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1. Introduction and main result

Primality of numbers of the form 2nk +1 for fixed odd k and varying n has been studied by many
people due to the Proth primality theorem. There are odd numbers k such that 2nk +1 is never
prime for any n. There are infinitely many such odd numbers k. This was proved in 1960 by
Sierpiński and since then such numbers are called Sierpiński numbers in his honor. There are
infinite arithmetic progressions of Sierpiński numbers so certainly such numbers form a subset
of positive lower density of all odd integers. The odd integers k which are not Sierpiński; that is of
the form k = (p−1)/2n for some prime p and nonnegative integer n, also form a subset of positive
lower density of all odd integers. This was proved by Erdős and Odlyzko in [4]. In particular, there
is a subset of odd integers of positive lower density such that k2n +1 is a prime for at least one
n. Presumably, there are odd integers k for which there are infinitely many primes of the form
2nk + 1. This is not known but a quick application of the celebrated Maynard–Tao theorem on
linear forms which are simultaneously primes gives the following.
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Theorem 1. For each K ≥ 1 there are infinitely many odd integers k such that k2n +1 is prime for
at least K values of n. That is, the sequence {k2n +1}n≥1 contains at least K primes.

Since this statement does not seem to have appeared in the literature, we supply a quick proof
of it. Let Li (n) = ai n +bi be distinct be linear forms in the variable n such that ai > 0 and bi are
integers with gcd(ai ,bi ) = 1 for i = 1, . . . , M . The set of linear forms is called admissible if for all
primes p, we have

#
{
0 ≤ n ≤ p −1 : L1(n)L2(n) · · ·LM (n) ≡ 0

(
mod p

)}< p. (1)

For the celebrated Maynard–Tao theorem on primes in simultaneous linear forms we chose the
statement of [5, Theorem 6.4].

Theorem 2 (Maynard–Tao theorem). For any integer K ≥ 2, let M be the smallest integer such
that M log M > e8K+2. Then for any admissible M-tuple of linear forms L1(n), . . . , LM (n) there exist
infinitely many positive integers n such that at least K of L1(n), . . . , LM (n) are primes.

Now for the proof of Theorem 1, let K be fixed, choose M with M log M > e8K+2 and consider
Li (n) = 2(M−1)!i (2n +1)+1 for i = 1, . . . , M . Since L1(n) · · ·LM (n) is a polynomial of degree M in n
the admissibility condition (1) needs to be checked only for primes p ≤ M . Note that Li (n) is odd
for all i = 1, . . . , M . Further, if p ≤ M is odd, then p − 1 | (M − 1)! so by Fermat’s Little Theorem
Li (n) ≡ 2(n + 1) (mod p) for all i = 1, . . . , M . This verifies condition (1), and now Theorem 2
guarantees the existence of infinitely many k’s such that at least K of Li (k) for i = 1, . . . , M are
primes. For such k, the sequence {2n(2k +1)+1}n≥1 contains at least K primes, and in fact, these
K primes all have n ∈ {1,2, . . . , M !}.

A Carmichael number is an odd integer N which is composite but behaves like a prime
with respect to the conclusion of Fermat’s little theorem. Namely, aN ≡ a (mod N ) holds for
all integers a. There are infinitely many Carmichael numbers, a theorem first proved by Alford,
Granville and Pomerance in 1994 in [1]. There is an easy criterion due to Korselt to check whether
N is a Carmichael number. Namely, the composite positive integer N is Carmichael if and only if
N is squarefree and p −1 divides N −1 for all prime factors p of N .

Some authors fixed an odd integer k and asked for Carmichael numbers in the sequence
{2nk +1}n≥1. The results are quite different from the case of primes. There are only finitely many
n such that 2nk +1 is Carmichael and in fact the largest such satisfies

n < 22×107τ(k)2(logk)2ω(k),

where τ(k) and ω(k) are the number of divisors, and the number of prime divisors of k, respec-
tively, and throughout this paper all logs are natural. This is the main theorem in [3]. Letting

K := {
k odd :

{
2nk +1

}
n≥0 contains some Carmichael number

}
,

the set K is of asymptotic density zero (see [2]). The smallest element of K is 27 (see [3,
Theorem 2]), and a representation indicating 27 as a member of K is given by

1729 = 27×26 +1

with the Carmichael number 1729 being known as the Ramanujan taxicab number! In this paper,
we revisit the set K and prove the following maybe somewhat unexpected theorem.

Theorem 3. All members of K are composite.

The statement of the theorem can be rephrased by saying that there is no Carmichael number
of the form 2n p +1 with odd p. Hence, we get the theorem announced in the title.
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2. The proof

Let λ(n) be the Carmichael function of n. It is the exponent of the multiplicative group modulo
n; namely the smallest positive integer m such that if a is coprime to n, then am ≡ 1 (mod n).
When n is squarefree we have λ(n) = lcm[p −1 : p | n]. Assume by contradiction that p ∈ K for
some odd prime p. By Theorem 2 in [3], we have p ≥ 29. Let N = 2n p+1 be a Carmichael number.
Since λ(N ) | N −1, we get that all prime factors of N are of the form 2mi δi +1 where δi ∈ {1, p}. To
fix notation, we shall assume that

N =
r∏

i=1

(
2mi +1

) s∏
j=1

(
2n j p +1

)
, (2)

where the factors pi = 2mi +1 and q j = 2n j p+1 appearing above are primes. We also assume that
m1 < ·· · < mr (if r > 0) and n1 < ·· · < ns (if s > 0). Thus, r + s =ω(N ) ≥ 3. It is easy to see that both
r > 0, s > 0 must hold. Indeed, if say r = 0, then the only factors that appear in (2) are 2n j p+1 and
the n j ’s are distinct. Expanding and identifying the exact power of 2 dividing N −1, we get n = n1,
which is false since 2n2 | q2 −1 | N −1 = 2n p, so n ≥ n2. A similar contradiction is obtained if one
assumes that s = 0. Hence, both r and s are positive and the argument based on the exponent of
2 appearing in N −1 shows that n1 = m1. This can also be deduced from [6, Theorem 2]. Next, we
show that in fact r ≥ 2. Indeed, if r = 1, we then get

