖(1−πk j )U (t , t∗)g‖2
L2(ω(t ))

+‖(1−πk j )U (t , t∗)g‖2
)
dt

≤
∫

(t j ,t j +τ j )∩E

(
‖U (t , t∗)g‖2

L2(ω(t )) +2‖(1−πk j )U (t , t∗)g‖2
)

dt .

By using successively the dissipation estimates (47) and the fact that

t ∈ (t j , t j +τ j ) =⇒ t − (t j+1 +τ j+1) ≥ τ j+1 > 0,

for any j ≥ 1, we obtain that for all j ≥ 1,∫
(t j ,t j +τ j )∩E

2‖(1−πk j )U (t , t∗)g‖2dt

≤
∫

(t j ,t j +τ j )
2‖(1−πk j )U (t , t j+1 +τ j+1)U (t j+1 +τ j+1, t∗)g‖2dt

≤
∫

(t j ,t j +τ j )

2e
−2c2[t−(t j+1+τ j+1)]m1 kb

j

c ′22 [t − (t j+1 +τ j+1)]2m2
‖U (t j+1 +τ j+1, t∗)g‖2dt

≤ 2τ j

c ′22 τ
2m2
j+1

e
−2c2τ

m1
j+1kb

j ‖U (t j+1 +τ j+1, t∗)g‖2.

We deduce from the previous two estimates that for all j ≥ 1,

ρτ j

2c ′21

e
−2c1ka

j ‖U (t j +τ j , t∗)g‖2

≤
∫

(t j ,t j +τ j )∩E
‖U (t , t∗)g‖2

L2(ω(t ))dt + 2τ j

c ′22 τ
2m2
j+1

e
−2c2τ

m1
j+1kb

j ‖U (t j+1 +τ j+1, t∗)g‖2. (68)

By first using (60), (62) and (65), and then (58) and (67), we obtain that for all j ≥ 1,

ρτ j

2c ′21

e
−2c1ka

j ≥ ρτ j

2c ′21

exp

−2c1
(2γ)a

τ
am1
b−a
j

≥ exp

−(2+ε)c1
(2γ)a

τ
am1
b−a
j

= exp

− M

τ
am1
b−a
j

= f (τ j ).
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By using successively (65), (63), (62), (60), (59) and (67), we obtain that for all j ≥ 1,

2τ j

c ′22 τ
2m2
j+1

e
−2c2τ

m1
j+1kb

j ≤ 2τ j

c ′22 τ
2m2
j+1

exp

−2c2τ
m1
j+1

γb

τ
bm1
b−a
j


≤ 2

C0c ′22 τ
2m2−1
j+1

exp

−2c2C
bm1
b−a

0

γb

τ
am1
b−a
j+1


≤ exp

−(2−ε)c2C
bm1
b−a

0

γb

τ
am1
b−a
j+1

= exp

− M

τ
am1
b−a
j+1

= f (τ j+1).

According to the two above estimates, we deduce (66) from (68).

Step 2. We can now derive the observability estimate (48). Summing up the estimates (66) for all
j ≥ 1 provides that

f (τ1)‖U (t1 +τ1, t∗)g‖2 ≤
∫

(t∗,t0)∩E
‖U (t , t∗)g‖2

L2(ω(t ))dt , (69)

since by the contractivity property of the evolution system and (67),

f (τ j )‖U (t j +τ j , t∗)g‖2 ≤ exp

− M

τ
am1
b−a
j

‖g‖2 −→
j→+∞

0,

as τ j → 0 when j →+∞, because t j → t∗ when j →+∞; and since the intervals (t j , t j +τ j ) are
disjoint and included in (t∗, t0). According to (54), the estimate

τ1 = t0 − t1

2
≥ C ′

0

2
(t0 − t∗) > 0,

implies that

f (τ1) = exp

− M

τ
am1
b−a

1

≥ exp

(
− C

(t0 − t∗)
am1
b−a

)
,

with C = M
( 2

C ′
0

) am1
b−a . We finally obtain from the contractivity property of the evolution system that

‖U (t0, t∗)g‖2 ≤ ‖U (t1 +τ1, t∗)g‖2 ≤ exp

(
C

(t0 − t∗)
am1
b−a

)∫
(t∗,t0)∩E

‖U (t , t∗)g‖2
L2(ω(t ))dt . (70)

This ends the proof of (48).

Step 3: Estimate of the observability cost when E = [0,T ]. We consider the case when E =
[δ1,δ2] = [0,T ]. Let µ> 0. We define the sequence (t j ) j≥0 by

∀ j ≥ 0, t j = T

2( j+1)µ
∈ (0,T ).

We notice that on one hand

t j −→
j→+∞

0

and that on the other hand, the conclusions of Proposition 14 hold with t∗ = 0 and R = T , since
assertion (52) holds with ρ = 1, assertion (53) holds with C0 = 1

2µ and assertion (54) holds with
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C ′
0 = 1 − 1

2µ . We can therefore resume the previous proof and deduce from (70) the following
observability estimate holds for all g ∈ L2(Ω),

‖U (T,0)g‖2 ≤
∥∥∥∥U

(
T

2µ
,0

)
g

∥∥∥∥2

≤ exp

(
2µ

am1
b−a C

T
am1
b−a

)∫
(0, T

2µ
)
‖U (t ,0)g‖2

L2(ω(t ))dt

≤ exp

(
C̃

T
am1
b−a

)∫ T

0
‖U (t ,0)g‖2

L2(ω(t ))dt .

(71)

by the contractivity property of the evolution system with the constants

γ=
(

(2+ε)c1

(2−ε)c2
2a+µ bm1

b−a

) 1
b−a

, M = (2+ε)c1(2γ)a , C̃ = M

(
22µ+1

2µ−1

) am1
b−a

.

By choosing the parameter 0 < ε < 2 small enough, the positive constant C̃ > 0 appearing in the
observability estimate (71) may be chosen arbitrarily as

C̃ >
(

22µ+1

2µ−1

) am1
b−a

c121+a
(

c1

c2
2a+µ bm1

b−a

) a
b−a

, (72)

as long as the parameter R = T > 0 is chosen sufficiently small to ensure (60) with this choice of
the parameter 0 < ε< 2. The estimate (72) can be equivalently written as

C̃ > 2α̃c
b

b−a
1 c

− a
b−a

2 h(µ), with α̃= am1

b −a
+1+a + a2

b −a
> 0 (73)

and

h(µ) = 2µβ̃

(2µ−1)γ̃
, with γ̃= am1

b −a
> 0, β̃= 2γ̃+ abm1

(b −a)2 > 0.

The function h takes its minimum value on (0,∞) at µ∗ such that 2µ∗ = β̃

β̃−γ̃ and

h(µ∗) = β̃β̃

γ̃γ̃(β̃− γ̃)β̃−γ̃
.

If C is a positive constant such that (50) holds, we conclude that there exists T0 > 0 such that (51)
holds for all 0 < T ≤ T0. �

4. Proofs of the main results for Ornstein–Uhlenbeck equations

This section is devoted to the proof of Theorem 5. Let T > 0 and (ω(t ))t∈[0,T ] be a moving
control support in Rd . We assume that the generalized Kalman rank condition (7) holds at time
T . We begin by noticing that the null-controllability on [0,T ] from the moving control support
(ω(t ))t∈[0,T ] of the equation (3) is equivalent to the null-controllability of the following equation{

∂t f − 1
2 Tr

(
A(t )A(t )T ∇2

x f
)−〈

B(t )x,∇x f
〉− 1

2 Tr
(
B(t )

)
f =1ω(t )(x)u,

f |t=0 = f0 ∈ L2(Rd
x ),

(74)

as it is sufficient to change the unknown function f to f exp( 1
2

∫ t
0 Tr(B(s))d s). This reduction

ensures that the adjoint system (76) defined below generates a contraction evolution system on
L2(Rd

x ). Next, we observe that the L2(Rd
x )-adjoint of the operator

1

2
Tr

(
A(t )A(t )T ∇2

x

)+〈
B(t )x,∇x

〉+ 1

2
Tr

(
B(t )

)
,
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is given by(
1

2
Tr

(
A(t )A(t )T ∇2

x

)+〈
B(t )x,∇x

〉+ 1

2
Tr

(
B(t )

))∗ = 1

2
Tr

(
A(t )A(t )T ∇2

x

)−〈
B(t )x,∇x

〉− 1

2
Tr

(
B(t )

)
.

By using the Hilbert uniqueness method, see Proposition 21 in Section 6.2, the null-controllability
on [0,T ] of the equation (74) from the moving control set (ω(t ))t∈[0,T ] is equivalent to the
following observability estimate with respect to the moving observation support (ω(T − t ))t∈[0,T ],

∃C > 0,∀ g0 ∈ L2(Rd ), ‖g (T )‖2
L2(Rd )

≤C
∫ T

0
‖g (t )‖2

L2(ω(T−t ))dt , (75)

where g is the mild solution to the Cauchy problem{
∂t g (t , x)− P̃ (t )g (t , x) = 0, x ∈Rd ,

g |t=0 = g0 ∈ L2(Rd ),
(76)

with

P̃ (t ) = 1

2
Tr

(
A(T − t )A(T − t )T ∇2

x

)−〈
B(T − t )x,∇x

〉− 1

2
Tr

(
B(T − t )

)
.

