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Abstract. In this paper we consider the motion of a rigid body in a viscous incompressible fluid when some
Navier slip conditions are prescribed on the body’s boundary. The whole “viscous incompressible fluid + rigid
body” system is assumed to occupy the full planeR2. We prove the existence of global-in-time weak solutions
with constant non-zero circulation at infinity.

Résumé. Dans cet article, nous considérons le mouvement d’un corps rigide dans un fluide visqueux incom-
pressible avec des conditions de glissement avec friction de Navier à l’interface. Le système “fluide+corps ri-
gide” est supposé occuper le plan tout entier. Nous prouvons l’existence de solutions globales en temps avec
une circulation constante non nulle à l’infini.
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Introduction

The problem of well-posedness of Navier–Stokes equations with infinite energy in dimension
two has been studied a lot in the past years. We recall the work [8], where the authors prove
existence for initial data which have measure vorticity and the corresponding uniqueness result
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is available in [5]. Other interesting works are [17] and [18], where the authors prove existence of
weak solutions in loc-uniform Lebesque spaces. The first result deals with solutions defined in
R3, the second one defined in the half space R3+. For exterior domains, where no slip boundary
condition is prescribed on the boundary, it was proved in [15] an existence result for initial data
in the weak-L2 space with some restriction on the concentration of the initial energy. These
solutions will remain uniformly bounded in weak-L2 norm for almost every time and bounded
in the K4 norm which is the Kato norm for p = 4.

In this paper we study weak solutions for viscous incompressible fluid + rigid body system
where Navier-type boundary condition are prescribed on the boundary of the solid and the
energy is allowed to be infinity for lack of integrability at infinity, more precisely the solutions
behaves like x⊥/2π|x|2 at infinity.

In the case of finite energy, a wide literature is present for example [2], [6], [20], in particular
in [20] existence of weak solutions is proved. The goals of this work are to extend the definition
of weak solutions presented in [20] in our setting and prove existence. The main contributions
are the extension of the definition of weak solutions and the density argument presented in
Lemma 10, this last result is also essential to make the proof of Theorem 1 of [20] correct.

1. The 2D “viscous incompressible fluid + rigid body” system with Navier conditions

We study the Cauchy problem for a system describing the motion of a rigid body immersed in
a viscous incompressible fluid when some Navier slip conditions are prescribed on the body’s
boundary. In [20], the existence of global in time weak solutions with finite energy to the Cauchy
problem were established in the case where the whole system occupies the full space R3. More-
over, several properties of these solutions were exhibited. We consider here the 2D case, for which
our analysis can be carried out for initial data corresponding to unbounded fluid kinetic energy.

Let us therefore consider S0 a closed, bounded, connected and simply connected subset of
the plane with smooth boundary. We assume that the body initially occupies the domain S0 and
we denote F0 =R2 \S0 the domain occupied by the fluid.

The equations, in the unknown (u, l ,r, p), that model the dynamics of the system in the body
frame read then

∂u

∂t
+ [

(u − l − r x⊥) ·∇]
u + r u⊥+∇p = ν∆u x ∈F0, (1)

divu = 0 x ∈F0, (2)

u ·n = (
l + r x⊥) ·n x ∈ ∂S0, (3)

(D(u)n) ·τ=−α(u − l − r x⊥) ·τ x ∈ ∂S0, (4)

ml ′(t ) =−
∫
∂S0

σn ds −mr l⊥, (5)

J r ′(t ) =−
∫
∂S0

x⊥ ·σn ds, (6)

u(0, x) = u0(x) x ∈F0, (7)

l (0) = l0, r (0) = r0, (8)

where u0 ·n = (l0 + r0x⊥) ·n for any x ∈ ∂S0. Here u = (u1,u2) and p denote the velocity and
pressure fields, ν> 0 is the viscosity, n and τ are the unit outwards normal and counterclockwise
tangent vectors to the boundary of the fluid domain, α > 0 is a material constant (the friction
coefficient). m and J denote respectively the mass and the moment of inertia of the body while
the fluid is supposed to be homogeneous of density 1, to simplify the notations. The Cauchy stress
tensor is defined byσ=−p Id2+2νD(u), where D(u) = ( 1

2 (∂ j ui +∂i u j ))16i , j62 is the deformation
tensor.
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When x = (x1, x2) the notation x⊥ stands for x⊥ = (−x2, x1), l (t ) is the velocity of the center of
mass of the body and r (t ) denotes the angular velocity of the rigid body. Finally to shorter the
notation we will write uS = l + r x⊥.

Remark 1. In general the friction coefficient α can depend on the position on the boundary of
the solid. In the case of the fluid alone some results are already available, see for instance [1]. At
this moment it is not clear if the analysis from [1] can be adapted in the fluid-structure interaction
problem (1)-(8).

2. Leray-type solutions with infinite energy

We are interested in solutions with initial datum (u0, l0,r0) with fluid velocity of the form

u0 = ũ0 +βHS0 ∈ L2(F0)⊕RHS0 ,

where u0 is divergence free in a distributional sense and HS0 is the unique solution vanishing at
infinity of

div HS0 = 0 for x ∈F0,

curl HS0 = 0 for x ∈F0,

HS0 ·n = 0 for x ∈ ∂S0,∫
∂S0

HS0 ·τds = 1.

See, for instance, [14]. This solution is smooth and decays like 1/|x| at infinity. For any x0 in the
interior of S0, we also have

HS0 ,∇HS0 ∈ L∞(F0) and HS0 −
(x −x0)⊥

2π|x −x0|2
, ∇HS0 , H⊥

S0
− (x −x0)⊥ ·∇HS0 ∈ L2(F0), (9)

but HS0 is not a L2 function. In the case of regular solutions to the Euler equations this vector
field is useful to take into account the velocity associated with the circulation around the body,
which is a conserved quantity according to Kelvin’s theorem.

First of all we note that the quadruple (u, l ,r, p) = (HS0 ,0,0,−|HS0 |2/2) satisfies the equa-
tions (1)-(3) unless the boundary condition (4). This leads us to expect that a solution (u, l ,r, p)
of (1)-(8) with initial data (ũ0 +βHS0 , l0,r0) is of the form

(u, l ,r, p) = (ũ, l ,r, p +β2|HS0 |2/2)+ (βHS0 ,0,0,−β2|HS0 |2/2), with ũ ∈ L2(F0)

and β is independent of time.
We now introduce a definition of Leray-type solutions for these initial data. First of all in the

literature, for example in [20], there is already a definition of weak solutions of Leray-type with
finite energy, i.e. with β= 0, so we want to be coherent with this definition. In the next subsection
we recall the definition of weak solution with finite energy coming from [20] and then we notice
that we can extend this definition in a straight-forward way to our setting.

2.1. A weak formulation with finite energy

Let Ω an open subset of R2, we use the classical notation L2
σ(Ω) to indicate the closure in L2(Ω)-

norm of C∞
c,σ(Ω), which is the space of infinitely differentiable function divergence free and with

compact support. Moreover we denote by H the following space

H = {
φ ∈ L2(R2)

∣∣divφ= 0 in R2 and D(φ) = 0 in S0
}
.

