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1. Introduction

LetΩ⊂Rn be a bounded domain with a smooth boundary Γ of class C 1 andω⊂Ω be a subregion
of Ω. Let A be a matrix of order N and D be a full column-rank matrix of order N ×M . The goal
of this paper is to study the uniqueness of solution to a coupled system of wave equations for the
variable Φ= (φ(1), . . . ,φ(N ))T : {

Φ′′−∆Φ+ ATΦ= 0 in (0,T )×Ω,

Φ= 0 on (0,T )×Γ (1)

associated with the initial data

t = 0 : Φ=Φ0, Φ′ =Φ1 in Ω (2)

and the internal observation

DTχωΦ≡ 0 in (0,T )×Ω, (3)

where “T ” stands for the transpose of a matrix, and χω is the characteristic function of the
subregion ω⊂Ω.

By classic theory of semigroups [24], system (1) forms a C 0-semigroup in the space (L2(Ω)×
H−1(Ω))N .

We will show in Proposition 5 that the following Kalman rank condition:

rank(D, AD, . . . , AN−1D) = N (4)

is necessary for the uniqueness of solution to problem (1)-(2) associated with the internal D-
observation (3). This kind of uniqueness could be regarded as a weak observability of system (1)
by means of the incomplete internal D-observation (3). However, since the matrix D is not
invertible in general, the incomplete internal D-observation (3) can not imply the nullity of all
the components:

χωΦ= 0 in (0,T )×Ω. (5)

Therefore, the uniqueness of solution to the previous problem does not correspond to a standard
unique continuation of Holmgren’s type. Fortunately, because of the commutation of the internal
observation with the d’Alembert operator:

DTχωäΦ=äDTχωΦ in D′((0,T )×ω), (6)

Kalman rank condition (4) formally plays the same role as in the case of ODEs [11]. More precisely,
we have

Theorem 1. Assume that (A,D) satisfies Kalman rank condition (4). Then for any given initial
data (Φ0,Φ1) ∈ (L2(Ω)×H−1(Ω))N , problem (1)-(2) associated with the internal D-observation (3)
has only the trivial solution, provided that T > 2d(Ω), where d(Ω) is the geodesic diameter of Ω.

Now let us recall some known results on the uniqueness of solution to problem (1)-(2) associ-
ated with the boundary D-observation

DT ∂νΦ≡ 0 on (0,T )×Γ. (7)

Kalman rank condition (4) is still necessary for the uniqueness of solution to problem (1)-(2)
associated with the boundary D-observation (7). Similarly to the internal case, the matrix D is not
invertible in general and the incomplete boundary D-observation (7) can not imply the nullity of
all the components:

∂νΦ≡ 0 in (0,T )×Γ. (8)
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Therefore, only Kalman rank condition (4) is not sufficient for the uniqueness of solution (see [14]
and [16, Theorem 8.11]). In order to obtain the desired uniqueness of solution, our basic idea is
to combine the uniform observability of a scalar wave system in (1):{

φ′′−∆φ= 0 in (0,T )×Ω,

φ= 0 on (0,T )×Γ (9)

and Kalman rank condition (4). The first attempts for realizing this idea were carried out in [14–
16]. More precisely, we have

Theorem 2 ([3] and [15]). Assume that Ω satisfies the usual geometrical control condition, and
that A is a cascade, or more generally, a nilpotent matrix. Assume furthermore that the pair (A,D)
satisfies Kalman rank condition (4). Then, for any given initial data (Φ0,Φ1) ∈ (H 1

0 (Ω)×L2(Ω))N ,
problem (1)-(2) associated with the boundary D-observation (7) has only the trivial solution,
provided that the time of observation T is large enough.