We deduce from Proposition 19 and (143) that there exists an evolution system (U (t , s))0≤s≤t≤T

of contractions of L2(Rd ) such that the mild solution to the Cauchy problem (76) is given by

∀ g0 ∈ L2(Rd ),∀ 0 ≤ t ≤ T, g (t ) =U (t ,0)g0 ∈ L2(Rd ). (77)

4.1. Sufficient condition for null-controllability

Let πk : L2(Rd ) → Ek be the orthogonal projections onto Ek the closed subspace of L2(Rd )-
functions whose Fourier transforms are supported in the cube [−k,k]d ,

Ek = {
f ∈ L2(Rd ) : supp f̂ ⊂ [−k,k]d }

, k ≥ 1. (78)

The normalization of the Fourier transform used throughout this work is the one given by (137).
Instrumental in the proof of assertion (i) in Theorem 5 are the following dissipation estimates
similar to the ones established in [5, Proposition 3.2] in the autonomous case and in [4, Propo-
sition 2.2] in the non-autonomous one. However, the result of [4, Proposition 2.2] cannot be di-
rectly applied here and its proof needs to be revisited as follows:

Proposition 15. Let T > 0. We assume that the generalized Kalman rank condition (7) holds at
time T . Then, there exist some positive constants 0 < ε̃< T , m1 > 0 and c2 > 0 such that

∀ g0 ∈ L2(Rd ),∀ 0 ≤ s ≤ t ≤ ε̃,∀ k ≥ 1, ‖(1−πk )U (t , s)g0‖L2(Rd ) ≤ e−c2(t−s)m1 k2‖g0‖L2(Rd ), (79)

where U is the contraction evolution system on L2(Rd ) associated to the adjoint system (76) given
by Proposition 19.

Proof. There exists a positive constant 0 < ε < T such that (T − ε,T + ε) ⊂ I , since I is an open
interval and T ∈ I . We first aim at establishing that there exist some positive constants c > 0,
0 < ε̃< ε and a positive integer m1 ≥ 1 such that

∀ ξ ∈Rd ,∀ 0 ≤ t ≤ τ≤ ε̃,
∫ τ

t
|A(T − s)T R(t , s)T ξ|2d s ≥ c(τ− t )m1 |ξ|2, (80)

with | · | being the Euclidean norm on Rd and R being the resolvent of the time-varying linear
system

Ẋ (t ) = B(T − t )X (t ). (81)

We recall for instance from [9, Proposition 1.5] that this resolvent satisfies the following properties

∀ t ,τ ∈ [0,T ], R(t ,τ)R(τ, t ) = Id , (∂2R)(t ,τ) =−R(t ,τ)B(T −τ). (82)
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We notice from (5), (6) and (82) that for all k ≥ 0 and t ,τ ∈ [0,T ],

dk

dτk

(
A(T −τ)T R(t ,τ)T )= (−1)k Ãk (T −τ)T R(t ,τ)T . (83)

We consider the function

fξ(t ,τ) =
∫ τ

t
|A(T − s)T R(t , s)T ξ|2ds, t ,τ ∈ [0,T ],

depending on the parameter ξ ∈ Rd . According to (83), we easily check by the Leibniz formula
that

∀ k ≥ 0,∀ t ,τ ∈ [0,T ],

(∂k+1
2 fξ)(t ,τ) = (−1)k

k∑
j=0

(
k

j

)
〈Ãk− j (T −τ)T R(t ,τ)T ξ, Ã j (T −τ)T R(t ,τ)T ξ〉, (84)

where 〈 · , · 〉 denotes the Euclidean scalar product on Rd . The generalized Kalman rank condi-
tion (7) holding at time T implies that

+∞⋂
k=0

Ker
(

Ãk (T )T )∩Rd = {0}. (85)

By induction, we easily check from (84) that for all k ≥ 0,

∀ 0 ≤ l ≤ 2k +1, (∂l
2 fξ)(0,0) = 0 ⇐⇒ ξ ∈

k⋂
j=0

Ker
(

Ã j (T )T )∩Rd . (86)

According to (84), (85) and (86), it follows that for all ξ ∈Rd \ {0}, there exists kξ ≥ 0 such that

∀ 0 ≤ j ≤ 2kξ, (∂ j
2 fξ)(0,0) = 0 (87)

and

(∂
2kξ+1
2 fξ)(0,0) =

(
2kξ
kξ

)
|Ãkξ (T )T ξ|2 > 0. (88)

We aim at proving that for all ξ ∈ Sd−1 (the unit sphere), there exist positive constants cξ > 0,
0 < ε̃ξ < ε and an open neighborhood Vξ of ξ in Sd−1 such that

∀ 0 ≤ t < τ≤ ε̃ξ,∀ η ∈Vξ,
∫ τ

t
|A(T − s)T R(t , s)T η|2ds ≥ cξ(τ− t )2kξ+1, (89)

By analogy with [42, Proposition 3.2], we proceed by contradiction. If the assertion (89) does not
hold, there exist sequences of non-negative real numbers (tl )l≥0, (τl )l≥0 satisfying

∀ l ≥ 0, 0 ≤ tl < τl < ε, lim
l→+∞

tl = lim
l→+∞

τl = 0, (90)

and a sequence (ηl )l≥0 of elements in Sd−1 so that

lim
l→+∞

ηl = ξ, (91)

and

lim
l→+∞

1

(τl − tl )2kξ+1

∫ τl

tl

|A(T − s)T R(tl , s)T ηl |2ds = 0. (92)

We deduce from (92) that

lim
l→+∞

1

(τl − tl )2kξ+1
sup

0≤t≤τl−tl

∫ tl+t

tl

|A(T − s)T R(tl , s)T ηl |2ds = 0. (93)

Setting

ul (x) = 1

(τl − tl )2kξ+1

∫ tl+x(τl−tl )

tl

|A(T − s)T R(tl , s)T ηl |2ds ≥ 0, (94)
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for any 0 ≤ x ≤ 1, we can reformulate (93) as

lim
l→+∞

sup
0≤x≤1

|ul (x)| = 0. (95)

By writing that

fηl (tl ,τ) =
∫ τ

tl

|A(T − s)T R(tl , s)T ηl |2ds

=
2kξ+1∑

j=0
a( j )

l (τ− tl ) j + (τ− tl )2kξ+2

(2kξ+1)!

∫ 1

0
(1− s)2kξ+1(∂

2kξ+2
2 fηl )

(
tl , tl + s(τ− tl )

)
ds, (96)

with a( j )
l = (∂ j

2 fηl )(tl , tl )( j !)−1, we notice from (84) that there exists a positive constant M > 0 such
that

∀ l ≥ 0,∀ τ ∈ [0,T ],

∣∣∣∣ 1

(2kξ+1)!

∫ 1

0
(1− s)2kξ+1(∂

2kξ+2
2 fηl )

(
tl , tl + s(τ− tl )

)
ds

∣∣∣∣≤ M . (97)

It follows from (94), (96) and (97) that

∀ 0 ≤ x ≤ 1,∀ l ≥ 0,

∣∣∣∣∣ul (x)−
2kξ+1∑

j=0

a( j )
l

(τl − tl )2kξ+1− j
x j

∣∣∣∣∣≤ M(τl − tl )x2kξ+2. (98)

It follows from (90), (95) and (98) that

lim
l→+∞

sup
0≤x≤1

|pl (x)| = 0, (99)

with

pl (x) =
2kξ+1∑

j=0

a( j )
l

(τl − tl )2kξ+1− j
x j . (100)

By using the equivalence of norms in finite-dimensional vector spaces, we deduce from (99) that

∀ 0 ≤ j ≤ 2kξ+1, lim
l→+∞

a( j )
l

(τl − tl )2kξ+1− j
= 0. (101)

We obtain in particular that

lim
l→+∞

a
(2kξ+1)
l = 0. (102)

According to (88), this is in contradiction with the fact that

lim
l→+∞

a
(2kξ+1)
l = lim

l→+∞
(∂

2kξ+1
2 fηl )(tl , tl )

(2kξ+1)!
= 1

(2kξ+1)!
(∂

2kξ+1
2 fξ)(0,0) > 0. (103)

By covering the compact set Sd−1 by finitely many open neighborhoods of the form (Vξ j )1≤ j≤N ,
and letting c = inf1≤ j≤N cξ j > 0, 0 < ε̃= inf1≤ j≤N {ε̃ξ j ,1} < ε, m1 = 1+sup1≤ j≤N kξ j ≥ 1, we conclude
that

∀ ξ ∈Rd ,∀ 0 ≤ t ≤ τ≤ ε̃,
∫ τ

t
|A(T − s)T R(t , s)T ξ|2ds ≥ c(τ− t )m1 |ξ|2.

It ends the proof of the estimate (80). We can now derive the estimates (79). Let U be the
contraction evolution system associated to the adjoint system (76) given by Proposition 19. We
deduce from (135) in Proposition 19 that for all 0 ≤ t ≤ τ≤ T and g0 ∈ L2(Rd ),

á(U (τ, t )g0)(ξ)

= exp

(
1

2

∫ τ

t
Tr

(
B(T − s)

)
ds

)
× ĝ0

(
R(τ, t )T ξ

)
exp

(
−1

2

∫ τ

t
|A(T − s)T R(τ, s)T ξ|2ds

)
, (104)
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where the resolvent R is defined in (81). We deduce from (80) and (104) that for all 0 ≤ t ≤ τ ≤ ε̃,
k ≥ 1 and g0 ∈ L2(Rd ),

‖(1−πk )U (τ, t )g0‖2
L2(Rd )

(105)

= 1

(2π)d
e

∫ τ
t Tr(B(T−s))d s

∫
ξ∈Rd \[−k,k]d

∣∣ĝ0
(
R(τ, t )T ξ

)∣∣2e−
∫ τ

t |A(T−s)T R(τ,s)T ξ|2ds dξ

= 1

(2π)d

∣∣det
(
R(t ,τ)

)∣∣e∫ τ
t Tr(B(T−s))ds

∫
R(t ,τ)T ξ∈Rd \[−k,k]d

|ĝ0(ξ)|2e−
∫ τ

t |A(T−s)T R(t ,s)T ξ|2ds dξ

≤ 1

(2π)d

∫
|ξ|≥k‖R(t ,τ)T ‖−1

|ĝ0(ξ)|2e−c(τ−t )m1 |ξ|2 dξ,

since
∀ t1, t2, t3 ∈ [0,T ], R(t1, t2)R(t2, t3) = R(t1, t3),

see e.g. [9, Proposition 1.5], and by Liouville formula

∀ t ,τ ∈ [0,T ], det
(
R(τ, t )

)= exp

(∫ τ

t
Tr

(
B(T − s)

)
ds

)
,

see e.g. [6, Proposition II.2.3.1]. We deduce from (105) that there exists a positive constant c2 > 0
such that for all 0 ≤ t ≤ τ≤ ε̃, k ≥ 1 and g0 ∈ L2(Rd ),

‖(1−πk )U (τ, t )g0‖2
L2(Rd )

≤ e−2c2(τ−t )m1 k2‖g0‖2
L2(Rd )

. (106)

It proves the estimate (79) and ends the proof of Proposition 15. �

We can now resume the proof of assertion (i) in Theorem 5. Let δ> 0, α ∈ (0,+∞)d and E be a
measurable subset of [0,T ] satisfying

∃ 0 < r0 ≤ T,∀ 0 < r ≤ r0, λ(E ∩ [T − r,T ]) > 0. (107)

We assume that ω(t ) is a (δ,α)-thick subset in Rd for all t ∈ E . In order to establish assertion (i)
in Theorem 5, we prove that the observability estimate (75) holds by applying Theorem 13
(formula (49)) with U the contraction evolution system on L2(Rd ) associated to the adjoint
system (76) given by Proposition 19, δ1 = 0, 0 < δ2 = min(ε̃,r0) < T , ε̃ given by Proposition 15
and the moving control support (ω̃(t ))t∈[0,T ] defined as

ω̃(t ) =ω(T − t ), t ∈ [0,T ].