For allφ ∈H , there exist `φ ∈R2 and rφ ∈R such that for any x ∈S0,φ(x) = `φ+rφx⊥. Conversely
if (u, l ,r ) ∈ L2(F0)×R2×R is a triple such that the extension ue of u by `+x⊥r in S0 is divergence
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free in a distributional sense in R2, then ue ∈ H . Note that the extension of the initial data
u0 by setting u0 = `0 + r0x⊥ for x ∈ S0 is an element of H . Finally, when φ ∈ H , we denote
φS = lφ+ rφx⊥. Now we endow the space H with the following inner product

(φ,ψ)H =
∫
F0

φ ·ψdx +m`φ ·`ψ+J rφrψ,

which is equivalent to the restriction of the L2(R2) inner product to the subspace H . Let us also
denote

V =
{
φ ∈H

∣∣∣∣∫
F0

|∇φ(y)|2dy <+∞
}

with norm ‖φ‖V = ‖φ‖H +‖∇φ‖L2(F0,dy),

V =
{
φ ∈H

∣∣∣∣∫
F0

|∇φ(y)|2(1+|y |2)dy <+∞
}

with norm ‖φ‖V = ‖φ‖H +‖∇φ‖
L2(F0,(1+|y |2)

1
2 dy)

,

V̂ =
{
φ ∈ V

∣∣∣φ|F0 ∈ Lip(F0)
}

with norm ‖φ‖V̂ = ‖φ‖V +‖φ‖Lip(F0).

Let us emphasize that V̂ ⊂ V ⊂ V . We define formally for appropriate u and v ,

a(u, v) =−α
∫
∂S0

(u −uS ) · (v − vS )−
∫
F0

D(u) : D(v)

b(u, v, w) =
∫
F0

(
[(u −uS ) ·∇w] · v − ru v⊥ ·w)

)
−mru`

⊥
v ·`w ,

we recall that uS = `u − ru x⊥. The next straight-forward proposition clarify in which spaces a
and b are defined.

Proposition 2. The following holds true:

(i) b is a trilinear continuous map from V ×V ×V to R, i.e. there exists a constant C > 0 such
that for any (u, v, w) ∈ V ×V ×V ,

|b(u, v, w)|6C‖u‖V ‖v‖V ‖w‖V .

Moreover if v ∈ V it holds b(u, v, v) = 0 and if v, w ∈ V , it holds b(u, v, w) =−b(u, w, v).
(ii) b can be extended to a continuous map from H ×H × V̂ to R, i.e. there exists a constant

C > 0 such that for any (u, v, w) ∈H ×H × V̂ ,

|b(u, v, w)|6C‖u‖H ‖v‖H ‖w‖V̂ .

(iii) a( · , · ) is a continuous map from V ×V to R, i.e. for any u, v in V ,

|a(u, v)|6C‖u‖V ‖v‖V .

Proof. We present here only the proof of point i ..

|b(u, v, w)| =
∣∣∣∣∫

F0

(
[(u −uS ) ·∇w] · v − ru v⊥ ·w)

)
−mru`

⊥
v ·`w ,

∣∣∣∣
6

∣∣∣∣∫
F0

(
[(u ·∇)w] · v − ru v⊥ ·w)

)
−mru`

⊥
v ·`w ,

∣∣∣∣ (10)

+
∣∣∣∣∫

F0

[(uS ·∇)w] · v

∣∣∣∣ . (11)

We separately estimates (10) and (11). By Hölder and interpolation estimates, it holds

(10)6C‖u‖V ‖v‖V ‖w‖V 6C‖u‖V ‖v‖V ‖w‖V ,
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and by the fact that uS = `u + ru x⊥, we have

(11) =
∣∣∣∣∫

F0

[((`u + ru x⊥) ·∇)w] · v

∣∣∣∣
6C |`u |‖∇w‖L2(F0)‖v‖L2(F0) +C |ru |‖|x|∇w‖L2(F0)‖v‖L2(F0)

6C‖u‖V ‖v‖V ‖w‖V +C‖u‖V ‖v‖V ‖w‖V . �

We are now able to state the definition of weak solution defined in [20].

Definition 3. Let v0 ∈ H , we say that v ∈ C (0,T ;H )∩ L2(0,T ;V ) is a solution of (1)-(8) with
finite energy if and only if for all ϕ ∈C∞([0,T ];H ) such that ϕ|F0 ∈C∞(0,T ;C∞

c (F0)) and for a.e.
t ∈ [0,T ] it holds

(v,ϕ)H (t )− (v0,ϕ|t=0)H =
∫ t

0

[
(v,∂tϕ)H +2νa(v,ϕ)−b(v,ϕ, v)

]
.

2.2. A weak formulation with infinite energy

To extend the definition of weak solution in the case of unbounded energy we start with noticing
that we can continuously extend the map a and b in our new setting. First of all for X one of the
spaces H , V , V or V̂ , the space X ⊕RH is endowed with the norm ‖u‖X⊕RH = ‖ũ +βH‖X⊕RH =
‖ũ‖X +|β|, moreover we use the convention that uS = ũS , lu = lũ and ru = rũ , i.e. we extend the
function H by 0 inside the solid S0.

Proposition 4. The map a and b can be linearly extended as follow:

(i) the map b can be continuously extended to a trilinear map on (V ⊕RH)×V × (V ⊕RH) by

b(u, ṽ , w) =
∫
F0

(
[(u −uS ) ·∇w] · ṽ − ru ṽ⊥ ·w)

)
−mru`

⊥
ṽ ·`w .

The continuity assumption is equivalent to the following inequality : there exists a constant
C > 0 such that for any (u = ũ +β1H , ṽ , w = w̃ +β3H) ∈ (V ⊕RH)×V × (V ⊕RH),

|b(u, ṽ , w)|6C (‖ũ‖V +|β1|)‖ṽ‖V (‖w̃‖V +|β3|).

(ii) The map b(H , · , · ), b( · , · , H) are continuous bilinear map from V ×V to R and b(H , ṽ , H) =
0 for any ṽ ∈ V .

(iii) For u ∈ V ⊕RH and ṽ ∈ V , we have b(u, ṽ , ṽ) = 0. Moreover if ṽ , w̃ ∈ V , it holds b(u, ṽ , w̃) =
−b(u, w̃ , ṽ).

(iv) The trilinear map b can be extended in a unique way on (H ⊕RH)×H × (V̂ ⊕RH) in
a continuous way, i.e. there exists a constant C > 0 such that for any (u, ṽ , w) = (ũ +
β1H , ṽ , w̃ +β3H),

|b(u, ṽ , w)|6C (‖ũ‖H +|β1|)‖ṽ‖H (‖w̃‖V̂ +|β3|).

(v) a( · , · ) can be extended to a continuous bilinear map from (V ⊕RH)×V to R, where for any
(u, ṽ)

a(u, ṽ) =−α
∫
∂S0

(u −uS ) · (ṽ − ṽS )−
∫
F0

D(u) : D(ṽ).

Proof. Point (i) is direct consequence of point (ii) so we begin by (ii). For (ũ, ṽ) ∈ V ×V ,

b(ũ, ṽ , H) =
∫
F0

[ũ ·∇H ] · ṽ −
∫
F0

[`ũ ·∇H ] · ṽ − rũ

∫
F0

(x⊥ ·∇H −H⊥) · ṽ

is well defined thanks to (9), moreover there exists C > 0 such that |b(ũ, ṽ , H)|6C‖ũ‖V ‖ṽ‖V . For
(ṽ , w̃) ∈ V ×V , b(H , ṽ , w̃) = ∫

F0
[H ·∇]w̃ · ṽ . Thanks to (9), it is clear that |b(H , ṽ , w̃)|6C‖ṽ‖V ‖w̃‖V .