In order to broaden the scope of application, we extended in [17] the observation (7) from a
finite interval (0,T ) to the infinite horizon (0,+∞). By duality (see [17] for details), we are led to
consider the uniqueness of solution to the following elliptic system with a real parameter β for
the state variable Ψ= (ψ(1), . . . ,ψ(N ))T :{

∆Ψ+ ATΨ=β2Ψ in Ω,

Ψ= 0 on Γ
(10)

associated with the boundary D-observation

DT ∂νΨ≡ 0 on Γ. (11)

Theorem 3 ([17, Theorem 5.3]). Assume that Ω satisfies the geometrical control condition and
that there exists a positive constant a such that ‖A−aI‖ is small enough. Assume furthermore that
the pair (A,D) satisfies Kalman rank condition (4). Then, system (10) associated with the boundary
D-observation (11) has only the trivial solution.

We point out that Theorem 1 does not need any condition neither on Ω nor on the matrix A,
only Kalman rank condition (4) is sufficient for the uniqueness of solution. Moreover, the time
of observation is uniquely determined by the geodesic diameter ofΩ. This is essentially different
from the case of boundary observation discussed in Theorem 2, where the usual geometrical
control condition is required for establishing the uniform observability for the scalar system (9).
Only Kalman rank condition (4) can not provide sufficient information on the connection of the
equations in (1) with the boundary. This is why some additional spectral condition, for example,
the matrix A is nilpotent, should be required. This condition is not necessary, but technically
indispensable in the proof. Moreover, the time of observation T depends on the spectral density
of −∆+A, the rank of D and the number N of equations. WhenΩ is an interval [14] or a spherical
domain [28], it can be explicitly given by

T > (N − r ank(D)+1)π. (12)

This is the main weakness in the case of boundary observation.
The usual geometrical control condition and the smallness of ‖A − aI‖ are still required in

Theorem 3 because of the perturbation argument in the proof.
Now we comment the related literature. Unlike the hyperbolic system, which was less studied

and the obtained results are of different natures (see [2, 8, 23, 25]), the parabolic problem has
been abundantly investigated in the literature. We only quote [4,5] and the references therein for
the internal control of coupled systems of heat equations with the same diffusion coefficients
and constant or time-dependent coupling terms by means of Carleman estimates. We also
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mention [21] for the internal controllability of a system of heat equations with analytic nonlocal
coupling terms and [22] for the internal observability of some parabolic equations with constant
or time-dependent coupling terms using Lebeau–Robbiano strategy. The optimal control for the
exact synchronization of parabolic system was recently investigated in [27]. We quote [1, 9] for
the synchronization of distributed parameter systems on networks.

In what follows, we will further develop Theorem 1 and give its application to the correspond-
ing approximate internal controllability.

We refer to the complete version [13] for the related approximate internal synchronization.

2. Uniqueness theorem under Kalman rank condition

We first recall the following fundamental result.

Lemma 4 ([14, Lemma 3.1]).

rank(D, AD, . . . , AN−1D) = N −d (13)

where d is the largest dimension of the subspaces which are contained in Ker(DT ) and invariant
for AT .

Proposition 5. For any given initial data (Φ0,Φ1) ∈ (L2(Ω)×H−1(Ω))N , if problem (1)-(2) associ-
ated with the internal D-observation (3) has only the trivial solution, then the pair (A,D) should
satisfy Kalman rank condition (4).

Proof. Assume that Kalman rank condition (4) fails. Then, by Lemma 4, there exist a unit vector
E and a ∈C, such that

DT E = 0, AT E = aE .

Let φ be a solution to the following eigenvalue problem:{
−∆φ=µ2φ in Ω,

φ= 0 on Γ.

Let w satisfy
w ′′+ (µ2 +a)w = 0, −∞< t <∞.

Setting Φ= wφE , we easily check that

Φ′′−∆Φ+ ATΦ= (w ′′+ (µ2 +a)w)φE = 0

and
DTΦ= wφDT E = 0 in R×Ω.

We find thus a non-trivial solution to the overdetermined problem (1)–(3), which leads to a
contradiction. �

Inversely, we have

Theorem 6. Assume that (A,D) satisfies Kalman rank condition (4). Then for any given initial
data (Φ0,Φ1) ∈ (L2(Ω)×H−1(Ω))N , problem (1)–(2) associated with the internal D-observation (3)
has only the trivial solution, provided that T > 2d(Ω), where d(Ω) is the geodesic diameter of Ω.