2n p +1 = (
2m1 +1

) s∏
j=1

(
2n j p +1

)
,

which reduced modulo p gives 2m1 ≡ 0 (mod p), a contradiction. We now involve some size
arguments. Let again pi = 2mi +1. Then mi = 2αi for some αi ≥ 0, so pi = Fαi is a Fermat prime.
Here, Fα = 22α +1. [3, Lemma 2] shows that pi < p2. Thus,

r∏
i=1

pi =
r∏

i=1
Fαi ≤

(
Fαr −2

)
Fαr < p2

r < p4.

We now look at the q ’s. Let q j = 2n j p + 1. Then 2n j p and 2n p are multiplicatively independent
since p is odd and n j < n. This condition is required in order to apply [3, Lemma 4], which in turn
shows that

n j < 7
√

n log p, (3)

assuming n > 3log p, a hypothesis which we will verify later. Thus, assuming n > 3log p, we get
that

q j < 27
p

n log p p +1 < 27
p

n log p+1.5log p+1, (4)

where we used the fact that 1/log2 < 1.5. We next get an upper bound on s. From the congruences

2n p ≡−1
(
mod qi

)
and 2ni p ≡−1

(
mod qi

)
,

we get

2n−ni ≡ 1
(
mod qi

)
.

Thus, n − ni is a multiple of ordqi (2), which is the multiplicative order of 2 modulo qi . Since
qi − 1 = 2ni p, we conclude that either p | ordqi (2), or ordqi (2) = 2βi for some βi ≤ ni . To show
that the first possibility must occur, let us assume that the second possibility occurs and get a
contradiction. Since

22βi ≡ 1
(
mod 2ni p +1

)
,



1180 Adel Alahmadi and Florian Luca

we get that 2βi > ni ≥ n1 = m1 = 2α1 . Hence, βi ≥α1 +1. Further, 2βi | n −ni . Thus, ni = n −2βi ki

for some integer ki . But we have p1 = 22α1 +1 | 2n p +1. Also, p1 | 22α1+1 −1 | 22βi −1. This shows
that

qi = 2ni p +1 = 2n−2βi ki p +1 = (
2n p

)(
22βi

)−ki +1

≡ (−1)×1+1
(
mod p1

) ≡ 0
(
mod p1

)
,

so in fact qi is a multiple of p1, so it cannot be a prime. So, it must be the case that p | ordqi (2),
therefore p | n −ni . Since this is true for all ni , we conclude that ni ≡ n (mod p) are all in the
same residue class modulo p. Since p | n −n1 and n −n1 is nonzero (otherwise q1 = p, which is
false), it follows that n > p. Since p > 3log p holds for p ≥ 29, we are allowed to use inequality (4).
Now since all n j satisfy estimate (3) and are in the same residue class modulo p, we get that the
number of them s satisfies

s ≤ 1+ ns

p
≤ 1+ 7

√
n log p

p
.

Putting everything together and taking logarithms we get

n log2 < log N = log

(
r∏

i=1
pi

)
+ log

(
s∏

j=1
q j

)

< log
(
p4)+ (

7
√

n log p +1.5log p +1
)(

1+ 7
√

n log p

p

)
log2.

Expanding the product in right–hand side and moving the “main term” to the left and keeping
the rest in the right, we get

n

(
1− 49log p

p

)
log2 < 4log p

+
(

7
√

n log p +1.5log p +1+ 7
√

n log p
(
1.5log p +1

)
p

)
log2.

Assuming p > 700, the left-hand side exceeds n(log2)/2. Dividing across by n and using n > p
yields

log2

2
< 4log p

p
+ (

log2
)(

7

√
log p

p
+ 1.5log p

p
+ 1

p
+ 7

√
log p

(
1.5log p +1

)
p3/2

)
,

which gives p < 1700. Indeed the right-hand side above is a decreasing function of p (as a linear
combination with positive coefficients of decreasing functions of p such as log p/p and powers
of it) and when p = 1700 the right-hand side evaluates to 0.345705. . . < 0.346 < (log2)/2. Hence,

22αr +1 = pr < p2 < 17002,
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soαr ≤ 4. Thus, the only Fermat primes that might be involved in N are among the first 5 of them,
namely Fα for α ∈ [0,4]. Further, λ(N ) = 2u p for some u ∈ [1,n]. Main Theorem 2 in [6] then gives
that N is one of the numbers

5×13×17,

5×13×193×257,

5×13×193×257×769,

3×11×17,

5×17×29,

5×17×29×113,

5×29×113×65537×114689,

5×17×257×509,

but none of them is of the form 2n p +1 for some prime p. This finishes the argument.

3. Comments

There are a few examples of Carmichael numbers N of the form N = 2n pb +1 for some odd prime
p and positive exponent b > 1 such as

26 ×33 +1, 26 ×36 +1.

Is it true that there are only finitely many Carmichael numbers of this form? If so, we would then
get that ω(N − 1) ≥ 3 holds for all Carmichael numbers N except for finitely many. Are there
infinitely many Carmichael numbers N such that ω(N − 1) = 3? How about ω(N − 1) = 4? Or
maybe ω(N − 1) tends to infinity as N goes to infinity through Carmichael numbers? We leave
such questions for future projects and maybe for future researchers.
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