Proposition 15 shows that the dissipation estimates (47) hold with c ′2 = 1, m2 = 0 and b = 2.
Regarding the uniform spectral estimates (46), we notice that ω̃(t ) is a (δ,α)-thick subset in Rd

for all t ∈ T −E = {T −s : s ∈ E }. It follows from (107) that the subset Ẽ = (T −E)∩[0,δ2] is therefore
a measurable subset of [0,δ2] with positive Lebesgue measure as

λ(Ẽ) =λ((T −E)∩ [0,δ2]) =λ(E ∩ [T −δ2,T ]) > 0.

We deduce from Theorem 24 that the uniform spectral estimates (46) hold with Ẽ ⊂ [0,δ2] and
the parameters

a = 1, c1 = 2C |α| ln
(
C d

δ

)
> 0, c ′1 =

(
C d

δ

)C d

> 0. (108)

We can therefore deduce (75) from Theorem 13. This ends the proof of assertion (i ) in Theorem 5.

Remark 16. Let C > 0 be a positive constant verifying

C > 32

c2

(
C |α| ln

(
C d

δ

))2 (
8

3

)3m1

,

where the positive constants c2 > 0 and m1 > 0 are given by Proposition 15, and C > 1 is the
universal constant given by Theorem 24. We deduce from Theorem 13 that there exists a positive
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constant 0 < T0 < T such that, if E = [T̃ ,T ] with T0 ≤ T̃ < T , then the following quantitative
observability estimate holds

∀ g0 ∈ L2(Rd ), ‖g (T )‖2
L2(Rd )

≤ exp

(
C

(T − T̃ )m1

)∫ T−T̃

0
‖g (t )‖2

L2(ω(T−t ))dt ,

where g is the mild solution to the Cauchy problem (76). This provides a quantitative estimate
of the observability cost with respect to the characteristic parameters related to the thickness
property of the moving control support. On the other hand, let us notice that the positive
parameter m1 > 0 is actually independent on the control support.

4.2. Necessary condition for null-controllability

This section is devoted to give a proof of assertion (ii) in Theorem 5. Let T > 0. We assume
that the non-autonomous Ornstein–Uhlenbeck equation (74) is null-controllable on [0,T ] from
(ω(t ))t∈[0,T ], or equivalently, that the adjoint system (76) is observable on [0,T ] from (ω(T −
t ))0≤t≤T , that is, there exists a positive constant C > 0 such that any solution of (76) satisfies the
observability estimate (75). We aim at finding some positive constants r > 0 and δ> 0 such that

∀ z ∈Rd ,
∫ T

0
λ
(
Bd (z,r )∩R(0,T − t )ω(t )

)
dt ≥ δ> 0, (109)

where Bd (z,r ) denotes the open Euclidean ball centered at z with radius r , and R stands for the
resolvent of the time-varying linear system Ẋ (t ) = B(T − t )X , given by the solution of (12). In
order to derive this necessary condition, we try out the observability estimate (75) with explicit
gaussian solutions of (76) centered at z ∈ Rd . The computation of the Fourier transform of the
solution of (76) with respect to the space variable is performed in appendix (Proposition 19), see
also [4, Appendix A.2],

ĝ (t ,ξ) = exp

(
1

2

∫ t

0
Tr

(
B(T − s)

)
ds

)
ĝ0(R(t ,0)T ξ)e−

1
2

∫ t
0 |A(T−s)T R(t ,s)T ξ|2ds ,

when 0 ≤ t ≤ T and ξ ∈Rd , or equivalently

ĝ (t ,ξ) = exp

(
1

2

∫ t

0
Tr(B(T − s))ds

)
ĝ0(R(t ,0)T ξ)e−

1
2 |
p

Qt R(t ,0)T ξ|2 , (110)

where

Qt =
∫ t

0
R(0, s)A(T − s)A(T − s)T R(0, s)T ds, (111)

is a symmetric positive semidefinite matrix for all 0 ≤ t ≤ T . Let z ∈Rd . We consider the gaussian
initial datum

g0(x) = e−
|x−z|2

2α ,

with α> 0. Since

ĝ0(ξ) = (2πα)
d
2 e−

α|ξ|2
2 e−i z·ξ,

we deduce from (110) that for all 0 ≤ t ≤ T and ξ ∈Rd ,

ĝ (t ,ξ) = (2πα)
d
2 exp

(
1

2

∫ t

0
Tr

(
B(T − s)

)
ds

)
e−

1
2 |
p

Mt R(t ,0)T ξ|2 e−i z·R(t ,0)T ξ,

with Mt =Qt +αId . We deduce from (111) that Mt is a symmetric positive definite matrix for all
0 ≤ t ≤ T , and that the estimate

∀ 0 ≤ t ≤ T,∀ x ∈Rd , α|x|2 ≤ |
√

Mt x|2 = (Mt x) · x ≤ (α+‖QT ‖)|x|2,

implies that
∀ 0 ≤ t ≤ T, 0 <αd ≤ det Mt (112)
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and for all 0 ≤ t ≤ T and x ∈Rd ,
1√

α+‖QT ‖
|x| ≤ |

√
M−1

t x| = |
√

Mt
−1

x| ≤ 1p
α
|x|. (113)

By using Liouville formula

∀ t ,τ ∈ [0,T ], det(R(τ, t )) = exp

(∫ τ

t
Tr(B(T − s))ds

)
, (114)

see e.g. [6, Proposition II.2.3.1], and computing the inverse Fourier transform, we obtain that

g (t , x) = α
d
2√

det Mt

exp

(
−1

2

∫ t

0
Tr

(
B(T − s)

)
ds

)
e−

1
2 |

√
M−1

t (R(0,t )x−z)|2 .

By using the substitution rule with y = R(0,T )x − z, and anew the Liouville formula, we notice
that the left-hand-side term in the observability estimate (75) is a positive constant independent
of the parameter z,

C1 =
∫
Rd

|g (T, x)|2dx = αd

det MT

∫
Rd

e−
∣∣√M−1

T y
∣∣2

dy > 0. (115)

According to (112), (113), (114) and the substitution rule with y = R(0, t )x−z, the right-hand-side
of the observability estimate (75) can be bounded from above up to the positive constant C > 0 as∫ T

0

∫
ω(T−t )

|g (t , x)|2dxdt

=
∫ T

0

αd

det Mt
exp

(
−

∫ t

0
Tr

(
B(T − s)

)
ds

)(∫
ω(T−t )

e−
∣∣√M−1

t (R(0,t )x−z)
∣∣2

dx

)
dt

=
∫ T

0

αd

det Mt

(∫
R(0,t )ω(T−t )−z

e−|
√

M−1
t y |2 dy

)
dt

≤
∫ T

0

∫
R(0,t )ω(T−t )−z

e
− |y |2
α+‖QT ‖ dydt

≤
∫ T

0

(∫
Bd (0,r )∩[R(0,t )ω(T−t )−z]

e
− |y |2
α+‖QT ‖ dy

)
dt +

∫ T

0

(∫
|y |>r

e
− |y |2
α+‖QT ‖ dy

)
dt

≤
∫ T

0
λ
(
Bd (0,r )∩ [R(0, t )ω(T − t )− z]

)
dt +T

∫
|y |>r

e
− |y |2
α+‖QT ‖ dy.

for any r > 0. Since by dominated convergence theorem

lim
r→+∞

∫
|y |>r

e
− |y |2
α+‖QT ‖ dy = 0,

there exists a positive constant r0 > 1 such that

C T
∫
|y |>r0

e
− |y |2
α+‖QT ‖ dy ≤ C1

2
.

It then follows from (75) and (115) that for all z ∈Rd ,

0 < C1

2
≤C

∫ T

0
λ
(
Bd (0,r0)∩ [R(0, t )ω(T − t )− z]

)
dt ,

or equivalently by translation invariance of the Lebesgue measure that for all z ∈Rd ,

0 < C1

2C
≤

∫ T

0
λ
(
Bd (z,r0)∩R(0, t )ω(T − t )

)
dt =

∫ T

0
λ
(
Bd (z,r0)∩R(0,T − t )ω(t )

)
dt .