Moreover

b(H , ṽ , H) =
∫
F

H ·∇H · ṽ =
∫
∂F

|H |2
2

ṽ ·n = l ṽ

2
·
∫
∂F

|H |2n + r ṽ

2

∫
∂F

|H |2(x⊥ ·n)

C. R. Mathématique, 2020, 358, n 3, 303-319
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where we use the fact that curl H = 0 and an integration by parts. By Blasius’ lemma applied to
f = g = H (see Lemma 12 in the Appendix), it holds∫

∂F
|H |2n ds = i

(∫
∂F

H 2
)∗

= 0 and
∫
∂F

|H |2(x⊥ ·n)ds = Re

(∫
∂F

zH 2
)
= Re

(
− i

2π

)
= 0,

where we use the residue theorem due to the fact that H is holomorphic and the behaviour at
infinity from Lemma 11 to compute the residue. This concludes the proof of point (i) and (ii).

For (iii), we use an integration by parts to see that for any ṽ ∈ V we have b(H , ṽ , ṽ) = 0,
which implies, together with point (i) of Proposition 2, that it holds b(u, ṽ , ṽ) = 0 for any u =
ũ +βH ∈ V ⊕RH . Integrating by part we have also that for any u ∈ V ⊕RH , for any ṽ , w̃ ∈ V ,
b(u, ṽ , w̃) =−b(u, w̃ , ṽ).

Point (iv) is trivial after notice that ∇H ∈ L∞ and recall (ii) of Proposition 2.
Finally to prove (v) we use the same procedure of point (iii) of Proposition 2. �

We now introduce the definition of weak solution, with possibly unbounded energy, of the
system (1)-(8).

Definition 5 (Weak solution with β circulation at infinity). Let u0 = ũ0 +βH ∈ H ⊕RH and
T > 0. We say that u = ũ +βH where

ũ ∈Cw ([0,T ];H )∩L2(0,T ;V )

is a weak solution for 2D Navier–Stokes with β circulation at infinity if for any test function
ϕ ∈C 1([0,T ];H ) such that ϕ|

F0
∈C 1([0,T ];C∞

c (F0)), it holds

(ũ,ϕ)H (t )− (ũ0,ϕ|t=0)H =
∫ t

0

[
(ũ,∂tϕ)H +2νa(u,ϕ)−b(u,ϕ,u)

]
.

Observe that we took into account here that H and β are time independent and the fact
that for any function ϕ ∈ H such that ϕ|F0 ∈ C∞

c (F0), it holds b(u,u,ϕ) = −b(u,ϕ,u). For
our convenience we give an equivalent but more explicit definition of weak formulation of the
system (1)-(8).

Definition 6 (Weak solution with β circulation at infinity). Let ũ0 ∈H and T > 0 given. We say
that

ũ ∈Cw ([0,T ];H )∩L2((0,T );V )

is a weak solution for 2D Navier–Stokes with β circulation at infinity if for every test function
ϕ ∈C 1([0,T ];H ) with ϕ|

F0
∈C 1([0,T ];C∞

c (F0)), it holds

(ũ(t ),ϕ(t ))H − (ũ0,ϕ(0))H =
∫ t

0

[
(ũ,∂tϕ)H +2νa(ũ,ϕ)+2βνa(H ,ϕ)

−b(ũ,ϕ, ũ)−βb(H ,ϕ, ũ)−βb(ũ,ϕ, H)
]

dt . (12)

To conclude this section, we observe that any smooth solution of (1)-(8) with infinite energy is
also a weak solution.

Proposition 7. Let u = ũ+βH a smooth solution of (1)-(8) with initial data u0 = ũ0+βH, then ũ
is a weak solution for 2D Navier–Stokes with β circulation at infinity.

Proof. Multiply the equation (1) by the test function ϕ, integrate in all F0, integrate by parts and
use the boundary condition. �
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3. Result

The following result establishes the existence of global weak solutions of the system (1)-(8).

Theorem 8. Let ũ0 ∈ H and let T > 0. Then there exists a weak solution ũ ∈ H of 2D Navier–
Stokes with β circulation at infinity in Cw ([0,T ];H )∩L2(0,T ;V ) such that it satisfies the following
energy inequality: for almost every t ∈ [0,T ] we have

1

2
‖ũ(t , · )‖2

H +2ν
∫

(0,t )×F0

|D(ũ)|2 +2αν
∫ t

0

∫
∂S0

|ũ − ũS |26C (1+‖ũ0‖2
H ),

where C depends on T,S0,β and ν. Moreover (l ,r ) ∈ H 1(0,T ;R2 ×R).

The motivation that drives us to study this special infinite-energy solutions is to study the
“inviscid+shrinking-body” limit. First of all in the case of a fixed obstacle with no-slip boundary
condition, existence and uniqueness of solutions with initial datum a perturbation of βH is a
consequence of [15], where they proved global-in-time well-posedness for initial datum in weak-
L2 space with some restrictions on the concentration of the initial energy. In particular they do
not decompose the vector fields in a part with finite energy and the other with infinite energy
as in this work. Later in [13] the authors showed that for initial data a perturbation of βH , the
solutions remain of the formβH plus a perturbation whereβ is time independent. Moreover they
proved that if the initial datum has small enough circulation around the obstacle, then as the size
of the obstacle converges to zero, the solutions tend to the one of the Navier–Stokes equations
in the full plane with a perturbation of the point vortex as initial datum. For the inviscid limit
we recall the result from [20], where the authors proved that as ν goes to zero, the solutions uν
of the viscous “fluid+rigid body” problem converge to the solution of the corresponding inviscid
“fluid+rigid body” coupled equations. In [20], the “rigid+body” system occupies all the space R3,
in the case ofR2 the situation is a bit more tricky and the argument of [20] holds at least in the case
the solid is a disk. Moreover by the work [10], we know that as the size of the object goes to zero
(and the mass remains constant) the system converges to a variant of the vortex-wave system
where the vortex, placed in the point occupied by the shrunk body is accelerated by a Kutta–
Joukowski-type lift force. In the massless case, i.e. the density of the object is constant respect to
the scale of the object, similar results are available when the fluid satisfies incompressible Navier–
Stokes equation and no-slip boundary conditions are prescribe on the boundary of the solid, for
example in [16] it is proven that for a fixed viscosity the “fluid+disk” system converges to the
Navier–Stokes system in all R2 when the object shrinks to a point. The goal of further studies is to
understand the limiting equations when both the viscosity and the size of the object go to zero
at the same time (in both mass and massless cases) and to find in the limit a similar system of
the one in [10]. We expect that the appearance of a Kutta–Joukowski-type lift force in the limiting
system is strictly related to the presence of the circulation due to βH , i.e. in the absence of this
term we do not expect to see any force on the point mass in the limit. Indeed in the case where
the vorticity is integrable, βH denotes the circulation at infinity.