Proof. LetΦ ∈C 0(R;L2(Ω))∩C 1(R; H−1(Ω)) be a solution to the overdetermined problem (1)–(3).
Sinceχω ≡ 1 inω, the d’Alembert operator ä= ∂t t−∆ commutes with the internal D-observation:

DTχωäΦ=äDTχωΦ in D′((0,T )×ω). (14)

Then, applying DTχω to (1), we get

äDTχωΦ+DT ATχωΦ= 0 in D′((0,T )×ω).
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Noting (3), we get

DT ATχωΦ= 0 in D′((0,T )×ω). (15)

Similarly to (14), we have

DT ATχωäΦ=äDT ATχωΦ in D′((0,T )×ω). (16)

Then, applying DT ATχω to (1), we get

äDT ATχωΦ+DT (A2)TχωΦ= 0 in D′((0,T )×ω).

Noting (15), we get

DT (A2)TχωΦ= 0 in D′((0,T )×ω).

Repeating the above procedure, we successively get

DTχωΦ= DT ATχωΦ= DT (A2)TχωΦ= ·· · = 0,

namely,

χωΦ
T (D, AD, . . . , AN−1D) = 0 in D′((0,T )×ω).

Since Kalman matrix (D, AD, . . . , AN−1D) is of full row-rank, it follows that

Φ= 0 in D′((0,T )×ω).

Finally, by Holmgren’s uniqueness theorem, we get

Φ= 0 in D′((0,T )×Ω),

provided that T > 2d(Ω), where d(Ω) denotes the geodesic diameter of Ω (see [10, Theorem 0.1]
or [20, Theorem 8.2]). �

Remark 7. Because of relations (14) and (16) etc, what happens for the internal D-observation
is almost as in the case of ordinary differential equations (see [11]). This is why Kalman rank
condition is also sufficient for the uniqueness without any restriction neither on the matrix A nor
on the damping subregion ω.

Remark 8. The observation time T > 2d(Ω) is independent of rank(D) and of the order N of A. It
is exactly the same as for a scalar equation. This is essentially different from the case of boundary
observation, where because of the spectral density, the observation time T depends on the rank
of D and also on the number N of equations (see (12)).

3. Approximate internal controllability

Now we consider the following problem for the variable U = (u(1), . . . ,u(N ))T :{
U ′′−∆U + AU = DχωH in R+×Ω,

U = 0 on R+×Γ (17)

with the initial data

t = 0 : U = Û0, U ′ = Û1 in Ω, (18)

where χω is the characteristic function of a subregion ω⊂Ω.
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Let us first recall the following standard well-posedness result (see [6, 7, 24]).

Proposition 9. Let Ω ⊂ Rn be a bounded domain with a smooth boundary Γ of class C 1. For any
given (Û0,Û1) ∈ (H 1

0 (Ω)×L2(Ω))N and any given H ∈ (L1
loc (R+;L2(Ω)))N , problem (17)–(18) admits

a unique weak solution U such that

(C 1
loc (R+;L2(Ω)))N ∩ (C 0

loc (R+; H 1
0 (Ω)))N . (19)

Moreover, the linear mapping
(Û0,Û1, H) → (U ,U ′) (20)

is continuous with respect to the corresponding topologies.

The exact internal controllability of wave equations was abundantly studied in the litera-
ture. We quote [10, 12, 26] for a single 1-D wave equation with locally distributed control in any
fixed non-empty subinterval of a bounded interval. In higher dimensional case, the exact in-
ternal controllability was established by HUM method in [20] with control distributed in an ε-
neighbourhood ω of the boundary Γ satisfying the usual geometrical control condition.

We first show the non-exact controllability in the case of fewer internal controls, namely, when
rank(D) < N . This is the motivation to consider the approximate internal controllability under
weaker rank condition on D .

Theorem 10. Assume that rank(D) < N . Then no matter how large T > 0 is, system (17) is not
exactly controllable in the space (H 1

0 (Ω)×L2(Ω))N .