It establishes the integral thickness condition (109) with δ= C1
2C . This ends the proof of Theorem 5

as we have already checked that assertion (iii) is a direct consequences of assertions (i) and (ii) in
Theorem 5.
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5. Proof of the null-controllability for quadratic equations with zero singular spaces

This section is devoted to the proof of Theorem 6. Let q : Rd
x ×Rd

ξ
→ C be a complex-valued

quadratic form with a non-negative real part Re q ≥ 0, and a zero singular space S = {0}. Let T > 0,
δ> 0, α ∈ (0,+∞)d , (ω(t ))t∈[0,T ] be a moving control support in Rd and E be a measurable subset
of [0,T ] with positive Lebesgue measure λ(E) > 0. We assume that ω(t ) is a (δ,α)-thick subset
of Rd for all t ∈ E . By the Hilbert uniqueness method [9, Theorem 2.44] and its extension to the
moving control support case as presented in Proposition 21 for Ornstein–Uhlenbeck equations1,
the result of null-controllability on [0,T ] from the moving control support (ω(t ))t∈[0,T ] given by
Theorem 6 is equivalent to the following observability estimate∫

Rd
|g (T, x)|2dx ≤CT

∫ T

0

∫
ω(T−t )

|g (t , x)|2dxdt ,

for the adjoint system{
∂t g (t , x)+q w (x,Dx )∗g (t , x) = 0, (t , x) ∈ (0,+∞)×Rd ,

g |t=0 = g0 ∈ L2(Rd ),
(116)

that is, there exists a positive constant CT > 0 such that

∀ g0 ∈ L2(Rd ), ‖e−T (qw )∗g0‖2
L2(Rd )

≤CT

∫ T

0
‖e−t (qw )∗g0‖2

L2(ω(T−t ))dt .

The L2(Rd )-adjoint of the quadratic operator (q w ,D(q w )) defined in (19) is given by the quadratic
operator (q w ,D(q w )), whose Weyl symbol is the complex conjugate q of the symbol q . We notice
that the assumptions of Theorem 6 hold for the quadratic operator P = q w (x,Dx ) if and only if
they hold as well for its L2(Rd )-adjoint operator P∗ = q w (x,Dx ). In order to prove Theorem 6, it
is therefore sufficient to prove that, if q : Rd

x ×Rd
ξ
→ C is a complex-valued quadratic form with a

non-negative real part Re q ≥ 0 and a zero singular space S = {0}, and if E is a measurable subset
of [0,T ] with positive Lebesgue measure λ(E) > 0, such that ω(t ) is a (δ,α)-thick subset of Rd for
all t ∈ E , then there exists a positive constant CT > 0 such that

∀ g0 ∈ L2(Rd ), ‖e−T qw
g0‖2

L2(Rd )
≤CT

∫ T

0
‖e−t qw

g0‖2
L2(ω(t ))dt . (117)

We establish the observability estimate (117) by applying Theorem 13 (formula (49)) with the
contraction evolution system U (t , s) = e−(t−s)qw

, for 0 ≤ s ≤ t , defined by the contraction
semigroup (e−t qw

)t≥0 on L2(Rd ). As in the proof of Theorem 5, we consider anew the orthogonal
projections πk : L2(Rd ) → Ek onto Ek the closed subspace of L2(Rd )-functions whose Fourier
transforms are supported in the cube [−k,k]d , with k ≥ 1. We deduce from Theorem 24 that the
uniform spectral estimates (46) hold with the subset E and the parameters

a = 1, c1 = 2C |α| ln
(
C d

δ

)
> 0, c ′1 =

(
C d

δ

)C d

> 0. (118)

The next result establishes the dissipation estimates (47) with δ1 = 0, δ2 = t0, m1 = 2k0 + 1,
m2 = (2k0 + 1)(d + 1) and b = 2. Let us point out that Proposition 17 does not rule out some
blow-up for small times in the dissipation estimates. The assumption of dissipation estimates
with controlled blow-up (47) is then really essential and the result of [5, Theorem 2.1] does not
apply even in the case of fixed control subsets. The observability estimate (117) is then deduced
by applying Theorem 13 (formula (49)). Up to the proof of Proposition 17, the one of Theorem 6
is then complete.

1The very same proof can be readily adapted to the quadratic case.
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Proposition 17. There exist some positive constants c2 > 0, c ′2 > 0, 0 < t0 < T such that for all
0 < t ≤ t0, g ∈ L2(Rd ), k ≥ 1,

‖(1−πk )e−t qw
g‖L2(Rd ) ≤

1

c ′2

1

t (2k0+1)(d+1)
e−c2t 2k0+1k2‖g‖L2(Rd ),

where 0 ≤ k0 ≤ 2d −1 denotes the smallest integer satisfying(
k0⋂

j=0
Ker

[
ReF (ImF ) j ])∩R2d = {0}.

Proof. The proof of Proposition 17 relies on basic estimates on Hermite functions recalled in
Lemma 26, see appendix (Section 6.4). In the work [18, Theorem 1.2], Hitrik, Viola and the third
author have shown that the contraction semigroup (e−t qw

)t≥0 is smoothing for any positive time
in the Gelfand–Shilov space S1/2

1/2(Rd ),

∀ g ∈ L2(Rd ),∀ t > 0, e−t qw
g ∈ S1/2

1/2(Rd ).

We refer the reader to the appendix (Section 6.5) for the definition and some characterizations of
the Gelfand–Shilov regularity. More specifically, we deduce from [18, Proposition 4.1] that there
exist some positive constants C0 > 1 and t0 > 0 such that

∀ 0 ≤ t ≤ t0,
∥∥∥e

t2k0+1

C0
(−∆x+|x|2)

e−t qw
∥∥∥

Lc (L2(Rd ))
≤C0, (119)

with Lc (L2(Rd )) the space of bounded linear operators on L2(Rd ), that is,

∀ 0 ≤ t ≤ t0,∀ g ∈ L2(Rd ),
∑
γ∈Nd

|(e−t qw
g ,Φγ)L2(Rd )|2e

t2k0+1

C0
(4|γ|+2d) ≤C 2

0‖g‖2
L2(Rd )

, (120)

where (Φγ)γ∈Nd denotes the Hermite basis whose definition is recalled in appendix (Section 6.4).
We deduce from (120) that

∀ 0 ≤ t ≤ t0,∀ γ ∈Nd ,∀ g ∈ L2(Rd ), |(e−t qw
g ,Φγ)L2(Rd )| ≤C0e

− t2k0+1

C0
(2|γ|+d)‖g‖L2(Rd ). (121)

For any 0 < t ≤ t0 and g ∈ L2(Rd ), the exponential decay of the Hermite coefficients (121) ensures
that the function

e−t qw
g = ∑

γ∈Nd

(e−t qw
g ,Φγ)L2(Rd )Φγ ∈S (Rd ),

belongs to the Schwartz space with convergence of the above series in the Schwartz space S (Rd ),
see for instance [43, Proposition 1.2]. By continuity of the operator xα∂βx : S (Rd ) →S (Rd ), with
α,β ∈Nd , we obtain that

xα∂βx (e−t qw
g ) = ∑

γ∈Nd

(e−t qw
g ,Φγ)L2(Rd )xα∂βxΦγ ∈S (Rd ),

with convergence of the series in S (Rd ), and a fortiori in L2(Rd ). We deduce from (121) and
Lemma 26 with r = 1/2 that for all α,β ∈Nd , ε> 0, 0 < t ≤ t0, g ∈ L2(Rd ),

‖xα∂βx (e−t qw
g )‖L2(Rd ) ≤

∑
γ∈Nd

|(e−t qw
g ,Φγ)L2(Rd )|‖xα∂βxΦγ‖L2(Rd )

≤ 2
d
2 C0

(
2

3
2 e

1
2

inf(ε
1
2 ,1)

)|α|+|β|p
α!

√
β!‖g‖L2(Rd )

∑
γ∈Nd

e
− t2k0+1

C0
(2|γ|+d)

e
ε
2 d |γ|. (122)

With the choice ε= 2t 2k0+1

dC0
> 0, it follows from (122) that for all α,β ∈Nd , 0 < t ≤ t0, g ∈ L2(Rd ),

‖xα∂βx (e−t qw
g )‖L2(Rd ) ≤ 2

d
2 C0

 2
3
2 e

1
2

inf(( 2t 2k0+1

dC0
)

1
2 ,1)

|α|+|β|p
α!

√
β!‖g‖L2(Rd )

∑
γ∈Nd

e
− t2k0+1

C0
|γ|

. (123)
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We notice that ∑
γ∈Nd

e
− t2k0+1

C0
|γ| =

+∞∑
k=0

(
k +d −1

k

)
e
− t2k0+1

C0
k

≤ 1

(d −1)!

+∞∑
k=0

(k +d −1)d−1e
− t2k0+1

C0
k

≤ 1

(d −1)!

+∞∑
k=0

1

(k +1)2 (k +d)d+1e
− t2k0+1

C0
(k+d)

e
t2k0+1

C0
d

.

(124)

It follows from (124) that for all 0 < t ≤ t0,

∑
γ∈Nd

e
− t2k0+1

C0
|γ| ≤ 1

(d −1)!

(
sup
x≥1

xd+1e
− t2k0+1

C0
x
)(+∞∑

k=1

1

k2

)
e

t
2k0+1
0

C0
d

≤ d(d +1)C d+1
0

t (2k0+1)(d+1)

(+∞∑
k=1

1

k2

)
e

t
2k0+1
0

C0
d

, (125)

since

∀ x ≥ 1, xd+1 = 1

(d +1)!

(
t 2k0+1x

C0

)d+1
(d +1)!C d+1

0

t (2k0+1)(d+1)
≤ (d +1)!C d+1

0

t (2k0+1)(d+1)
e

t2k0+1

C0
x

.

We deduce from (123) and (125) that there exists a positive constant C1 > 1 such that for all
α,β ∈Nd , 0 < t ≤ t0, g ∈ L2(Rd ),

‖xα∂βx (e−t qw
g )‖L2(Rd ) ≤

C 1+|α|+|β|
1

t
2k0+1

2 (|α|+|β|+2d+2)

p
α!