Before moving to the proof of the theorem we present two density results. For the first one
we do not claim originality but we were not able to find a reference in the literature. The second
result is one of the main contribution of the paper. Lemma 10 is also essential in [20], where
we propose to change the set T = {ϕ ∈ C∞

c,σ(R2)|D(ϕ) = 0 in S0} with the set defined in (13) in
the proof of Theorem 1. The set T is not dense in V neither in V . On the other hand we will
introduce below, cf. (13), a set Y which is dense and has all the property to make the proof of
Theorem 1 of [20] working. To see that T is not dense in V , it is enough to consider S0 = B1(0)
and the function

f (x) =
{

0 in B1(0),

∇⊥(x2χ) elsewhere,
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where χ is a smooth cut off such that χ ≡ 1 in B2(0) and χ ≡ 0 outside B4(0). It is clear that
f ∈ V ⊂ V . Suppose by contradiction that there exist approximations fε ∈T such that fε→ f in V ,
then l fε → l f = 0 and r fε → r f = 0. By continuity, fε = l fε + r fεx⊥ in B1(0) which implies fε|∂B1(0) =
l fε + r fεx⊥ → l f + r f x⊥ = 0 in L2(∂B1(0)). Moreover fε|R2\B1(0) → f |R2\B1(0) in H 1(R2 \ B1(0)), then
by trace theorem fε|∂B1(0) → f |∂B1(0), but f |∂B1(0) = 2x⊥ 6= 0 which is a contradiction.

We start by presenting the first density result.

Lemma 9. LetΩ an open, bounded subset of R2 with smooth boundary such that ∂Ω=∪Γi where
Γi for i = 0, . . . ,n are open connected components of the boundary withΓi∩Γ j =; for i 6= j , then the
set C∞

σ (Ω)∩L2
σ(Ω) of smooth divergence-free functions with 0 normal component on the boundary

∂Ω is dense in H 1(Ω)∩L2
σ(Ω).

Proof. Let v ∈ H 1(Ω)∩L2
σ(Ω), then by [9, Corollary 3.3] there exists a stream functionψ such that

∇⊥ψ= v and ψ ∈ H 2(Ω). Using the condition v ·n = 0 on ∂Ω, ψ satisfies w.l.o.g.
−∆ψ=−curl v in Ω,

ψ= 0 on Γ0,

ψ= ci on Γi ,

for some constant ci . Consider ηε a symmetric convolution kernel of mass 1 with support in Bε(0)
and consider χε the characteristic function such that χε(x) = 1 if dist(x,∂Ω) > ε and 0 else. We
define 

−∆ψε =−(
χ3ε curl v

)∗ηε in Ω,

ψε = 0 on Γ0,

ψε = ci on Γi .

The functions vε = ∇⊥ψε are the desired approximations of v . First of all we prove that
vε ∈C∞

c (Ω)∩L2
σ(Ω). This is clear by elliptic regularity and vε ·n =∇⊥ψε ·n =∇ψ ·τ= 0 on ∂Ω (ψε

is constant in any Γi ). To prove the convergence we use the elliptic regularity from [3, Theorem 4,
Chapter 6] (in particular the remark that follow Theorem 4), we have

‖vε− v‖H 1(Ω)6 ‖ψε−ψ‖H 2(Ω)6C‖(
χ3ε curl v

)∗ηε−curl v‖L2(Ω) → 0.

�

Lemma 10. The set
Y =

{
v ∈H

∣∣∣ v |F0 ∈C∞
c (F0)

}
, (13)

is dense in V , V and H .

Proof. The proof in the case of H is easy. We turn to the case of V and V . The difference between
the two spaces is the integrability at +∞ but this will not change much the proof so we will do it
only for V .

Let v ∈ V and let l and r such that vS = l + x⊥r . For ρ > 0 such that ρ > diam(S0), we
define χρ to be a smooth cut off function such that 0 6 χρ 6 1, χρ = 1 in Bρ(0), χρ = 0
outside B2ρ(0) and |∇χρ |6C /ρ. Fix R > 0 such that R/4 > diam(S0), we decompose v = u + v1,
where u = ∇⊥(χR/4(−l⊥ · x + r /2|x|2)). The function u ∈ C∞

σ,c (R2) and v1|F0 ∈ H 1(R2) ∩ L2
σ(F0)

and v1|S0 = 0. By Theorem 3.3 of [9] there exists ϕ ∈ H 2(B2R (0) \ S0) such that v1 = ∇⊥ϕ.
We decompose v1 = w + z where w = ∇⊥(χRϕ). The function z is such that z|BR (0) = 0 and
z|R2\BR (0) ∈ H 1

0 (R2 \ BR (0))∩L2
σ(R2 \ BR (0)) = E , where

E = {C∞
σ,c (R2 \ BR (0))}

‖.‖H1

,

see for example [4, Section III.4.2]. This provides the existence of a sequence z̃ε ∈C∞
σ,c (R2 \ BR (0))

such that z̃ε→ z|R2\BR (0) in H 1(R2 \ BR (0)). Let zε to be the extension by 0 of z̃ε inside BR (0), then
zε → z in V . We now study w . The function w ∈ H 1(B4R (0) \ S0)∩L2

σ(B4R (0) \ S0). By Lemma 9
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there exist w̃ε ∈C∞(B4R (0) \S0)∩L2
σ((B4R (0) \S0) such that w̃ε→ w |B4R (0)\S0

in H 1(B4R (0) \S0).

Let ψε ∈ H 2(B4R (0) \ S0) such that w̃ε = ∇⊥ψε. The function ψε is unique up to a constant, so
we choose the unique ψε such that

∫
B4R (0)\B2R (0)ψε = 0. Define wε = ∇⊥(χ2Rψε) and denote by

w = w |B4R (0)\S0
. We have

‖w −wε‖H 1(B4R (0)\S0)6‖w − w̃ε‖H 1(B4R (0)\S0) +C‖w̃ε‖H 1(B4R (0)\B2R (0)) +‖(∇⊥χ2R )ψε‖H 1(B4R (0)\S0)

6o(ε)+C‖w̃ε‖H 1(B4R (0)\B2R (0)) +C‖ψε‖L2(B4R (0)\B2R (0)))

6o(ε)+C‖w̃ε‖H 1(B4R (0)\B2R (0)) = o(ε),

in fact we can use the Poincaré inequality on theψε and ‖w̃ε‖H 1(B4R (0)\B2R (0)) = o(ε) because w = 0
in B4R (0) \ B2R (0) (C is a constant that change from line to line). Let wε be the extension by 0 of
wε. The functions

vε = u +wε+ zε→ v in V ,

Moreover vε, u, wε and zε are element of Y (where we extend wε by 0 in the interior of S0). �

Finally we move to the proof of Theorem 8.

Proof. The proof of this theorem follows the proof of Theorem 1 in [20]. The main difficulty is to
deal with the fact that the function H is not an L2(F0) function. In this work we emphasize only
the changes in the proof in [20], for this reason we divide the proof in several steps as in the paper
mentioned above.

The idea of the proof is to use an energy estimate to prove that the Galerkin approximation
converges. To get the energy estimate at a formal level is enough to test the equation with ũ, but
this does not work because b is not bounded in V × V × V but only in V × V × V . The idea is to
use a truncation of the solid velocity far from the solid. This procedure was introduced by [19] in
a slightly different setting.

For simplicity in the proof we consider the case β= 1. Dealing with β 6= 1 is not an issue.