Proof. Let E ∈ RN be a unit vector such that DT E = 0. For any given θ ∈ L2(Ω), we choose the
special initial data as

t = 0 : U = 0, U ′ = θE . (21)

Assume that system (17) is exactly controllable. Let H0 be the internal control which realizes the
exact null controllability with the minimal norm. There exists a positive constant c1 independent
of θ, such that

‖H0‖(L2(0,T ;L2(Ω)))M É c1‖θ‖L2(Ω). (22)

By Proposition 9, there exists a positive constant c2 independent of θ, such that

‖U‖(C 0(0,T ;(H 1
0 (Ω)))N +‖U ′‖(C 0(0,T ;(L2(Ω)))N É c2‖θ‖L2(Ω). (23)

Now, applying E to (17) and noting w = (E ,U ), we get the following backward problem:
w ′′−∆w =−(E , AU ) in (0,T )×Ω,

w = 0 on (0,T )×Γ,

t = T : w = 0, w ′ = 0 in Ω.

(24)

First, by Proposition 9, the mapping

− (E , AU ) → w (25)

is continuous from L1(0,T ;L2(Ω)) to C 1(0,T ;L2(Ω)) ∩C 0(0,T ; H 1
0 (Ω)). On the other hand, us-

ing (23) and Theorem 5.1 in [19], the mapping

θ→−(E , AU ) (26)

is compact from L2(Ω) into L2(0,T ;L2(Ω)). Then the mapping

θ→ w (27)

is compact from L2(Ω) into C 1(0,T ;L2(Ω)) ∩ C 0(0,T ; H 1
0 (Ω)). In particular, noting the initial

condition:
t = 0 : w = 0, w ′ = θ in Ω, (28)
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the mapping of identity
θ→ w ′(0) = θ (29)

would be compact in L2(Ω). We then get a contradiction. �

Definition 11. System (17) is approximately null controllable at the time T > 0 if for any given
initial data (Û0,Û1) ∈ (H 1

0 (Ω) × L2(Ω))N , there exists a sequence {Hn} of internal controls in
(L2(R+;L2(Ω)))M with compact support in [0,T ], such that the sequence {Un} of corresponding
solutions satisfies the following condition

(Un ,U ′
n) → (0,0) in (C 0

loc ([T,+∞); H 1
0 (Ω)×L2(Ω)))N (30)

as n →+∞.

By duality [13], the approximate null controllability of a coupled system of wave equations can
be transformed into the uniqueness of solution to the corresponding adjoint system (1). More
precisely, we have

Proposition 12. System (17) is approximately null controllable at the time T > 0 in the space
(H 1

0 (Ω)×L2(Ω))N if and only if for any given initial data (Φ0,Φ1) ∈ (L2(Ω)×H−1(Ω))N , system (1)
associated with the internal observation (3) has only the trivial solution.

As a direct consequence of Theorem 6 and Proposition 12, we have the following result.

Theorem 13. If system (17) is approximately null controllable, then (A,D) satisfies Kalman rank
condition (4). Inversely, under Kalman rank condition (4), system (17) is approximately null
controllable, provided that T > 2d(Ω), where d(Ω) denotes the geodesic diameter of Ω.

Noting that the rank of D in (4) may be much smaller than N , this is the advantage to
consider the approximate internal null controllability. However, the following result shows that
the corresponding sequence of internal controls {Hn} is unbounded in general.

Proposition 14. System (17) is exactly null controllable at the time T in the space (H 1
0 (Ω)×L2(Ω))N

by means of an internal control H ∈ (L2(0,T ;L2(Ω)))N , if and only if it is approximately null
controllable at the time T in the space (H 1

0 (Ω)×L2(Ω))N by means of a sequence {Hn} of internal
controls which is bounded in (L2(0,T ;L2(Ω)))N .

Proof. For any given initial data (Û0,Û1) ∈ (H 1
0 (Ω) × L2(Ω))N , let {Hn} be a sequence in

(L2(0,T ;L2(Ω)))M , which realizes the approximate null controllability of system (17). Let {Un} be
the corresponding solution to system (17) with H = Hn .