√
β!‖g‖L2(Rd ). (126)

By using the Parseval formula, we deduce from (126) that for all β ∈Nd , 0 < t ≤ t0, g ∈ L2(Rd ),

‖ξβáe−t qw g‖L2(Rd ) = ‖F (∂βx (e−t qw
g ))‖L2(Rd ) = (2π)

d
2 ‖∂βx (e−t q w

g )‖L2(Rd )

≤ (2π)
d
2

C 1+|β|
1

t
2k0+1

2 (|β|+2d+2)

√
β!‖g‖L2(Rd ), (127)

where F denotes the Fourier transform on Rd . We obtain from (127) that for all 0 < t ≤ t0,
g ∈ L2(Rd ),∥∥∥∥∥exp

(
t 2k0+1

8C 2
1

|ξ|2
)áe−t qw g

∥∥∥∥∥
L2(Rd )

≤ ∑
β∈Nd

1

β!

(
t 2k0+1

8C 2
1

)|β|
‖ξ2βáe−t qw g‖L2(Rd ) (128)

≤ (2π)
d
2

∑
β∈Nd

1

β!

(
t 2k0+1

8C 2
1

)|β|
C 2|β|+1

1

t (2k0+1)(|β|+d+1)

√
(2β)!‖g‖L2(Rd )

≤ (2π)
d
2

C1

t (2k0+1)(d+1)

( ∑
β∈Nd

1

4|β|

)
‖g‖L2(Rd ),

since
√

(2β)! ≤ 2|β|β!. By using that∑
β∈Nd

1

4|β|
=

+∞∑
k=0

(
k +d −1

k

)
1

4k
≤ 2d−1

+∞∑
k=0

1

2k
= 2d ,

we obtain that for all 0 < t ≤ t0, g ∈ L2(Rd ),∥∥∥∥∥exp

(
t 2k0+1

8C 2
1

|ξ|2
)áe−t qw g

∥∥∥∥∥
L2(Rd )

≤ 2d (2π)
d
2 C1

t (2k0+1)(d+1)
‖g‖L2(Rd ). (129)
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It follows that there exists a positive constant C2 > 1 such that for all 0 < t ≤ t0, g ∈ L2(Rd ),∥∥∥∥∥exp

(
t 2k0+1

8C 2
1

|ξ|2
)áe−t qw g

∥∥∥∥∥
L2(Rd )

≤ C2

t (2k0+1)(d+1)
‖g‖L2(Rd ). (130)

We obtain that for all 0 < t ≤ t0, g ∈ L2(Rd ), k ≥ 0,∥∥∥(1−1[−k,k]d (ξ))áe−t qw g
∥∥∥

L2(Rd )

=
∥∥∥∥∥(1−1[−k,k]d (ξ))exp

(
− t 2k0+1

8C 2
1

|ξ|2
)

exp

(
t 2k0+1

8C 2
1

|ξ|2
)áe−t qw g

∥∥∥∥∥
L2(Rd )

≤ exp

(
− t 2k0+1

8C 2
1

k2

)∥∥∥∥∥exp

(
t 2k0+1

8C 2
1

|ξ|2
)áe−t qw g

∥∥∥∥∥
L2(Rd )

≤ C2

t (2k0+1)(d+1)
exp

(
− t 2k0+1

8C 2
1

k2

)
‖g‖L2(Rd ),

(131)

where 1[−k,k]d denotes the characteristic function of the set [−k,k]d . This ends the proof of
Proposition 17. �

6. Appendix

6.1. Well-posedness of the homogeneous and inhomogeneous Cauchy problems

This subsection is devoted to recall from [4, Appendix A.1] the well-posedness of the homoge-
neous and inhomogeneous Cauchy problems for non-autonomous Ornstein–Uhlenbeck equa-
tions.

We first study the well-posedness of the homogeneous equation{
∂t k(t , x)−P0(t )k(t , x) = 0, (t , x) ∈ (t0,T1)×Rd ,

k|t=t0 = k0 ∈ L2(Rd ),
(132)

associated to the non-autonomous Ornstein–Uhlenbeck operator

P0(t ) = 1

2
Tr

(
A0(t )A0(t )T ∇2

x

)−〈
B0(t )x,∇x

〉− 1

2
Tr

(
B0(t )

)
, t ∈ (T0,T1), (133)

with T0 ≤ t0 < T1 and A0,B0 ∈C 0([T0,T1], Md (R)). In order to define the concept of weak solutions,
we introduce the space E(t0,T1) of functions ϕ ∈C 0([t0,T1],L2(Rd )) satisfying

(i) ϕ( · , x) ∈C 1((t0,T1),C) for all x ∈Rd

(ii) ϕ(t , · ) ∈C 2(Rd ,C) for all t ∈ (t0,T1)
(iii) The functions ∂tϕ+〈B0(t )x,∇xϕ〉, ∇2

xϕ, ϕ belong to L2((t0,T1)×Rd )

We consider the following notion of weak solutions:

Definition 18. Let T0 ≤ t0 < T1, A0,B0 ∈ C 0([T0,T1], Md (R)) and k0 ∈ L2(Rd ). A weak solution to
the Cauchy problem (132) is a function k ∈C 0([t0,T1],L2(Rd )) such that k(t0) = k0 in L2(Rd ), and
satisfying for all ϕ ∈ E(t0,T1), t∗ ∈ (t0,T1),∫

Rd

(
k(t∗, x)ϕ(t∗, x)−k0(x)ϕ(t0, x)

)
dx =

∫ t∗

t0

∫
Rd

k(t , x)
(
∂tϕ(t , x)+P0(t )∗ϕ(t , x)

)
dxdt ,

with

P0(t )∗ = 1

2
Tr

(
A0(t )A0(t )T ∇2

x

)+〈
B0(t )x,∇x

〉+ 1

2
Tr

(
B0(t )

)
, t ∈ (T0,T1). (134)

We establish the following result:
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Proposition 19. Let T0 < T1, A0,B0 ∈C 0([T0,T1], Md (R)) and T = {(t , t0) : T0 ≤ t0 ≤ t ≤ T1}. There
exists a strongly continuous mapping

U : T → Lc (L2(Rd )),
(t , t0) 7→ U (t , t0),

with Lc (L2(Rd )) denoting the space of bounded linear operators on L2(Rd ), satisfying

(i) ∀ T0 ≤ t ≤ T1, U (t , t ) = IdL2(Rd )
(ii) ∀ T0 ≤ t0 ≤ t1 ≤ t2 ≤ T1, U (t2, t1)U (t1, t0) =U (t2, t0)

(iii) For all k0 ∈ L2(Rd ), the function k(t ) = U (t , t0)k0 is the unique weak solution to the
Cauchy problem (132)

Furthermore, the Fourier transform of the function k(t ) =U (t , t0)k0 is given by

k̂(t ,ξ) = k̂0
(
R0(t , t0)T ξ

)
e

1
2

∫ t
t0

Tr(B0(s))ds e−
1
2

∫ t
t0
|A0(s)T R0(t ,s)T ξ|2ds , (135)

where R0 denotes the resolvent associated to the linear time-varying system Ẋ (t ) = B0(t )X (t ), that
is, for all T0 ≤ t0, t ≤ T1, {

∂R0
∂t (t , t0) = B0(t )R0(t , t0),

R0(t0, t0) = Id .
(136)

In the above statement, the normalization of the Fourier transform with respect to the space
variable is given by

k̂(t ,ξ) =
∫
Rd

k(t , x)e−i x·ξdx. (137)

Following [36, Chapter 5, Section 5.1, Definition 5.3, p. 129], the two parameter family of bounded
linear operators (U (t1, t2))(t1,t2)∈T is called the evolution system associated to the homogeneous
equation (132). More specifically, we shall say that the mapping U (t , t0) is the evolution mapping
associated to the family of operators s ∈ [t0, t ] 7→ P0(s).

Proof. Let T0 ≤ t0 ≤ T1 and k0 ∈ L2(Rd ).

Step 1. We first derive heuristically an explicit expression of the Fourier transform k̂. To that
end, we consider k a smooth solution to the Cauchy problem (132) and define the function
K : [t0,T1]×Rd →C by

k(t , x) = K
(
t ,R0(t0, t )x

)
. (138)

We recall for instance from [9, Proposition 1.5] that for all T0 ≤ t1, t2, t3 ≤ T1,

R0(t1, t2)R0(t2, t1) = Id , R0(t1, t2)R0(t2, t3) = R0(t1, t3) (139)

and
∀ T0 ≤ t1, t2 ≤ T1, (∂2R0)(t1, t2) =−R0(t1, t2)B0(t2). (140)

According to (139) and (140), the function K is well-defined and a direct computation provides
that

(∂t k)(t , x)+〈
B0(t )x, (∇x k)(t , x)

〉= (∂t K )
(
t ,R0(t0, t )x

)
. (141)

It follows from (132) and (141) that
∂t K (t , y)− 1

2 Tr
(
R0(t0, t )A0(t )A0(t )T R0(t0, t )T ∇2

y K (t , y)
)

+ 1
2 Tr

(
B0(t )

)
K (t , y) = 0,

K |t=t0 = k0 ∈ L2(Rd ).

By taking the Fourier transform, we deduce that{
∂t K̂ (t ,η)+ 1

2 |A0(t )T R0(t0, t )T η|2K̂ (t ,η)+ 1
2 Tr

(
B0(t )

)
K̂ (t ,η) = 0,

K̂ (t0,η) = k̂0(η).
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It leads to the following explicit expression

K̂ (t ,η) = k̂0(η)e−
1
2

∫ t
t0
|A0(s)T R0(t0,s)T η|2ds e−

1
2

∫ t
t0

Tr(B0(s))ds , (142)

for all (t ,η) ∈ [t0,T1]×Rd . By using the Liouville formula

∀ t1, t2 ∈ [T0,T1], det
(
R0(t2, t1)

)= exp

(∫ t2

t1

Tr
(
B0(s)

)
ds

)
, (143)

see e.g. [6, Proposition II.2.3.1], and the substitution rule with y = R0(t0, t )x, it follows that

k̂(t ,ξ) =
∫
Rd

K
(
t ,R0(t0, t )x

)
e−i x·ξdx = |det(R0(t , t0))|

∫
Rd

K (t , y)e−i (R0(t ,t0)y)·ξdy,

that is

k̂(t ,ξ) = e
∫ t

t0
Tr(B0(s))ds K̂

(
t ,R0(t , t0)T ξ

)= k̂0
(
R0(t , t0)T ξ

)
e

1
2

∫ t
t0

Tr(B0(s))ds e−
1
2

∫ t
t0
|A0(s)T R0(t ,s)T ξ|2ds ,

since R0(t0, s)T R0(t , t0)T = (
R0(t , t0)R0(t0, s)

)T = R0(t , s)T . We obtain the formula (135).