Truncation. As said in the beginning we refer to [20] for more details. Let R0 such that S0 ⊂
B(0,R0/2). For R > R0, let χR :R2 →R2 the map such that

χR (x) =
{
χR (x) = x⊥ for x in B(0,R),

χR (x) = R
|x| x

⊥ for x in R2 \ B(0,R).

Note that for w ∈ V we have that

χR ·∇w → x⊥ ·∇w in L2(R2) as R →+∞.

We can use the functions χR to truncate the solid velocity in the following way: we define

uS ,R (t , x) = l (t )+ r (t )χR (x),

and the forms

bR (u, v, w) = mru l⊥u · l⊥v +J0rurv rw +
∫
F0

[
((u −uS ,R ) ·∇)w

] · v − ru v⊥ ·w dx.

The advantage of bR is that it is a continuous form from V × V × V to R. Moreover there ex-
ists a constant C independent from R such that for any (u, v, w) ∈ V × V × V , |bR (u, v, w)| 6
C‖u‖V ‖v‖V ‖w‖V and for any (u, v) ∈ V × V , |bR (u,u, v)| 6 C (‖u‖2

L4(F0)
+‖u‖2

H
)‖v‖V . The can-

cellation property still hold, in fact for any (u, v) ∈ V ×V , bR (u, v, v) = 0. Finally we note that for
any (u, v, w) ∈ V ×V ×V bR (u, v, w) → b(u, v, w) when R goes to +∞.

Existence for the truncated system. In this step we present the existence of a solution for the
truncated system. We claim that for any ũ0 ∈ H and T > 0, there exists ũR ∈ C ([0,T ];H ) ∩
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L2([0,T ];V ) such that for all ϕ ∈C∞([0,T ];H ) and ϕ|
F0

∈C 1([0,T ];C∞
c (F0)), and for all t ∈ [0,T ],

it holds

(ũR (t ),ϕ(t ))H − (ũR,0,ϕ(0))H =
∫ t

0

[
(ũR ,∂tϕ)H +2νa(ũR ,ϕ)+2νa(H ,ϕ)

−bR (ũR ,ϕ, ũR )−b(H ,ϕ, ũR )−b(ũR ,ϕ, H)
]

dt .

Moreover ũR satisfies for almost every t ∈ [0,T ] the energy inequality

1

2
‖ũR (t )‖2

H +
∫ T

0

∫
∂S0

|ũR − ũR,S |2dsdt +
∫ t

0

∫
F0

|D(ũR )|2dxdt 6C
∫ T

0

(‖ũR‖2
H +1

)
dt .

The idea of the proof is based on the Galerkin method. We consider the set

Y =
{

v ∈H
∣∣∣ v |F0 ∈C∞

c (F0)
}

,

which is dense in V . Therefore there exists a base {wi }i∈N of the Hilbert space V such that wi ∈Y

for all i . We consider the approximate solution

ũN (t , x) = ũN ,R (t , x) =
N∑

i=1
gi ,N (t )wi (x),

where we forgot R for simplicity. The function ũN satisfies

(∂t ũN , w j )H = 2νa(ũN , w j )+2νa(H , w j )+bR (ũN , ũN , w j )−b(H , w j , ũN )−b(ũN , w j , H),

ũN |t=0 = ũN 0, (14)

where ũN 0 is the orthogonal projection in H of ũ0 onto the space spanned by w1, . . . , wN . The
existence of such gi ,N is due to the Cauchy–Lipschitz theorem applied to the system of ODE:

G ′
N =M−1

N

[
2νAN GN +2νAN ,H −BN ,H1 (GN )−BN ,H3 (GN )+BN (GN ,GN )

]
, GN (0) =GN ,0,

where

MN = [(wi , w j )H ]16i , j6N , GN = [g1,N . . . gN ,N ]T , AN = [a(wi , w j )]16i , j6N ,[
BN ,H1 (u)

]
j =

N∑
k=1

uk b(H , w j , wk ),
[
BN ,H3 (u)

]
j =

N∑
i=1

ui b(wi , w j , H),

[BN (u, v)] j =
N∑

i ,k=1
ui vk bR (wi , w j , wk ),

[
AN ,H

]
j = a(H , w j ).

Note that MN is invertible because {wi }i∈N are linear independent in H .
The Cauchy–Lipschitz theorem ensures a local in time existence for the functions gi ,N . To

prove that the existence is in all the interval [0,T ] we need an estimate that leads us to conclude
that the function gi ,N are defined in all [0,T ]. To do that we multiply (14) by g j ,N and we sum over
j to obtain

1

2

d

dt
‖ũN‖H +2ν

∫
F0

|D(ũN )|2dx +2να
∫
∂S0

|ũN − ũN ,S |2ds = 2νa(H , ũN )−b(ũN , ũN , H). (15)

We now estimate the right hand side of the last equality. Note that for any ε there exists Cε such
that

|a(H , ũN )|6Cε+ε
(∫

F0

|D(ũN )|2dx+
∫
∂S0

|ũN−ũN ,S |2ds

)
and that |b(ũN , ũN , H)|6C‖ũN‖2

H ,

where C and Cε do not depend on N and R. If we integrate (15) in (0, t ), we use the two inequality
above and we bring on the left the terms multiplied by ε we get

‖ũN‖2
H +

∫ t

0

∫
F0

|D(ũN )|2dx +
∫ t

0

∫
∂S0

|ũN − ũN ,S |2ds6
∫ t

0

(
C +‖ũN‖2

H

)
dt +‖ũN 0‖2

H .
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Using the Grönwall lemma we obtain the estimate

‖ũN‖2
H 6 te tC

(
C

t

2
+‖ũN 0‖2

H

)
+C t +‖ũN 0‖2

H ,

which leads us to conclude that the function gi ,N can be extended in all [0,T ].
Moreover, by the fact that ‖ũN 0‖H 6 ‖ũ0‖H and by the Korn inequality, we conclude that

ũN ∈ L∞((0,T );H )

ũN ∈ L2((0,T );V )

are uniformly bounded in both the spaces. This leads us to conclude that there exists ũ ∈
L∞((0,T );H )∩L2((0,T );V ) such that ũN converges to ũ weakly in L2((0,T );V ) and *-weakly in
L∞((0,T );H ) as N goes to +∞.

We pass to the limit in (14). The only not triviality is to prove the convergence of the non-
linear term, i.e. bR (ũN , ũN , w j ) converges to bR (ũ, ũ, w j ). The idea is to notice that ũN is relatively
compact in L2((0,T );L2

loc (R2)), in fact this follows from the proof of Theorem 1 in [20], where the
only difference is the estimate

‖ fN‖V ′ 6C (1+‖ũN‖V +‖ũN‖2
V ),

with fN defined by

〈 fN , w〉 = 2νa(ũN , w)+2νa(H , w)+bR (ũN , ũN , w)−b(H , w, ũN )−b(ũN , w, H).

At this point we are able to pass to the limit in

(ũN (t ),ϕ(t ))H − (ũN 0,ϕ(0))H =
∫ t

0

[
(ũN ,∂tϕ)H +2νa(ũN ,ϕ)+2νa(H ,ϕ)

−bR (ũN ,ϕ, ũN )−b(H ,ϕ, ũN )−b(ũN ,ϕ, H)
]

dt .

which means that ũ = ũR satisfies

(ũR (t ),ϕ(t ))H − (ũR0,ϕ(0))H =
∫ t

0

[
(ũR ,∂tϕ)H +2νa(ũR ,ϕ)+2νa(H ,ϕ)

−bR (ũR ,ϕ, ũR )−b(H ,ϕ, ũR )−b(ũR ,ϕ, H)
]

dt . (16)

Limit of the solutions of the truncated problems. We note that the energy estimate do not de-
pend on R, so there exists sequence ũk,Rk

converging to ũ ∈ L∞((0,T );H )∩L2((0,T );V ) *-weakly
in L∞((0,T );H ) and weakly in L2((0,T );V ) as k goes to +∞.