Assume that the sequence {Hn} is bounded in (L2(0,T ;L2(Ω)))M . Without loss of generality, we
may assume that there exists a function H in (L2(0,T ;L2(Ω)))M such that

Hn *H weakly in (L2(0,T ;L2(Ω)))M . (31)

The linear map (20) is also continuous for the corresponding weak topologies, namely, we have

(Un ,U ′
n)* (U ,U ′) weakly in (L2(0,T ; H 1

0 (Ω)×L2(Ω)))N . (32)

Now for any given initial data (Φ0,Φ1) ∈ (L2(Ω)×H−1(Ω))N , letΦ be the corresponding solution
to the adjoint problem (1)–(2). Multiplying system (17) byΦ, integrating by parts over [0, t ]×Ω for
any given t with 0 < t < T , we get

〈(Un(t ),U ′
n(t )), (Φ′(t ),−Φ(t ))〉 = 〈(Û0,Û1), (Φ1,−Φ0)〉+

∫ t

0

∫
Ω

(DχωHn ,Φ)dxdt , (33)

where the symbol 〈 · , · 〉 denotes the duality between the spaces (H 1
0 (Ω)×L2(Ω))N and (H−1(Ω)×

L2(Ω))N . Passing to the limit in (33) as n →+∞, and noting (31)–(32), we get

〈(U (t ),U ′(t )), (Φ′(t ),−Φ(t ))〉 = 〈(Û0,Û1), (Φ1,−Φ0)〉+
∫ t

0

∫
Ω

(DχωH ,Φ)dxdt . (34)
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This means that U is the solution to system (17)-(18) associated with the initial data (Û0,Û1)
and the internal control H given by the weak limit of the sequence {Hn} in (31). In particular,
noting (30), we have U (T ) = U ′(T ) = 0. System (17) is then exactly null controllable. The other
side of the proposition is trivial. The proof is complete. �

4. Comments

Now let us summarize the results obtained in this work. The main result is Theorem 6 on the
uniqueness of solution only under Kalman rank condition (4). For the application, Theorem 10
first gives the non-exact controllability when rank(D) < N , which motivates the study on the ap-
proximate controllability. Then by Theorem 13, we establish the approximate null controllability
of system (17) only under Kalman rank condition (4). However, as shown by Proposition 14, the
underlying sequence of controls is unbounded, which is a disadvantage of the approximate null
controllability. Finally, we mention some questions to be developed in the future.

1. The study can be similarly carried up for a system of wave equations with Neumann boundary
condition {

U ′′−∆U + AU = DχωH in R+×Ω,

∂νU = 0 on R+×Γ.
(35)

2. Consider a system of wave equations with mixed controls:{
U ′′−∆U + AU = Di nχωHi n in R+×Ω,

U = Dbd Hbd on R+×Γ.
(36)

We easily check that Kalman rank condition (4) with D = (Di n ,Dbd ) is necessary for the approxi-
mate null controllability, and the sufficiency will be investigated in a forthcoming work.

3. Similarly to [18], we can consider a system of wave equations with Robin condition and mixed
controls: {

U ′′−∆U + AU = Di nχωHi n in R+×Ω,

∂νU +BU = Dbd Hbd on R+×Γ.
(37)

Assume that there exists a subspace V = Span{E1, . . . ,Ed }, which is invariant for AT and B T , and
contained in Ker(DT ) with D = (Di n ,Dbd ). Then, there exist coefficients αr s and βr s such that

AT Er =
d∑

s=1
αr s Es , B T Er =

d∑
s=1

βr s Es , r = 1, . . . ,d . (38)

Applying Er to system (37) and setting ur = (Er ,U ), we get a homogeneous system for r = 1, . . . ,d :{
u′′

r −∆ur +∑d
s=1αr s us = 0 in R+×Ω,

∂νur +∑d
s=1βr s us = 0 on R+×Γ,

(39)

which is uncontrollable. But the sufficiency is largely open.
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