Step 2. We prove that the L2-function k whose Fourier transform is given by (135), is a weak
solution to the Cauchy problem (132). We easily notice that k(t0) = k0 and k ∈C 0([t0,T1],L2(Rd )).
Then, we use the change of function

ϕ(t , x) =ψ(
t ,R0(t0, t )x

)∣∣det
(
R0(t0, t )

)∣∣. (144)

According to (139), the functionψ is well-defined. It follows from the Liouville formula (143) that

(∂tϕ)(t , x)+〈
B0(t )x, (∇xϕ)(t , x)

〉
= ∣∣det

(
R0(t0, t )

)∣∣(∂tψ
(
t ,R0(t0, t )x

)−Tr
(
B0(t )

)
ψ

(
t ,R0(t0, t )x

))
, (145)

since det
(
R0(t0, t )

) ∈ R∗+ for all T0 ≤ t ≤ T1. According to (138), (144) and (145), it is sufficient to
prove that for all ψ ∈ Ẽ(t0,T1), t0 < t∗ < T1,∫

Rd

(
K (t∗, y)ψ(t∗, y)−k0(y)ψ(t0, y)

)
dy

=
∫ t∗

t0

∫
Rd

K (t , y)

(
∂tψ+ 1

2
Tr

(
R0(t0, t )A0(t )A0(t )T R0(t0, t )T ∇2

yψ
)− 1

2
Tr

(
B0(t )

)
ψ

)
(t , y)dydt .

where Ẽ(t0,T1) stands for the space of functions ψ ∈C 0([t0,T1],L2(Rd )) satisfying

(i) ψ( · , y) ∈C 1((t0,T1),C) for all y ∈Rd

(ii) ψ(t , · ) ∈C 2(Rd ,C) for all t ∈ (t0,T1)
(iii) The functions ∂tψ, ∇2

yψ, ψ belong to L2((t0,T1)×Rd ).

For all ψ ∈ Ẽ(t0,T1) and t0 < t∗ < T1, it follows from the Plancherel theorem, (135) and (138) that∫ t∗

t0

∫
Rd

K (t , y)

(
∂tψ+ 1

2
Tr

(
R0(t0, t )A0(t )A0(t )T R0(t0, t )T ∇2

yψ
)− 1

2
Tr

(
B0(t )

)
ψ

)
dydt

= 1

(2π)d

∫ t∗

t0

∫
Rd

K̂ (t ,η)
(
∂t ψ̂− 1

2
|A0(t )T R0(t0, t )T η|2ψ̂− 1

2
Tr

(
B0(t )

)
ψ̂

)
(t ,η)dηdt

= 1

(2π)d

∫ t∗

t0

∫
Rd

∂

∂t

[
K̂ (t ,η)ψ̂(t ,η)

]
dηdt =

∫
Rd

(
K̂ (t∗,η)ψ̂(t∗,η)− K̂ (t0,η)ψ̂(t0,η)

) dη

(2π)d

=
∫
Rd

(
K (t∗, y)ψ(t∗, y)−K (t0, y)ψ(t0, y)

)
dy =

∫
Rd

(
K (t∗, y)ψ(t∗, y)−k0(y)ψ(t0, y)

)
dy.

Step 3: Definition and properties of the evolution system. For all (t , t0) ∈T and k0 ∈ L2(Rd ), we
define U (t , t0)k0 as the L2-function k(t ) whose Fourier transform is given by (135). With this
definition, we easily check that U (t , t ) = IdL2(Rd ) for all T0 ≤ t ≤ T1, and that the mapping U is
strongly continuous from T to Lc (L2(Rd )) thanks to Plancherel theorem. On the other hand,
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with k1 = U (t1, t0)k0, k2 = U (t2, t0)k0 and k3 = U (t2, t1)k1, it follows from (135) that for all
T0 ≤ t0 ≤ t1 ≤ t2 ≤ T1, k0 ∈ L2(Rd ),

k̂1(ξ) = k̂0
(
R0(t1, t0)T ξ

)
e

1
2

∫ t1
t0

Tr(B0(s))ds e−
1
2

∫ t1
t0

|A0(s)T R0(t1,s)T ξ|2ds ,

k̂2(ξ) = k̂0
(
R0(t2, t0)T ξ

)
e

1
2

∫ t2
t0

Tr(B0(s))ds e−
1
2

∫ t2
t0

|A0(s)T R0(t2,s)T ξ|2ds

and

k̂3(ξ) = k̂1
(
R0(t2, t1)T ξ

)
e

1
2

∫ t2
t1

Tr(B0(s))ds e−
1
2

∫ t2
t1

|A0(s)T R0(t2,s)T ξ|2ds

= k̂0
(
R0(t1, t0)T R0(t2, t1)T ξ

)
e

1
2

∫ t2
t0

Tr(B0(s))ds

×e−
1
2

∫ t1
t0

|A0(s)T R0(t1,s)T R0(t2,t1)T ξ|2ds e−
1
2

∫ t2
t1

|A0(s)T R0(t2,s)T ξ|2ds

= k̂2(ξ),

since
R0(t1, s)T R0(t2, t1)T = (

R0(t2, t1)R0(t1, s)
)T = R0(t2, s)T

and
R0(t1, t0)T R0(t2, t1)T = (

R0(t2, t1)R0(t1, t0)
)T = R0(t2, t0)T .

It proves that for all T0 ≤ t0 ≤ t1 ≤ t2 ≤ T1,

U (t2, t1)U (t1, t0) =U (t2, t0).

Step 4: Uniqueness of the weak solution to the Cauchy problem (132). Let k be a weak solution
to the Cauchy problem (132) associated with the initial datum k0 = 0. It follows that for all
ϕ ∈ E(t0,T1), t0 < t∗ < T1,∫

Rd
k(t∗, x)ϕ(t∗, x)dx =

∫ t∗

t0

∫
Rd

k(t , x)
(
∂tϕ(t , x)+P0(t )∗ϕ(t , x)

)
dxdt . (146)

Let t0 ≤ t∗ ≤ T1 be fixed. We aim at proving that k(t∗) = 0. To that end, we consider a sequence
(gp )p≥1 of C∞

0 (Rd ) functions satisfying

lim
p→+∞‖ĝp − k̂(t∗)‖L2(Rd ).

By Plancherel theorem, we observe that

lim
p→+∞‖gp −k(t∗)‖L2(Rd ) = 0. (147)

Following the very same strategy as in the two first steps, we build a weak solution ϕp : (t0, t∗)×
Rd →C to the Cauchy problem{

∂tϕp (t , x)+P0(t )∗ϕp (t , x) = 0,

ϕp |t=t∗ = gp .

By deriving a similar formula as in (135), we notice that the function ϕp is smooth in the space
variable as its Fourier transform in the space variable is compactly supported. This similar
formula as in (135) also shows that the function ϕp is smooth in the time variable. It follows that
the function ϕp is a pointwise solution of the equation

∀ (t , x) ∈ (t0, t∗)×Rd , ∂tϕp (t , x)+P0(t )∗ϕp (t , x) = 0.

Furthermore, we easily check that ϕp is an admissible test function. Then, we deduce from (146)
and (147) that

∀ p ≥ 1,
∫
Rd

k(t∗, x)gp (x)dx = (k(t∗), gp )L2(Rd ) = 0,

implying that k(t∗) = 0, when passing to the limit p →+∞. It ends the proof of the uniqueness of
the weak solution to the Cauchy problem (132). �
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Regarding the inhomogeneous equation{
∂t h(t , x)−P0(t )h(t , x) =1ω(t )(x)u(t , x), (t , x) ∈ (t0,T1)×Rd ,

h|t=t0 = h0 ∈ L2(Rd ),
(148)

with (ω(t ))t∈[T0,T1] being a moving control support in Rd , we use the notion of mild solutions
defined in [36, Chapter 5, Section 5.5, Definition 5.1, p. 146]:

Definition 20. Let T0 ≤ t0 < T1, A0,B0 ∈ C 0([T0,T1], Md (R)), k0 ∈ L2(Rd ), u ∈ L1((t0,T1),L2(Rd ))
and (ω(t ))t∈[T0,T1] a moving control support in Rd . The mild solution to the Cauchy problem (148)
is the function h ∈C 0([t0,T1],L2(Rd )) given by

h(t ) =U (t , t0)h0 +
∫ t

t0

U (t , s)[1ω(s)u(s)]ds,

with equality in L2(Rd ) for all t ∈ [t0,T1], where U stands for the evolution system given by
Proposition 19.

6.2. Hilbert uniqueness method

This section is devoted to the proof of following characterization of null-controllability. This result
extends the one established in [4, Proposition 2.8] to the case of moving control support:

Proposition 21. Let T0 < 0 < T1, A0,B0 ∈ C 0([T0,T1], Md (R)), P0(t ) be the non-autonomous
Ornstein–Uhlenbeck operator defined in (133) and P0(t )∗ its L2(Rd )-adjoint given in (134). Let
T ∈ (0,T1) and (ω(t ))t∈[0,T ] be a moving control support on [0,T ] in Rd . The null-controllability on
[0,T ] from the moving control support (ω(t ))t∈[0,T ] of the system{

∂t f (t , x)−P0(t ) f (t , x) =1ω(t )(x)u(t , x), (t , x) ∈ (0,T1)×Rd ,

f |t=0 = f0 ∈ L2(Rd ),
(149)

is equivalent to the existence of an observability constant C > 0 such that, for all g0 ∈ L2(Rd ), the
mild solution to the Cauchy problem{

∂t g (t , x)−P0(T − t )∗g (t , x) = 0, (t , x) ∈ (0,T −T0)×Rd ,

g |t=0 = g0 ∈ L2(Rd ),
(150)

satisfies ∫
Rd

|g (T, x)|2dx ≤C
∫ T

0

∫
ω(T−t )

|g (t , x)|2dxdt .