These weak convergences do not lead us to pass directly to the limit because of the non-
linearity of bR , in other words we have to find an argument to prove that∫ t

0
bRk (ũk,Rk

, ũk,Rk
,ϕ) →

∫ t

0
b(ũ, ũ,ϕ)dx, as k goes to +∞.

As presented in the paper [20], it is enough to prove compactness of ũk,Rk
in a space of the

type L2((0,T );L2
l oc (R2)). We have already presented this compactness property for ũN ,R , but the

estimates are R depending so we cannot directly conclude.
The idea is to apply the Aubin–Lions lemma to get the compactness result. First of all we note

that ũk,Rk
are uniformly bounded in L4(0,T ;L4(F0)), in fact

‖ũk,Rk
‖4

L4(0,T ;L4(F0)) =
∫ t

0
‖ũk,Rk

‖4
L4(F0)dt

6C
∫ t

0
‖ũk,Rk

‖2
L2(F0)‖∇ũk,Rk

‖2
L2(F0)dt

6C‖ũk,Rk
‖L∞(0,T ;L2(F0))‖∇ũk,Rk

‖L2(0,T ;L2(F0)),
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where we use a Ladyzhenskaya’s inequality, see Lemma 13 in the Appendix. This leads us to prove
that ∂t ũk,Rk

is uniformly bounded in L2((0,T );V ′), in fact the only non-linear term that can be an
issue is ∫

F0

[(ũk,Rk
·∇)g ] · ũk,Rk

dx,

where g ∈ L2(0,T ;V ), but it can be bound by∣∣∣∣∫ T

0

∫
F0

[(ũk,Rk
·∇)g ] · ũk,Rk

dxdt

∣∣∣∣6C
∫ T

0
‖ũk,Rk

‖2
L4(F0)‖∇g‖L2(F0)dt

6C‖ũk,Rk
‖2

L4(0,T ;L4(F0))‖g‖L2(0,T ;V ).

We apply Aubin–Lions lemma to pass to the limit in the non-linear term. To do that we decom-
pose the velocity field ũk,Rk

= ûk +∇⊥(χ(lk · x⊥ + 1/2|x|2rk )), with χ a smooth cut-off which is
identical 1 in an open neighbourhood of S and it is identically zero outside a big enough ball
centred in zero. It holds that ûk ∈ L∞(0,T ;L2

σ(F ))∩L2(0,T ; H 1
σ(F )). First of all note that lk and

rk are uniformly bounded in H 1. The proof of this result is postponed to the next step “Improved
regularity for (l ,r )”. We deduce that lk and rk converge strongly in L2(0,T ) to l and r , in particular
∇⊥(χ(lk · x⊥+1/2|x|2rk )) converges to ∇⊥(χ(l · x⊥+1/2|x|2r )) in L2(0,T ; H k (F )) for any k ∈N. It
remains to prove some strong convergence of ûk in L2

l oc . The idea is to restrict the functions ûk in

a ball of radius b big enough, to prove that the Leray projection of ûk on L2
σ(Bb(0) \S ) is strongly

converge in L2 up to subsequence and to show that the remainder passes to the limit in the equa-
tion. Let L̂b = {v ∈ L2(Bb(0) \ S ) such that div v = 0 and v ·n = 0 on ∂S } and define the projector
Pb : L̂b → L2

σ(Bb(0)\S ) where v 7→ v −∇q with q solution of −∆q = 0 in Bb(0)\S , ∇q ·n = v ·n on
∂Bb(0) and ∇q ·n = 0 on ∂S . It holds that Pb ûk ∈ L∞(0,T ;L2

σ(Bb(0)\S ))∩L2(0,T ; H 1
σ(Bb(0)\S )),

in fact P is an orthogonal projection in L2
σ(Bb(0) \S ) and

‖Pb ûk‖H 1 6 ‖ûk‖H 1 +‖∇q‖H 1 6C
(‖uk‖H 1 +‖uk ·n‖H 1/2

)
6 C̃‖uk‖H 1 .

Consider the triple H 1
σ(Bb(0) \ S )) ,→ L2

σ(Bb(0) \ S )) ,→ (H 1
σ,0(Bb(0) \ S )))′ which satisfies the

hypothesis of Aubin–Lions lemma. We already showed that Pb ûk ∈ L∞(0,T ;L2
σ(Bb(0) \ S )) ∩

L2(0,T ; H 1
σ(Bb(0) \ S )), it remains to prove that ∂tPb ûk ∈ L2(0,T ; (H 1

σ,0(Bb(0) \ S )))′). For ϕ ∈
C∞

c ((0,T )×Bb(0) \S ) such that divϕ= 0 in Bb(0) \S , it holds∫
F
Pb ûk ·∂tϕ=

∫
F

ûk ·∂tPbϕ=
∫
F

ûk ·∂tϕ=
∫
F

ũk,Rk
·∂tϕ−

∫
F
∇⊥

(
χ

(
lk · x⊥+ 1

2
|x|2rk

))
·∂tϕ.

After an integration by parts in time we deduce that∣∣∣∣∫ T

0

∫
F
Pb ûk ·∂tϕ

∣∣∣∣6 ∣∣∣∣∫ T

0

∫
F

ũk,Rk
·∂tϕ

∣∣∣∣+ ∣∣∣∣∫ T

0

∫
F
∇⊥

(
χ

(
l ′k · x⊥+ 1

2
|x|2r ′

k

))
·ϕ

∣∣∣∣
6C

(‖∂t ũk,Rk
‖L2(0,T ;V ′) +‖(lk ,rk )‖H 1(0,T ;R3)

)‖ϕ‖L2(0,T ;H 1
σ,0(Bb (0)\S̄ ))),

which shows that ∂tPb ûk ∈ L2(0,T ; (H 1
σ,0(Bb(0) \ S )))′). The Aubin–Lions lemma ensures the

strong convergence of Pb ûk in L2(Bb(0) \S ) and by uniqueness of the limit, it converges to Pb ũ.
The difficult term to pass to the limit is∫

F
(ũk,Rk

− ũk,Rk ,S ) ·∇ϕ · ũk,Rk
.