Instrumental in the proof of Proposition 21 is the following result:

Lemma 22. If U stands for the evolution system given by Proposition 19, then the L2-adjoint
U (t , t0)∗ of the evolution mapping U (t , t0) is equal to the evolution mapping Ũ (t − t0,0) associ-
ated to the family of operators s ∈ [0, t − t0] 7→ P0(t − s)∗.

Proof. Let T0 ≤ t0 < t ≤ T1 and g0 ∈ L2(Rd ). Setting g (t − t0) = Ũ (t − t0,0)g0, we deduce from
Proposition 19 with the suitable substitutions that

ĝ (t − t0,ξ) = ĝ0
(
R(t − t0,0)T ξ

)
e−

1
2

∫ t−t0
0 Tr(B0(t−s))ds e−

1
2

∫ t−t0
0 |A0(t−s)T R(t−t0,s)T ξ|2ds , (151)

where R stands for the resolvent associated to the system Ẋ (s) =−B0(t − s)X (s), that is,{
∂R
∂s (s, s0) =−B0(t − s)R(s, s0),

R(s0, s0) = Id .

According to (136), we notice that

R(s, s0) = R0(t − s, t − s0). (152)
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It follows from (151) and (152) that

ĝ (t − t0,ξ) = ĝ0
(
R0(t0, t )T ξ

)
e−

1
2

∫ t
t0

Tr(B0(s))ds e−
1
2

∫ t
t0
|A0(s)T R0(t0,s)T ξ|2ds . (153)

We deduce from Plancherel theorem, (135), the substitution rule with η= R0(t , t0)T ξ, the Liouville
formula (143) and (153) that for all k0, g0 ∈ L2(Rd ),(

U (t , t0)k0, g0
)

L2(Rd ) =
1

(2π)d

∫
Rd

k̂(t ,ξ)ĝ0(ξ)dξ

=
∫
Rd

k̂0
(
R0(t , t0)T ξ

)
e

1
2

∫ t
t0

Tr(B0(s))ds e−
1
2

∫ t
t0
|A0(s)T R0(t ,s)T ξ|2ds ĝ0(ξ)

dξ

(2π)d

=
∫
Rd

k̂0(η)e−
1
2

∫ t
t0

Tr(B0(s))ds e−
1
2

∫ t
t0
|A0(s)T R0(t ,s)T R0(t0,t )T η|2ds ĝ0

(
R0(t0, t )T η

) dη

(2π)d

=
∫
Rd

k̂0(η)ĝ (t − t0,η)
dη

(2π)d
=

∫
Rd

k0(x)g (t − t0, x)dx = (
k0,Ũ (t − t0,0)g0

)
L2(Rd ),

since

R0(t , s)T R0(t0, t )T = R0(t0, s)T ,
∣∣det

(
R0(t0, t )

)∣∣= exp

(
−

∫ t

t0

Tr
(
B0(s)

)
ds

)
.

This ends the proof of Lemma 22. �

Proof. We can now resume the proof of Proposition 21. We consider the following linear
mappings

C2 : L2(Rd ) → L2(Rd ),
f0 7→ U (T,0) f0

and
C3 : L2((0,T )×Rd ) → L2(Rd ),

u 7→ ∫ T
0 U (T, s)[1ω(s)u(s)]ds.

For any f0 ∈ L2(Rd ), the function C2( f0) = k(T ) is the weak solution at time T to the Cauchy
problem (132) associated to the initial datum k0 = f0, with t0 = 0. On the other hand, for any
u ∈ L2((0,T )×Rd ), the function C3(u) = h(T ) is the mild solution to the Cauchy problem (148) at
time T associated to the initial datum h0 = 0, with t0 = 0.

The null-controllability of the non-autonomous Ornstein–Uhlenbeck equation (149) on [0,T ]
from the moving control support (ω(t ))t∈[0,T ] is equivalent to the set inclusion

C2(L2(Rd )) ⊂C3(L2((0,T )×Rd )),

since the mild solution at time T is given by f (T ) =C2( f0)+C3(u). According to [9, Lemma 2.48],
this set inclusion is also equivalent to the existence of a positive constant M > 0 such that for all
g0 ∈ L2(Rd ),

‖C∗
2 g0‖L2(Rd ) ≤ M‖C∗

3 g0‖L2((0,T )×Rd ), (154)

where C∗
2 and C∗

3 denote the adjoint operators. We deduce from Lemma 22 that

C∗
2 g0 =U (T,0)∗g0 = Ũ (T,0)g0 = g (T ), (155)

where g is the weak solution of (150). On the other hand, it follows from Lemma 22 that for all
u ∈ L2((0,T )×Rd ),

(u,C∗
3 g0)L2((0,T )×Rd ) = (C3u, g0)L2(Rd )

=
∫ T

0

(
U (T, s)[1ω(s)u(s)], g0

)
L2(Rd )ds =

∫ T

0

(
u(s),1ω(s)U (T, s)∗g0

)
L2(Rd )ds

=
∫ T

0

(
u(s),1ω(s)Ũ (T − s,0)g0

)
L2(Rd )ds =

∫ T

0

(
u(s),1ω(s)g (T − s)

)
L2(Rd )ds, (156)
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where g is the weak solution of (150). It follows from (155) and (156) that the estimate (154)
reads as ∫

Rd
|g (T, x)|2dx ≤ M 2

∫ T

0

∫
ω(T−t )

|g (t , x)|2dxdt .

This ends the proof of Proposition 21. �

6.3. Miscellaneous facts about thick subsets in Rd

In the works [34, 35], Panejah addressed the problem of characterizing the subsets S ⊂ Rd for
which the semi-norm ‖·‖L2(S) defines a norm on specific vector subspaces of L2(Rd ). For the
vector subspace given by L2(Rd )-functions whose Fourier transforms are supported in a fixed
compact set ofRd , the thickness property of the subset S turns out to be a necessary and sufficient
condition for the semi-norm ‖·‖L2(S) to be a norm on this vector subspace, see Definition 3.
This result was established by Panejah in the one-dimensional setting. In the multidimensional
case, Panejah only proved that the thickness property is a necessary condition for the semi-norm
‖·‖L2(S) to be a norm. The full equivalence in the multidimensional setting was then established
independently by Logvinenko and Sereda [26], and by Katsnelson [20].

Theorem 23 (Logvinenko–Sereda [26], Katsnelson [20]). Let S be a measurable subset of Rd . The
two following assertions are equivalent:

(i) S is a thick subset in Rd

(ii) For all bounded subsets Σ⊂Rd , there exists a positive constant C (Σ,S) > 0 such that

∀ f ∈ L2(Rd ),supp f̂ ⊂Σ, ‖ f ‖L2(Rd ) ≤C (Σ,S)‖ f ‖L2(S).

We refer the reader to the monographs [13, 31] for detailed introductions on this topic. Let us
only notice for now that the estimate in assertion (ii) is actually a spectral estimate in the common
terminology used in control theory. In order to use this kind of the spectral estimates in control
theory, it is then essential to understand how the positive constants C (Σ,S) > 0 do depend on the
bounded subsetsΣ. This problem was addressed by Kovrijkine who established in [21, Theorem 3]
the following quantitative version of the estimate (ii):

Theorem 24 (Kovrijkine [21]). There exists a universal constant C > 1 such that for all d ≥ 1,
0 < δ≤ 1, α= (α1, . . . ,αd ) ∈ (0,+∞)d , β= (β1, . . . ,βd ) ∈ (0,+∞)d , for all (δ,α)-thick set S in Rd and
for all f ∈ L2(Rd ) whose Fourier transform is supported in a parallelepiped with sides parallel to
the coordinate axes with length respectively β1,. . . , βd then

‖ f ‖L2(Rd ) ≤
(
C d

δ

)C (α·β+d)

‖ f ‖L2(S), (157)

where α ·β=∑d
j=1α jβ j denotes the Euclidean dot product.

6.4. Hermite functions

This section is devoted to set some notations and recall basic facts about Hermite functions. The
standard Hermite functions (φn)n≥0 are defined for x ∈R,

φn(x) = (−1)n√
2nn!

p
π

e
x2
2

dn

dxn (e−x2
) = 1√

2nn!
p
π

(
x − d

dx

)n (
e−

x2
2

)
= an+φ0p

n!
, (158)

where a+ is the creation operator

a+ = 1p
2

(
x − d

dx

)
.
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The family (φn)n≥0 is an orthonormal basis of L2(R) composed by the eigenfunctions of the
harmonic oscillator

H1 =−∆x +x2 = ∑
n≥0

(2n +1)Pn , 1 = ∑
n≥0

Pn ,

where Pn stands for the orthogonal projection

Pn f = ( f ,φn)L2(R)φn .

It satisfies the identities

∀ n ≥ 0, a+φn =p
n +1φn+1, a−φn =p

nφn−1 (= 0 if n = 0), (159)

where

a± = 1p
2

(
x ∓ d

dx

)
. (160)

Instrumental in the core of this work are the following estimates on the Hermite functions
given in the next lemma. They are an adaptation in a simpler setting of the analysis led in the
work [22, Lemma 3.2]. The same estimates were also established in [24, Lemma A.1] while using
a different normalization for the harmonic oscillator and the Hermite functions. For the sake of
completeness, we adapt the proof given in [24] with the normalization used in the present work:

Lemma 25. We have

∀ n,k, l ≥ 0, ‖xk∂l
xφn‖L2(R) ≤ 2

k+l
2

√
(k + l +n)!

n!
, (161)

∀ r ≥ 1

2
,∀ ε> 0,∀ n,k, l ≥ 0,

‖xk∂l
xφn‖L2(R) ≤

p
2
(
(1−δn,0)exp(εr n

1
2r )+δn,0

)(
2r+1er

inf(εr ,1)

)k+l

(k !)r (l !)r , (162)

where δn,0 stands for the Kronecker symbol, i.e., δn,0 = 1 if n = 0, δn,0 = 0 if n 6= 0.