Let b > 0 such that the support of ϕ and χ are contained in Bb/2(0). To short the notation,
define ũk,S = ∇⊥(χ(lk · x⊥ + 1/2|x|2rk )) and ∇qk,b = ûk − Pb(ûk ). Then we have the identity
ũk,Rk

= ũk,S +Pb(ûk )+∇qk,b in Bb(0). Recall that ũk,S and Pb(ûk ) converge strongly in L2((0,T )×
Bb(0)). Moreover ‖∇qk,b‖L2(Bb (0)\S̄ ) 6 Cb‖ũk,Rk

‖L2(∂Bb (0)) 6 C̃ b , which implies that ∇qk,b weakly

converges in L2((0,T )×Bb(0) \S ) to ∇qb , where ∇qb = û −Pb û by uniqueness.
Using the above decomposition of ũk,Rk

, the only term for which the convergence is not justify
is the one involving two times ∇qk,b , in fact for the others we can use the strong convergence of
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one of the sequences. In the case the test functionsϕ have 0 normal component on the boundary
the term involving two times ∇qk,b is zero, as shown in [7] Section 4. In our setting, it reads∫

F
(∇qk,b ·∇)ϕ ·∇qk,b

=−
∫
F∩Bb (0)

∆qk,bϕ ·∇qk,b −
∫
F∩Bb (0)

(∇qk,b ·∇)∇qk,b ·ϕ+
∫
∂F∪∂Bb (0)

∇qk,b ·n∇qk,b ·ϕ

=−
∫
F∩Bb (0)

∇|∇qk,b |2
2

·ϕ

=−
∫
∂F

|∇qk,b |2
2

ϕ ·n

=−lϕ ·
∫
∂F

|∇qk,b |2
2

n + rϕ

∫
∂F

|∇qk,b |2
2

x⊥ ·n.

where we use that ϕ = 0 on ∂Bb(0), ∇qk,b ·n = 0 on ∂F and divϕ = 0. Note that
∫
∂F |∇qk,b |2 is

bounded by
∫
∂Bb (0) |ũk,Rk

|2, in particular we deduce that up to subsequence the terms∫
∂F

|∇qk,b |2
2

n and
∫
∂F

|∇qk,b |2
2

x⊥ ·n

weakly converge in L2(0,T ). We can now pass to the limit in (16) and if we sum and subtract the
term 1/2

∫
∂F |∇qb |2ϕ ·n, we are left with the desired result plus the error term∫ T

0

∫
∂F

|∇qb |2
2

ϕ ·n − lim
k→+∞

∫ T

0

∫
∂F

|∇qk,b |2
2

ϕ ·n. (17)

Note that in the equality obtained after passing to the limit, the only term which still depends on
b is only the above one. We deduce that (17) is constant in b. Recall that qk,b and qb are solution
of a Laplace problem and Lemma 14 applies. It holds∫ T

0

∫
∂F

|∇qk,b |26
C

b

∫ T

0

∫
∂Bb (0)

|ũk,Rk
·n|26 C̃

b
‖uk,Rk

‖L∞(0,T ;L2(F ))‖uk,Rk
‖L2(0,T ;H 1(F )),

with C and C̃ independent of b and k. For b big enough the absolute value of the expression (17)
is smaller the 2ε, which implies that (17) is zero.

Improved regularity for (l ,r ). From the energy inequality we deduce that (lk ,rk ) ∈ L∞(0,T ;R2 ×
R). What we will show is that actually (lk ,rk ) satisfy a uniform estimates in a more regular space.
In particular we will prove that (lk ,rk ) are uniformly bounded in H 1(0,T ;R2 ×R), that leads us
to conclude that up to subsequence (lk ,rk ) converges strongly in L2 to (l ,r ), moreover (l ,r )
is H 1(0,T ). In two dimensions the Kirchhoff potentials are the solutions Φ = (Φi )i=1,2,3 of the
following problems:

−∆Φi = 0 for x ∈F0,

Φi −→ 0 for |x|→∞,

∂Φi

∂n
= Ki for x ∈ ∂F0,

where

(K1, K2, K3) = (n1, n2, x⊥ ·n).

These functions are smooth and decay at infinity as follows:

∇Φi =O

(
1

|x|2
)

and ∇2Φi =O

(
1

|x|3
)

as x →∞.
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For i = 1,2,3 we define the three functions vi as

vi =∇Φi in F0 and vi =
{

ei if i = 1,2,

x⊥ if i = 3,
in S0.

Note that vi ∈ V̂ .
If we test the weak formulation (16) with vi and we do some integrations by parts in a similar

way to [20] Section 3.4, we can rephrase the body’s equations as follow.

M

[
lk

rk

]′
= (2νa(ũk,Rk

, vi )+2νa(H , vi )+bRk (ũk,Rk
, ũk,Rk

, vi )

+b(H , ũk,Rk
, vi )−b(ũk,Rk

, vi , H))i∈{1,...,3},

where

M =
[

m Id2 0
0 J

]
+ [∫

F0
va · vb d x

]
a,b∈{1,2,3}

.

Since the matrix M is symmetric and positive definite, the norm ‖x‖M =p〈M x,M x〉 is equiva-
lent to the Euclidean norm on R3, 〈., .〉 is the Euclidean scalar product. In particular the square of
L2 norm of (l ′k ,r ′

k ) is equivalent to∫ T

0

〈
M

[
l ′k
r ′

k

]
,M

[
l ′k
r ′

k

]〉
6C

∑
i

∫ T

0

(|a(ũk,Rk
, vi )|+ |a(H , vi )|

+ |bRk (ũk,Rk
, ũk,Rk

, vi )|+ |b(H , ũk,Rk
, vi )|+ |b(ũ, vi , H)|)2 (18)

by Young inequality and Proposition 4 we estimates the right hand side as follow:∫ T

0
|a(ũk,Rk

, vi )|26
∫ T

0
‖ũk,Rk

‖2
V ‖vi‖2

V 6C‖vi‖2
V

∫ T

0
‖ũk,Rk

‖2
V ,

∫ T

0
|a(H , vi )|26C‖vi‖2

V T,∫ T

0
|bRk (ũk,Rk

, ũk,Rk
, vi )|26C

(‖vi‖Li p(F ) +‖vi‖V

)∫ T

0
‖ũk,Rk

‖4
H ,∫ T

0
|b(H , ũ, vi )|26C‖H‖2

L∞(F )‖vi‖2
V

∫ T

0
‖ũk,Rk

‖2
H ,∫ T

0
|b(ũk,Rk

, vi , H)|26C‖vi‖2
H ‖vi‖2

H

∫ T

0
‖ũk,Rk

‖2
H .

From the energy inequality we deduce that the right hand side of (18) is uniformly bounded,
which implies that the (lk ,rk ) are uniformly bounded in H 1(0,T ). �

Appendix

In this appendix we recall four results for lack of completeness. The first one describes some reg-
ularity properties of H . The second one is the Blasius’ Lemma. The third one is the Ladyzhen-
skaya’s inequality in exterior domain. The last one is a scaling estimate.

Lemma 11. Let identify R2 with C. Then H, the complex conjugate of H is an holomorphic
function in F . Moreover

H(z) = 1

2iπz
+O

(
1

z2

)
as |z| −→+∞.

Proof. The function H is smooth and satisfies div H = 0 and curl H = 0, which implies that H
satisfies the Cauchy–Riemann equations. This shows that H is holomorphic. To prove that

H(z) = 1

2iπz
+O

(
1

z2

)
as |z| −→+∞,
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we recall that HR2\B1(0) = 1/(2iπz) and that H(z) = bHR2\B1(0)(T (z)) with T the biholomorphic
map from Lemma 2.1 of [12]. In particular T (z) = bz + h(t ) with h a bounded holomorphic
function. This last information concludes the proof. �

Lemma 12 (Blasius’ Lemma). Let Γ a smooth Jordan curves and let f := ( f1, f2) and g := (g1, g2)
two smooth tangent vector fields. Then it holds∫

Γ
( f · g )n ds = i

(∫
Γ

f g

)∗
,∫

Γ
( f · g )(x⊥ ·n)ds = Re

(∫
Γ

z f g

)
.

Proof. See for instance [10]. �

Lemma 13 (Ladyzhenskaya’s inequality). Let F ⊂R2 an exterior domain with smooth boundary.
Then the following inequality holds true∫

F
u46C

∫
F

u2
∫
F
|∇u|2,

for any function u : F −→R in H 1(F ).

Proof. The proof is a corollary of the well-known Ladyzhenskaya’s inequality in R2. The idea of
the proof is to extend u in H 1(R2) in a proper way. Fix R such that R2 \ F ⊂ BR/2(0). Then there
exists a continuous operator

Ẽ : L2(BR (0)∩F ) −→ L2(BR (0))

such that Ẽ( f )|BR (0)\F = f , such that the operator restricted to the H 1 functions is continuous as

Ẽ |H 1(BR (0)\F ) : H 1(BR (0) \F ) −→ H 1(BR (0)).

We choose Ẽ to be defined as in the proof of Theorem 1 of Section 5.4 of [3] (see (3)). Consider
now the extension operator defined as follow

E( f )(x) =
{

f if x ∈F ,

Ẽ
(

f |BR (0)∩F −∫
BR (0)∩F f

)
+∫

BR (0)∩F f if x ∈R2 \F .

It holds ∫
F

u46
∫
R2

E(u)46
∫
R2

|E(u)|2
∫
R2

|∇E(u)|26C
∫
F

u2 dx
∫
F
|∇u|2,

where the last inequality follows from the estimates∫
R2

|E(u)|2 =
∫
F

u2 +
∫
R2\F

|E(u)|2

6 ‖u‖2
L2(F ) +C

∥∥∥∥u −
∫

BR (0)∩F
u

∥∥∥∥2

L2(BR (0)∩F )
+

∥∥∥∥∫
BR (0)∩F

u

∥∥∥∥2

L2(BR (0)∩F )

6C‖u‖2
L2(F ),

where we use the continuity of Ẽ and C is a constant that may change line by line. In a similar
way ∫

R2
|∇E(u)|2 =

∫
F
|∇u|2 +

∫
R2\F

|∇E(u)|2

6 ‖∇u‖2
L2(F ) +

∫
R2\F

|∇Ẽ(u)|2

6 ‖∇u‖2
L2(F ) +C

∥∥∥∥u −
∫

BR (0)∩F
u

∥∥∥∥
H 1(BR (0)∩F )

6C‖∇u‖2
L2(F ),

where we use the continuity of Ẽ and the Poincaré inequality in the last step. �
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We conclude with the scaling estimate.

Lemma 14. For big enough R > 0, it holds that solutions wR of

−∆wR = 0 in BR (0) \S ,

∇wR ·n = gR on ∂BR (0),

∇wR ·n = 0 on ∂S ,

with
∫

gR = 0, satisfy the estimate ∫
∂S

|∇wR |26 C

R

∫
∂BR (0)

|gR |2 (19)

with C independent on R.

Proof. Consider the functions v(x) = wR (Rx) and g (x) = RgR (xR), which satisfy

−∆v = 0 in B1(0) \S1/R ,

∇v ·n = g on ∂B1(0),

∇v ·n = 0 on ∂S1/R ,

where S1/R = {x such that Rx ∈S }. The inequality (19) is equivalent to∫
∂S1/R

|∇v |26 C

R

∫
∂B1(0)

|g |2.

To show the above estimate, we decompose v = v + v̌ + v̂ and for any component we prove the
inequality. The function v satisfies

−∆v = 0 in B1(0),

∇v ·n = g on ∂B1(0).

This implies that v is smooth in B1/2(0) and the W 1,∞ norm on B1/2(0) is bounded by a constant
multiply by the L1 norm of g . We deduce that∫

∂S1/R

|∇v |26 C

R

∫
∂B1(0)

|g |2.

The functions v − v satisfy

−∆(v − v) = 0 in B1(0) \S1/R ,

∇(v − v) ·n = 0 on ∂B1(0),

∇(v − v) ·n =−∇v ·n on ∂S1/R .

Note that ∇v is smooth in ∂S1/R and we can bound any H k norm by 1/
p

R‖g‖L2 .
Consider the space Ĥ 1/R = {u ∈ L2(∂S1/R ) such that ‖u‖L2(∂S1/R ) +R−1/2‖u‖Ḣ 1/2(∂S1/R ) < ∞}.

Note that the functions ∇v ·n ∈ Ĥ 1/R . By reflection method (see the Remark 15 after the proof),
there exist α1 ∈ H 1/2 and α2 ∈ Ĥ 1/R such that ‖α1‖H 1/2 + ‖α2‖Ĥ 1/R

6 C‖∇v · n‖Ĥ 1/R
for which

v − v = v̌ + v̂ solutions of

−∆v̂ = 0 in B1(0), −∆v̌ = 0 in R2 \ B1/R (0),

∇v̂ ·n =α1 on ∂B1(0), ∇v̌ ·n =α2 on ∂B1/R (0),

the estimates of ∇v̂ on ∂S1/R is exactly the same of v . Regarding v̌ we perform scaling estimates.
Fix R = 1 and denote by v̌1(Rx) = v̌(x) and α̃2(Rx) = 1/Rα2(x), the following estimates holds

‖∇v̌1‖L2(∂S )6C1‖∇v̌1‖1/2
L2(R2\S )

‖∇2v̌1‖1/2
L2(R2\S )

6C2‖α̃2‖Ĥ 1

by scaling it holds

1p
R
‖∇v̌‖L2(∂S1/R )6

C1p
R
‖∇v̌‖1/2

L2(R2\S1/R )
‖∇2v̌‖1/2

L2(R2\S1/R )
6

C2p
R
‖α2‖Ĥ 1/R

6
C3

R
‖g‖L2(∂Bb (0)),

which concludes the proof. �
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Remark 15. We refer to Section 3.1.2 of [11] for an introduction to the reflection method. Let us
note that for big enough R > 0 the linear map T : H̃ 1/2(∂B1(0))× H̃ 1/R −→ H̃ 1/2(∂B1(0))× H̃ 1/R
which sends (α1,α2) to the couple (∇ f̂ [α2−∇g [α1] ·n] ·n,0) has norm ‖T ‖H̃ 1/2(∂B1(0))×H̃ 1/R

6 1/2,
where H̃ 1/2(∂B1(0)) and H̃ 1/R are the subspaces of respectively H 1/2(∂B1(0)) and Ĥ 1/R with zero
average and for β ∈ H̃ 1/R , the function f̂ [β] satisfies −∆ f̂ [β] = 0 in R2 \S1/R and ∇ f̂ [β] ·n = β on
∂S1/R . The above observation is the key Lemma 3.6 of [11]. To show that the reflection method
applies, we verify that ‖T ‖H̃ 1/2(∂B1(0))×H̃ 1/R

6 1/2, which follows from the estimate

‖∇ f̂ [α2−∇g [α1]·n]·n‖H̃ 1/2(∂B1(0))6
Cp

R
‖α2−∇g [α1]·n‖L2(∂S1/R )6

Cp
R
‖α2‖L2(∂S1/R )+

C̃

R
‖α1‖∂B1(0),

and for R big enough.
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