Proof. The estimate (161) is trivial if k = l = 0, since the family (φn)n≥0 is an orthonormal basis
of L2(R). We notice from (159) and (160) that

xφn = 1p
2

(a++a−)φn =
√

n +1

2
φn+1 +

√
n

2
φn−1, (163)

∂xφn = 1p
2

(a−−a+)φn =
√

n

2
φn−1 −

√
n +1

2
φn+1. (164)

This implies that

‖xφn‖L2(R) =
√

2n +1

2
, ‖∂xφn‖L2(R) =

√
2n +1

2
,

since (φn)n≥0 is an orthonormal basis of L2(R). It follows that the estimate (161) holds as well
when (k, l ) = (1,0) or (k, l ) = (0,1). We complete the proof of the estimate (161) by induction.
We assume that the estimate holds for any k, l ≥ 0, k + l ≤ m, with m ≥ 1. Let k, l ≥ 0 such that
k + l = m. It follows from (163) and (164) that

xk+1∂l
xφn =

√
n +1

2
xk∂l

xφn+1 +
√

n

2
xk∂l

xφn−1 − l xk∂l−1
x φn ,

xk∂l+1
x φn =

√
n

2
xk∂l

xφn−1 −
√

n +1

2
xk∂l

xφn+1.
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We deduce from the induction hypothesis that

‖xk+1∂l
xφn‖L2(R) ≤

√
n +1

2
‖xk∂l

xφn+1‖L2(R) +
√

n

2
‖xk∂l

xφn−1‖L2(R) + l‖xk∂l−1
x φn‖L2(R)

≤ 2
k+l−1

2

√
(k + l +n +1)!

n!

(
1+ n + lp

(k + l +n +1)(k + l +n)

)

≤ 2
k+l+1

2

√
(k + l +n +1)!

n!
,

‖xk∂l+1
x φn‖L2(R) ≤

√
n

2
‖xk∂l

xφn−1‖L2(R) +
√

n +1

2
‖xk∂l

xφn+1‖L2(R)

≤ 2
k+l−1

2

√
(k + l +n +1)!

n!

(
1+ np

(k + l +n +1)(k + l +n)

)

≤ 2
k+l+1

2

√
(k + l +n +1)!

n!
.

This ends the proof of the estimate (161). We now prove the estimates (162). When n = 0, we
deduce from (161) that

∀ k, l ≥ 0, ‖xk∂l
xφ0‖L2(R) ≤ 2

k+l
2

√
(k + l )! ≤ 2k+l

p
k !
p

l !,

since (
k + l

k

)
= (k + l )!

k !l !
≤

k+l∑
j=0

(
k + l

j

)
= 2k+l . (165)

It follows that

∀ r ≥ 1

2
,∀ ε> 0,∀ k, l ≥ 0, ‖xk∂l

xφ0‖L2(R) ≤
p

2

(
2r+1er

inf(εr ,1)

)k+l

(k !)r (l !)r ,

since

∀ r ≥ 1

2
,∀ ε> 0, 2k+l

p
k !
p

l ! ≤ 2k+l (k !)r (l !)r ≤p
2

(
2r+1er

inf(εr ,1)

)k+l

(k !)r (l !)r .

The estimates (162) therefore hold when n = 0. When k = l = 0 and n ≥ 1, the estimates (162) also
hold since ‖φn‖L2(R) = 1. From now, we may therefore assume that k + l ≥ 1 and n ≥ 1. We notice
that for all n ≥ 1,

n! = Γ(n +1) =
∫ +∞

0
e−t t ndt =

(n

e

)n
∫ +∞

0
ne−(s−1)n snds

≥
(n

e

)n
∫ 2

1
ne−(s−1)nds =

(n

e

)n
(1−e−n) ≥ 1

2

(n

e

)n
,

so that
∀ n ≥ 1, n

n
2 ≤p

2
p

n!e
n
2 .

It follows that

∀ r ≥ 1

2
,∀ n ≥ 1, n

n
2 ≤p

2
p

n!en ≤p
2
(
n!en)r . (166)

We distinguish two cases. When 1 ≤ k + l ≤ n, we deduce from (161) that for all r ≥ 1/2 and ε> 0,

‖xk∂l
xφn‖L2(R) ≤ 2

k+l
2

√
(k + l +n)!

n!
≤ 2

k+l
2 (k + l +n)

k+l
2 ≤ 2

k+l
2 (2n)

k+l
2

≤
( 2

εr

)k+l
((k + l )!)r

(
(εn

1
2r )k+l

(k + l )!

)r

≤
( 2

εr

)k+l
exp(εr n

1
2r )((k + l )!)r . (167)
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When k + l > n ≥ 1, we deduce from (161) and (166) that for all r ≥ 1/2,

‖xk∂l
xφn‖L2(R) ≤ 2

k+l
2

√
(k + l +n)!

n!
≤ 2

k+l
2 (k + l +n)

k+l
2

≤ 2
k+l

2 (2k +2l )
k+l

2 ≤p
2(2er )k+l ((k + l )!)r . (168)

It follows from (167) and (168) that for all r ≥ 1/2, ε> 0, n ≥ 1, k + l ≥ 1,

‖xk∂l
xφn‖L2(R) ≤

p
2

(
2er

inf(εr ,1)

)k+l

exp(εr n
1

2r )((k + l )!)r .

By using anew (165), we finally obtain that for all r ≥ 1/2, ε> 0, n ≥ 1, k + l ≥ 1,

‖xk∂l
xφn‖L2(R) ≤

p
2

(
2r+1er

inf(εr ,1)

)k+l

exp(εr n
1

2r )(k !)r (l !)r .

The estimates (162) therefore hold when k + l ≥ 1 and n ≥ 1. The proof of Lemma 25 is
complete. �

The d-dimensional Hermite functions (Φα)α∈Nd ,

Φα(x) =
d∏

j=1
φα j (x j ), x = (x1, . . . , xd ) ∈Rd , α= (α1, . . . ,αd ) ∈Nd ,

is an orthonormal basis of L2(Rd ) composed by the eigenfunctions of the d-dimensional har-
monic oscillator

Hd =−∆x +|x|2 = ∑
α∈Nd

(2|α|+d)Pα, 1 = ∑
α∈Nd

Pα,

with |α| =α1+·· ·+αd , whenα= (α1, . . . ,αd ) ∈Nd , where Pα stands for the orthogonal projection

Pα f = ( f ,Φα)L2(Rd )Φα.

It satisfies the identities

a+, jΦα =
√
α j +1Φα+e j , a−, jΦα =√

α jΦα−e j (= 0 if α j = 0), (169)

with (e1, . . . .,ed ) the canonical basis of Rd , where

a±, j = 1p
2

(
x j ∓ d

dx j

)
. (170)

By tensorization, the estimates proved in Lemma 25 can be readily extended to the multidimen-
sional setting as follows:

Lemma 26. We have

∀α,β,γ ∈Nd , ‖xα∂βxΦγ‖L2(Rd ) ≤ 2
|α|+|β|

2

√
(α+β+γ)!

γ!
, (171)

with α! =∏d
j=1α j !, when α= (α1, . . . ,αd ) ∈Nd and |α| =α1 +·· ·+αd ,

∀ r ≥ 1

2
,∀ ε> 0,∀α,β,γ ∈Nd ,

‖xα∂βxΦγ‖L2(Rd ) ≤ 2
d
2
(
(1−δγ,0)exp(εr d |γ| 1

2r )+δγ,0
)( 2r+1er

inf(εr ,1)

)|α|+|β|
(α!)r (β!)r , (172)

where δγ,0 = ∏d
j=1δγ j ,0 stands for the Kronecker symbol, i.e., δγ,0 = 1 if γ = (0, . . . ,0), or δγ,0 = 0 if

γ 6= (0, . . . ,0).
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6.5. Gelfand–Shilov regularity

We refer the reader to the works [11,12,32,43] and the references herein for extensive expositions
of the Gelfand–Shilov regularity theory. The Gelfand–Shilov spaces Sµν(Rd ), with µ,ν> 0, µ+ν≥ 1,
are defined as the spaces of smooth functions f ∈C∞(Rd ) satisfying the estimates

∃ A,C > 0, |∂αx f (x)| ≤C A|α|(α!)µe−
1
A |x|1/ν

, x ∈Rd , α ∈Nd ,

or, equivalently

∃ A,C > 0, sup
x∈Rd

|xβ∂αx f (x)| ≤C A|α|+|β|(α!)µ(β!)ν, α,β ∈Nd .

These Gelfand–Shilov spaces Sµν(Rd ) may also be characterized as the spaces of Schwartz func-
tions f ∈S (Rd ) satisfying the estimates

∃C > 0, ∃ ε> 0, | f (x)| ≤Ce−ε|x|
1/ν

, x ∈Rd , | f̂ (ξ)| ≤Ce−ε|ξ|
1/µ

, ξ ∈Rd .

In particular, we notice that Hermite functions belong to the symmetric Gelfand–Shilov space
S1/2

1/2(Rd ). More generally, the symmetric Gelfand–Shilov spaces Sµµ(Rd ), with µ ≥ 1/2, can be
nicely characterized through the decomposition into the Hermite basis (Φα)α∈Nd , see e.g. [43,
Proposition 1.2],

f ∈ Sµµ(Rd ) ⇐⇒ f ∈ L2(Rd ), ∃ t0 > 0,
∥∥(

( f ,Φα)L2 exp(t0|α|
1

2µ )
)
α∈Nd

∥∥
l 2(Nd ) <+∞

⇐⇒ f ∈ L2(Rd ), ∃ t0 > 0, ‖e t0H

1
2µ

d f ‖L2(Rd ) <+∞,

where Hd =−∆x +|x|2 stands for the harmonic oscillator.
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